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A framework for the evaluation of the effectiveness of traffic diversion strategies
for non-recurrent congestion, based on predictive guidance and using dynamic
traffic assignment, is presented. Predictive guidance is based on a short-term
prediction of traffic conditions, incorporating user reaction to information and
guidance. A case study of the Lower Westchester County network in New York
State, using DynaMIT-P, is presented to illustrate the application of the
framework. DynaMIT-P is capable of evaluating diversion strategies based on
predicted conditions, which take into account drivers’ response to traffic
information. The case study simulates the operations of predictive variable
message signs positioned in strategic locations. DynaMIT-P is calibrated for the
study network and used to establish base conditions for two incident scenarios in
the absence of advanced traveller information systems. The effectiveness of
predictive diversion strategies is evaluated (using rigorous statistical tests) by
comparing traffic conditions with and without diversion strategies. The empirical
findings suggest that incident diversion strategies based on predictive guidance
result in travel time savings and increased travel time reliability.

Keywords: incident management; response strategies; dynamic traffic assignment;
travel time savings; travel time reliability

1. Introduction

It is well established in the literature that the provision of driver information has the

potential to reduce congestion, especially under incident conditions (cf. Mahmassani

2001, Ben-Akiva et al. 2002). However, information may have adverse impacts if it is

not accurate, timely or properly disseminated. A key concern with the dissemination

of driver information is the phenomenon of overreaction. Prediction-based route

guidance based on short-term forecasts of the state of the network, taking into

account driver response to information, is expected to be more effective in

minimizing overreaction than naive strategies based on historical or current traffic

patterns.
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Theoretical and simulation-based analyses have generally confirmed the need for

prediction-based guidance (cf. Ben-Akiva et al. 1991, Ben-Akiva et al. 1996).

Furthermore, Balakrishna et al. (2004) confirm some existing findings on over-

reaction while providing valuable insights into the role played by critical parameters

that control simulation-based guidance generation systems.

Clearly, to analyse the impact of information through in-vehicle units (IVUs),
variable message signs (VMSs), highway advisory radio (HAR) messages or by other

means, it is necessary to model accurately both traveller behavior and traffic

dynamics. Recently developed simulation-based dynamic traffic assignment (DTA)

systems � such as DynaMIT (Ben-Akiva et al. 2001a) and DYNASMART

(Mahmassani 2001) � have traffic estimation and prediction capabilities, incorporat-

ing driver response to information. These systems, because of their predictive

capabilities, can reduce or even eliminate the impact of overreaction which may occur

if traffic information is provided without considering driver response to information

(Ben-Akiva et al. 2002, Balakrishna et al. 2004).

Dia and Cottman (2006) used a microscopic simulation approach to evaluate the

impacts of incident management strategies and the provision of real-time travel

information in response to incidents. The presented strategies involved diversion

towards alternative routes, combined with externally defined compliance rates. While

microsimulation is a useful tool with many applications, it also has some limitations.

Although microscopic simulation arguably provides a more accurate modeling of

traffic dynamics than do mesoscopic or macroscopic tools, microscopic traffic

simulation is currently useful only in the context of relatively small networks. As a
result, routing decisions/diversions are usually based on intermediate destinations

(defined at the boundaries of the microscopic network) and do not really represent

actual origins and, more importantly, ultimate destinations. Hence, impacts of the

simulated incident management strategies may be biased. DTA models on the other

hand can model these impacts more accurately, as they can deal with larger networks

and explicitly model demand at the origin�destination (OD) level.

Other approaches for traffic prediction models have also been developed. Sadek

et al. (1999) presented a framework for the development of real-time traffic routing

strategies. The authors used heuristic search algorithms, including simulated

annealing and genetic algorithms. Sadek et al. (2001) examined the feasibility of

applying case-based reasoning to the problem. Ishak and Al-Deek (2002) investi-

gated the factors that have a significant impact on the forecasting accuracy of travel

times using a non-linear time series traffic prediction model. The study was

conducted using real-time data collected from Interstate-4 in Orlando, Florida.

Mahmassani (2001) presented an application of the DTA system DYNASMART

to evaluate and compare the impacts of various information supply strategies under
incident conditions. The emphasis of this research was in the evaluation of different

types of information strategies. The first group of strategies provided descriptive

information, such as prevailing trip times and associated current best paths

were provided to users; different penetration levels were then modelled. Prescriptive

information with multiple user classes was also presented, while a prescriptive

system’s optimal solution was also simulated as a benchmark case.

Sundaram (2002) developed a methodological framework for the evaluation of

intelligent transportation systems (ITSs) at the planning level and implemented it in

DynaMIT-P � DynaMIT for short-term planning applications (Ben-Akiva et al.
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2001b). The methodological framework captured both the within-day and day-to-

day evolution of traffic and modelled traveller behavior and network performance in

response to special events and situations such as incidents, weather emergencies,

sport events, and work zones. Various scenarios involving instantaneous and

predictive information were evaluated using DynaMIT-P based on a hypothetical

incident on the Irvine, CA, network. The benefits of providing consistent predictive

information (versus instantaneous) were demonstrated. However, this effect was

avoided by using predictive VMS with a consistent guidance strategy. Other studies

(cf. Oh and Jayakrishnan 2000) have also confirmed the intuitive expectation that

ceteris paribus predictive VMS information leads to larger travel time gains when

compared to instantaneous VMS information.

The optimal location of advanced traveller information system (ATIS) infra-

structure is a related problem. Chiu et al. (2001) introduced a framework for finding

an optimal set of locations to install a given number of VMS in a traffic network. The

aim was to maximize the expected benefit of the available VMS under a variety of

traffic incident situations. The model was constructed as a nested optimization

problem in which there were two levels of decision-making. The upper level seeks to

minimize the expected total user travel time over the space of stochastic incidents. A

tabu search algorithm was employed at the upper level to generate potential

solutions, which were then evaluated at the lower level by solving the user

equilibrium dynamic traffic assignment problem via simulation.

The objective of the present paper is twofold: to present a framework for the

application of DTA for the evaluation and/or development of diversion strategies

and to evaluate the impact of predictive VMS information in situations of incident

congestion. The simulation-based DTA system DynaMIT-P is used for the

evaluation of diversion strategies through an extensive case study of the Lower

Westchester County network in New York State.

The remainder of this paper is organized as follows. Section 2 presents the

proposed framework, covering both the development of incident scenarios and the

subsequent evaluation of diversion strategies. An overview of DTA requirements for

incident management strategy evaluation is presented in Section 3, along with a

description of the modeling aspects of DynaMIT-P that cover these requirements.

Section 4 presents the results of an extensive application to the network of Lower

Westchester County. The objective of the application is to evaluate the effectiveness

of predictive VMS guidance (simulated using DynaMIT-P) under incident condi-

tions. Section 5 summarizes and concludes the paper.

2. Framework for the evaluation of diversion strategies using DTA

The evaluation of diversion strategies using DTA (Figure 1) requires as a first step

the calibration of the model and the establishment of base conditions. The type of

infrastructure (e.g. VMS, HAR or IVU), the location and range, the type of

information to be disseminated and the method for generating this information are

key design characteristics and are also required as inputs. In the case of existing

systems, the type of the system as well as the location and range may already be fixed.

However, this process can be used in the planning phase of an ATIS deployment in

order to determine optimal resource allocation (cf. Chiu et al. 2001).
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Various measures of effectiveness (MOEs), such as average travel times and their

standard deviations, obtained during incident scenarios provide benchmark perfor-

mance measures that establish reference points for quantifying the benefits of

alternative response strategies.

2.1. Calibration

In general, DTA models include a number of parameters that need to be calibrated.

These parameters include the (usually unknown) dynamic OD flows and route choice

parameters on the demand side and capacities and speed�density relationship

parameters on the supply side. Therefore, calibration of the unknown parameters

and inputs of the demand and supply models within a DTA system is an important
and crucial step in any application, as it ensures that the model accurately captures

the traffic conditions prevailing in the network. It is defined as follows: Given a set of

initial values for various parameters and typically available (aggregate) measures of

flows, speeds and densities at sensor locations, determine the OD flows, route choice

parameters, capacities and speed�density relationships, so that the discrepancy between

the DTA model output and observed values is minimized.

Following Balakrishna et al. (2005), the calibration problem is formulated as an

optimization problem:

min
x;b;c

z1 MDTA; Mobs
� �2þz2 x; xað Þ2þz3 b; bað Þ2þz4 c; cað Þ2

h i
(1)

where b represents the route choice parameters, g represents the parameters in the

supply simulator, X are the OD flows, Mobs are the observed measurements and

MDTA are the DTA model outputs. Superscript a indicates a priori values and z1, z2,
z3 and z4 are error functions. The objective function minimizes the discrepancy

between various model outputs and observed (actual) measurements M (e.g. flows

and speeds can be used as measurements) as well as deviations from a priori values,

appropriately weighted. Constraints can be added to the values of the estimated

parameters to ensure that they lie in their allowed domain. For example OD flows

Base-case traffic
conditions

 

ATIS location and
information type
(VMS/HAR/IVU) 

Incident scenario
Demand/supply 

changes

DTA

Output: MOEs

Calibration

Figure 1. Evaluation of diversion strategies.
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should be non-negative, while the travel time coefficient for the route choice model

should be negative, as higher travel times tend to lower the perceived utility of the

corresponding route. The above problem is solved iteratively using appropriate

algorithms (Balakrishna et al. 2005).
A common special case of the problem involves the estimation of the OD flows xh

for interval h. In this case the general formulation reduces to

xh ¼ argmin z1 xh; xa
hð Þ þ z2

X
p¼h�p0

ap
hxp; ya

h

 !" #
(2)

Function z1 measures the Euclidean distance of the estimated flows xh from their

a priori values xa
h, while z2 measures the distance of the measured counts yh from

their simulated counterparts. The assignment matrices ap
h required by the OD

estimation module are outputs of the supply simulator of the DTA model and are

functions of the as-yet-unknown OD flows, the equilibrium travel times on each link

(tt
eq
l ), the route choice parameters b and the supply-side parameters g:

ap
h ¼ g xp; b; c; tteq

l


 �
(3)

The determination of consistent ‘equilibrium’ travel times is part of the

calibration process. Equilibrium is achieved when motorists follow the perceived

shortest path to their destination. Travel times on those paths are time-dependent.
These equilibrium travel times are themselves a function of the OD flows, route

choice parameters and supply-side parameters:

tt
eq
l ¼ h b; c; xp


 �
(4)

Equations (2)�(4) clearly demonstrate the fixed-point nature of the calibration

problem. An iterative approach is therefore used to converge to a consistent

calibration of the parameters and ‘equilibrium’ conditions (Sundaram 2002,

Balakrishna et al. 2005).

2.2. Evaluation of strategies

The objective of incident management is to apply diversion strategies that will
ultimately reduce the travel delays due to the incident. The main concept is usually

the more effective utilization of the residual capacity of secondary routes that are not

heavily used by drivers under regular conditions by shifting travellers to these routes.

The various strategies may be evaluated based on a number of suitable MOEs,

including, for example:

� Travel times and delays on the affected ODs, paths and links

� Reliability/uncertainty of travel times (and resulting guidance), which has been
shown to have an impact on pre-trip and en-route drivers’ behavior (cf. Abdel-

Aty et al. 1997, Mahmassani and Liu 1999, Toledo and Beinhaker 2006)

� Impact on secondary roads

� Distribution of travel times and other MOEs over time and space, e.g. by time

of day, by departure time interval or by OD pair.
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3. DynaMIT DTA model for evaluation of incident management strategies

DynaMIT-P is a short-term planning tool for the evaluation of ITS strategies that

combines detailed representation of demand, supply, and algorithms that capture

their interactions. The primary objective of DynaMIT-P is to assist planners in short-

term planning applications. Such applications are related to infrastructure-related,

operational or informational changes. In response to altering traffic conditions

caused by such changes, travellers make adjustments to their travel choices. These
adjustments in turn change traffic conditions. DynaMIT-P is designed to model

these interactions and assess the performance of the network and the benefits to

travellers under various proposed infrastructure, operational or information

strategies. DynaMIT-P is capable of handling several types of information (e.g.

pre-trip/en-route, descriptive/prescriptive). Route choice is based on discrete choice

models (Antoniou et al. 1997). DynaMIT-P and DynaMIT-R (its operational, real-

time counterpart) have been extensively validated for several real networks (cf.

Sundaram 2002, Balakrishna et al. 2004, 2005, Antoniou et al. 2007).
DynaMIT-P consists of two main components: a demand simulator and a supply

simulator. The two components are used iteratively to capture the demand�supply

interactions as illustrated in Figure 2 (Ben-Akiva et al. 2002).

The demand simulator estimates dynamic OD flows and captures travellers’

decisions in terms of departure time, mode and route choices (Antoniou et al. 1997).

An initial estimate of demand is directly derived from available data (e.g. from

planning models or prior surveys). The supply simulator explicitly simulates the

interaction between the demand and the network.
Because of the above structure and characteristics, DynaMIT-P is very well suited

for the off-line generation of libraries of incident diversion strategies and the

evaluation of ATIS prior to their actual online deployment by simulating a wide

range of information generation approaches and diversion strategies. DynaMIT-P

satisfies all the requirements with respect to the representation of both incident

scenarios and ATIS infrastructure, as well as the route choice and path generation

process (discussed in the previous section).

3.1. Representation of incident scenarios

The considered incident scenarios are captured in DynaMIT-P by modifying the
relevant inputs on the supply or demand side and evaluating the network

Demand
simulator

Supply
simulator

Congruence

Assignment
matrix

Estimated
demand

Figure 2. Demand�supply interactions within DynaMIT-P.
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performances under modified inputs. Changes on the supply side are made primarily

to the segment capacities. For example a lane closure due to an accident and its

impacts for a temporary period are captured by reducing the capacity of the

corresponding segment for the appropriate time interval. DynaMIT-P’s traffic

simulator is mesoscopic in nature. As a result, segment capacity is an input that

can be modified according to the prevailing traffic conditions or disruptions

(e.g. incidents, work zones, special events, adverse weather conditions). More detail

regarding the modeling of capacity in DynaMIT-P can be found in Ben-Akiva et al.

(2002).

Any changes on the demand side are captured by updating the appropriate OD

matrices. A typical example of changes in the demand inputs would be the increase in

demand due to special events such as baseball games, music concerts or holidays.

Special events may not directly affect the supply side but will in general affect the

demand patterns in the network. For example a major sports or arts event would

provide a significant attraction of demand towards the venue (before the event) and

from the venue (after the event). Similarly, major holidays might result to sudden

changes to the demand pattern in the network. Incidents (both planned and

unplanned) may also affect demand as people modify their departure time or mode

in response to these incidents.

3.2. Representation of ATIS infrastructure

DynaMIT-P is capable of representing a variety of ATIS infrastructure, ranging from

VMSs and HAR to IVUs. Furthermore, DynaMIT-P can simulate several types of

each system, based on the scope of the information provided and the method used

for generating it. For example a VMS system is providing drivers with instantaneous

information if it is simply broadcasting the latest measured travel time information.

On the other hand, a VMS is providing predictive information if it is broadcasting

travel time information that has been obtained as a result of a short-term prediction

process.

If the information that is provided by the VMS is based on the current traffic

conditions, it is likely to be outdated by the time drivers have reached their

destination. It is also very likely to result in overreaction. Predictive information

has the potential to avoid these problems. However, prediction has to take into

account the response of drivers to the information provided. Hence, systems that

broadcast predictive information anticipate the evolution of traffic patterns in the

near future and provide drivers with information and guidance that is consistent

with the traffic conditions that they will encounter when they reach their

destination.

The problem of generating predictive traffic information that incorporates user

response to information is not a trivial task. In DynaMIT, it is formulated as a fixed-

point problem and an Method of Successive Averages (MSA)-type algorithm is used

for its solution. Bottom et al. (1999) provide a rigorous mathematical formulation of

the guidance generation process as a fixed-point problem and suggest algorithmic

approaches for its solution. An algorithmic investigation of the problem is also

available in Bierlaire and Crittin (2006).
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3.3. Route choice and response to information

DynaMIT-P explicitly models driver response to information. Pre-trip departure

time and path choice, as well as en-route path choice, are captured through discrete

choice models (Antoniou et al. 1997). Path choice decisions are based on the Path-

Size Logit model (Ramming 2002, Ben-Akiva and Bierlaire 2003) to account for

driver perceptions of overlapping paths. Many factors affect drivers’ response to

information (whether predictive or instantaneous), such as the range and timeliness

of the information, the socioeconomic characteristics of the travellers that receive the

information and the time of day (Polydoropoulou et al. 1994, 1996, Bonsall and

Merrall 1997, Wardman et al. 1997, Polydoropoulou and Ben-Akiva 1999,

Chatterjee et al. 2000, Ishak and Al-Deek 2002, Tsirimpa et al. 2007). The default

utility specification of the models included in DynaMIT-P for pre-trip and en-route

path choice uses travel time and includes a freeway bias component.

Drivers are originally assigned habitual paths based on historical travel times.

Those drivers without access to en-route information (e.g. via VMS, HAR or IVU)

follow their habitual path to their destination, irrespective of the prevailing traffic

conditions. Drivers with access to IVU or those that are within the range of VMS

and HAR become aware of the prevailing (respectively predicted) traffic conditions

and can use this information to update their habitual routes. This results in updated

route choices for the informed drivers.

3.4. Path generation

The choice set for the route choice model is based on an extensive list of pre-

calculated ‘reasonable’ paths from every node to the various destinations, maintained

by DynaMIT. The path choice set generation involves the computation of a large set

of feasible paths connecting every OD pair of interest. While the set of shortest paths

between every OD pair might capture driver behavior, changing traffic patterns can

increase the attractiveness of other paths. Incidents, for example, can block the

shortest route and force drivers onto less attractive paths. A good set of paths is

therefore essential in both planning and real-time applications. DynaMIT-P employs

three steps in its path generation algorithm:

� Shortest path computation: Shortest paths between nodes and all destination
nodes are calculated and added to the choice set.

� Link elimination: Each link in the shortest path tree is eliminated, one at a time,

and the corresponding shortest paths are computed. The shortest paths

generated with the link elimination are added to the choice set. This step

ensures that choice set includes alternatives (if they exist) even when an

incident completely blocks a link.

� Random perturbation: This step further augments the path set. The impedances

of the links are perturbed randomly to simulate varying travel times. Another
set of shortest paths is computed and appended to the existing set. The number

of random perturbations performed is controlled by the user.

The algorithm also examines the final path set for uniqueness and eliminates

unreasonably long paths. While the path tree is not recomputed in the event of an
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incident, the combination of the shortest paths’ computation, link elimination, and

random perturbation ensures that all ODs will be connected even in the event of a

severe incident on any link of the network (provided that such a path actually exists).

4. Case study

The objective of the case study is to demonstrate the application of the framework

presented in Section 2 for the evaluation of the effectiveness of predictive VMS

guidance, simulated by DynaMIT-P, in response to incidents. While traffic

estimation and prediction systems that can support ATIS and provide them with

predictive guidance are under evaluation, testing and deployment, the use of such
systems is very limited. It is anticipated that a series of practical showcase studies

demonstrating the benefits of such systems could propel them and support their

wide-spread deployment.

A congested network north of New York City was used in this case study. The

DynaMIT-P calibration results for the study network are outlined and the reference

traffic conditions are established. The impact of two incidents is then presented,

along with the traffic conditions resulting from the provision of predictive traffic

information (simulated by DynaMIT-P). The nature of the mitigation of traffic
delays due to predictive diversion strategies is also investigated.

4.1. Network

The case study is based on a freeway and parkway network from the Lower

Westchester County, NY. Drivers experience heavy traffic conditions, especially

during commute periods. The main arteries in the network include the New York

State Thruway (I-87), the New England Thruway (I-95), the Cross Westchester

Expressway (I-287), the Cross County Parkway, the Hutchinson River Parkway, the

Sprain Brook Parkway, the Saw Mill River Parkway, the Bronx River Parkway and

the Taconic State Parkway. Four adjoining arterials (Tuchahoe Road, Ardsley Road,

Hartsdale Road and Weaver Street) and Routes 9, 22, 100 and 119 provide alternate
routes (Figure 3).

The network representation of the study area comprises 1659 directed links,

further subdivided into 2421 segments that capture changing link characteristics.

Data available for calibration include counts, speeds and occupancies from 58

sensors and a static, planning-level, OD matrix (provided by the New York State

Department of Transportation). There are 579 OD pairs in the network.

4.2. Calibration

As noted previously, DTA models such as DynaMIT involve a number of demand

and supply parameters that need to be calibrated. The demand simulator is primarily
composed of the driver behavioral models and the OD estimation and prediction

model. DynaMIT relies on probabilistic discrete choice models to model driver

decisions. Utility theory along with the Path-Size Logit model ( cf. Ben-Akiva and

Bierlaire 1999) is employed to evaluate these probabilities. DynaMIT was calibrated

using surveillance and historical data using the methodology outlined earlier.
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A sequential calibration approach has been chosen, with the supply and demand

calibration steps being performed separately.

An important step in the calibration process was the generation of a good set of

paths for each OD pair of interest. Optimal parameters for the path generation

algorithm were identified so as to capture most of the feasible paths for every OD

pair. A suitable path set was obtained using 40 random draws to complement the set

of link-elimination-based shortest paths from every link to a destination node.

Recognizing many drivers’ preference to favour freeway paths, an internal freeway

‘bias’ of 0.6 was used to force the path generation algorithm into preferring paths

with longer freeway sections. The random draws helped augmented this set with

arterial paths. Manual inspection confirmed that most of the practical alternatives

had been selected in the path generation stage. The final set contained a total of 7541

paths between 579 OD paths.

A small number of parameters need to be calibrated for the route choice model,

mainly the travel time coefficient and the freeway bias. Several iterations were

performed in conjunction with the OD estimation step to determine an optimal set of

parameters for the route choice model. A grid search was performed on the two

parameters (coefficient of travel time and freeway bias) and the optimal values were

found to be equal to �0.025 and 0.80, respectively. These are intuitive and

reasonable values. Obviously, one would expect the travel time coefficient to have a

negative sign, while the freeway bias would be a positive number between 0 and 1.
The current version of DynaMIT employs a sequential generalized least squares-

based OD estimation module. The external inputs to the model include link counts

and the historical database of OD flows. The historical flows are coupled with the

concept of flow deviations in order to effectively capture the information contained

in the past estimates. The key inputs generated internally are the time-dependent

Figure 3. Lower Westchester County network, including VMS and incident locations.
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assignment matrices. While the matrices ap
h are generated by the supply simulator, the

historical database has to be created offline. The OD estimation and prediction

algorithm is also based on an autoregressive process that captures spatial and

temporal correlations between the OD flows.
The key calibration parameters for the OD estimation and prediction model are

as follows:

� The historical database of OD flows, xH
h . For each of the 16 time intervals

(a calibration period of 6:00�10:00 a.m. was assumed, and each interval had a

duration of 15 minutes), this corresponds to 579 parameters. Therefore a total

of 9264 OD flows were estimated through a sequential estimation process; i.e.

the OD flows for each interval were estimated before moving to the estimation
of the OD flows for the next interval.

� The variance�covariance matrix associated with the indirect measurement

errors Vh and Wh. These were assumed to possess a diagonal structure in order

to ensure that the limited available data would provide enough observations to

estimate the elements of these matrices. Furthermore, the structure of the error

covariances was assumed to remain constant across the peak period, i.e. only

one matrix V and W was computed.

� The matrices f p
h of autoregressive factors. The autoregressive process was

assumed to be of degree 1, meaning that the deviation of flow between the OD

pair r from their historical values does not depend on the prior interval flow

deviations between the OD pair r.

For a more detailed coverage of the OD estimation and prediction model, the reader

is referred to Balakrishna (2002).

The supply simulator obtains aggregate measures of network performance by

simulating the movement of drivers on the road network. Detailed mesoscopic
models capture traffic dynamics and accurately model the build-up and dissipation

of lane-specific queues and spillbacks. The links in the network are subdivided into

segments to capture changing section geometries. Each segment contains a moving

part (with vehicles moving at certain speeds) and a queuing part. The movement of

vehicles in the moving part is governed by macroscopic speed�density relationships

that take the following form:

v ¼ vmax 1� k � kmin

kjam

 !b
2
4

3
5

a

(5)

where v is the speed of the vehicle (in mph), nmax is the speed on the segment under

free-flow traffic conditions, k is the current segment density (in vehicles/mile/lane),

kmin is the minimum density beyond which free-flow conditions begin to break down,

kjam is the jam density, and a and b are segment-specific coefficients.
The movement of vehicles from one segment to the next is governed by a set of

capacity calculations. The primary quantities of interest are the input and output

capacities of the various segments. These capacities are compared with the available

physical space on the downstream segments before allowing vehicles to cross segment

boundaries. A constraint on either capacity or space would cause vehicles to queue.
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An important calibration step is therefore the computation of segment capacities

that truly approximate the allowed turning movements, signal logic and sectional

geometry of the network.

The key calibration parameters on the supply side are as follows:

� Segment-specific speed�density parameters (nmax, kmin, kjam, b and a).

� Lane group capacities on freeway and arterial segments.

� Lane group capacities at intersections based on signal control logic.

The network segments have been classified into three groups, and different speed�
density relationships have been estimated for each group (shown in Table 1). The

values for the capacities of the network segments have been computed based on

the Highway Capacity Manual (HCM 2000). In particular, the resulting values for the

freeways are 2200 vehicles per hour per lane (vphpl), while for the arterials

(Tuchahoe Road, Ardsley Road, Hartsdale Road and Weaver Street) and Routes

9, 22 and 100, the values were set to 1900 vphpl. Ramp capacities were set to 1600 or

1800 vphpl depending on the location and geometry of the ramp.

Clearly, calibrated model parameters are network specific and as such the data

presented cannot be considered transferable or applicable to another network or

application.

The calibration results are shown in Figure 4. For each of the four figures, the

estimated and observed (field) sensor counts per lane for each hour in the peak

period (6:00�10:00 a.m.) are compared in a scatter plot. The (calibrated, observed)

points of individual sensors follow the ‘458 line’, indicating a good fit and ability to

replicate observed conditions.

In addition, the validity of DynaMIT-P was evaluated using the normalized

mean square error (RMSN) on the estimated versus observed counts. The RMSN is

given by

RMSN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

i¼1:::N xi � x̂ið Þ2
q

P
i¼1:::N xi

(6)

where N is the number of counts, x are the observed counts and x̂ are their simulated

counterparts. The RMSN values for this case study were 0.0863 for 6:00�7:00 a.m.,

0.0851 for 7:00�8:00 a.m., 0.1181 for 8:00�9:00 a.m., and 0.1048 for 9:00�10:00 a.m.

Table 1. Speed�density relationship parameters by road type.

Free-flow

speed uf

(mph)

Minimum

speed umin

(mph)

Jam density

kjam

(vpmpl)

Minimum

density kmin

(vpmpl)

Parameter

a
Parameter

b

Freeways 65 20 0.125 0.015625 2.0 0.5

Arterials 50 20 0.0625 0.00625 1.5 0.32

Ramps 45 20 0.125 0.0125 1.5 0.3
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4.3. Evaluation of predictive guidance

Earlier work has showed that the use of instantaneous VMS has little impact (Oh

and Jayakrishnan 2000, Sundaram 2002). Hence, only predictive VMS was used in

the case study. Traffic statistics obtained with and without ATIS information were

compared, and the improvement (attributed to the impact of the ATIS information)

was identified. A simulation of the base case (where no incident is present) was used

as the reference scenario.

The analysis took place during the morning peak period (7:00�9:30 a.m.) during

which the main direction of traffic is southbound (towards New York City). Scenario

1 involves an incident in the southbound direction of the Saw Mill River Parkway in

the north of Cross-Westchester Expressway (I-287). The duration of the incident is 65

minutes (from 7:45 to 8:50 a.m.) and results in a capacity reduction of 80%. Scenario

2 deals with an incident in the southbound direction of the Hutchinson River

Parkway. The duration of this incident is 65 minutes (from 7:15 to 8:20 a.m.) and also

results in a capacity reduction of 80%. The locations of these incidents, as well as the

locations of the relevant VMSs, are shown in Figure 3. The VMS provided

descriptive guidance, based on predicted travel times, to drivers within its range.

Travel time is used to evaluate the impact of the incidents and the effectiveness of

the predictive guidance provided. In the no-incident case, the average travel time for

the main OD pairs is 1665 seconds. In the first incident scenario, and for the case

without guidance, the average travel time for the main OD pairs increased by 16.6%

to 1942 seconds. In the presence of VMS-disseminated predictive guidance, the

average travel time increased by only 9.8% (to 1828 seconds). The variability of

the average travel time is also affected by the predictive guidance. In the case of the

incident without information, the standard deviation of the travel time increased by

48.3%, while when predictive guidance is provided the increase is only 19.5%. This

implies that 41% of the delay and 60% of the increase in the standard deviation due

Figure 4. Calibration results.
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to the incident have been eliminated through the provision of predictive traffic

information disseminated via VMS devices.

In the second scenario and in the case without VMS, the average travel time for

the main OD pairs increased by 13.5% (from 1665 seconds in the no-incident case to

1890 seconds). In the presence of VMS, the average travel time increased by only

5.1% (to 1750 seconds). Similarly, the standard deviation of the travel time increased
by 27% in the case of the incident without information, while when predictive

guidance is provided the increase is only 15.6%. This implies that in this case, 62% of

the delay and 42% of the increase in the standard deviation due to the incident have

been eliminated through the provision of predictive traffic information disseminated

via VMS devices.

The above differences in average travel times are also statistically significant.

A two-sample test on the mean values m was used to test the null hypothesis H0: m1 �
m2�0 against the alternative Ha: m1 � m2 " 0. The test statistics obtained are

between 11.4 and 31.4, while the critical value for a two-tailed test at the 0.5%

significance level is 3.09. Hence, the null hypothesis of equal means is rejected. Like

most traffic measures, travel times are non-negative, and as such the normality

assumption (implied in such statistical tests) may be challenged. The normality of

traffic measures such as travel times and speeds is often assumed for the purposes of

statistical tests and analyses (cf. Dimitriou et al. 2007). Ko and Guensler (2005)

discuss the conditions under which the normality assumption would be applicable,
e.g. when large samples are available, in which case some central limit theorem could

be invoked. This is an issue that should be further researched; however, for the

purposes of this study, the tests presented provide some additional measurable

evidence.

Figure 5 illustrates the frequency distribution of travel times for the various

scenarios and cases. As a result of the first incident, a significant number of vehicles

with lower travel times (1500�2000 seconds) in the base case (no incident) have

shifted to higher travel times (3000�5000 seconds) during the incident when no

information is available. However, when information is provided, the number of

drivers experiencing travel times greater than 3000 seconds decreases by more than

half. On the other hand, a larger number of drivers experience travel times between

1000 and 3000 seconds. Similarly, as a result of the second incident, a significant

number of vehicles with lower travel times (1000�2000 seconds) in the base case have

shifted to higher travel times (2000�3500 seconds) in the incident case with no

information. When information is provided, the number of drivers experiencing

travel times greater than 2000 seconds has decreased considerably, while, on the other
hand, more drivers experience travel times between 1000 and 2000 seconds

(compared to the case of the incident without information).

Table 2 presents the average travel times and their standard deviation under each

of the scenarios by departure-time interval. In the case of the first incident scenario,

average travel times for the affected travellers departing between 7:45 and 8:45 a.m.

(incident duration) have increased by more than 50%. When predictive guidance is

provided through VMS, the average travel times for these departure time intervals

have increased by only 30% and never exceed 40%. Vehicles departing between 7:45

and 8:15 a.m. have experienced particularly major savings (more than 13%) due to

the predictive guidance. Furthermore, the variability of the travel times, expressed in

Table 2 through their standard deviation, is also considerably reduced (with the

212 C. Antoniou et al.

D
ow

nl
oa

de
d 

by
 [

] 
at

 1
0:

20
 2

4 
A

pr
il 

20
15

 



exception of the time interval 9:00�9:15 a.m.). As a result of the incident in the

second scenario, average travel times for travellers departing between 7:45 and 9:00

a.m. have increased by 11�23%. After using VMS messages, the average travel times

for these departure time intervals have increased by only between 4% and 16%

(relative to the no-incident base case). Furthermore, the variability of the travel times

is also considerably reduced (with the exception of the time interval 7:45�8:00 a.m.).

5. Conclusions

This paper has discussed the impact of predictive guidance in reducing average travel

time and travel time variability during incidents. A framework for the development

of incident scenarios and diversion strategies was presented and a traffic estimation

and prediction model, DynaMIT-P, was used to demonstrate its application.

DynaMIT-P is capable of simulating and evaluating a wide range of ATIS systems

and information generation strategies.
The core of this paper is an extensive case study in the network of Lower

Westchester County, NY. The DynaMIT-P system was calibrated to capture the base

case conditions and the impact of two incident scenarios. The results of the case

study showed that predictive VMS is effective in incident scenarios as it shifts a

significant number of vehicles from routes with higher travel times to routes with

lower travel times, resulting in more efficient utilization of the network capacity and

consequently reduction in delays. Furthermore, the variability of the experienced

Figure 5. Frequency of experienced travel times.
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travel times is reduced as a result of the provision of predictive guidance through

ATIS infrastructure.

As the case study does not cover all aspects of the presented methodology, further

applications could be targeted in covering these aspects, such as adapting the OD

matrix to capture special events or modeling of the information provided by HAR

and IVU. Further research may also focus on the application of this approach in

conjunction with methodologies for optimal placing of VMS in the network or for

the optimization of response strategies due to incidents.
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