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by
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Doctor of Philosophy in Transportation Systems

Abstract

In this thesis, an on–line calibration approach for dynamic traffic assignment (DTA) that
jointly estimates demand and supply parameters has been developed. The objective of on–
line calibration is to introduce a systematic procedure that will use the available data to
steer the model parameters to values closer to the realized ones. The approach is general
and flexible and imposes no restrictions on the models, the parameters or the data that it
can handle. The on–line calibration approach is formulated as a state–space model, com-
prising transition and measurement equations. A priori values provide direct measurements
of the unknown parameters (such as origin–destination flows, segment capacities and traffic
dynamics models’ parameters), while surveillance information (for example, link counts,
speeds and densities) is incorporated through indirect measurement equations. The state
vector is defined in terms of deviations of the parameters and inputs that need to be cal-
ibrated from available estimates. Standard Kalman Filter theory does not apply to this
formulation, as it is not linear. Therefore, three modified Kalman Filter methodologies are
presented: Extended Kalman Filter (EKF), Limiting EKF, and Unscented Kalman Filter
(UKF). A case study on a freeway network in Southampton, U.K., is used to demonstrate
the feasibility of the approach, to verify the importance of on–line calibration, and to test
the candidate algorithms. The empirical results from this application support the hypoth-
esis that simultaneous on–line calibration of demand and supply parameters can improve
the traffic estimation and prediction accuracy and show significant benefits (over the base
case in which only the origin–destination flows are estimated on–line). In this application,
the EKF has more desirable properties than the UKF. Furthermore, the Limiting EKF
provides accuracy comparable to that of the best algorithm (EKF), but with computational
complexity which is order(s) of magnitude lower than the other algorithms.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor
Department of Civil and Environmental Engineering

Thesis Supervisor: Haris N. Koutsopoulos
Title: Associate Professor
Department of Civil and Environmental Engineering, Northeastern University
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1.1 Motivation

Traffic congestion is a major problem in urban areas. It has a significant adverse economic

impact through deterioration of mobility, safety and air quality. A recent study (FHWA,

2001) estimated that 32% of the daily travel in major US urban areas in 1997 occurred under

congested traffic conditions. The annual cost of lost time and excess fuel consumption during

congestion was estimated at $72 billion, over $900 per driver. These numbers represent a

300% increase from 1982.

Schrank and Lomax (2003) estimated that the cost of congestion continues to climb. 5.7

billion gallons of wasted fuel and 3.5 billion hours of lost productivity resulting from traffic

congestion in 2001 cost the nation $69.5 billion, $4.5 billion more than the previous year.

The extra time needed for rush hour travel has tripled over two decades. The national

average Travel Time Index for 2001 was 1.39 (meaning a rush hour trip took 39 percent

longer than a non-rush hour trip). The national average in 1982 was only 1.13.

As a result, the importance of better management of the road network to efficiently utilize

existing capacity is increasing. To that end, many urban areas build and operate modern

Traffic Management Centers (TMCs), which perform several functions, including collection

and warehousing of real-time traffic data, and utilization of this data for various dynamic

traffic control and route guidance applications. These applications require traffic models

that provide, in real-time, estimation and prediction of traffic conditions. The complexity

of transportation systems often dictates the use of detailed simulation-based Dynamic Traf-

fic Assignment (DTA) models (Ben-Akiva et al., 1991, 2002; Mahmassani, 2001) for that

purpose.

These complex models often involve a large number of parameters and inputs that need

to be calibrated. In most cases, the approach to this problem has been to perform off–

line calibration of the simulation models using a database of historic information. The

calibrated parameter values are then used in the on–line simulations. The calibrated model

parameters therefore represent average conditions over the period represented in the data.

Models that were calibrated this way may produce satisfactory results in off–line evaluation

studies, which are concerned with the expected performance of various traffic management

strategies.
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However, this may not be the case in real-time applications, which are concerned with

the system performance on the given day. If the model calibrated off-line is used without

adjustment, the system is not sensitive to the variability of the traffic conditions between

days, which are the result of variations in the parameters of the system, such as weather and

surface conditions. Such variations may cause traffic conditions to differ significantly from

the average values. Thus, the predictive power of the simulation model may be significantly

reduced. To overcome this problem, real-time data can be used to re-calibrate and adjust

the model parameters on-line, so that prevailing traffic conditions can be captured more

accurately. The wealth of information included in the off-line values can be incorporated

into this process by using them as a priori estimates.

1.2 Dynamic traffic assignment framework

Dynamic Traffic Assignment (DTA) systems typically reside at Traffic Management Centers

(TMC) and can support both planning and real–time applications. Planning applications

may include the off–line evaluation of incident management strategies, the evaluation of al-

ternative traffic signal and ramp meter operation strategies and the generation of evacuation

and rescue plans for emergencies (e.g. natural disasters) that could affect the traffic net-

work. Real–time applications make use of the traffic prediction capabilities of DTA systems

and may include on–line evaluation of guidance and control strategies, real–time incident

management and control, support of real–time emergency response efforts and optimization

of the operation of TMCs through the provision of real–time predictions.

The on–line calibration approach presented in this thesis is relevant both in the planning and

the real–time contexts. Special emphasis is given to the real–time problem, however, since

runtime is important (therefore a practical formulation and efficient solution approaches

are important) and it combines estimation and prediction capabilities.

Real–time DTA systems are also often referred to as traffic estimation and prediction sys-

tems (the two terms will be used interchangeably in this document). An overview of the

state-of-the-art Dynamic Traffic Assignment framework is shown in Figure 1-1.

Real–time DTA systems typically comprise two main functions (Ben-Akiva et al., 2002):

• State estimation; and
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• Prediction-based information generation

During the state estimation phase, real–time information is combined with historical data

to capture the current traffic conditions in the network. Detailed traffic information that is

obtained through the instrumented portions of the network is used to infer the conditions

in the parts of the network for which no real-time information is available. This is achieved

through an iterative simulation of demand-supply interaction designed to reproduce real-

time observations from the surveillance system.

The role of the prediction-based information generation process is to generate unbiased

and consistent traffic information for dissemination to travelers. Information based on

predicted network conditions (i.e. anticipatory information) is likely to be more effective

than information based on current traffic conditions because it accounts for the evolution of

traffic conditions over time which is what travelers will experience. A detailed treatment of

the demand-supply interactions within a state-of-the-art DTA system can be found in Ben-

Akiva et al. (2002).

One of the key components of dynamic traffic assignment is the Origin-Destination (OD)

estimation and prediction process (Ashok and Ben-Akiva, 2000). OD estimation combines

historical and real-time information to obtain dynamic –i.e. time-dependent– demand ma-

trices. Furthermore, OD prediction exploits estimated behavioral patterns to anticipate the

short-term evolution of demand (Antoniou et al., 1997). Based on the predicted demand, it

is possible to generate and evaluate response strategies and generate anticipatory guidance

(Bottom, 2000).

The supply simulator is usually based on high–level (mesoscopic or macroscopic) models

that represent traffic dynamics using speed-density relationships, kinematic representation

of traffic elements of queueing theory, etc. Such models are used in real-time applications,

e.g. DynaMIT (Ben-Akiva et al., 2002) and DYNASMART (Mahmassani, 2001). Proper

use of these models requires calibration of a number of parameters.

Clearly, the speed–density relationship may depend on location–specific parameters, such

as type of facility, number of lanes, lane width, slope, surroundings, as well as temporal

variations, i.e. it may vary by season, day of the week, or even time of day, reflecting

different driving behaviors (e.g. experienced drivers during commute periods). Off-line cal-
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Figure 1-1: Dynamic traffic assignment framework overview

ibration could, in principle, deal with these situations, through the generation of a historical

database of different speed-density relationships, categorized by the conditions. Based on

the prevailing conditions, the “appropriate” relationship could then be retrieved and used.

However, traffic dynamics also depend on factors that cannot always be anticipated, such

as weather conditions, incidents, unscheduled maintenance work, and even when they can

be predicted, it would be impractical to calibrate traffic dynamics models for each possible

scenario. Minor incidents (such a car slowing down in the break–down lane) that are not

reported or captured otherwise in the system may also impact the traffic dynamics.

The output capacity of the network elements is another important parameter determining

the traffic dynamics. Average values could in general be obtained during an off-line cali-

bration phase. However, capacities are affected by several phenomena (including weather

and lighting conditions, traffic composition, etc) and may therefore change as prevailing

conditions change.
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1.3 Problem definition and thesis objective

DTA systems combine aggregate and disaggregate models for the estimation and prediction

of traffic conditions. Surveillance data reflecting the traffic conditions in parts of the network

are fused with historical information to infer an estimate of the complete state of the

network. Based on this state estimate, predictions can be made; the accuracy of these

predictions naturally depends on the quality of the state estimates.

The models in a DTA system involve a number of parameters that need to be calibrated.

These parameters are typically calibrated off–line, based on available archived data. The

output of the off–line calibration is typically a single value for each parameter. However,

these parameters represent random variables. Therefore, a proper off–line calibration proce-

dure would succeed in determining the mean of the distribution of these random variables.

More elaborate off–line calibration procedures could result in multiple parameter values

(e.g. for different time periods, traffic or weather conditions). In effect these values would

capture the mean of different parameter distributions, based on the prevailing conditions.

However, the realized values of these parameters will typically vary from the mean (for

example, due to variations in the traffic mix or changes in the weather conditions). The use

of the mean value (instead of the realized, unknown value) would introduce a discrepancy

between the simulated and observed traffic conditions, even if other inputs were perfect and

the models captured the true behavior of the system.

The realized values of the model parameters depend on the prevailing conditions. The

surveillance information used as input for the models is a proxy for the prevailing conditions.

Therefore, the same surveillance data could be used to steer the (off–line calibrated) values

of the model parameters in the appropriate direction. Intuitively, using parameter values

closer to the realized ones should lead to better estimates and predictions.

Therefore, the surveillance data can be used to systematically re–calibrate the model pa-

rameters on–line, during every interval. The most recent (and therefore most relevant)

surveillance information would thus be used to update the off–line calibrated values of the

model parameters, which are based on a large amount of information, reflecting a range of

situations but not necessarily the time interval of interest. The synergistic nature of the

on–line and the off–line calibration processes becomes clear. The on–line calibration relies
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on and exploits the results of the off–line calibration. The two procedures are inherently

complementary and when combined can improve the accuracy of DTA systems.

The objective of this thesis is to develop an on–line calibration approach for dynamic traffic

assignment. The approach should be general and flexible, yet targeted at the particular

characteristics of the application. Furthermore, it should be expressed in a practical form,

that can be implemented and made operational.

1.4 Literature review

While the available literature on the topic of on–line calibration is limited, on–line calibra-

tion depends on off–line calibration and —to some extent— the two techniques follow the

same general principles, albeit with important differences.

This section starts with a presentation of the state–of–the–art in off–line calibration, fol-

lowed by a review of prior on–line calibration research. System–level approaches are pre-

sented first, followed by research focused on individual components.

1.4.1 Off–line calibration

In the context of dynamic traffic assignment, off–line calibration addresses the following

problem: Given a set of initial values for various parameters and aggregate measures of

flows, speeds and densities at sensor locations, determine the OD flows, route choice pa-

rameters, capacities and speed-density relationships, so that the error between the simulated

output and observed values is minimized.

Balakrishna (2002) formulated the off–line calibration framework as a large optimization

problem with the final objective of matching simulated and observed quantities:

min
β,γ,xp

∥∥∥Msim − Mobs
∥∥∥ (1.1)

where β represents the route choice parameters, γ represents the parameters in the sup-

ply simulator, xp are the OD flows departing their origin during interval p, Mobs are the

observed measurements and Msim are their simulated counterparts. The objective func-
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tion minimizes the discrepancy between various simulated and observed measurements M.

Flows, speeds and densities can be used as measurements. The simulated quantities are

obtained through the following steps. Equation 1.2 forms the basic OD estimation step in

the calibration framework, and is itself an optimization problem with a two-part objective

function:

xh = arg min

F1(xh,xa
h) + F2

 h∑
p=h−p ′

ap
hxp,yh

 (1.2)

Function F1 measures the Euclidian distance of the estimated flows xh from their a priori

values xa
h, while F2 measures the distance of the measured counts yh from their simulated

counterparts. The simulated flows can be represented in the following convenient linear

form:

ysim
h =

h∑
p=h−p ′

ap
hxp (1.3)

where ap
h is the assignment matrix mapping OD flows departing their origin during time

interval p onto sensor counts measured during time interval h, and p ′ is the number of in-

tervals required for the largest trip in the network. A thorough treatment of the assignment

matrix can be found in Ashok and Ben-Akiva (2002).

The assignment matrices ap
h required by the OD estimation module are outputs of the

dynamic network loading model, and are functions of the as yet unknown OD flows, the

equilibrium travel times on each link (tteq
l ), the route choice parameters β and the supply-

side parameters γ:

ap
h = g

(
xp,β,γ, tt

eq
l

)
(1.4)

Finally, the equilibrium travel times are themselves a function of the route choice parameters

β, supply-side parameters γ, and OD flows xp:

tt
eq
l = h (β,γ,xp) (1.5)

26



Equations 1.2 to 1.5 capture the fixed-point nature of the calibration problem. An iterative

approach is therefore used to converge to a consistent calibration of the parameters and

“equilibrium” conditions (Sundaram, 2002).

Balakrishna (2002) presents a methodology to jointly calibrate the OD estimation and pre-

diction and driver route choice models within a DTA system using several days of traffic

sensor data. The parameters to be calibrated include a database of time-varying historical

OD flows, variance–covariance matrices associated with measurement errors, a set of au-

toregressive matrices that capture the spatial and temporal inter–dependence of OD flows,

and the route choice model parameters. Issues involved in calibrating route choice models

in the absence of disaggregate data are identified, and an iterative framework for jointly

estimating the parameters of the O-D estimation and route choice models is proposed.

Kunde (2002) presents a three–stage methodology for the off–line calibration of mesoscopic

flow propagation models (commonly used in DTA systems). Calibration is carried out in

a sequential manner at increasing levels of aggregation. Speed–density relationship param-

eters and segment capacities are calibrated. Balakrishna et al. (2004) present an iterative

off–line calibration approach that integrates demand and supply calibration. Furthermore,

a review of the off–line calibration literature can be found at Balakrishna (2002) and Kunde

(2002).

1.4.2 On–line calibration

System–level approaches

The topic of on-line calibration of traffic simulation models has received only limited at-

tention in the literature. Doan et al. (1999) outline a framework for periodic adjustments

to a traffic management simulation model in order to maintain an internal representation

of the traffic network consistent with that of the actual network. Errors accumulate from

time period to time period. Furthermore, errors propagate from one model to another. The

authors categorize the error sources as demand estimation, path estimation, traffic propa-

gation, internal traffic model structure, and on–line data observation and propose a system

of on–line and off–line adjustment modules. Doan et al. recognize the importance of con-

sidering the effects of all models (demand and supply) during the on-line model refinement
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process but they do not propose any specific approaches in that direction.

Doan et al. (1999) propose a reactive traffic propagation adjustment module. Inconsistencies

between simulated and measured densities would be detected through this module and

model parameters (in particular speeds) would be adjusted in real-time to correct them.

The module is formulated as a PID (proportional, integral and derivative) controller. The

impact of the on–line adjustment module is demonstrated through case simulations using

synthetic data. The conclusion is that the simulator performs significantly better with the

built–in reactive traffic propagation adjustment module.

A similar approach is proposed in Peeta and Bulusu (1999), where consistency is sought

in terms of minimizing the deviations of the predicted time–dependent path flows from the

corresponding actual flows.

He et al. (1999) develop a combined off–line and on–line calibration process to adjust the

analytical dynamic traffic model’s output to be consistent with real–world traffic conditions

by periodically detecting inconsistencies between model outputs and real–world data, and

actuating the correction model to correct the errors. The authors attempt to list the major

sources of error in a DTA system, but then arbitrarily consider a subset of them: dynamic

link travel time functions, route choice, and flow propagation models. Notably absent from

the calibration is OD estimation.

He et al. consider a modified Greenshields’ model (Greenshields, 1935) to explain dynamic

travel time variations on freeway links, and split the travel times on arterials into a cruise

time component and a delay component (capturing queuing at intersections). The suggested

calibration approach aims to minimize the “distance” between the analytically computed

travel times and those computed using speeds measured by detectors. However, the problem

of using time–mean speed to compute travel times is not addressed. All authors agree that

for computations involving mean speeds to be theoretically correct, it is necessary to ensure

that one has measured space mean speed, rather than time mean speed (Hall, 1997).

The authors note that due to data and computational requirements, calibration of the

route choice model should take place off–line. Finally, a capacity reduction factor and a

proportional adjustment of travel times are used for the calibration of the flow propagation

model. The authors propose an iterative (heuristic) approach that sequentially considers

the three components until convergence. The convergence criterion is somewhat vague
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(“[The model parameters] are modified and adjusted until the model outputs represent the

real–world conditions reasonably well”). Results from a simple test network are provided.

In the remainder of this section we present approaches that deal with the on–line adjustment

of a subset of the parameters in a DTA system.

Supply parameters

van Arem and van der Vlist (1992) developed an on–line procedure for the estimation of

current capacity at a motorway cross–section. The procedure is based on the combination

of an on–line estimation of a “current” fundamental diagram with a maximum occupancy

that may be achieved under free–flow conditions. The method is based on two assumptions.

First, it is assumed that there exists a “current” fundamental diagram which depends on

prevailing conditions. A method for establishing such fundamental diagrams based on on–

line measurements of flow, occupancy and speed is presented. The second assumption

is that the capacity can be estimated using this fundamental diagram and the notion of

“maximum” occupancy. The capacity is estimated by substituting the current maximum

occupancy into the current fundamental diagram.

Tavana and Mahmassani (2000) use transfer function methods (bivariate time series models)

to estimate dynamic speed–density relations from typical detector data. The parameters

are estimated using the past history of speed–density data; no predetermined parameters

or shape for the model are assumed. The method is based on time series analysis, using

density as a leading indicator. The resulting model is a descriptive rather than behavioral

model to estimate speed and subsequently to predict its value for future time intervals.

The objective of identifying a transfer function model is to determine the appropriate form

of the model and initial values of its parameters. Deviation of speed from its static equi-

librium value is used as the output of the dynamic system. To make the input and output

stationary, both speed and density are differenced once. The method can also be used

when an equilibrium speed–density relation is not used. The performance of the approach

is illustrated in both cases with encouraging results.

Huynh et al. (2002) extend the work of Tavana and Mahmassani (2000) by incorporating

the transfer function model into a DTA simulation–based framework. Furthermore, the es-
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timation of speeds using the transfer function model is implemented as an adaptive process,

where the model parameters are updated on–line based on the prevailing traffic conditions.

A nonlinear least squares optimization procedure is also incorporated into the DTA system

to enable the estimation of the transfer function model parameters on–line.

Results from simulation–based experiments confirmed that the adaptive model outperforms

the non–adaptive model. Sensitivity analysis on the updating frequency found that the most

favorable model performance was obtained when an updating frequency of 10 minutes was

used with a time series spanning 45 minutes of data. Furthermore, initial findings suggest

that a transfer function model calibrated from one detector site can be used at another site

(without a detector). The scope of this study, however, was limited to updating speeds on

a single link using synthetic data; therefore the model was still not validated with real data.

Qin and Mahmassani (2004) address these shortcomings by evaluating the same model with

actual sensor data from several links of the Irvine, CA, network. In this paper, determination

of system input and output is derived from the higher–order continuum model. From the

numerical results, the performance and the robustness of the transfer function model is in

general found to be superior to the static modified Greenshields model. Specifically, the

adaptive calibration outperforms the non–adaptive strategy and increasing the number of

links to which the transfer function model is applied improves the speed estimation.

Wang and Papageorgiou (2004) present a general approach to the real-time estimation of

the complete traffic state in freeway stretches. They use a stochastic macroscopic traffic

flow model, and formulate it as a state-space model, which they solve using an Extended

Kalman Filter. The formulation allows dynamic tracking of time-varying model parameters

by including them as state variables to be estimated. A random walk is used as the transition

equations for the model parameters.

With the on–line model parameter estimation activated, the overall estimation performance

is found to be quite satisfactory after an initial warm–up period of up to 1.5 hours. Wang

and Papageorgiou (2004) state that even a single “wrong” parameter leads to estimation bias

in all segment variables. Furthermore, they state that while estimating all three parameters

(free–flow speed, critical density, exponent) results in the best results, estimation of two

parameters (free–flow speed and critical density or exponent, while fixing the third to its

original value) does not cause significant performance degradation. The results also indicate
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that the traffic state estimation is not sensitive to the initial values of the model parameters

except for the warm–up period.

Demand parameters

Ashok and Ben-Akiva (1993), Ashok (1996), and Ashok and Ben-Akiva (2000) formulated

the real–time OD estimation and prediction problem as a state–space model and solved it

using a Kalman Filtering algorithm. The recursive solution approach has computational ad-

vantages and is therefore amenable to real–time application. One interesting characteristic

of this approach is the use of deviations of OD flows (instead of the OD flows themselves) as

variables. The use of deviations incorporates the wealth of structural information about spa-

tial and temporal relationships between OD flows contained in the historical estimates into

the OD estimation framework. The real–time OD estimation and prediction framework has

been implemented in the DynaMIT DTA system (Antoniou et al., 1997; Ben-Akiva et al.,

2002). An efficient solution algorithm for the OD estimation problem has been presented

by Bierlaire and Crittin (2004).

1.4.3 Conclusion

The problem of on–line calibration of DTA systems has received some attention in the

literature. Most existing methodologies, however, impose serious constraints and make

restrictive assumptions. In particular, the components of a DTA system are considered

in a sequential approach and iterative/heuristic approaches are proposed to estimate the

appropriate parameters on–line.

Individual approaches for the on–line calibration of subsets of the parameters have also

been developed. Such approaches update only a subset of the parameters in a DTA system.

Therefore, all error or uncertainty is attributed to one source, which is unrealistic.

DTA systems capture complex demand and supply interactions (Ben-Akiva et al., 2002).

Therefore, a calibration approach that would consider subsets of these parameters sequen-

tially (while keeping the other parameters fixed) would not provide optimal results. Instead,

an approach is needed that jointly estimates demand and supply parameters simultaneously

and captures these interactions, thus ensuring consistency between the estimated parame-
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ters.

1.5 Thesis contributions

This research makes several concrete contributions to the state–of–the–art. Specifically:

• A comprehensive framework for the on–line calibration of a Dynamic Traffic Assign-

ment system is developed. The on–line calibration approach is expressed in a compact

form with the following features:

– Integrates the OD estimation and supply parameter estimation problems into a

single formulation. Demand and supply parameters are thus estimated jointly.

Demand–supply interactions can thus be captured in a consistent way.

– Is generic and applicable to any DTA system. In particular, the on–line cali-

bration approach does not make any assumptions on the specific models that

comprise the DTA system. Therefore, it is applicable to systems with very dif-

ferent characteristics (e.g. analytical versus simulation–based, or microscopic

versus macroscopic).

– Has flexible data requirements. The approach can easily incorporate all available

surveillance information —for example Automated Vehicle Identification (AVI)

or probe vehicle data.

• New solution algorithms are applied to the problem. Besides the Extended Kalman

Filter (EKF), which is a well–established algorithm for dealing with non–linear state–

space models, the Limiting EKF and the Unscented Kalman Filter (UKF) are con-

sidered.

– The accuracy achieved by the Limiting EKF is comparable to the EKF, but the

computational cost is order(s) of magnitudes lower. The Limiting EKF makes

the on–line calibration approach computationally feasible.
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1.6 Thesis outline

The remainder of this document is organized as follows. Chapter 2 presents the overall

on–line calibration approach. In Chapter 3 the on–line calibration approach is formulated

as a state–space model. Solution approaches are presented in Chapter 4. Practical data and

computational considerations are addressed in Chapter 5. Results from a case study are

discussed in Chapter 6, while conclusions and directions for further research are outlined in

Chapter 7.
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The on–line calibration approach is presented in this chapter. An overview of the methodol-

ogy is presented first, focusing on the inputs and outputs and placing the on–line calibration

approach into the general DTA context. A general problem formulation is then presented,

followed by the definition of the measurement equations.

2.1 Overview of methodology

Data for dynamic traffic assignment come from diverse sources. Surveillance data is fused

with historical information to estimate and —subsequently— predict traffic conditions. The

models that estimate and predict traffic conditions also require a number of parameters.

Typically, these parameters are calibrated off–line. The same parameter values are then

used irrespective of the prevailing conditions.

An incremental improvement is the off–line calibration of model parameters for different

conditions. In this way, a library of model parameters is generated, from which the most

appropriate can be selected and used. Furthermore, off–line re-calibrations may be used to

incorporate new archived surveillance information and recent operational experience, thus

refining the previously generated model parameters.

The objective of the on–line calibration approach is to introduce a systematic procedure

that will use the available data to steer the model parameters to values closer to the true

ones. In other words, the aim of the on–line calibration procedure is to obtain those model

parameter values that will minimize the discrepancy between the observed measurements

and their simulated counterparts (when these parameters are used as inputs to the models).

The inputs and outputs of the on–line calibration module are outlined in Figure 2-1 and

discussed in the following paragraphs.

2.1.1 Inputs

The on–line calibration component exploits all information that is available within a traffic

estimation and prediction system:

• Historical information describing the transportation system;

• A priori values of the model parameters;
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• Surveillance data capturing the prevailing traffic conditions.

Historical information is the foundation for the development of a transportation model.

Historical information capturing the supply side of the modeled transportation system may

include the network geometry, traffic control settings and layout of the surveillance system.

It should be noted that this information does indeed change over time, as —for example—

a two–way street becomes one–way, a new traffic signal is added (or an existing one is

reconfigured), or additional surveillance devices are deployed. In order to account for such

changes, this information may be updated periodically. The term “historical” reflects the

time frame of these updates, which is very different from the —much shorter— intervals at

which dynamic surveillance information becomes available and the system operates.

A priori information on the value of the model inputs and parameters is generally

also available (usually from the output of an off–line calibration phase). Time–dependent

demand (in the form of OD matrices) is one key input. Supply–side parameters include

segment capacities and parameters of the speed–density relationships. Error variance–

covariance matrices, and autoregressive fractions capturing the temporal evolution of these

parameters may also be available.

Information on the prevailing traffic conditions becomes available in the form of surveil-

lance data. The quality (and quantity) of this information is of paramount importance, as

this effectively captures the prevailing conditions that the system is trying to match. The

on–line calibration process aims to steer the model parameters towards values that –when

used along with the other inputs– will minimize the discrepancy between the estimated (and

predicted) conditions and these surveillance measurements.

The most common source of surveillance information are sensors, providing counts, speeds,

and densities (point measurements). While several technologies have been introduced (mi-

crowave/acoustic sensors, cameras, etc), by far the most common is still inductive loop

detectors.

Recent advances in sensor and telecommunication technologies have enabled additional

sources of information, often collectively called Automatic Vehicle Identification (AVI) sys-

tems. Through the use of such systems it is possible to obtain very detailed information

about a fraction of the vehicles (since usually additional equipment is required for a vehicle
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Figure 2-1: Overview of inputs and outputs

to be detected). This information often includes point–to–point travel time information,

subpath flow counts and path choice fractions. Furthermore, due to the characteristics

of the enabling technologies, AVI measurements have very high accuracy (Mouskos et al.,

1998). However, since the information is obtained from a sample of the traffic, the final

measurements will likely be biased (Hellinga and Fu, 2002).

2.1.2 Outputs

As has already been mentioned, the output of the on–line calibration module is a set

of parameter values that —when used as input for the traffic estimation and prediction

framework— minimizes the discrepancy between the simulated (estimated and predicted)

traffic conditions and the observed traffic conditions. These parameters are a subset of the

parameters used by the traffic estimation and prediction system and would exclude any

parameters that are not expected to change from time–interval to time–interval in response

to prevailing conditions. Using the DTA framework presented in Figure 1-1 as a reference,

a discussion of the parameters of interest in the context of the on–line calibration follows.

The demand simulator combines two main components, the OD estimation (and prediction)

and the behavioral models. The OD flows capture the variability of the demand to be

loaded onto the network (from the historical demand). This variability may be a result of

information provided to the drivers, day–to–day demand fluctuations, or intra–day demand

variations. Therefore, OD flows are a key component that needs to be adjusted on–line.

As a matter of fact, the OD estimation and prediction component of existing DTA systems
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(Antoniou, 1997; Ben-Akiva et al., 2002) can be considered as a partial on–line calibration

approach. Other parameters of the OD estimation and prediction process (such as the

autoregressive fractions and the error covariance matrices) are not expected to vary in the

short term, and therefore need not be subjected to on–line calibration. Instead, they can

be captured by the off–line calibration (and periodic off–line re–calibrations, as needed).

Regarding the behavioral model parameters, it is noted that, while the behaviors of

the drivers change, the underlying behavioral parameters do not change from interval to

interval. The behavioral parameters that capture the driver’s decisions are combined with

the perceived conditions to lead to actual decisions. It is recognized, however, that slow

changes of these behavioral parameters are possible (for example in response to changes in

the socioeconomic characteristics of the population, learning patterns). Such changes can

be captured through periodic off–line re–calibrations.

The supply simulator in DTA systems (e.g. DynaMIT (Ben-Akiva et al., 2002) and DY-

NASMART (University of Maryland, 2003)) is typically mesoscopic (or macroscopic) in

nature. Higher-level (mesoscopic or macroscopic) simulation models represent traffic dy-

namics using speed-density relationships, fluid representation of traffic flow, elements of

queueing theory, etc. Supply model parameters in this level include the speed–density

relationship parameters and segment capacities.

2.1.3 The relation with off–line calibration

The scope of the on–line calibration is not to duplicate or substitute for the off–line cali-

bration process. Instead, the two processes are complementary and synergistic in nature.

One of the first steps in a DTA system deployment is the off–line calibration process. During

that process, large amounts of data are analyzed and used for the estimation of a priori

values of the model inputs. During the on–line calibration, on the other hand, a small

amount of data is used to refine these estimates. This data, however, is the most relevant,

as it is capturing the prevailing traffic conditions.

On–line calibration needs to consider all prior information (condensed during the off–line

calibration into the estimated parameter values) and exploit the limited, fresh surveillance

information to determine the direction towards which parameter values for the immediate
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simulation runs should be steered.

In other words, the aim of the on–line calibration is to use the off–line calibrated parameter

values as starting points and perform a local optimization step towards the unobserved true

values.

2.2 Problem formulation

The on–line calibration problem can be formulated in several ways. In this section, we

present a general formulation that casts the problem as a non–linear optimization problem.

2.2.1 Preliminary definitions

Consider an analysis period of length T divided into equal intervals h = 1, 2, . . . ,N of size

T . Consider also a transportation network represented as a directed graph that includes a

set of consecutively numbered nodes N and a set of numbered links L. Each link includes

one or more segments, all of which belong to a set of numbered segments G. The network

is assumed to have nL links, ng segments and nOD OD pairs. Furthermore, it is assumed

that nl of the nL links are equipped with surveillance sensors.

Let S(π) be a simulation–based traffic estimation and prediction system, where π is the

vector of model parameters and inputs that need to be calibrated for time interval h. Let

πa denote a priori values of the parameters π, for example their off–line calibrated values.

Let Mh denote a vector of true traffic conditions for time interval h (e.g. link flow counts,

subpath flow counts, point–to–point travel times, route–choice fractions), Mo
h be a vector of

observed traffic measurements for time interval h and Ms
h be their simulated counterparts

(obtained as output from the simulator S).

2.2.2 Available information

Available information (Section 2.1.1) is associated with the unknown parameter values

through measurement equations. A priori values of the model parameters provide direct

measurements of the unknown parameters. Surveillance information, on the other hand, can

be used to formulate indirect measurement equations, where the output of the simulator
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model S (when the unknown set of parameter values is used as input) would match the

surveillance information.

Direct measurements

By definition, a direct measurement provides a preliminary estimate of a parameter. Within

the context of on–line calibration a preliminary estimate of the parameters is provided by

the off–line calibration. Therefore, the vector of off–line calibrated parameter values πa
h can

be used as an a priori estimate of the true parameter vector πh.

The a priori values of the input parameters can be expressed as a function of the “true”

parameters:

πa
h = πh + εa

h (2.1)

where εa
h is a vector of random error terms.

Direct measurements of some OD flows could also be available from advanced surveillance

technologies, such as Automated Vehicle Identification (AVI) systems or probe vehicles.

Such technologies allow the tracking of equipped vehicles as they move through the network,

thus obtaining detailed surveillance information (based on a sample of the population).

Under certain conditions, i.e. that the vehicles can be detected close to their origin and

their destination, it is possible to infer direct measurements of OD flows (Antoniou et al.,

2004). Such information could easily be incorporated as additional direct measurements.

Indirect measurements

Practically any type of traffic measurements can be used as indirect measurement equa-

tions. An indirect equation links the observed traffic measurements with their simulated

counterparts when a particular set of parameters is used as input. In the general case,

modeled trips last longer than one interval. Therefore, simulated trajectories of vehicles

are impacted by the traffic conditions during previous intervals (and consequently by the

model parameters used during these intervals). The simulated traffic measurements during
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time interval h can therefore be represented as:

Ms
h = S

(
πh,πh−1, . . . , πh−p

)
= S

(
Πh

)
(2.2)

where S is a mapping of the input parameters onto the measurements (representing the

simulation model), p is the number of intervals required for the longest trip in the network,

and Πh = πh,πh−1, . . . , πh−p is an augmented vector of parameters.

The relationship between the observed and the simulated measurements can then be written

as follows:

Mo
h = Ms

h + εo
h (2.3)

where εo
h = εf

h + εs
h + εm

h is a compound observation error comprising three error sources:

• εf
h captures structural errors (due to the inexactness of the simulation models),

• εs
h captures simulation errors (e.g. sampling and numerical errors), and

• εm
h captures measurement errors.

As it is not possible to distinguish between these three error components, however, they

will be treated together. Furthermore, it is assumed that εo
h is independent from the error

vector εa
h introduced in Equation 2.1.

2.2.3 The objective function

The on-line calibration problem can be formulated as a minimization problem where the

objective function aims to jointly minimize the following components:

• εo
h: deviation of simulated traffic conditions Ms

h from the respective observed mea-

surements Mo
h, and

• εa
h: deviation of a set of parameters and inputs πh (over which the optimization is

performed) from their a priori values πa
h .

The objective function could then be expressed as:

min
πh

[
N1(ε

o
h) +N2(ε

a
h)

]
(2.4)
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where Ni(·) are appropriate functions measuring the magnitude of the errors. For example,

Ni(·) may be the Euclidian norm.

Substituting the expressions for the error terms from Equations 2.1 and 2.3, the objective

function can be restated as:

min
πh

[
N1(Mo

h − Ms
h) +N2(π

a
h − πh)

]
(2.5)

The above formulation can be made operational in a number of different ways, depending

on the assumptions regarding the nature of the various error terms and the functional forms

of Ni(·). The various formulations may lead to different solution approaches with different

convergence and computational properties. For example, if εa and εo are assumed to

be normally distributed the formulation reduces to the following generalized least squares

(GLS) problem:

min
πh

[
(Mo

h − Ms
h) ′ W−1(Mo

h − Ms
h) +

+(πa
h − πh) ′ V−1(πa

h − πh)
]

(2.6)

where W and V are the variance–covariance matrices of the measurements and a priori

values, respectively.

The solution π∗
h to this optimization problem can then be obtained from:

π∗
h = arg min

πh

[
(Mo

h − Ms
h) ′ W−1(Mo

h − Ms
h) +

+(πa
h − πh) ′ V−1(πa

h − πh)
]

(2.7)

In an on–line application, however, this formulation would be impractical since the problem

needs to be solved at every time interval, with all the information on previous time intervals

(because of the temporal correlations between the errors). However, it does lend itself to

be re–stated as a state–space model, which can then be solved efficiently using recursive

methods such as Kalman Filtering techniques.

The on–line calibration approach can also be solved using other algorithms for non–linear

systems of equations. A particularly suitable algorithm has been recently developed (Crittin,
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2003; Crittin and Bierlaire, 2003) as a generalization of secant methods. The proposed class

of methods calibrates a linear model based on several previous iterates. The difference with

existing approaches is that the linear model to interpolate the function is not imposed.

Instead, the linear model which is as close as possible to the nonlinear function (in the

least–squares sense) is identified.

2.3 Conclusion

The on–line calibration approach has been presented in the context of a state–of–the–art

traffic estimation and prediction system. A problem formulation has been developed, con-

sidering available information, and a discussion on possible operationalization approaches

has been presented.

A reference should be made to the topic of over–fitting, which is an inherent concern in

parameter estimation. The parameter calibration should be such that not only improves

the estimation accuracy but –more importantly– maintains (and improves) the forecasting

power of the model. A detailed treatment of this topic is presented in Chapter 6.

In Chapter 3 the problem is formulated as a nonlinear state–space model. Approaches for

solving nonlinear state–space models are presented in Chapter 4.
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Chapter 3

State–space formulation

Contents

3.1 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Transition equations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The idea of deviations . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 The model at a glance . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

45



In the previous chapter, the on–line calibration approach has been developed as a dynamic

system and approaches to operationalize it have been discussed. A classical technique for

dealing with dynamic systems is state–space modeling. In this section, the on–line calibra-

tion approach presented in Chapter 2 is formulated as a state–space model, comprising:

• Transition equations that capture the evolution of the state vector over time, and

• Measurement equations that capture the mapping of the state vector on the measure-

ments.

Given that state–space models have been extensively studied and efficient algorithms have

been developed to solve them, this formulation will lead us naturally to Chapter 4 where

solution approaches are discussed.

The first step in developing a state–space model is to define the state vector (Section 3.1).

In this context, the parameters and inputs that need to be calibrated define the state.

Measurement equations have already been presented (Section 2.2.2). Transition equations

are developed in Section 3.2.

A reformulation of the problem in terms of deviations is presented in Section 3.3.

3.1 State vector

The concept of the state (or state vector) is fundamental in the description of a state–

space model. The state vector xh is defined as the minimal set of data that is sufficient to

uniquely describe the dynamic behavior of the system at time interval h (the assumption

of a discrete, stochastic, dynamic system is made).

Within the framework of state–space models, the state vector includes the parameters πh

that need to be calibrated during time interval h. Referring to the discussion in Section 2.1.2,

the main parameters for the on–line calibration problem are:

• OD flows,

• Speed–density relationship parameters, and

• Segment capacities.
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Let xh be a vector of OD flows departing their origins during interval h, ph be a vector

holding the values of parameters of the speed–density relationship models during interval

h, and ch be a vector of segment capacities for interval h. Then the state vector can be

represented by:

πh = [xh ph ch]T = [xh γh]T (3.1)

where γh = [ph ch]T succinctly represents the supply models’ parameters and the super-

script T indicates transpose.

The dimension of the state vector is an important attribute of the model, largely governing

the computational properties of any solution approach. The dimension of the state vector

is the sum of the number of OD pairs, the total number of speed–density relationship

parameters and the number of segment capacities.

The number of OD pairs nOD in realistic applications is usually in the hundreds and can be

in the thousands. Similarly, the number of segments ng (for which output capacities need

to be determined) can range from the hundreds to the thousands (depending on the extent

of the network, as well as other modeling assumptions).

The speed–density model depends on a number of parameters p. For example, a typical

formulation is:

u = uf

[
1 −

(
max(0, K − Kmin)

Kjam

)β
]α

(3.2)

The parameter vector in this case includes free–flow speed (uf), minimum and jam density

(kmin and kjam, respectively) and two exponents (α and β).

A number of parameters np (for example, for the functional form presented in Equation 3.2:

np = 5) would need to be calibrated for each segment, resulting to a total of (np × ng)

parameters.

Considering the nOD OD flows, the ng capacities and the (np × ng) speed–density rela-

tionship parameters, the total dimension ns of the state vector would then be given by:

ns = nOD + (np + 1)× ng (3.3)
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3.2 Transition equations

Transition equations capture the evolution of the state vector over time. A typical formula-

tion for the transition equation relates the state during a given interval to a series of states

from previous intervals.

A general formulation of such a transition equation would be:

πh+1 = T
(
πh,πh−1, . . . , πh−p

)
+ η ′

h (3.4)

where T is a function capturing the dependence of the parameter vector πh+1 during interval

h+1 on the values of the parameter vector during the past several intervals, p is the number

of past parameter vectors that are considered, and η ′
h is a vector of random error terms.

A common approach to the representation of transition equations is the use of autoregressive

processes. Expressed as an autoregressive function, the transition equation can be written

in matrix form as follows:

πh+1 =

h∑
q=h−p

Fh+1
q πq + η ′′

h (3.5)

The three components of the state vector (OD flows, speed–density relationship parame-

ters, capacities) represent distinct aspects of the transportation problem and have different

characteristics. Therefore, each of these may evolve over time according to a distinct au-

toregressive process. This can easily be handled by writing a separate transition equation

like the one presented in Equation 3.5 for each such autoregressive process.

3.3 The idea of deviations

Suppose that the model parameters and inputs have been estimated from historical data for

several previous days or months. These already estimated (demand and supply) parameters

embody a wealth of information about the relationships that affect trip making and traffic

dynamics, as well as their temporal and spatial evolution. It is desirable to incorporate as

much historical information into the formulation as possible. The most straightforward way
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to achieve this is to use deviations of the model parameters from best available estimates

instead of the actual parameters themselves as state variables. Thus, the model formulation

would indirectly take into account all the available a priori structural information. The

use of deviations has been proposed by Ashok and Ben-Akiva (1993) for the OD estimation

and prediction problem.

Using deviations also has other benefits. A normal distribution for the model variables is

a useful property for the available statistical tools such as the Kalman Filter extensions

used in this research. Traffic flow variables, however, have skewed distributions (unlike the

normal distribution which is symmetric). On the other hand, the corresponding deviations

of these variables from available estimates would have symmetric deviations and hence are

more amenable to approximation by a normal distribution.

The state vector can therefore be expressed as deviations from best historical values: ∆πh =

πh − πH
h . The transition equation can easily be reformulated with respect to the new state

vector as:

πh+1 − πH
h+1 =

h∑
q=h−p

Fh+1
q

(
πq − πH

q

)
+ ηh ⇒

∆πh+1 =

h∑
q=h−p

Fh+1
q · ∆πq + ηh (3.6)

Similarly, the direct measurement equation can be written in deviations’ form as:

πa
h − πH

h = πh − πH
h + vh ⇒

∆πa
h = ∆πh + vh (3.7)

It should be noted that πa
h and πH

h capture essentially the same thing: an available estimate

of the state vector. However, there are subtle differences and —in the interest of generality—

a distinction is made. For example, the a priori parameters πa
h may correspond to the

parameters obtained from the off–line calibration, while the historical parameters πH
h may

refer to the latest available estimates (e.g. values obtained from the same interval the
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previous day).

Finally, the indirect measurement equation can be written as:

Mh − MH
h = S

(
πh

)
− MH

h + υh ⇒
∆Mh = S

(
πH

h + ∆πh

)
− MH

h + υh (3.8)

3.4 The model at a glance

The on–line calibration algorithm has been expressed in deviations’ form (where Equa-

tion 3.6 is the transition equation and Equations 3.7 and 3.8 are the measurement equa-

tions). The complete state–space model is shown below for clarity:

∆πh+1 =

h∑
q=h−p

Fh+1
q · ∆πq + ηh

∆πa
h = ∆πh + vh (3.9)

∆Mh = S
(
πH

h + ∆πh

)
− MH

h + υh

Before moving to the presentation of applicable solution approaches (Chapter 4), it is useful

to express the model in the following form:

xh+1 = f(xh) + wh (3.10)

yh = h(xh) + uh (3.11)

where Equation 3.10 is the transition equation and Equation 3.11 is the measurement equa-

tion.

This form is obtained directly from Equations 3.9 if we denote

xh = ∆πh
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yh =

 ∆πa
h

∆Mh


f(xh) =

h∑
q=h−p

Fh+1
q xq

h(xh) =

 ∆πh

S(πH
h + ∆πh) − MH

h



uh =

 vh

υh


Furthermore, the following assumptions are made on the error vectors wh and uh:

1. E[wh] = 0

2. E[wh w ′
m] = Qh δhm where δhm is the Kronecker delta, i.e. δhm = 1 if h = m and 0

otherwise ∀h,m, and Qh is a variance–covariance matrix.

3. E[uh] = 0

4. E[uh u ′
m] = Rh δhm where δhm is the Kronecker delta, and Rh is a variance–

covariance matrix.

5. E[uh w ′
m] = 0 ∀h,m, i.e. the errors of the transition and measurement equations

are uncorrelated.

These assumptions allow for the derivation of the Kalman Filter–based solution approaches.

The assumption of no serial correlation for the transition equation can be defended because

the unobserved factors that could be correlated over time are captured by the historical

matrix πa
h. In some situations (e.g. incidents), however, this assumption might break down.

A violation of this assumption, however, can be easily taken care of by using a variant of the

estimation algorithm that is described in the following chapter. (An algorithm to handle

correlated errors in the transition or measurement equations can be found, for example,

in Chui and Chen (1999)).

The assumption of no serial correlation for the measurement equation can be defended us-

ing a similar argument. However, this assumption might also break down if, for example,
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a specific detector consistently under–estimates or over–estimates a link volume on a par-

ticular day. Again, it is easy to relax this assumption and use a variant of the estimation

algorithm.

3.5 Conclusion

The on–line calibration approach has been stated as a compact state–space model, compris-

ing transition and measurement equations. While the transition equation 3.10 is linear, the

measurement equation 3.11 does not have an analytical expression. This property of the

model prohibits the use of the usual Kalman Filtering approaches that have been developed

for linear state–space models. However, modified Kalman Filter methodologies have been

developed for non–linear models, and can be used instead. Applicable solution approaches

are presented in Chapter 4.
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Solution approaches
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xh, Ph

Figure 4-1: Prediction–correction framework of Kalman Filter approach

4.1 Kalman filtering for linear models

The Kalman Filter (Algorithm 4.1) is the optimal minimum mean square error (MMSE)

estimator for linear state-space models (Kalman, 1960). While the model formulation of the

on–line calibration is not linear (due to the indirect measurement equation), it is still useful

to review the basic Kalman Filtering algorithm, since modified Kalman Filter methodologies

have been developed for non–linear models.

The Kalman filter provides a recursive solution to the linear optimal filtering problem

defined by the following equations

Xh+1 = FhXh + wh (4.1)

Yh = HhXh + uh (4.2)

where wh is assumed to be a vector of zero mean, normal and uncorrelated errors with co-

variance matrix Qh and uh is assumed to be a vector of zero mean, normal and uncorrelated

errors with covariance matrix Rh.

A common way to look at the recursive nature of the Kalman Filter is illustrated in Figure 4-

1. This approach is often referred to as “prediction–correction” due to the two steps of time

and measurement update.

In words, the main steps of the Kalman Filter are as follows. Suppose that a starting
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Algorithm 4.1 Kalman Filter
Initialization

X0|0 = X0 (4.3)
P0|0 = P0 (4.4)

for h = 1 to N do
Time update

Xh|h−1 = Fh−1Xh−1|h−1 (4.5)

Ph|h−1 = Fh−1Ph−1|h−1F
T
h−1 + Qh (4.6)

Measurement update

Gh = Ph|h−1H
T
h

(
HhPh|h−1H

T
h + Rh

)−1
(4.7)

Xh|h = Xh|h−1 + Gh

(
Yh − HhXh|h−1

)
(4.8)

Ph|h = Ph|h−1 − GhHhPh|h−1 (4.9)

end for

estimate of the state X0 is available (Equation 4.3), along with an estimate of the initial state

variance–covariance matrix P0 (Equation 4.4). A time update phase makes a prediction of

the state (Equation 4.5) and its covariance matrix (Equation 4.6) for the next time interval.

The measurement update phase incorporates the new information about the measurement

vector Yh and uses it to correct the prediction of the state made during the time update.

Instrumental in this process is the Kalman gain Gh, which is computed as per Equation 4.7.

The state can then be updated (corrected) using Equation 4.8. Similarly, the state covari-

ance is updated using Equation 4.9.

Further information on the Kalman Filter can be found in many texts, including for exam-

ple Gelb (1974), Sorenson (1985), and Chui and Chen (1999).

4.2 Towards non–linearity

The original Kalman filter theory applies to linear systems. However, the on–line cali-

bration approach is non–linear (due to the indirect measurement equation). Since many

other interesting problems are non–linear, solutions for non–linear models have been sought,

leading to the development of modified Kalman Filter methodologies. The most straight-
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forward extension is the Extended Kalman Filter (EKF), in which optimal quantities

are approximated via first order Taylor series expansion (linearization) of the appropriate

equations. The Iterated EKF (IEKF) method attempts to improve upon EKF, by using

the current estimate of the state vector to linearize the measurement equation in an iter-

ative mode. The different methods have different performance characteristics in terms of

computational effort and accuracy of the results (Kalman, 1960; Gelb, 1974).

(I)EKF approaches involve the linearization of the nonlinear measurement and transition

functions, around the best available estimate. In the on–line calibration approach, the tran-

sition equation is linear, and therefore no linearization is needed. However, differentiation

of the measurement equations is required. Since the indirect measurement equation does

not —in general— have an analytical expression, analytical derivation is not possible and

numerical methods are needed.

The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 1997;

Wan et al., 2000; Wan and van der Merwe, 2000; van der Merwe et al., 2000) is an alter-

native filter. The main difference between the EKF and UKF lies in the representation

of the (Gaussian) random variables for propagation through the system dynamics. In the

EKF the state distribution is approximated by a random variable which is then analyti-

cally propagated through the first order linearization of the non–linear system. For highly

non-linear functions this approximation may be very inaccurate. The UKF, on the other

hand, uses a deterministic sampling approach (Unscented Transformation, UT) to over-

come this issue. The state distribution is again approximated by a random variable and is

represented using a (small) number of deterministically selected sample points (often called

sigma points). These points capture the true mean and covariance of the random variable

and, when propagated through the true nonlinear system, capture the posterior mean and

covariance accurately to the second order (Taylor series expansion) for any nonlinearity

(while, as mentioned above, the EKF only reflects the first–order term).

Although the UT requires several approximations, the method tends to be more accurate

than many of the other techniques that have been used to propagate random variables

through nonlinear transformations (Wan and van der Merwe, 2001). Another advantage of

the UKF is that it does not require an analytical expression for the transition and measure-

ment equations. This property makes it directly applicable to simulation–based systems.

56



(Other techniques can also be used, but additional approximations are generally required.

For example, numerical derivatives are necessary in order to use the EKF). Furthermore,

the computational complexity of the UKF is of the same order as that of the EKF.

In the remainder of this section three algorithms are outlined (EKF, IEKF and UKF) as

they apply to the following state–space model:

Xh+1 = FhXh + wh (4.10)

Yh = h(Xh) + uh (4.11)

where wh is assumed to be a vector of zero mean, normal and uncorrelated errors with co-

variance matrix Qh and uh is assumed to be a vector of zero mean, normal and uncorrelated

errors with covariance matrix Rh.

The transition equation 4.10 is assumed to be linear (for example, an autoregressive process,

such as Equation 3.6). The function h(·), however, is more general and could describe a

simulation–based model. Therefore, the measurement equation 4.11 —in general— does

not have an analytical expression (and clearly cannot be assumed to be linear).

4.3 Extended Kalman Filter

The Extended Kalman Filter employs a linearization of the non–linear relationship to ap-

proximate the measurement equation with a first–order Taylor expansion:

Hh =
ϑh(x∗)

ϑx∗

∣∣∣∣
x∗=Xh|h−1

(4.12)

In words, the Extended Kalman Filter main steps are as follows. Suppose that a starting

estimate of the state X0 is available (Equation 4.13), along with an estimate of the initial

state variance–covariance matrix P0 (Equation 4.14). A time update phase makes a pre-

diction of the state (Equation 4.15) and its covariance matrix (Equation 4.16) for the next

time interval.

The measurement update phase incorporates the new information about the measurement
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vector Yh and uses it to correct the prediction of the state made during the time update.

The measurement matrix Hh is obtained through an intermediate linearization step (Equa-

tion 4.17). Instrumental in this process is the Kalman gain Gh, which is computed as per

Equation 4.18. The state can then be updated (corrected) using Equation 4.19. Similarly,

the state covariance is updated using Equation 4.20.

Further information on the Extended Kalman Filter can be found in many texts, including

for example Sorenson (1985), and Chui and Chen (1999).

The on–line calibration approach presented in previous sections does not —in general—

have an analytical representation. Therefore, in order to perform the linearization step

(Equation 4.17) it is necessary to use numerical derivatives. Assuming the use of central

derivatives, it is necessary to evaluate the function 2n times, where n is the dimension of the

state vector. (If forward derivatives are used, then this number drops to n+ 1 evaluations.)

Each such evaluation implies one run of the simulator. Therefore, it becomes apparent that

this process of linearization dominates the computational complexity of the algorithm.

Algorithm 4.2 Extended Kalman Filter
Initialization

X0|0 = X0 (4.13)
P0|0 = P0 (4.14)

for h = 1 to N do
Time update

Xh|h−1 = Fh−1Xh−1|h−1 (4.15)

Ph|h−1 = Fh−1Ph−1|h−1F
T
h−1 + Qh (4.16)

Linearization

Hh =
ϑh(x∗)

ϑx∗

∣∣∣∣
x∗=Xh|h−1

(4.17)

Measurement update

Gh = Ph|h−1H
T
h

(
HhPh|h−1H

T
h + Rh

)−1
(4.18)

Xh|h = Xh|h−1 + Gh

[
Yh − h

(
Xh|h−1

)]
(4.19)

Ph|h = Ph|h−1 − GhHhPh|h−1 (4.20)

end for
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4.4 Iterated Extended Kalman Filter

The update step of the EKF involves the linearization of the measurement equation about

the present best estimate of the state vector X, i.e., Xh|h−1. However, once this step is

completed, a presumably superior estimate Xh|h is available which could then be used to

linearize the measurement equation and repeat the update step. These iterations could be

repeated as many times as deemed necessary. The resulting filter is often called the Iterated

EKF. Each of these iterations comprise Equations 4.17, 4.18, 4.19, and 4.20.

Note that each iteration of the IEKF involves the linearization step (Equation 4.17). This

implies that for each iteration the numerical derivative will need to be re–evaluated. As

a consequence, each iteration would increase the overall runtime of the algorithm by an

amount equal to the EKF algorithm.

4.5 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 1997;

Wan et al., 2000; Wan and van der Merwe, 2000; van der Merwe et al., 2000) is an al-

ternative filter for dynamic state–space models. The UKF uses a deterministic sampling

approach (Unscented Transformation, UT) to represented a random variable using a num-

ber of deterministically selected sample points (often called sigma points). These points

capture the mean and covariance of the random variable and, when propagated through the

true nonlinear system, capture the posterior mean and covariance accurately to the second

order (Taylor series expansion).

4.5.1 The Unscented Transformation

The Unscented Transformation is based on the intuitive expectation that “with a fixed

number of parameters it should be easier to approximate a Gaussian distribution than it

is to approximate an arbitrary nonlinear function/transformation” (Julier and Uhlmann,

1996). Following this intuition, one would seek to find a parameterization that would

capture the mean and covariance information while at the same time permitting the direct

propagation of the information through an arbitrary set of nonlinear equations. This can
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be accomplished by generating a discrete distribution having the same first and second (and

possibly higher) moments, where each point in the discrete approximation can be directly

transformed. The mean and covariance of the transformed ensemble can then be computed

as the estimate of the nonlinear transformation of the original distribution.

Given an n–dimensional Gaussian distribution with covariance P, is is possible to generate

O(n) points with the same sample covariance from the columns (or rows) of the matrices

±
√

nP (the positive and negative roots). This set of points has a zero mean. However,

simply adding the mean x of the original distribution to each of the points yields a symmetric

set of 2n points with the desired mean and covariance. Because the set is symmetric its

odd central moments are zero, so its first three moments match the original Gaussian

distribution.

The main steps of the Unscented Transformation (UT) for calculating the statistics of a

random variable that undergoes a nonlinear transformation (e.g. yh = f(xh)) are presented

in Algorithm 4.3 (Julier and Uhlmann, 1997). Let the n-dimensional random variable xh

with covariance matrix Px,h denote the state for time interval h. Since this algorithm

also considers the covariance of the measurement vector Py,h during interval h and the

covariance of the state and measurement vectors Pxy,h, the covariance of the state vector

will be denoted Px,h = Ph in order to avoid confusion.

To calculate the statistics of y, a matrix X is generated using 2n+1 weighted sigma points.

κ ∈ R is a scaling parameter and
(√

(n + κ)Px,h

)
i
is the ith row or column of the matrix

square root of (n + κ)Px,h. A Cholesky decomposition (Golub and van Loan, 1996) can be

used for this step. The value of the scaling parameter κ has a direct effect on the scaling

of the points and is an input to the algorithm. The constant a determines the spread of

the sigma points around x̄ and is usually set to 0.0001 ≤ a ≤ 1. b is used to incorporate

prior knowledge of the distribution of x (for Gaussian distributions, b = 2 is optimal). The

weights are not time–dependent and do not need to be recomputed for every time interval.

4.5.2 The algorithm

The main steps of the UKF are presented in Algorithm 4.4 (van der Merwe et al., 2000).

The initialization step uses the Unscented Transformation (Algorithm 4.3) to generate the

2n + 1 sigma points and appropriate weights for the mean and covariance computations. A
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Algorithm 4.3 Unscented Transformation
Generation of sigma points

X0,h = xh (4.21)

for i = 1 to n do

Xi,h = xh +
(√

(n + κ)Px,h

)
i

(4.22)

end for
for i = n + 1 to 2n do

Xi,h = xh −
(√

(n + κ)Px,h

)
i

(4.23)

end for
Generation of weights

Wm
0 = κ/(n + κ) (4.24)
Wc

0 = κ/(n + κ) + (1 − a2 + b) (4.25)

for i = 1 to 2n do

Wm
i = Wc

i = 1/ [2(n + κ)] (4.26)

end for

time and measurement update step is repeated for each run of the algorithm.

The first step in the time update phase is the propagation of the sigma points through the

transition equation (Equation 4.27). The prior estimate of the state vector is computed

as a weighted sum of the propagated sigma points (Equation 4.28). A similar approach is

used for the prior estimate of the state covariance (Equation 4.29). The true measurement

equation is used to transform the sigma points into a vector of respective measurements

(Equation 4.30). The measurement vector is computed as a weighted sum of the generated

measurements (Equation 4.31).

The computation of the Kalman gain (and consequently the “correction” phase of the

filtering) is based on the covariance of the measurement vector (Equation 4.32) and the

covariance of the state and measurement vectors (Equation 4.33). These are computed using

the weights (that were obtained from the Unscented Transformation during the initialization

step) and the deviations of the sigma points from their means.

The Kalman gain is then computed from these covariance matrices (Equation 4.34). Equa-

tion 4.35 introduces the measurement vector yh and uses the Kalman gain to correct the
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Algorithm 4.4 Unscented Kalman Filter
for h = 1 to N do

Generate sigma points and weights using the Unscented Transformation (Algo-
rithm 4.3)

Time update

Xh|h−1 = f(Xh−1) (4.27)

xh|h−1 =

2n∑
i=0

Wm
i Xi,h|h−1 (4.28)

Px,h|h−1 =

2n∑
i=0

Wc
i

(
Xi,h|h−1 − xh|h−1

)
×

×
(
Xi,h|h−1 − xh|h−1

)T
+ Qh (4.29)

Yi,h|h−1 = h
(
Xi,h|h−1

)
(4.30)

yh|h−1 =

2n∑
i=0

Wm
i Yi,h|h−1 (4.31)

Measurement update

Py,h =

2n∑
i=0

Wc
i (Yi,h|h−1 − yh|h−1)×

×(Yi,h|h−1 − yh|h−1)
T + Rh (4.32)

Pxy,h =

2n∑
i=0

Wc
i (Xi,h|h−1 − xh|h−1)×

×(Yi,h|h−1 − yh|h−1)
T (4.33)

Gh = Pxy,hP−1
y,h (4.34)

xh = xh|h−1 + Gh

(
yh − yh|h−1

)
(4.35)

Px,h = Px,h|h−1 − GhPy,hGT
h (4.36)

end for
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state estimate xh. The state covariance is updated using Equation 4.36.

4.5.3 Correspondence with the Extended Kalman Filter

The EKF and the UKF belong in the same family of algorithms. However, they use different

approaches to capture the non–linear transformation of the random variable. The purpose

of this section is to demonstrate the correspondence between the two algorithms.

Equation 4.15 captures the propagation of the state using the transition equation. in the

EKF. In the UKF the same process is captured through Equations 4.27 and 4.28. The only

difference is that instead of using the transition equation on a single state vector, in the

UKF all sigma points are propagated through the transition equation and the new prior

state estimate is computed as a weighted average.

The covariance propagation is performed in the EKF through Equation 4.16 and in the

UKF through Equation 4.29. The second term of both relations is the covariance matrix

Qh. The first term of Equation 4.16 includes the state covariance and the transition matrix

F. The first term of Equation 4.29 is a weighted sum of the square of the error vector (and

therefore an estimate of the covariance).

The Kalman gain computation in the EKF (Equation 4.18) involves the state covariance in

the numerator and a function of the measurement covariance plus the error covariance Rh

at the denominator. In the UKF, the computation of the Kalman gain (Equation 4.34) is a

function of the state and measurement covariance on the numerator and two terms in the

denominator. One of these terms is the error covariance Rh. The other term is an estimate

of the covariance of the measurement vector (obtained as a weighted sum of the squares of

the deviations of the measurement).

Finally, the last two steps are almost identical (state estimate correction: Equation 4.19 in

the EKF and Equation 4.35 in the UKF, and state covariance correction: Equation 4.20 in

the EKF and Equation 4.36 in the UKF).

In conclusion, it should be noted that for the state–space model considered in this section,

the full power of the UKF is not exhibited, because the transition equation is linear. If

both the transition and measurement equations were non–linear, then the EKF would ap-

proximate both through a first–order Taylor expansion (thus introducing another degree of

63



approximation).

An application of the presented solution approaches follows.

4.6 Application

The three algorithms (EKF, IEKF, and UKF) have been applied to the problem of on–line

calibration of speed–density relationship parameters for single sensors. This is a subset of

the on–line calibration approach and does not involve capacity or demand parameter esti-

mation, nor are interactions with other sensors considered. The objective of this application

is to demonstrate the algorithms and obtain intuition regarding their applicability in the

context of the on–line calibration.

Sensor data from freeway I-405 in Irvine, CA, and freeway M-27 in Southampton, U.K. have

been used. Morning period (4:00am to 10:00am) data have been used for the sensor from

Irvine, CA, since this period includes the peak flow for this sensor. Speed and density data

are available in 30–second intervals. The peak flow for the sensor from Southampton, U.K.,

is observed in the evening. Therefore, afternoon/evening period (12:00noon to 8:00pm)

data are used. Speed and density data for this sensor are available in 1–minute intervals.

The following speed–density relationship has been assumed:

u = uf

[
1 −

(
max(0, K − Kmin)

Kjam

)β
]α

(4.37)

where u denotes the speed, uf is the free flow speed, K is the density, Kmin is the minimum

density, Kjam is the jam density and α and β are model parameters. The parameter vector

would then become Πh =
[

αh βh Kmin,h Kjam,h uf,h

]T
.

A priori estimates of the parameter values are obtained by fitting the speed–density rela-

tionship to an initial set of data (three days for Irvine and five days for Southampton) using

non-linear least squares. Data from a different day are used for the on–line calibration.

The a priori estimates of the parameters are used as the initial state for the on–line cal-

ibration. A random walk is assumed for the autoregressive process. The error covariance

matrix of the measurement vector has been computed from the surveillance data used for

the off–line calibration. It is not possible to compute an error covariance matrix for the state
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Table 4.1: Summary results.

Est improv 1Pred improv 2Pred improv

Irvine Offline 0.0709 – 0.0733 – 0.0755 –

EKF 0.0595 16.08% 0.0675 7.91% 0.0683 9.54%
IEKF 0.0547 22.85% 0.0665 9.28% 0.0675 10.60%
UKF 0.0634 10.58% 0.0656 10.50% 0.0685 9.27%

Southampton Offline 0.119 – 0.119 – 0.119 –

EKF 0.058 51.01% 0.107 10.08% 0.109 8.40%
IEKF 0.0538 54.79% 0.102 14.29% 0.102 14.29%
UKF 0.0829 30.34% 0.0907 23.78% 0.0965 18.91%

vector, since a single value is available for each parameter (from the off–line calibration).

Therefore an ad-hoc covariance matrix has been used where the variance of each parameter

is proportional to its magnitude.

The performance of each algorithm is assessed using the normalized root mean square error

(RMSN) of the speeds:

RMSN =

√
N

∑
N(u − û)2∑
N u

where N is the number of measurements and û denotes estimated (predicted) speeds.

Table 4.1 shows the summary results for the EKF, the IEKF (after two iterations) and the

UKF algorithms. Estimated and predicted speeds using the off–line calibrated parameters

are used as the base case. The algorithm is executed at a 15–minute interval. Therefore,

one–step prediction corresponds to prediction 15 minutes into the future, while two–step

prediction reflects conditions 30 minutes into the future. The RMSN values obtained after

the speed–density parameters were calibrated on–line are presented, as well as percent

improvement for each case (over the reference case).

All on–line calibration algorithms provide significant advantages, both for estimation and

(one– and two–step) prediction. The results in general follow the intuitive expectation that

accuracy decreases from estimation to prediction. An interesting observation is that while

the (I)EKF provides a better fit for estimation, in this application it is usually outperformed

by the UKF for prediction (except for 2–step prediction for the Irvine network). This

property makes UKF an appealing algorithm, since naturally prediction of performance is

more critical in this context.
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Figure 4-2: Estimated speeds for Irvine, CA. (4:00am to 10:00am)

Figure 4-2 shows the on–line estimated speeds, as well as the measured speeds and the

speeds obtained when the off-line calibrated parameters are used for Irvine (for clarity of

presentation, speeds are aggregated in 5–minute intervals). One–step and two–step pre-

diction (i.e. 30 minute) results are shown in Figures 4-3 and 4-4 respectively. (Since a

15 minute interval is assumed, one–step prediction means prediction 15 minutes into the

future, while two–step prediction means prediction 30 minutes into the future).

It becomes apparent that on-line calibration provides clear benefits for the uncongested

regime, where variations in the free–flow speed are tracked more accurately. Furthermore,

in the transition from the free–flow regime to the peak period (i.e. from approximately

6:30 to 7:30am), the speeds obtained from the off-line calibration are significantly lower

than those measured. On the other hand, speeds calculated using the on–line calibrated

parameters are considerably closer to the observed speeds.

Similarly, Figure 4-5 shows the on–line estimation results for Southampton (for visualiza-

tion purposes, speeds are again aggregated in 5–minute intervals). One–step and two–step

prediction (i.e. 30 minute) results are shown in Figures 4-6 and 4-7 respectively. The impact

of on–line calibration becomes particularly evident during the recovery of the speed in the
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Figure 4-3: One–step predicted speeds for Irvine, CA. (4:00am to 10:00am)
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Figure 4-4: Two–step predicted speeds for Irvine, CA. (4:00am to 10:00am)
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Figure 4-5: Estimated speeds for Southampton, U.K. (12:00noon to 8:00pm)

middle of the peak period (around 6:00pm), as well as following the peak (between 7:00 and

8:00pm).

In order to obtain some further insight into the performance of the algorithms, it is useful

to look at the evolution of the estimated parameters over time. Figure 4-8 shows the

variability of the parameters for the sensor from the Irvine network. (Jam density and

minimum density were not affected by the on–line calibration, but instead stayed close to

their original values. Therefore, only the free–flow speed and the two exponents are shown).

Both algorithms capture the same trends, albeit with different magnitude. Free–flow speed

estimated by both algorithms is very similar. The main effect is that the free–flow speed is

increased before the peak period. Both algorithms capture a small decrease in the value of

the α parameter at the beginning of the peak period. The EKF algorithm then switches to

a small increase during the peak period. Following the peak period, both algorithms return

to the original value.

The reverse trend is captured by the estimated β parameter values. In particular, at the

beginning of the peak period both algorithms increase the estimated value (the UKF results

in a larger increase), while at the end of the peak period the EKF captures a decrease.

Following the end of the peak period both algorithms return to the original value of the

68



 40

 50

 60

 70

 80

 90

 100

 110

 120

8:00pm6:00pm4:00pm2:00pm12:00noon

S
pe

ed
s 

(k
ph

)

Time

Speeds (kph) for sensor 9204A on M27 E/B

Measured speeds
Predicted speeds (off-line calibration)
Predicted speed (on-line calibration)

Figure 4-6: One–step predicted speeds for Southampton, U.K. (12:00noon to 8:00pm)
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Figure 4-7: Two–step predicted speeds for Southampton, U.K. (12:00noon to 8:00pm)
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parameter.

Figure 4-9 shows the variability of the parameters for the sensor from the Southampton

network. (Again jam density and minimum density were not affected by the on–line cali-

bration, but instead stayed close to their original values. Therefore, only the free–flow speed

and the two exponents are shown).

Again, both algorithms capture similar trends in the evolution of the parameters. The UKF

reflects a small decrease in free–flow speed during the peak period (from 130kph to 122kph

a little before 6:00pm), while only a marginal decrease is indicated by the EKF.

The reverse trend is observed in the estimated values for the α parameter, with the EKF

capturing moderate variations of the parameter (around its original value). The UKF

algorithm captures the same trends (especially during the peak period, i.e. between 5:00

and 7:00pm) but at a much smaller scale.

Finally, very similar trends are reflected in the estimated values for the β parameter, with

both algorithms capturing a reduction in the value of the parameter during, and after, the

peak period. The EKF indicates a slightly larger decrease.

The above analysis of the estimated parameters indicates that both algorithms capture the

same underlying trends, but assign different weights to each parameter. A further conclusion

is that the minimum and jam density are not changed, but instead the changes are reflected

in the free–flow speed and the two parameters (α and β). This finding suggests that it may

be meaningful to maintain the values of the minimum and jam densities at their starting

values, and only update the remaining three parameters online.

This observation suggests that there may be an issue of observability, due to the relatively

small number of available data used to estimate several parameters. In particular 30 data

points are used to estimate 5 parameters in the Irvine data, while 15 data points are used

to estimate 5 parameters in the Southampton data.

Figure 4-10 summarizes the estimation performance of the Iterated Extended Kalman Filter

as a function of the number of iterations for the two networks. The off-line calibration is

provided as the reference. The performance of the IEKF solution algorithm stabilized after

a few iterations for both networks. The RMSN value obtained when the off–line calibrated

parameters are used is 0.0709 for the Irvine network and 0.119 for the Southampton network.
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Figure 4-8: Estimated parameters (Irvine, CA)
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Figure 4-9: Estimated parameters (Southampton, U.K.)
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Figure 4-10: Performance of Iterated EKF

Using the parameters estimated from the EKF, the RMSN drops to 0.0595 (an improvement

of 16.1%) for Irvine, and to 0.0583 (an improvement of 51%) for Southampton. After

only two iterations of the IEKF, the RMSN drops to 0.0547 (an improvement of 22.8%

from the reference case and a 8.1% improvement from the EKF) for Irvine and 0.0538 (an

improvement of 54.8% from the reference case and a 7.7% improvement from the EKF) for

Southampton. As expected, the use of the Iterated EKF is beneficial (in terms of accuracy).

It should be noted that each iteration of the IEKF involves roughly the same computational

cost as the EKF. In this case study, it appears that a small number of iterations of the IEKF

may be sufficient to obtain a good solution.

4.7 Conclusion

Applicable solution approaches for on–line calibration have been discussed and three of

them (EKF, IEKF, and UKF) have been presented in detail. The algorithms have been

applied to the problem of speed–density relationship calibration, using freeway sensor data.

The improvement in the estimation of speeds due to on–line calibration (compared with

the speeds obtained from the off–line calibrated relationship) is demonstrated. The EKF

provides the most straightforward solution to this problem, and indeed achieves considerable

improvements in estimation and prediction accuracy. The additional benefits obtained from

a —more computationally expensive— Iterated EKF algorithm are shown.

An innovative solution technique (the UKF) is also presented. The UKF has a number of
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unique qualities and advantages over the EKF, including no need for explicit computation

of derivatives. Instead, the UKF uses the Unscented Transformation (UT) to compute the

necessary statistics. Thus, there is no need to linearize the measurement equation (which

leads to an approximation in the (I)EKF models, which is perhaps the biggest criticism of

these models).
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In this chapter, practical considerations associated with the on–line calibration approach

are presented and approaches to deal with them are described. Data considerations are dis-

cussed first.Computational considerations are discussed next and a problem decomposition

approach is suggested, followed by a discussion on the potential use of parallelization tech-

niques. This chapter concludes with the presentation of an approximation of the Kalman

Filter algorithm with very desirable computational properties.

5.1 Data considerations

This section starts with a discussion of the data requirements of the on–line calibration

approach and the possibility that some of the required information will not be available. A

staged–approach that addresses this issue is outlined, where the initial “warm–up” phase

uses only available data as input. The output of this stage can be used to estimate the

remaining inputs for the second phase (which reflects the full on–line calibration approach,

as presented in Chapter 3).

5.1.1 Data requirements

The on–line calibration approach assumes the following types of information, which were

described in Section 2.1.1:

• Historical traffic information describing the transportation system;

• Surveillance data capturing the prevailing traffic conditions; and

• A priori values of the model inputs and parameters.

We now turn our attention to the a priori values of the model inputs and parameters, which

enter the state–space model through the direct measurement equation (Equation 3.7):

∆πa
h = ∆πh + vh (5.1)
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Figure 5-1: “Warm–up” phase

where the variance/covariance matrix of the error vector vh is required. Furthermore, the

autoregressive factors Fh+1
q for the transition equation (Equation 3.6):

∆πh+1 =

h∑
q=h−p

Fh+1
q · ∆πq + ηh (5.2)

need to be estimated.

The estimation of both the covariance matrix of the error vector vh and the autoregressive

factors Fh+1
q is possible if time–dependent estimates of the state vector are available. It is,

however, possible that only mean (i.e. not time–dependent) off–line calibrated values will

be available for some parameters. Without loss of generality, for the following discussion it

is assumed that time–dependent values are not available for the supply parameters. In that

case, relevant autoregressive factors and error covariances cannot be estimated.

In the following section, an approach to overcome this problem and initialize the on–line

calibration using limited data is presented.
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5.1.2 “Warm–up” phase

A flexible approach that employs a “warm–up ” phase to address this issue is presented in

Figure 5-1. The assumption of time–independent supply parameter values (and therefore

the inability to estimate autoregressive factors) limits the transition equation of the supply

parameters to the simplest possible autoregressive process, that of degree one [AR(1)]. (Such

autoregressive processes are also often referred to as random walks.) (Greene, 2000) This

process would output time–dependent demand and supply parameters. Thus, all required

inputs for the second phase —the application of the full approach— would be available.

The transition equation (Equation 3.6 or 5.2) can be replaced by the following two equations:

∆xh+1 =

h∑
q=h−p

Fh+1
q · ∆xq + ηx

h (5.3)

∆γh+1 = ∆γh + η
γ
h (5.4)

where ∆xh is a vector of deviations of OD flows departing during interval h from available

estimates, ∆γh is a vector of deviations of the supply parameters from available estimates,

ηx
h is a vector of error terms associated with the OD flows, and η

γ
h is a vector of error terms

associated with the supply parameters.

Due to the modification of the second part of the transition equation (Equation 5.4), this

reformulation does not require autoregressive factors for the supply parameters. However,

the covariance matrix of the vector of error terms η
γ
h (associated with the supply parame-

ters) is also unknown, since only estimated mean values of these parameters are available

at this stage. Initial, ad hoc values of this covariance matrix need to be assumed.

Furthermore, the direct measurement equation (Equation 3.7 or 5.1) can be rewritten as

follows:

∆xa
h = ∆xh + vx

h (5.5)

∆γa
h = ∆γh + vγ

h (5.6)
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Since only static estimates of the supply parameters have been assumed, the covariance

matrix of the vector vγ
h is unknown. Initial, ad hoc values of this covariance matrix also

need to be assumed.

The complete modified state–space model for the “warm–up” phase would comprise the

following equations:

∆xh+1 =

h∑
q=h−p

Fh+1
q · ∆xq + ηx

h

∆γh+1 = ∆γh + η
γ
h

∆xa
h = ∆xh + vx

h (5.7)

∆γa
h = ∆γh + vγ

h

∆Mh = S
(
πH

h + ∆πh

)
− MH

h + υh

The output of this intermediate —or “warm–up” phase— is time–dependent demand and

supply parameters. The only remaining step for the application of the full model is the

autoregressive factors and the covariance matrices for the error vectors η
γ
h and vγ

h. Prac-

tical approaches to estimate these missing autoregressive factors and error covariances are

presented next.

5.1.3 Estimation of autoregressive factors

Let the matrix Fγ,h+1
q represent the effect of deviations in the supply parameters γ in time

interval q on the respective deviations in interval h+1. Let us further denote the elements of

this matrix by f r,h+1
r ′,q , which captures the effect of the deviation in the r ′th supply parameter

during interval q on the deviation in the rth parameter during interval h + 1. Estimation

of the matrix could be done element by element for each interval. The factor f r,h+1
r ′,q could

be estimated through a regression of the form:

∆γr,h+1 =

h∑
q=h+1−p ′

(
f r,h+1
1,q ∆γ1,q + · · ·+ f r,h+1

nγ,q ∆γnγ,q

)
+ ω ′

r,h+1 (5.8)

where nγ is the number of supply parameters, p ′ is the degree of the autoregressive process

and represents the number of lagged intervals whose supply parameter deviations contribute
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to the respective deviations for interval h + 1, and ω ′
r,h+1 is an error term. nγ such

regressions would be needed in order to obtain the entire matrix Fγ,h+1
q . Moreover, one

would have to obtain such a matrix for each time interval h. In other words, each day

of estimated supply parameters would yield exactly one observation. As a consequence, a

large data set encompassing sufficient days of application of the “warm–up” phase would

be required.

In the absence of such a large data set, simplifications to the structure of the autoregres-

sive matrices can make the estimation of the factors feasible. For example, it might be

reasonable to assume that the structure of the autocorrelation does not vary with respect

to time interval h. This would imply that the elements of Fγ,h+1
q would depend only on

the difference h − q, and not on the individual values of h and q. It is now possible to

write equations such as Equation 5.8 for each interval within one day and have enough

observations to estimate the elements of the matrix even with data from a single day.

The problem can be further simplified by making the reasonable assumption that deviations

in the value of the rth supply parameter would be affected primarily by the preceding

deviations of the same parameter, and that contributions from other parameters would be

insignificant in comparison. The resulting regression would assume a much simpler form:

∆γr,h+1 =

h∑
q=h+1−p ′

f r,h+1
r,q ∆γr,q + ωr,h+1 (5.9)

and the resulting Fγ,h+1
q matrix would be diagonal (with element f r,h+1

r,q being the rth

element in the diagonal). The value of p ′, representing the number of lagged intervals whose

supply parameter deviations contribute to the respective deviations for interval h+1, would

be obtained from statistical significance test on regression coefficients for various lags.

5.1.4 Estimation of error covariances

The missing error covariances can be obtained in a fairly straightforward way. The matrix

Qγ
h would be obtained by OLS regressions on Equations 5.8. The (i, j)th element of this
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matrix could be approximated by

Qγ
i,j,h = e ′

i,hej,h/n (5.10)

where e is the OLS residual vector and n is the number of sample observations. The above

equation assumes dependence on time interval h. This can be relaxed by assuming that

the structure of the autocorrelation remains constant. In that case the matrix Qγ
i,j,h would

reduce to Qγ
i,j.

Similarly one can obtain the covariance matrix Rγ
h from the residuals dh of the indirect mea-

surement equation 5.6. These residuals would be obtained from computing the differences:

dh = ∆γa
h − ∆γh (5.11)

Each day would yield one value for every residual vector dh. The covariance matrices Rγ
h

can be calculated from the values of these residual vectors over several days. The process

can be simplified by assuming that the covariance matrix Rγ
h is time–invariant. Another

reasonable approach is to stratify the time periods in a small number of groups, during

which the covariance matrix would be invariant, and combine the observations from each

group for the estimation of a single matrix.

This methodology could be extended to the demand inputs as well, if needed. In particular,

if only mean estimated OD flows are available, then the transition equation for the OD

flows can also be modified. Application of the “warm–up” phase would then provide time–

dependent OD flows, from which autoregressive factors and covariance matrices can be

computed.

Given the output of this “warm–up” phase, it is then possible to perform the “complete”

on–line calibration approach, as defined in Section 3.4.

5.2 Computational considerations

Computational considerations associated with the solution of the on–line calibration ap-

proach are addressed in this section. A discussion on the problem dimension (Section 5.2.1)

81



helps put the issue into perspective. Three different approaches to improve on the run-

time performance are presented. Problem decomposition approaches that reduce the size of

the problem to be solved using the computationally intensive, simulation–based algorithms

presented in Chapter 4 are discussed in Section 5.2.2. Parallelization approaches that can

reduce the overall runtime by distributing the computational load to additional resources

are discussed in Section 5.2.3. Finally, an approximation algorithm that completely elimi-

nates the need for on–line function evaluations (by relying instead on information obtained

off–line) is presented in Section 5.2.4.

5.2.1 Problem dimension

The on–line calibration approach estimates the demand and supply parameters jointly,

thus considering their interactions and attributing the effects to both components. The

computational cost of solving this problem is exacerbated by the fact that there is no

analytical formulation for the indirect measurement equation (Equation 3.8):

∆Mh = S
(
πH

h + ∆πh

)
− MH

h + υh (5.12)

While approaches to solve such problems do exist (see Chapter 4), they require a large num-

ber of function evaluations. In the case of the Extended Kalman Filter (EKF) — and given

the lack of an analytical function for the indirect measurement equation— it is necessary to

use numerical derivatives. If central numerical derivatives are used, the number of function

evaluations is 2n, where n is the dimension of the state vector. Similarly, the Unscented

Kalman Filter requires 2n+ 1 function evaluations. In the case of a simulation–based DTA

system, each evaluation implies one run of the simulator, which can be computationally

very expensive.

A closer look at the components of the state vector can be helpful in putting the problem

dimension into perspective. As mentioned previously, the state vector comprises OD flows,

speed–density relationship parameters and segment capacities. The number of OD flows

used to capture the traffic demand patterns can be in the hundreds.

On the supply side, a network can be represented using hundreds of segments. The capacities

of the segments contribute to the dimension of the state vector. Furthermore, speed–density
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relationships require a small number of parameters for each link or segment. For example,

if the following relationship is used:

u = uf

[
1 −

(
max(0, K − Kmin)

Kjam

)β
]α

(5.13)

where u is a speed measurement, uf is the free flow speed, K is the density, Kmin is the

minimum density, Kjam is the jam density and α and β are model parameters, five additional

parameters would have to be added to the state vector for each segment.

In the remainder of this chapter we look at three approaches to improving the computational

properties of this model. First, a problem decomposition approach is presented, which

exploits the available analytical approximation for the OD estimation problem and the

speed–density relationship in order to reduce the size of the problem to be solved using

computationally intensive function evaluations. A parallelization approach that allows for

the reduction of the total runtime of the algorithm (at the cost of additional resources) is

presented next. Finally, an approximate algorithm that exploits information that can be

pre–computed off–line to eliminate the need for on–line function evaluations is presented.

5.2.2 Problem decomposition

This approach is motivated by the observation that OD estimation, which is one of the two

large components of this problem, can be written in an analytical form, which can be solved

much more efficiently. A detailed description of the OD estimation process can be found in

various sources, including: Cascetta et al. (1993); Ashok and Ben-Akiva (2000, 2002). A

common approach is to use a linear analytical relationship, which can be solved using the

Kalman Filter algorithm or GLS approaches.

In that case, it would be desirable to decompose the problem so that this analytical rela-

tionship can be exploited for demand parameter estimation. An example of such a decom-

position strategy is presented in Figure 5-2. A priori demand and supply parameters are

combined with available surveillance information to estimate the OD flows.

The updated demand —along with the a priori supply parameters and the surveillance

information— can then be used as input for the estimation of the supply parameters . A
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Measurements
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Supply parameter 
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NO

On-line calibrated 
demand x and 
parameters p

Terminate

Start

YES

Figure 5-2: A decomposition strategy
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modified version of the model shown in Section 3.4 will be used, the only difference being

the state vector. In particular, the state vector would only include the supply parameters

(speed–density relationship parameters and capacities). Therefore, since the dimension

of the state is decreased, the number of (computationally expensive) function evaluations

would be decreased proportionally.

Following the completion of these two steps, an updated set of demand and supply parame-

ters would be available. The simulated network performance (using these inputs) can then

be compared with the available surveillance information. If the simulated conditions match

their observed counterparts adequately, then the algorithm terminates and these parame-

ters can be used for network performance prediction. If, however, the convergence is not

satisfactory, the algorithm can be repeated in an iterative fashion. In that case, the newly

estimated demand and supply parameters can replace the a priori estimates as inputs and

the OD estimation and supply parameter estimation steps can be repeated.

Each of these iterations, however, would involve the computationally intensive supply pa-

rameter estimation step. Another option could be to skip the supply parameter estimation

step in the remaining iterations and keep the supply parameters fixed at the values ob-

tained from the first (and only) supply parameter estimation iteration. For the additional

iterations only the OD estimation would be performed.

The most computationally intensive component resulting from such a decomposition strat-

egy would be —by far— the supply parameter estimation. In the absence of an analytical

expression that would link the capacities to the measurements it would be necessary to use

one of the algorithms presented in Chapter 4. The state vector would include the segment

capacities and the speed–density relationship parameters.

Such decomposition approaches suffer from two main drawbacks. First, the decomposition of

the problem into two separate demand and supply parameter estimation components would

defeat the purpose of on–line calibration (i.e. jointly and simultaneously estimating demand

and supply parameters). In fact, during the OD estimation all errors would be attributed

to the OD flows (possibly overcompensating). When the supply parameter estimation is

then performed, all errors would in turn be attributed to the supply parameters (while the

algorithm would use the “wrong” estimated OD flows as input). Furthermore, the potential

gains in terms of computation burden are limited by the ratio of the number of the supply
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parameters to the total number of parameters to be estimated. As the demand and supply

parameters are likely to be of the same order of magnitude, a speed–up factor of around 2 or

3 is expected (assuming no additional iterations involving the supply parameter estimation

are performed).

An approach that can improve the overall runtime performance of either the EKF or the

UKF algorithm at the expense of additional resources is presented in the following section.

5.2.3 Parallelization

Complex software systems involving multiple interacting components can often be sped up

considerably by processing multiple tasks at a time in parallel. The degree to which such

parallelization approaches can improve the computational properties of the overall system

depend on the available hardware resources and the inherent delays in the system.

Delays in a parallel algorithm are generally due to two factors:

• Interprocess communication: As parts of a larger software system, parallel processes

often need to share and exchange data. It is often the case that data generated

by one task component needs to be transferred to another component for further

processing, and then the re–processed data may be sent to a third component, and so

on. Interprocess communication can add to the total runtime of a parallel algorithm

if the amount of data that is transferred is large, and/or the data transfer between

processes is slow.

• Idle processor time: A parallel algorithm would achieve optimal performance if all

available processors were fully utilized all of the time. However, this is not always

possible. Consider the situation described above, where one process has completed

its task and is sending the output to another process that will use it for subsequent

computations. Both processors are under–utilized during this transfer. A more serious

delay may be sustained if a task depends on more than one other task. In that case,

the processor cannot resume its operation until all “upstream” processes have finished.

Parallelization techniques are targeted at minimizing these two concerns.

Besides requiring a very similar number of function evaluations (2n + 1 for the EKF versus
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2n for the UKF), both processes share another common characteristic. Each function

evaluation is totally independent from the others, i.e. the input to any of these function

evaluations does not depend on the output of any of the other evaluations. A related

consequence with significant practical implications is that the order in which the function

evaluations are processed does not matter since subsequent computations cannot commence

until all evaluations have been completed.

Another important observation is that all function evaluations take roughly the same time.

This property can help minimize idle processor time and greatly simplifies parallelization.

In particular, one of the main challenges in designing a parallel algorithm lies with the

scheduling of the tasks and their assignment to the available processors. This can be a

challenging task if the various processes have different runtimes (varying either among

them, or from replication to replication). In the presented on–line calibration approach for

DTA, however, each replication is one run of the simulator. Furthermore, the dimension

and the characteristics of the problem are stable across replications. Therefore the runtime

of each evaluation is known and roughly equal to all other evaluations.

Furthermore, there is a minimal level of interprocess communication required. In particular,

it suffices to provide the simulator with a state vector to evaluate. When the evaluation is

complete, only the generated measurement vector needs to be returned to the calling process

for further processing. Therefore, a complete set of inputs for all function evaluations can

be generated prior to their execution. Similarly, the remaining steps of each algorithm can

be performed after the evaluations have been completed.

These three characteristics:

• Independence of runs

• Equal computation time per function evaluation, and

• Minimal interprocess communication

make both these algorithms very amenable to parallelization. Furthermore, the implementa-

tion of a parallel version of the algorithms is straightforward and simply involves allocating

the function evaluation equally among the available processors. No complex parallelization

algorithms or run–time optimization are required.
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In the case of a simulation based DTA system, the cost of the function evaluations is so

high that the remaining steps are negligible. Therefore, the performance of the algorithm

is approximately inversely proportional to the number of available processors. Finally, it is

worth noting that parallelizing the algorithms does not require any approximation.

5.2.4 Limiting Extended Kalman Filter

In this section, a special case of the Extended Kalman Filter is presented that significantly

improves the computational performance of the algorithm. As mentioned in Section 4.3,

the most computationally intensive step in the EKF algorithm is the linearization of the

measurement equation (Equation 4.17), as it requires the use of numerical derivatives.

Using central derivatives, 2n function evaluations are required, where n is the size of the

state vector. Another costly operation is the inversion required for the computation of the

Kalman gain (Equation 4.18).

In real–time applications, it may be possible to replace the Kalman Gain matrix Gh by a

constant gain matrix considerably decreasing the computation time. The limiting Kalman

Filter will be defined by replacing Gh with its “limit” G, called the limiting (or stable)

Kalman gain matrix (Chui and Chen, 1999). The main steps of the Limiting Extended

Kalman Filter (LimEKF) algorithm are presented in Algorithm 5.1. The differences from

the EKF algorithm are limited to the computation of the numerical derivative (which is not

computed on–line in the LimEKF) and the use of the limiting Kalman gain G for every

iteration (Equations 5.18 and 5.19).

The limiting Kalman gain matrix can be computed off–line. The simplest way would be to

express the limiting Kalman gain matrix as the average of a number of available Kalman

gain matrices:

G =

∑
m=1:M Gm

M
(5.20)

where Gm is the Kalman gain obtained from EKF during interval m and M is the total

number of available Kalman gain matrices.

Several strategies can be developed to improve the quality of the limiting Kalman gain.

For example, the EKF could be run off–line, with each run producing a new Kalman gain
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Algorithm 5.1 Limiting Extended Kalman Filter
Generation of limiting Kalman gain matrix G and H
Initialization

X0|0 = X0 (5.14)
P0|0 = P0 (5.15)

for h = 1 to N do
Time update

Xh|h−1 = Fh−1Xh−1|h−1 (5.16)

Ph|h−1 = Fh−1Ph−1|h−1F
T
h−1 + Qh (5.17)

Measurement update

Xh|h = Xh|h−1 + G
[
Yh − h

(
Xh|h−1

)]
(5.18)

Ph|h = Ph|h−1 − GHPh|h−1 (5.19)

end for

matrix. These Kalman gain matrices could then be used to update the limiting Kalman

gain matrix. Another strategy would be to consider only the last few Kalman gain matrices,

i.e. use a type of moving average. Weighted averages (e.g. using lower weights for “older”

gain matrices) can also be considered.

The main component of the Kalman gain matrix is the derivative Hh of the measurement

equation. This is directly required in Equation 5.19. Using the same principle as above, it

is possible to replace the time–dependent matrix Hh with the average H of a number of

available matrices:

H =

∑
m=1:M Hm

M
(5.21)

where Hm is the matrix obtained from EKF during interval m and M is the total number of

available matrix. The resulting matrix H can be then used to update the state covariance

in Equation 5.19.
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5.3 Conclusion

Practical considerations associated with the on–line calibration approach have been ad-

dressed. A staged approach that can be used if some of the model inputs are not available

is presented. The missing information is generated from the output of a “warm–up” stage

with limited data requirements.

Computational considerations are also discussed and alternative approaches to improve the

runtime of the on–line calibration are presented. The advantages and drawbacks of each

alternative are presented. Problem decomposition and the limiting variation of the EKF

lead to approximations, while parallelization does not affect the accuracy of the model. In

terms of computational performance, the limiting EKF algorithm is expected to provide

the most dramatic improvements.
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In the previous chapters, an on–line calibration approach for Dynamic Traffic Assignment

(DTA) has been developed, solution algorithms have been presented, and practical consid-

erations have been addressed. The objective of this chapter is to demonstrate the approach.

In particular, the presented case study aims to achieve the following three objectives:

• Demonstrate the feasibility of the approach

– The on–line calibration approach improves on the state–of–the–art by jointly es-

timating demand and supply parameters. The resulting formulation is flexible

and general. However, since it also lacks an analytical relationship its solution

requires numerical methods. It is necessary to demonstrate that the presented

methodology can be successfully incorporated into a state–of–the–art DTA sys-

tem. Furthermore, an application to a real network would highlight potential

issues.

• Verify the importance of on–line calibration

– The joint estimation of demand and supply parameters significantly increases the

complexity of the on–line calibration problem. Therefore, in order to motivate

its use, it is important to verify that it can provide significant benefits (over the

“base–case” of only estimating OD flows on–line)

• Test the candidate algorithms based on several criteria

– The ability of the algorithms to accurately estimate and predict traffic conditions

is probably the most important benchmark

– The computational properties of the candidate algorithms are also very impor-

tant, since on–line calibration has strict computational constraints.

– The algorithms should be robust, so that they can be transferred to different

conditions.

The on–line calibration has been implemented and demonstrated as it applies to the DynaMIT–

R DTA system. Three algorithms have been implemented (EKF, LimEKF and UKF) and

their performance for a freeway network in Southampton, UK, is presented.
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Figure 6-1: DynaMIT–R overview

The DynaMIT–R system is presented in the next section. A detailed presentation of the

methodology used in this case study follows, including a description of the data, the experi-

mental design, the measures of effectiveness, the off–line calibration, and several implemen-

tation details. Results of the case study are presented in detail. Finally, major findings of

the case study are summarized.

6.1 The DynaMIT–R system

DynaMIT–R is a state–of–the–art DTA system (Figure 6-1). The high–level framework of

DynaMIT–R has been presented in Section 1.2.

The key to the functionality of DynaMIT–R is its detailed network representation, coupled

with models of traveler behavior. Through an effective integration of historical databases

with real-time inputs, DynaMIT–R is designed to efficiently achieve:

• Real time estimation of network conditions.

• Rolling horizon predictions of network conditions in response to alternative traffic
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control measures and information dissemination strategies.

• Generation of traffic information and route guidance to steer drivers towards optimal

decisions.

To sustain users acceptance and achieve reliable predictions and credible guidance, DynaMIT–

R incorporates unbiasedness and consistency into its core operations. Unbiasedness guaran-

tees that the information provided to travelers is based on the best available knowledge of

current and anticipated network conditions. Consistency ensures that DynaMIT–R’s predic-

tions of expected network conditions match what drivers would experience on the network.

DynaMIT–R has the ability to trade-off level of detail (or resolution) and computational

practicability, without compromising the integrity of its output.

Its important features include:

• A microscopic demand simulator that generates individual travelers and simulates

their pre-trip and en-route decisions (choice of departure time and route) in response

to information provided by available Advanced Traveler Information Systems (ATIS).

• Estimation and prediction of origin-destination flows.

• Simulation of different vehicle types and driver behaviors.

• A mesoscopic supply simulator that explicitly captures traffic dynamics related to the

development and dissipation of queues, spillbacks, and congestion.

• Time–based supply simulation that simulates traffic operations at a user–defined level

of detail that facilitates real–time performance. The level of detail could be determined

by the choice of time steps and the level of aggregation of vehicles into homogeneous

packets.

• Traveler information and guidance generation based on predicted traffic conditions to

account for driver over-reaction to incident congestion. The system iterates between

predicted network state, driver response to information and the resulting network

state, towards the generation of consistent and unbiased information strategies.

• Adaptable to diverse ATIS requirements.
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• Distinguishes between informed and uninformed drivers.

• Fuses historical, surveillance and O-D data to generate reliable OD estimates in real-

time. The system records the results from previous O-D estimations to update O-D

databases.

• Uses a rolling horizon to achieve efficient and accurate real-time estimations and

predictions.

• Handles real–time scenarios including incidents, special events, weather conditions,

highway construction activities and fluctuations in demand.

• Integrates with the MITSIMLab microscopic traffic simulator for offline evaluation

and calibration.

• Ready for integration with external global systems (such as a TMC) using an external

distributed CORBA interface, which allows for future adaptability and expansion.

DynaMIT–R is composed of several detailed models and algorithms to achieve two main

functions:

• Estimation of current network state using both historical and real-time information.

• Generation of prediction-based information for a given time horizon.

The estimation and prediction phases operate over a rolling horizon.

The state estimation module provides estimates of the current state of the network in terms

of O-D flows, link flows, queues, speeds and densities. This step represents an important

function of DTA systems, since information obtained from the traffic sensors can vary de-

pending on the type of surveillance system employed. In the presence of floating or probe

vehicles in the network, or the existence of Automated Vehicle Identification Information

(AVI) systems, detailed information about vehicle location and possibly origin and desti-

nation could be obtained. The DynaMIT–R system models can incorporate information

obtained from such advanced surveillance systems (Antoniou et al., 2004).

While such systems are becoming available and may become ubiquitous in the future, most

existing surveillance systems are based on vehicle detectors located at critical points in the
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network. The information provided by these traffic sensors therefore must be used to infer

traffic flows, densities and queue lengths in the entire network.

The main models used by the State Estimation module are:

• A demand simulator that combines real-time O-D estimation with user behavior mod-

els for route and departure time choice.

• A network state estimator (also known as the supply simulator) that simulates driver

decisions and collects information about the resulting traffic conditions.

The demand and supply simulators interact with each other in order to provide demand

and network state estimates that are congruent and utilize the most recent information

available from the surveillance system (Figure 6-1).

Demand estimation in DynaMIT–R is sensitive to the guidance generated and information

provided to the users, and is accomplished through an explicit simulation of pre-trip de-

parture time, mode and route choice decisions that ultimately produce the O-D flows used

by the O-D estimation model. The pre-trip demand simulator updates the historical O-D

matrices by modeling the reaction of each individual driver to guidance information. The

consequent changes are then aggregated to obtain updated historical O-D matrices.

However, these updated historical O-D flows require further adjustments to reflect the

actual travel demand in the network. Reasons for the divergence of actual O-D flows from

historical estimates include capacity changes on the network (such as the closure of roads or

lanes), special events that temporarily attract a large number of trips to a destination, and

other day-to-day fluctuations. Consequently, one of the requirements for dynamic traffic

modeling is the capability to estimate (and predict) O-D flows in real time. The O-D

model uses updated historical O-D flows, real–time measurements of actual link flows on

the network, and estimates of assignment fractions (the mapping from O-D flows to link

flows based on route choice fractions and travel times) to estimate the O-D flows for the

current estimation interval.

The network state estimator utilizes a traffic simulation model that simulates the actual

traffic conditions in the network during the current estimation interval. The inputs to

this model include the travel demand (as estimated by the demand simulator), updated

capacities and traffic dynamics parameters, the control strategies implemented and the

96



traffic information and guidance actually disseminated. The driver behavior model captures

the responses to ATIS in the form of en–route choices.

One of the inputs to the O-D estimation model is a set of assignment matrices. These

matrices map the O-D flows from current and past intervals to link flows in the current

interval. The assignment fractions therefore depend on the time interval, and also on the

route choice decisions made by individual drivers. The flows measured on the network

are a result of the interaction between the demand and supply components. It may be

necessary to iterate between the network state estimation and the OD estimation models

until convergence is achieved. The output of this process is an estimate of the actual

traffic conditions on the network, and information about origin-destination flows, link flows,

queues, speeds and densities.

6.2 Case study methodology

6.2.1 Data description

The network

The network includes a 35km long part of freeway (M27) from Southampton, U.K. The

network starts to the west of the city of Southampton, then goes around it, and continues

eastbound towards Portsmouth (see Figure 6-2). The network also includes seven off–ramps

and eight on–ramps.

A schematic representation is shown in Figure 6-3 which indicates the ten sensors which

provide traffic information (counts, speeds and occupancies). Traffic is loaded onto the

network via twenty origin-destination pairs. The peak period for this direction is the after-

noon/evening.
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Figure 6-2: The study area

Direction of flow
Traffic sensor

Figure 6-3: Schematic of the study network

98



 0

 500

 1000

 1500

 2000

 2500

19:0018:0017:0016:0015:00

C
ou

nt
s 

(v
eh

/h
r/

la
ne

)

Time 

Figure 6-4: Mainline sensor counts distribution (all days)

Traffic characteristics

Weekday data from the first two weeks of September 2001 are used in this section to obtain

some intuition about the traffic patterns in the network. Figure 6-4 shows the distribution

of the counts observed at a mainline sensor. It appears that the traffic pattern is stable

over days and traffic counts do not vary greatly by day.

Figures 6-5 and 6-6 show the speed and density distribution at the same mainline sensor.

When the weather conditions are dry (6-5), the speed decreases from around 120kph to

approximately 100kph. Under wet weather (6-6), however, speed drops to approximately

60kph.

6.2.2 Experimental design

The two dimensions (or factors) that are used in the experimental design are:

• Scope of the on–line calibration: i.e. whether only demand parameters are updated

or whether both demand and supply parameters are updated jointly, and

• Type of day: for which the on–line calibration approach is applied. Following up on

the discussion on the traffic characteristics (Section 6.2.1) we distinguish between two

types of days based on the prevailing weather conditions: days with dry weather and
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Figure 6-5: Speeds/densities (dry weather)
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Figure 6-6: Speeds/densities (wet weather)

100



Table 6.1: Experimental design

Type of day
Scope Day 1 (dry) Day 2 (wet)

Demand only (base) KF/GLS KF/GLS
EKF EKF

Demand and supply LimEKF LimEKF
UKF UKF

days with wet weather.

The dimensions and their levels are tabulated in Table 6.1. The situation when only the

demand parameters are calibrated on–line is used as the base. Since this problem is the

usual OD estimation problem, GLS or Kalman Filter algorithms can be applied.

When both the demand and supply parameters are jointly updated on–line, however, the

problem cannot be represented analytically and the algorithms presented in earlier sections

of this thesis can be used. For each type of day, the EKF, LimEKF, and UKF algorithms

will be run.

The total number of experiments resulting from this design is eight.

6.2.3 Measures of effectiveness

One of the main outputs of DTA systems is traffic information and guidance, usually in

the form of travel times. Speeds are the closest surveillance measurement and there are

ways to compute travel times from speeds. Furthermore, given a properly calibrated traffic

estimation and prediction system it is possible to obtain (simulated) travel times directly.

On the other hand, the most ubiquitous traffic measurement is traffic counts.

Therefore, the two first measures of effectiveness are based on fit of estimated (predicted)

speeds and counts with observed values, quantified using the normalized root mean square

error (RMSN):

RMSN =

√
N

∑
N(y − ŷ)2∑
N y
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where N is the number of observations, y denotes an observation and ŷ is the corresponding

estimated (predicted) value.

The computational performance of the algorithms is another important consideration. In

particular, given the on–line nature of the application, it is important to understand the

computational complexity of each algorithm. Given a simulation–based DTA system, the

function evaluations (required by the solution approaches) are by far the most computational

intensive task, since each evaluation implies one run of the simulator. In the subsequent

discussion, the number of function evaluations are used as a measure of effectiveness for

each algorithm.

6.2.4 Off–line calibration

Since an off–line calibration was not available for this network, the first step in this case

study was to perform an off–line calibration. Data from five weekdays with dry weather

during the first two weeks of September 2001 were used for the off–line calibration.

A sequential calibration approach was followed. Supply parameters were first calibrated.

Speed–density relationship parameters were obtained by fitting speed and density data to

the appropriate functional form. Segment capacities were estimated using Highway Capacity

Manual guidelines (HCM, 2000). Then, using the calibrated parameters as inputs, time–

dependent OD flows were estimated. A detailed description of the calibration approach is

available in Balakrishna (2002).

Speed–density relationship parameters were obtained by using non–linear regression to fit

speed and density data to the speed–density relationship used by DynaMIT–R:

u = uf

[
1 −

(
max(0, K − Kmin)

Kjam

)β
]α

(6.1)

where u denotes the speed, uf is the free flow speed, K is the density, Kmin is the minimum

density, Kjam is the jam density and α and β are model parameters.

Using the above functional form, five parameters need to be estimated for each segment

(using available observations for that segment alone). Furthermore, the addition of five

parameters per segment would result in a fairly large number of parameters to estimate.
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Therefore, it is often desirable (and a common practice) to classify segments with similar

characteristics into homogeneous groups and estimate a single set of parameters for each

segment type. The available data from all segments in a class could then be pooled and a

single speed–density relationship estimated from the richer data. Only one set of parameters

would then be added to the state vector for each segment type.

The 45 segments of the network were split into three groups with homogeneous character-

istics. The mainline segments were classified into two types, while the ramp segments were

grouped together.

Capacity computations are usually based on appropriate guidelines (e.g. the Highway Ca-

pacity Manual (HCM, 2000) for the United States). Although the study network is in the

United Kingdom, no equivalent national guidelines are available for the United Kingdom

and so, the Highway Capacity Manual guidelines were used. Analysis and comparison of the

estimated capacities against observed counts were performed, to ensure that the capacity

values did not result in counterintuitive results (such as observed sensor counts exceeding

the segment capacity).

A sequential OD estimation approach (Balakrishna, 2002) was applied on five weekdays

with dry weather. A static seed matrix was used to initialize the process. For the first day,

the estimated OD flows from each interval were used as historical estimates for the next

interval. The estimated flows for each day were then used as historical flows for the next

day.

An ordinary least squares (OLS) approach was used for the first two days. At the end of the

second day, measurement error covariances were estimates from the residuals of the fitted

sensor counts and OD flows from their observed or historical values. This allowed for the

use of a generalized least squares (GLS) approach for the remaining days. Estimated OD

flows across time intervals were used to estimate autoregressive factors for the transition

equation. The planning version of the DynaMIT system (DynaMIT–P) was used in this

process.

Figures 6-7 through 6-10 graphically show the results of the off–line calibration process.

The fit of the counts is shown in Figure 6-7 with observed counts (in vehicles per 15 minute

interval) plotted on the x–axis, and simulated counts (in vehicles per 15 minute interval)

plotted on the y–axis. A perfect fit would have all the points on the “45–degree line”
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Figure 6-7: Off–line calibration results (counts)

(indicated by the solid diagonal line in the figure), meaning that the simulated counts

perfectly matched the observed counts. The Normalized Root Mean Square error (RMSN)

statistic for the counts was equal to 0.1232.

The fit of the speeds is shown in Figure 6-8. The total fit of the speeds, as quantified by the

Normalized Root Mean Square error (RMSN) statistic, was equal to 0.1102. Furthermore,

the observed and estimated speeds at a mainline and a ramp sensor are shown in Figures 6-9,

and 6-10, respectively.

6.2.5 Implementation details

The on–line calibration approach was implemented in octave (a high–level language, pri-

marily intended for numerical computations, http://www.octave.org) and python (an in-

terpreted, interactive, object-oriented programming language, http://python.org). The

supply simulator of DynaMIT–R was used for the function evaluations.

octave was used for the implementation of the three algorithms (EKF, UKF, and LimEKF).

python was used primarily for the coordination of the function evaluations and the exchange

of information between octave and DynaMIT–R (in particular preparation of inputs and

processing of outputs).
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Figure 6-8: Off–line calibration results (speeds)
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Figure 6-9: Off–line calibrated speeds – Mainline sensor
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Figure 6-10: Off–line calibrated speeds – Ramp sensor

The state vector consists of OD flows, segment capacities and speed–density relationship

parameters. The total dimension is 80, broken down in:

• 20 OD flows

• 45 segment capacities

• 15 speed–density relationship parameters: as mentioned before, segments have been

grouped into three types, based on their geometric characteristics. A speed–density

relationship (and therefore 5 parameters: free flow speed, minimum and jam density

and exponents α and β) has been defined for each of the three segment types.

As mentioned earlier, two days (one with dry and one with wet weather conditions, different

that those used for the off–line calibration) were used. The duration of the estimation

and prediction intervals was set to fifteen minutes. OD estimation requires that the count

measurements are aggregated to the duration of the interval (i.e. fifteen minutes in this case

study). To maintain consistency between the various algorithms, this level of aggregation

has been maintained for the counts in the on–line calibration approach. Furthermore,

minute–by–minute speed and density surveillance information was used.

Therefore, the measurement vector for each fifteen–minute interval consisted of 390 ele-

ments:
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• 15–minute count measurements: 10 count measurements in total

• Minute–by–minute speed measurements: 150 speed measurements

• Minute–by–minute density measurements: 150 density measurements

• A priori state vector: 80 elements comprising 20 OD flows, 45 capacities, and 15

speed–density relationship parameters (3 groups of 5 parameters each).

The transition fractions that were estimated during the off–line calibration were used for

the OD flows. The degree of the autoregressive process for the OD flows was found to be

equal to two. For the supply parameters, a degree of one was used for the autoregressive

process. Furthermore, variance/covariance matrices were estimated based on the output of

the off–line calibration.

The period of analysis comprises six intervals of fifteen minutes (i.e. from 16:15 to 17:45).

A warm–up period of 75 minutes (from 15:00 to 16:15) is used to ensure that the network

is adequately loaded.

6.3 Results

This section presents the case study results. Summary results are presented first to provide

an overview of the value of on–line calibration. The performance of the candidate algorithms

is also succinctly presented.

Interval–by–interval results are presented next. These results provide useful intuition into

the performance of the on–line calibration approach at a finer scale.

Finally, the impact of the on–line calibration on the model parameters is demonstrated.

6.3.1 Summary results

Summary results for the dry day are presented in Table 6.2. This table summarizes the

RMSN for estimated and predicted speeds and counts. The base row provides the perfor-

mance when only demand parameters are estimated on–line. The next three rows show

the results obtained when demand and supply parameters are jointly estimated (each row

corresponds to one of the considered algorithms).
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Table 6.2: Summary results (RMSN, dry weather)

Estimated One-step pred. Two-step pred. Three-step pred.
Algorithm speeds counts speeds counts speeds counts speeds counts

Base 0.1266 0.1286 0.1494 0.1540 0.1448 0.1666 0.1494 0.1905

EKF 0.1107 0.1039 0.1209 0.1318 0.1303 0.1550 0.1331 0.2008

LimEKF 0.1121 0.1091 0.1249 0.1321 0.1346 0.1702 0.1362 0.2036

UKF 0.1156 0.1293 0.1249 0.1505 0.1315 0.1756 0.1346 0.2221

Table 6.3: Summary results (% improvement, dry weather)

Estimated One-step pred. Two-step pred. Three-step pred.
Algorithm speeds counts speeds counts speeds counts speeds counts

Base RMSN 0.1266 0.1286 0.1494 0.1540 0.1448 0.1666 0.1494 0.1905

EKF 12.6% 19.2% 19.1% 14.4% 10.0% 7.0% 10.9% −5.4%
LimEKF 11.5% 15.1% 16.4% 14.2% 7.0% −2.2% 8.8% −6.9%

UKF 8.7% −0.6% 16.4% 2.3% 9.2% −5.4% 9.9% −16.6%

Table 6.3 presents the same results in a different way. In particular, the results for the

cases where demand and supply parameters are estimated jointly are shown as percent

improvement over the base case (i.e. when only demand parameters are estimated on–line).

These results are also presented graphically in Figure 6-12 (estimated and predicted counts)

and Figure 6-11 (estimated and predicted speeds).

These results indicate that the joint calibration of demand and supply parameters can im-

prove the ability of the system to accurately estimate and predict the traffic conditions. The

EKF algorithm exhibits the best performance with considerable improvements in estimation

and prediction accuracy (except for three–step predicted counts).

A small decrease in performance (compared to the EKF) —but still a clear improvement—

is obtained when the LimEKF algorithm is used. It is interesting to note that while the

LimEKF algorithm has order(s) of magnitude lower computational complexity, it still pro-

vides a significant improvement over the base case. Improvements of more than 10% are

obtained in estimated and one–step predicted speeds and counts. Furthermore, the LimEKF

algorithm provides a 7% improvement in two–step predicted speeds and close to a 0% im-

provement in three–step predicted speeds. However, there is a small deterioration (−2.2%)

in the two–step predicted counts and almost a 7% deterioration in three–step predicted

counts.
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Figure 6-11: Summary statistics for estimated and predicted speeds (dry weather)
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Figure 6-12: Summary statistics for estimated and predicted counts (dry weather)

The UKF algorithm seems to have the least desirable performance. While in general this

algorithm provides improvement over the base case, its two–step and three–step predicted

counts also deteriorate (−5.4% and −16.6%). Furthermore, (with the exception of two–step

and three–step predicted speeds) this algorithm is generally outperformed by the LimEKF,

which has vastly better computation properties.

Similar summary results for the wet day are presented in Tables 6.4 and 6.5 and Figures 6-13

and 6-14.

The results are similar to those obtained under dry weather. The EKF algorithm provides

the best overall performance, with steady improvements for estimated and predicted speeds

and counts. As a matter of fact, in this case improvement of more than 15% was obtained

(with the exception of three–step prediction where an improvement of more that 10% was
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Table 6.4: Summary results (RMSN, wet weather)

Estimated One-step pred. Two-step pred. Three-step pred.
Algorithm speeds counts speeds counts speeds counts speeds counts

Base RMSN 0.1312 0.1154 0.1550 0.1334 0.1669 0.1388 0.1751 0.1424

EKF 0.1094 0.0946 0.1283 0.1096 0.1413 0.1149 0.1548 0.1425

LimEKF 0.1175 0.1023 0.1340 0.1250 0.1447 0.1370 0.1562 0.1663

UKF 0.1137 0.1129 0.1202 0.1268 0.1386 0.1536 0.1515 0.1787

Table 6.5: Summary results (% improvement, wet weather)

Estimated One-step pred. Two-step pred. Three-step pred.
Algorithm speeds counts speeds counts speeds counts speeds counts

Base RMSN 0.1312 0.1154 0.1550 0.1334 0.1669 0.1388 0.1751 0.1424

EKF 16.6% 18.0% 17.2% 17.9% 15.3% 17.2% 11.6% −0.1%
LimEKF 10.4% 11.4% 13.5% 6.3% 13.3% 1.3% 10.8% −16.8%

UKF 13.3% 2.2% 22.5% 4.9% 17.0% −10.7% 13.5% −25.5%

obtained for the speeds, while the predicted counts’ performance was practically the same)..

The LimEKF algorithm provides somewhat lower benefits than the EKF (with an improve-

ment of more than 10% for predicted speeds). However, given the excellent computational

properties of this algorithm, these benefits are very promising. The three–step predicted

counts, however, show a significant deterioration (more than 16%.

While the UKF algorithm provides significant benefits in terms of speeds (even better than

the other two algorithms for predicted speeds), the performance in terms of counts is not

as good, with small benefits for estimated and one–step predicted counts, but significant

disbenefits for two–step predicted (−10.7%) and three–step predicted (−25.5%) counts.
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Figure 6-13: Summary statistics for estimated and predicted speeds (wet weather)
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Figure 6-14: Summary statistics for estimated and predicted counts (wet weather)

The third measure of effectiveness (besides the fit of speed and counts) is the computational

complexity of each algorithm. As discussed in Section 6.2.3, the computational performance

of the on–line calibration approach for a simulation–based DTA system is determined largely

by the number of function evaluations required. The EKF and the UKF algorithms require

2n and 2n+1 function evaluations (and thus runs of the simulator) respectively (where n is

the dimension of the state vector). Therefore, the two algorithms have similar computational

requirements (converging as the dimension of the problem increases).

The LimEKF algorithm, on the other hand, requires a single function evaluation irrespective

of the dimension of the problem. Therefore, the computational performance of this algo-

rithm is vastly superior to that of the other two algorithms (EKF and UKF). The constant

computational requirements of the LimEKF algorithm (i.e. the fact that a single function
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evaluation is required irrespective of the application) makes it easy to obtain some further

insight into the scalability of the approach to larger networks.

In particular, assuming that an estimation interval of fifteen minutes is used, this approach

can be used for any application (i.e. combination of DTA system and network) that allows

for one function evaluation (for the on–line calibration) and another run of the simulator (for

the prediction of the state using the on–line calibrated parameters within that time–frame).

A related observation is that using the LimEKF and the on–line calibration approach to

jointly estimate all inputs and model parameters is computationally equivalent to the base

case (i.e. only using OD estimation to calibrate OD flows on–line).

6.3.2 Results by time–interval

In the previous section, the performance of the on–line calibration approach for the entire

study period was presented. The purpose of this section is to analyze the results interval–

by–interval in order to obtain further insight.

Figures 6-15 through 6-18 show the estimated and predicted speeds by interval for dry

weather. All algorithms show similar estimation performance with benefits between 16:15

and 17:30 and practically identical performance in the last time interval (17:30-17:45) (Fig-

ure 6-15). All algorithms show improvements for one–step predicted speeds (Figure 6-16).

Benefits for most of the two–step and three–step predicted speeds are also obtained, except

for the 17:30-17:45 interval (Figure 6-17).

Figures 6-19 through 6-22 show the estimated and predicted counts by interval for dry

weather. Except for significant benefits during the interval 17:15–17:30, the performance of

the EKF seems to be in general on par with the base case (in terms of estimated counts).

This can be attributed to the fact that (for these intervals) the base algorithm already

provides a reasonably good fit. However, during the time–intervals that the base algorithm

provides poorer performance (17:00–17:15, and —in particular— 17:15–17:30), the EKF

manages to provide a fit for the counts comparable to that obtained during the other

intervals. Similar trends are exhibited in the counts predicted by the EKF, with the results

deteriorating for three–step prediction.

This can be attributed to the extended objective function of the on–line calibration ap-
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Figure 6-15: Statistics for estimated speeds by interval (dry weather)
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Figure 6-16: Statistics for one–step predicted speeds by interval (dry weather)
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Figure 6-17: Statistics for two–step predicted speeds by interval (dry weather)
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Figure 6-18: Statistics for three–step predicted speeds by interval (dry weather)
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Figure 6-19: Statistics for estimated counts by interval (dry weather)

proach. Unlike the OD estimation problem (where link counts are used as measurements),

the on–line calibration allows for easy incorporation of any other available type of infor-

mation. For example, in this application, speeds and densities have been incorporated.

Therefore, the objective function now includes both the deviations of estimated/predicted

speeds and counts (from their observed values). Therefore, the algorithm is willing to trade–

off some of the fit in the counts to gain accuracy in estimated/predicted speeds. This is a

desirable property and one that results in the model capturing prevailing traffic conditions

more accurately.

The results obtained with the LimEKF algorithm are similar to those obtained from the

EKF. This is expected, since the LimEKF uses a Kalman gain that is based on a number
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Figure 6-20: Statistics for one–step predicted counts by interval (dry weather)

of Kalman gains computed off–line using the EKF. Therefore, the structure of the matrix

has similar characteristics. An additional benefit of using such a composite Kalman gain

is that it encompasses more information (i.e. the information contained in the individual

Kalman gain matrices). It is worth noting once more, that this is a very important result,

since the LimEKF algorithm has very favorable computational properties.

It should be noted that even this algorithm does provide significant benefits in terms of

speed estimation and prediction, while maintaining (on average) a similar performance in

terms of counts. As suggested by the summary results, the UKF does not provide significant

benefits over the base case in terms of counts estimation. Furthermore, the performance

of the UKF does not show a trend similar to that exhibited by the EKF and LimEKF
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Figure 6-21: Statistics for two–step predicted counts by interval (dry weather)

algorithms (i.e. the reduction of “high” RMSNs).

Estimated and predicted speeds by interval for the wet day are shown in Figures 6-23

through 6-26 with similar results to those under dry weather. Figures 6-27 through 6-

30 show the estimated and predicted counts by interval for wet weather again with similar

performance to that observed under dry weather. In particular, the EKF algorithm provides

benefits except for the predicted counts for the 16:45–17:00 interval. This is a phenomenon

similar to that observed under dry weather for the same interval. Again, this can be

attributed to the fact that the EKF may trade–off some of the fit in the counts in order to

improve the fit in the speeds, thus capturing the overall traffic conditions more accurately.

The LimEKF provides performance comparable to that of the EKF, at only a small fraction
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Figure 6-22: Statistics for three–step predicted counts by interval (dry weather)
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Figure 6-23: Statistics for estimated speeds by interval (wet weather)
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Figure 6-24: Statistics for one–step predicted speeds by interval (wet weather)
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Figure 6-25: Statistics for two–step predicted speeds by interval (wet weather)
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Figure 6-26: Statistics for three–step predicted speeds by interval (wet weather)
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Figure 6-27: Statistics for estimated counts by interval (wet weather)
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Figure 6-28: Statistics for one–step predicted counts by interval (wet weather)

of the computational complexity. Therefore, the results from this experiment seem to

reinforce the conclusion that this algorithm provides an excellent combination of accuracy

and computational complexity.

Finally, the performance of the UKF for the counts is similar to that observed for dry

weather. In particular, while the algorithm provides similar overall performance as the base

algorithm, it seems to provide better performance for some intervals, but worse for other

intervals. This is an undesirable property of the algorithm.

The impact of the joint on–line estimation of demand and supply parameters has been

demonstrated so far. In the next section we will present the impact of the on–line calibration

approach on the estimated parameters.
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Figure 6-29: Statistics for two–step predicted counts by interval (wet weather)
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Figure 6-30: Statistics for three–step predicted counts by interval (wet weather)
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Figure 6-31: Estimated mainline capacities (EKF, dry weather)

6.3.3 Impact on parameters

The on–line calibrated parameters using the EKF algorithm for dry weather are shown in

this section.

Figure 6-31 shows the estimated capacities for all mainline segments over time. The capacity

in several segments has been increased (from the original 2200 vehicles per hour per lane),

sometimes close to 2400 vehicles per hour per lane. The capacity for a few segments, which

include weaving and/or merging is reduced to less than 1800 vehicles per hour per lane.

Figure 6-32 shows the estimated capacities for the ramp segments over time. Ramp capacity

is generally stable, with the exception of three ramps, in which small decreases (of less than

125 vehicles per hour per lane) are observed. In these ramps the flow does not exceed the

estimated capacity.

Figures 6-33 and 6-34 show the evolution of the speed–density relationship parameters over

time. The changing values of these parameters result in time–dependent speed–density

relationships that more effectively match the observed data.

The free flow speed for the mainline segments follows a trend similar to that of the measured

speed, decreasing slightly as traffic increases and recovering towards the end of the peak

period. The α and β parameters for the two groups of mainline segments (groups 1 and
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Figure 6-32: Estimated ramp capacities (EKF, dry weather)

2) show similar trends, but with different magnitudes. In particular, the α parameter for

both groups decreases during the peak, while the β parameter for both groups increases. A

larger decrease (respectively increase) is observed for the second group.

The free–flow speed for the ramp segments shows a small increase from the off–line calibrated

value. Similarly, the α parameter increases during the peak period. Finally, the β parameter

shows a trend similar to that observed for the mainline segments, namely an increase during

the peak period.

The evolution of the estimated “jam density” is shown in Figure 6-34. There is a general

trend to increase the jam density, with values reaching 260 vehicles per hour per lane. These

values are rather high. However, it should be noted that this should not be seen as an exact

representation of the maximum density of the road, but instead as a parameter in the traffic

dynamics model.

Finally, it should be noted that the fifth parameter, the minimum density (under which free–

flow conditions prevail), does not vary significantly. Note that in the application presented

in Section 4.6, where segments were not grouped, two of the parameters maintained their

prior values (the minimum and jam density). This observation supports the hypothesis that

pooling data from more segments and estimating a single speed–density relationship can

overcome potential observability issues (due to the small number of available measurements
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Figure 6-33: Estimated speed–density relationship parameters (EKF, dry weather)
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Figure 6-34: Estimated speed–density relationship parameters: Kjam (EKF, dry weather)

for the estimation of the model parameters).

Figure 6-35 shows the estimated capacities for the mainline segments under wet weather

over time. A pattern similar to that obtained under dry weather is observed. In particular,

the capacity in several segments has been increased (from the original 2200 vehicles per

hour per lane) to sometimes close to 2350 vehicles per hour per lane. The capacity for

a few segments which include weaving and/or merging is reduced to approximately 1900

vehicles per hour per lane. Again, the flow in these segments does not exceed the estimated

capacity.

Figure 6-36 shows the estimated capacities for the ramp segments for wet weather over

time. Ramp capacity is generally stable, with the exception of one ramp, in which a small

decrease (of less than 50 vehicles per hour per lane) is observed.

Figures 6-37 and 6-38 show the evolution of the speed–density relationship parameters for

the wet day over time. The free flow speed for the mainline segments decreases slightly as

traffic increases and recovers towards the end of the peak period. The α exponent for group

1 shows very little variability, while the β parameter shows a moderate increase. A similar

increase in the value of β is observed for group 2. However, for group 2 the estimated value

of the α parameter shows a moderate reduction.

The speed for the ramp segments shows small variability around the off–line calibrated
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Figure 6-35: Estimated mainline capacities (EKF, wet weather)
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Figure 6-36: Estimated ramp capacities (EKF, wet weather)
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value. The α and β parameters show opposite trends, with α decreasing and β increasing

as we move into the peak period.

The evolution of the estimated “jam density” is shown in Figure 6-38. Unlike what was

experienced during wet weather, there is no general trend to increase the jam density. While

the jam density for the second group of mainline segments indeed increases to more than

260 vehicles per hour per lane, moderate decreases are observed for the other two segment

groups. The values for the second group are rather high. Again, it should be noted that

this should not be seen as an exact representation of the maximum density of the road, but

instead as a parameter in the traffic dynamics model.

Finally, it should be noted that the minimum density (under which free–flow conditions

prevail) does not vary significantly (similarly to dry weather).

Figure 6-39 graphically illustrates the estimated speed–density relationship for mainline

sensors for the 5:30pm–5:45pm time interval for different weather conditions. Under dry

weather the speed–density relationship is shifted up and under wet weather the speed–

density relationship is shifted down. As expected, at the same density, drivers reduce their

speed under wet conditions. This is an interesting demonstration of the ability of the on–line

calibration to capture the evolution of the traffic dynamics models.

We now turn our attention to the demand side. Figure 6-40 shows the estimated flows for

the three largest OD pairs. Once again, the flows vary smoothly from interval to interval.

Furthermore, the trends captured by the two days are similar. This is a reasonable finding,

since –except for the weather conditions– the two days are similar and there is no systematic

reason for differences in demand.
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Figure 6-37: Estimated speed–density relationship parameters (EKF, wet weather)
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Figure 6-38: Estimated speed–density relationship parameters: Kjam (EKF, wet weather)
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Figure 6-39: Estimated speed–density relationships for mainline sensors (17:15–17:30, EKF)
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Figure 6-40: Estimated OD flows (three largest OD pairs, EKF)

137



6.4 Additional analysis

The results presented so far in this chapter provide useful insight into the performance of

the on–line calibration approach. However, two questions arise:

• As expected, the performance of the on–line calibration approach decreases as the

prediction horizon increases. However, in this case, the on–line calibration approach

provided a worse performance (in prediction of counts) than the base case. This

could be a symptom of over–fitting, which (as discussed earlier) is a natural concern

in parameter estimation.

• The algorithm seems to be capturing predicted speeds much better that it is capturing

predicted counts.

In this section, we present the results of some further experimentation aimed at providing

additional insight on these two questions.

As discussed before, minute–by–minute speed measurements have been used as inputs, while

count measurements have been aggregated to fifteen minute intervals. The decision to use

fifteen–minute counts is based on the requirements of the OD estimation approach, used

as the base case (which assumes that the counts are aggregated in intervals equal to the

estimation/prediction interval).

As a result, a larger number of speed measurements (fifteen per sensor per interval) have

been used, as opposed to a single count measurement per sensor per interval. As a con-

sequence, the speed measurements have a higher weight on the algorithm. In order to

correct for this, the variance–covariance matrices have been adjusted to reflect these obser-

vations. In order to increase the weight on the count measurements, the variance of these

measurements has been reduced by a factor of ten.

Furthermore, in order to investigate the over–fitting concern, the weights of the a priori

values of the parameters have also been modified. In particular, the weights have been

doubled (by dividing the corresponding covariances by two), effectively implying that we are

more confident about the a priori values of the parameters. Furthermore, a longer prediction

horizon has been used (five–step prediction, corresponding to prediction 75 minutes into the

future).
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Table 6.6: Summary results (additional runs, dry day)

Estimated One–step predicted Two–step predicted

Algorithm speeds counts speds counts speeds counts

Base 0.1266 0.1288 0.1494 0.1540 0.1441 0.1666

LimEKF 0.1121 0.1092 0.1249 0.1325 0.1346 0.1698

% improv 11.5% 15.2% 16.4% 14.0% 6.6% −1.9%

Three–step predicted Four–step predicted Five–step predicted

Algorithm speeds counts speds counts speeds counts

Base 0.1604 0.1904 0.1660 0.2378 0.1772 0.2878

LimEKF 0.1505 0.1765 0.1537 0.2322 0.1556 0.2858

% improv 6.2% 7.3% 7.4% 2.4% 12.2% 0.7%

The Limiting EKF was selected as the most appropriate algorithm for this analysis, as this

algorithm has been shown to be the most practical (from a computational point of view)

and therefore the most likely to be used in the field. Since the Limiting EKF requires

a pre–computed Kalman gain, the EKF algorithm was run first (with the updated vari-

ance/covariance matrices as inputs) to generate that. The Kalman gain for the Limiting

EKF was computed as the average of the Kalman gain matrices generated by the EKF.

The estimation and prediction results for the LimEKF (for both speeds and counts) are

presented in Table 6.6 and Figures 6-41 (speeds) and 6-42 (counts). The results provide

a more balanced performance in the prediction of counts and speeds, with benefits (or

performance equivalent to the base case) even for five–step prediction. This finding confirms

the hypothesis that the use of minute–by–minute speeds (as opposed to fifteen–minute

counts) results in additional weight to be given to the speeds. This issue can be overcome

(as demonstrated) by decreasing the variance (and therefore increasing the weight) of the

count measurements.

A second key observation is that by increasing the weight of the a priori values of the

parameters, it is possible to avoid over–fitting. The benefits of the on–line calibration
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Figure 6-41: Summary results with modified weights (speeds, dry weather, LimEKF)
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Figure 6-42: Summary results with modified weights (counts, dry weather, LimEKF)

decrease as the prediction horizon increases and they converge to the performance of the

base case. This finding is confirming that the (estimated) supply parameters are now closer

to their a priori values. Therefore, the adjustment to the variances is having the desirable

effect.

6.5 Major findings

We conclude this chapter with a summary of the major findings from the case study.

• Joint on–line calibration of demand and supply parameters can improve estimation

and prediction accuracy of a DTA system. In the case study, benefits between 10%

and 20% were obtained (over the case when only OD flows were estimated on–line).

While the results obtained from this real network application are promising, they

should be validated in further empirical studies. In particular, the scalability of the
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approach to larger, more complex networks needs to be investigated.

• The on–line calibration approach is computationally feasible. Even when using the

“exact“ algorithms (EKF and UKF) the model achieves “real-time” performance in a

small, but non-trivial real network. Furthermore, the Limiting EKF provides accuracy

comparable to that of the best algorithm (EKF), but with computational complexity

which is order(s) of magnitude lower than the other algorithms.

• The EKF algorithm has more desirable properties than the UKF algorithm (at least

in this application)

– The EKF generally outperforms UKF. It should be noted, however, that the

full power of the UKF algorithm is not exhibited in this application, because the

transition equation is already linear (and therefore, there was no need to linearize

it, thus introducing an additional approximation in the EKF solution)

– The EKF and UKF algorithms have similar computational properties, with 2n

function evaluations (and hence runs of the simulator) required for each run of

the EKF and 2n + 1 function evaluations required for the UKF (where n is the

dimension of the state vector).

• The Limiting EKF provides accuracy comparable to that of the best algorithm (EKF),

but with computational complexity which is order(s) of magnitude lower than the

other algorithms. One interesting property of the LimEKF algorithm is that it requires

a single function evaluation irrespective of the dimension of the state vector (while the

computational complexity of the EKF and UKF algorithms increases proportionally

with the state dimension). Therefore, the computational benefits increase as the

dimension of the problem increases.

• The approach appears to be robust and can be applied to different conditions. How-

ever, further investigation of the robustness of the approach is required.
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7.1 Summary and findings

An on–line calibration approach for dynamic traffic assignment systems has been devel-

oped. The approach is general and flexible and makes no assumptions on the type of the

DTA system, the models or the data that it can handle. Therefore, it is applicable to a

wide variety of tools including simulation–based and analytical, as well as microscopic and

macroscopic models.

The objective of the on–line calibration approach is to introduce a systematic procedure that

will use the available data to steer the model parameters to values closer to the realized ones.

The output of the on–line calibration is therefore a set of parameter values that —when

used as input for traffic estimation and prediction— minimizes the discrepancy between

the simulated (estimated and predicted) and the observed traffic conditions. The scope of

the on–line calibration is neither to duplicate nor to substitute for the off–line calibration

process. Instead, the two processes are complementary and synergistic in nature.

A classical technique for dealing with dynamic systems is state–space modeling. The on–line

calibration approach is formulated as a state–space model, comprising transition equations

that capture the evolution of the state vector over time, and measurement equations that

capture the mapping of the state vector on the measurements. A priori values of the

model parameters provide direct measurements of the unknown parameters. Surveillance

information, on the other hand, can be used to formulate indirect measurement equations,

where the output of the simulator model (when the unknown set of parameter values is

used as input) would match the surveillance information. The state vector is defined in

terms of deviations of the parameters and inputs that need to be calibrated from available

estimates. This reformulation incorporates structural information from previous intervals

into the formulation.

State–space models have been extensively studied and efficient algorithms have been de-

veloped, such as the Kalman Filter for linear models. However, the on–line calibration

formulation is not linear (due to the indirect measurement equation). Therefore, modified

Kalman Filter methodologies have been presented. The most straightforward extension is

the Extended Kalman Filter (EKF), in which optimal quantities are approximated via first

order Taylor series expansion (linearization) of the appropriate equations (Kalman, 1960;
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Gelb, 1974).

The Limiting EKF is a variation of the EKF that eliminates the need to perform the most

computationally intensive steps of the algorithm on–line. The use of the Limiting EKF

provides dramatic improvements in terms of computational performance.

The Unscented Kalman Filter (UKF) is an alternative filter that uses a deterministic sam-

pling approach (Julier et al., 1995; Julier and Uhlmann, 1997; Wan et al., 2000; Wan and

van der Merwe, 2000; van der Merwe et al., 2000). The computational complexity of the

UKF is of the same order as that of the EKF.

Empirical results suggest that joint on–line calibration of demand and supply parameters

can improve estimation and prediction accuracy of a DTA system. While the results ob-

tained from this real network application are promising, they should be validated in further

empirical studies. In particular, the scalability of the approach to larger, more complex

networks needs to be investigated.

The results also suggest that —in this application— the EKF has more desirable proper-

ties than the UKF. The Limiting EKF provides accuracy comparable to that of the best

algorithm (EKF), while providing order(s) of magnitude improvement in computational

performance. Furthermore, the LimEKF algorithm is that it requires a single function eval-

uation irrespective of the dimension of the state vector (while the computational complexity

of the EKF and UKF algorithms increases proportionally with the state dimension). This

property makes this an attractive algorithm for large–scale applications.

7.2 Research contributions

This research makes several concrete contributions to the state–of–the–art. Specifically:

• A comprehensive framework for the on–line calibration of a Dynamic Traffic Assign-

ment system is developed. The on–line calibration approach is expressed in a compact

form with the following features:

– Integrates the OD estimation and supply parameter estimation problems into a

single formulation. Demand and supply parameters are thus estimated jointly

and simultaneously, internalizing demand–supply interactions.
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– Is generic and applicable to any DTA system. In particular, the on–line cali-

bration approach does not make any assumptions on the specific models that

comprise the DTA system. Therefore, it is applicable to systems with very dif-

ferent characteristics (e.g. analytical versus simulation–based, or microscopic

versus macroscopic).

– Has flexible data requirements. The approach can easily incorporate all available

surveillance information —for example Automated Vehicle Identification (AVI)

or probe vehicle data.

• New solution algorithms are applied to the problem. Besides the Extended Kalman

Filter (EKF), which has been a well–established algorithm for dealing with non–linear

state–space models, the Limiting EKF and the Unscented Kalman Filter (UKF) are

considered.

– The accuracy achieved by the Limiting EKF is comparable to the EKF, but the

computational cost is order(s) of magnitudes lower. The Limiting EKF makes

the on–line calibration approach computationally feasible.

7.3 Directions for further research

Methodological, algorithmic and application–related directions for further research are out-

lined in this section.

• Behavioral model parameters As mentioned in Section 2.1.2 that —while driving

behaviors do change over time— the underlying behavioral parameters do not change

rapidly (but as a result of longer–term learning processes and therefore they should

not be captured in the on–line calibration). However, it can be argued that variations

in the effective behavioral parameters can be observed due to other reasons, such as

variations in the traffic mix. For example, a major special event (such as a sporting

event or a concert) may result in large numbers of drivers approaching or leaving a

location at the same time. In that case, the change in the composition of the traffic

could result in behaviors significantly different from the habitual.

The ability of a traffic estimation and prediction system to detect (and react to) such
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phenomena would be a desirable property. The flexibility and generality of the on–line

calibration approach allows the incorporation of additional parameters (such as the

behavioral model parameters) into the formulation.

• Dynamic segment groups A common approach to dealing with speed–density re-

lationships involves the grouping of segments with similar characteristics into homo-

geneous groups and the estimation of a single relationship for each group. The use

of fixed classes of segments, however, does have drawbacks. For example, if an inci-

dent occurs in one segment (thus significantly altering the traffic dynamics for this

segment), the model will not be able to distinguish between the properties of this

segment and the properties of the other segments in the group. Within the on–line

calibration approach, it is possible to estimate speed–density relationships per indi-

vidual segment or per group. Moving from one option to the other, however, is not

straightforward. An approach that would allow for the dynamic grouping of segments

could provide more flexibility in this respect.

• Further experimental analysis The on–line calibration approach has been success-

fully demonstrated on one real, if simple, network. These findings, however, can not

be generalized; further applications in different networks need to be performed. In

particular, the scalability of the model to larger networks, as well as its robustness

when applied to more complex network configurations need to be demonstrated.

• Different algorithms Among the algorithms that were presented in this thesis, the

UKF produced the least favorable results. Further analysis is required into the reasons

that the UKF did not perform as well. It is possible, for example, that the number

of sigma points used by the UKF is not sufficient to accurately capture the first mo-

ments of the random variables (given the large state dimension). Other algorithms

of the same “family” could be considered, as they may provide better properties and

be more suitable in this context. Examples of such algorithms include the Scaled

Unscented Kalman Filter (Julier, and J. K. Uhlmann, 2002) and Particle Filters.

Particle filters (Gordon, 2003; Arulampalam et al., 2002; Pitt and Shephard, 1999)

are sequential Monte–Carlo methods based upon point mass (or “particle”) represen-

tations of probability densities, which can be applied to any state–space model, and

which generalize the traditional Kalman filtering methods.

147



Furthermore, the applicability of other solution algorithms, such as the generaliza-

tion of secant methods for the solution of systems of nonlinear equations developed

by Crittin and Bierlaire (2003), can be investigated.
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