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Abstract

In this thesis, we present a comprehensive framework to estimate and predict time-
dependent Origin-Destination (O-D) ows. The key feature of this framework is its
ability to handle di�erent types of information (\measurements") with di�erent error
characteristics and from di�erent sources in a consistent and uni�ed manner. The
framework is used to address two types of problems { the o�ine estimation problem
and the real-time estimation and prediction problem.

For the o�ine estimation problem, we enhance least squares based procedures
developed by other researchers. To the real-time estimation and prediction problem,
we apply state-space modeling techniques to obtain recursive estimation algorithms.
Main features of our models are: (a) use of deviations of O-D ows from historical
averages as unknown variables (b) modeling of originating trips and destination frac-
tions separately to improve prediction e�ciency and (c) introduction to the notion of
a stochastic assignment matrix for mapping O-D ows to link counts.

The suite of models developed in this thesis is evaluated rigorously using actual
tra�c data from three di�erent sources. Empirical results are promising and indicate
the robustness of the proposed framework.
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Chapter 1

Introduction

The need for e�ective management of tra�c congestion has never been greater. In

the United States alone, urban freeway delay exceeds 2 billion vehicles hours with the

percentage of peak hour travel on urban interstates that occurred under congested

conditions reaching 70% in 1989, up from 41% in 1975[42]. Rush-hour conditions

in some metropolitan areas extend throughout the day. Furthermore, due to a vari-

ety of physical, environmental, and economic constraints, the traditional response of

building more roads is no longer feasible.

To develop a coordinated strategy to address urban and suburban congestion, a

transportation planning agency must be able to predict the consequences of alter-

native strategies. This in turn requires that it be able to abstract from a complex

system a simpli�ed representation { a model { that it can manipulate to analyze

the options open to it. The planning applications of such a model could include,

for example, evaluation or design of a tra�c control system, study of the impact

of construction activity on tra�c ow distribution, evaluation of alternate incident

management schemes, etc.

Regardless of either the model or the application, a necessary input into the

planning process is the underlying demand for use of the transportation network.

The usual way of expressing this demand is by way of an Origin-Destination (O-D)

matrix. Each cell of this matrix represents the number of trips between a speci�c

combination of an origin and destination.
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In conventional state-of-the-practice planning applications, the O-D matrices that

are used are static { in that they represent the number of trips between origins and

destinations made over a relatively large period (such as an entire day or a morning

peak period) within which conditions are assumed \homogeneous". Clearly, this is an

approximation of reality, in practice one observes a de�nite temporal variation of O-D

departure rates over the course of an analysis period. Applications that are based

on these static O-D ows do not capture the dynamics of build up and dissipation of

congestion, of time-varying link and path ows and hence travel times, or of changes

in spatial distribution of congestion over time. For any short-term planning study

therefore, a knowledge of time-varying or temporal O-D ows could be extremely

useful. An entry in a time-dependent or temporal O-D matrix represents the volume

of tra�c departing from an origin i in time interval h and destined to j.

Estimation and prediction of such time-dependent O-D ows had gained further

relevance with increasing attention being paid to Intelligent Transportation Systems

(ITS)1 as a means of alleviating urban and suburban tra�c congestion. ITS is an

umbrella term that embraces a variety of advanced technologies in the areas of com-

munication, computers, information display, road infrastructure, and tra�c control

systems2. It envisages development of a Dynamic Tra�c Management System that

would, in real-time, attempt to improve capacity utilization by (a) providing both pre-

trip and en-route information to motorists with respect to optimal paths to their des-

tinations and (b) using advanced tra�c control systems that are adaptive to rapidly

changing tra�c conditions in real-time.

It is widely believed (see for example, [29],[8]) that a desirable feature of such

systems is the ability to predict future tra�c, the rationale being that without pro-

jection of tra�c conditions into the future, control or route guidance strategies are

likely to be irrelevant and outdated by the time they take e�ect. van Toorenburg et

al.[45] provide a list of scenarios under which it helps to base decision making (routing

or tra�c control) on basis of predicted conditions rather than current. They show

1formerly Intelligent Vehicle-Highway Systems (IVHS)
2For an overview of ITS, refer to Sussman[42].
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that a tra�c forecast over a few hours for a traveler information system is useful if

re-routable tra�c volumes are large or travelers get forecasts well in advance for them

to have exibility in their departure times. Forecasts over a much shorter term of a

few minutes might be useful to prevent overshoot and unwanted oscillations between

di�erent control states. And �nally, forecasts are useful if conditions change quickly

over the analysis period.

At least two di�erent approaches to Tra�c Prediction have been proposed. One

approach involves using Dynamic Tra�c Assignment (DTA). This o�ers the advan-

tage of providing the ability to model driver behavior and response to guidance.

Another category of methods is the use of statistical techniques ([35],[40],[46]) or

state-space based ([23],[47]). While these could o�er computational advantages over

a DTA based approach, they lack behavioral rules and tend to have a \local" outlook.

One of the most important components of the DTA is the dynamic O-D Esti-

mation and Prediction module. The structure of a DTA is shown in Figure 1-1.

Essentially, the DTA accepts inputs from tra�c sensors and uses these to estimate

and predict Origin-Destination ows. These are then loaded on to the network to

generate predictions of network performance measures such as travel times, queue

lengths, etc. The predictions, in turn, form the basis for generation of route guidance

strategies. Thus, in a DTA based approach for tra�c prediction, time-dependent O-D

ows are critical for on-line prediction of network performance.

To obtain these matrices directly (for example from surveys) is extremely di�cult

and costly. The usual procedure hence is to estimate these indirectly from the tra�c

volumes they induce on the links of the network. The latter can be easily measured

using standard surveillance equipment. Of course, the estimation procedure would

also include any prior information that is available { in a dynamic context, this

typically comes from results of previous estimations.

In this thesis, we present a comprehensive framework for estimation and prediction

of these time-dependent O-D matrices. We now de�ne the problem more rigorously.
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1.1 Problem De�nition and Thesis Objective

We distinguish between two types of dynamic or time-dependent O-D estimation

problems. The �rst, which we refer to as the o�ine problem, involves estimation of

a set of time-dependent O-D matrices given a time-series of link volumes (and other

information such as travel times, historical O-D ows, etc). This is more relevant to

planning or evaluation studies or as we will see, in the construction of a historical

database of time-dependent O-D ows. The real-time problem on the other hand,

involves O-D estimation in tandem with a DTA within a real-time tra�c management

system. An additional issue of relevance in the real-time problem is prediction of

future O-D matrices.

More rigorously, we de�ne the problem as follows:

O�ine Estimation

Given a time-series of link tra�c counts for h = 1,2,...,N and historical O-D ows,

estimate O-D ows for each departure interval.

Real-time Estimation and Prediction

Given link tra�c counts in time interval h and historical O-D ows,

1. Estimate O-D matrix for vehicles departing during interval h (and re-estimate

O-D matrices for prior departure intervals).

2. Predict O-D matrices for future departure intervals.

The objective of this thesis is to develop a methodology to e�ectively address

the o�ine and real-time O-D estimation and prediction problems. The models de-

veloped here should be capable of handling the most general networks, modeling

incomplete/erroneous information and fusing in a consistent manner diverse types

of information such as historical O-D ows, link volumes, travel times and speeds,

etc. Empirical case-studies should be conducted to evaluate the performance of the

proposed model system.
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1.2 Literature Review

The static O-D matrix estimation problem has been paid considerable attention by

several researchers (See [9], [10] for a review and bibliography). These models estimate

\average" O-D ows given aggregate link volumes over a relatively long period. Thus,

the time varying nature of link and O-D ows over the analysis period is not modeled.

Compared to static estimation, there exists little work on the dynamic front.

Research on dynamic estimation and prediction can broadly be categorized into two

groups: (a) Pertaining to closed networks and (b) Pertaining to open networks. In

this context, a closed network implies that complete information is available on all

the entry and exit counts of the network at all points in time.

1.2.1 Closed Networks

All the techniques in this section attempt to �nd the O-D split fractions, i.e., the

proportion of each entering volume headed towards each destination. The simplest

type of closed network is an isolated intersection for which the O-D ows correspond

to turning movements. A variety of methods have been proposed to identify these

turning movements based on measurements of entry and exit ows([18],[33]). In

one of the earliest works by Cremer and Keller[18], the sequences of short-time exit

ow counts are hypothesized to depend upon the time-variable sequences of entry

ow counts through a linear relationship. Ordinary Least Squares is used to estimate

splitting fractions. This procedure involves computation of autocorrelation and cross-

correlation matrices for entrance and exit ows over the period of estimation. A

constrained version of this problem has also been proposed to accommodate conditions

of non-negativity and the requirement that the turning fractions sum up to unity.

While the above technique can be considered a batch-processing technique in that

it considers a time series of counts simultaneously to estimate unknown splitting

fractions, there have also been a class of recursive estimation methods proposed for

isolated intersections. Cremer and Keller[18] propose that for each estimation inter-

val, two steps be carried out. In the �rst step, deviations of exit counts from an

16



average are predicted using the deviations in the entry counts measured for that in-

terval and the turning fractions of the previous interval. In the second step, these

exit count deviations are compared with the deviations actually measured by the

surveillance system. Based on the discrepancy between the predicted and observed

values, the turning fractions estimated in the previous interval are updated. The

recursive updating formula uses a \gain" factor that is pre-speci�ed by the analyst.

Cremer and Keller give some recommendations for choosing this factor and show that

under some assumptions which they claim, are fairly easily satis�ed in practice, the

recursive estimates are asymptotically unbiased.

Another recursive estimation procedure suggested by Cremer and Keller for the

single intersection is Kalman Filtering. The state vector for each subsystem (pertain-

ing to each exit) is the vector of splitting fractions speci�c to that exit3. As in other

approaches, the exiting volumes are represented as a linear combination of the enter-

ing inows. In addition, it is assumed that the splitting fractions follow a random

walk process over time. The splitting fractions obtained after each iteration could be

normalized (as in [33]) in order to incorporate the constraints mentioned earlier.

For problems of more meaningful size, Ploss and Keller[30] suggest an alternate

approach. Essentially, they try to exploit the fact that analysis of a time-series

of tra�c volumes at entries and exits of a network provides information about the

relative frequency of trips between the respective counting sites. A matrix of weights

is constructed by them to reect this correlation. This approach however requires a

simplifying assumption about travel times between entry and exit counting stations

being equal to a constant integral multiple of the length of each time interval.

A host of methods have been proposed for freeway networks where an O-D ow

corresponds to the ow between entry and exit ramps. The relationship between link

counts and O-D ows is much more complicated in this case. The earliest approaches

to the problem assumed that the travel time required to traverse such networks was

3Formally, if bij is the proportion of tra�c from entrance i destined for exit j, then the column
j of the matrix B = fbijg denotes the state vector for j and the row i of B contains the splitting
fractions for the ow entering at i.
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either negligible compared to the size of the estimation interval or was equal to a

constant number of time intervals. Nihan and Davis[33] and Nihan and Hamad[34]

report some experience with estimating freeway O-D matrices under these restrictive

assumptions. Nihan and Hamad[34] also conduct some simulation studies on e�ect

of errors in the link counts on the performance of the above models and conclude

that such errors severely a�ect the precision of O-D estimates. However, their net-

work size is extremely small, much of their data is obtained from simulations, and

the assumption of constant travel times is completely unrealistic in the presence of

congestion.

Recent work in this area comes from Bell[3], van der Zijpp[44], Chang and Wu[16],

and Chang and Tao[15]. All of these approaches assume complete information on

entering volumes at on-ramps and exiting volumes at o�-ramps and try to estimate

the destination split fractions in each time interval. In some form or the other, these

techniques attempt to model the dynamic interaction between O-D ows and link

volumes in a more realistic manner. We discuss below the main features of each.

Bell's approach

Bell[3] suggests two approaches for estimating the split fractions. In the �rst ap-

proach, which might be suitable for single intersections or small networks, it is as-

sumed that the fastest vehicle between each O-D pair reaches its exit within one

time interval and the slowest vehicle does not stay on the network for more than one

interval. Each exit volume for an estimation interval h is then expressed as a convex

combination of two terms. The �rst term represents the exit volume measured in

the previous interval h-1. The second term represents the sum of all the O-D ows

departing during interval h that are headed towards the exit under consideration.

Formally,

yj(h) = (1� �j)yj(h� 1) + �j�ibijqi(h) (1.1)

where yj(h) is the volume measured at exit j during interval h, qi(h) the entering

volume at origin i during interval h, bij the unknown proportion of qi(h) headed
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towards exit j and �j a travel time \dispersion" parameter also to be estimated.

The second approach allows for vehicles to stay on the network for a pre-�xed

number of intervals m with the fastest vehicle still taking less than one interval to

traverse the network. For m=3, each exit volume is speci�ed as follows:

yj(h) = �ibij0qi(h) + �ibij1qi(h� 1) + �ibij2qi(h� 2) (1.2)

where bijk is the (unknown) proportion of tra�c from entrance i destined for exit j

with a travel time, when truncated, of exactly k intervals.

In both approaches, constrained weighted least squares is used to obtain estimates

of the split fractions and additional travel-time dispersion parameters. While Bell's

models o�er some relaxation of the simplifying assumptions regarding travel times

that characterize earlier approaches, a key limitation is that both split fractions and

travel time dispersion parameters are assumed to be constant over time. The model

therefore does not estimate a time varying split fraction, instead, it attempts to

\re�ne" its previous estimate of the split fractions during each interval.

van der Zijpp's approach

Another approach comes from van der Zijpp[44]. In this approach, boundaries be-

tween consecutive time periods are not given by �xed points on the time axis but

by time-space trajectories instead. For each departure interval, trajectories of the

�rst and last departing vehicle from the upstream end of the study section to the

downstream end are computed (it is assumed that vehicle speeds are known). It is

assumed that the trajectories of all other departing vehicles lie in between these and

that trajectories of no two vehicles intersect. The trajectories are then used to match

measured link counts at various locations with the correct set of (lagged) O-D ows.

Split fractions are assumed to follow a truncated multivariate normal distribution

(TMVN) to take into account the inequality constraints they are subject to and are

updated during each interval using a Bayesian updating formula. A practical di�-

culty encountered in this approach is computation of the mean of a TMVN during
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each interval, for which no closed form solution exists. Another problem is that no

analytical expression exists for computation of the prior distribution. Finally, con-

structing vehicle trajectories for departure interval h requires knowledge of speeds not

only for interval h but also potentially for future intervals. Since vehicle trajectories

assume a critical role in the model formulation, a mechanism for accurate prediction

of speeds is essential in order to use this model in real-time.

Chang and Wu's approach

The next approach in this category comes from Chang and Wu[16]. The problem

is formulated as an Extended Kalman �lter with the state vector de�ned as a com-

bination of split fractions and assignment parameters4. The measurement equation

relates the link counts to the unobserved split fractions, the unknown assignment

fractions and the observed entering volumes. An assumption made in constructing

this equation is that vehicles belonging to a particular O-D pair and departure inter-

val spend at most two time intervals on each link. To reduce the number of unknown

assignment fractions to be estimated, the authors attempt to set selected elements of

this matrix to zero based on computed travel times. Travel times for each interval h

are computed from mainline counts based on a two-step procedure as follows:

� Compute segment density: The number of vehicles nhl present in each mainline

segment l of the network at the end of interval h is �rst estimated using the

following ow conservation equation.

nhl = nh�1
l + Ihl �Oh

l (1.3)

where Ihl and Oh
l represent the inow and outow into segment l during interval

h respectively5. The number of vehicles nhl is then divided by the length of

segment l to get the segment density �hl .

4The assignment parameters de�ne the dynamic mapping between link counts and O-D ows.
5The initial state n0l is assumed to be known.
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� Compute segment speed and travel time: Segment speed is obtained from seg-

ment density using the following relationship:

vhl = ((Ihl +Oh
l )=2H)=�hl (1.4)

where H is the length of the time interval. In other words, they assume that

the speed within a segment during a given time interval can be approximated

by the ratio of the average ow over the interval and the segment density at the

end of the interval. Travel time is calculated from the above speed.

The transition equation for their approach is a simple random walk in split fractions

and assignment parameters.

While the Chang and Wu approach overcomes several shortcomings of earlier

approaches, it still has signi�cant limitations. Firstly { and this is true for all the

above approaches { all entering ows are assumed to be known and hence, using the

model for prediction requires that incoming ows be predicted as well. Secondly,

the procedure advocated for computing travel times is simplistic and unlikely to be

accurate in congested networks. Thirdly, estimated travel times are used exclusively

for the purpose of selecting elements of the assignment matrix to be zeroed out while

they could also be used to generate (perhaps approximate) values for the non-zero

elements of the matrix. Finally, the assumption of vehicles sharing an O-D pair and

departure interval spending at most two time intervals on each link might be violated

for congested freeway corridors with relatively short estimation intervals.

Chang and Tao's approach

The de�ning characteristic of the approach by Chang and Tao[15] is use of cordonlines.

A cordonline is de�ned as a hypothetical closed curve that intersects with a set of links.

The basic idea of this approach is to supplement existing sensor based measurements

with additional measurement equations that describe the ow across cordonlines.

The measurement equation is identical to that in Chang and Wu[16] except that the

assignment parameters are assumed to be known. They assume that the split fractions
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follow an auto-regressive process in time and use a Kalman Filter to estimate the state

during each time interval. They show { based on a case study with synthetic data {

that up to 20% improvement in estimation errors can be achieved by using cordonline

based measurements in addition to conventional sensor based measurements.

Their model has serious shortcomings:

� The model purports to address urban networks. A key issue in O-D estimation

for urban networks is speci�cation of the assignment parameters. The authors

do not provide any guidelines on how this might be obtained.

� As all other models for closed networks do, it assumes complete information on

entry and exit counts. An even less realistic assumption is that entry and exit

ows are completely observable for all the cordonlines used in modeling (the

cordonlines themselves are arbitrarily constructed).

� The model cannot be used for prediction by itself since the entry volumes are

assumed as known inputs and are not modeled.

� The need for cordonlines is not adequately motivated. Their case study com-

pares a base model that uses only entry/exit counts with another model that

uses both entry/exit counts as well as counts across cordonlines. It is no sur-

prise that the second model performs better. It is not clear, however, why they

could not have obtained a similar or better improvement by a third model that

uses entry/exit counts and individual counts for all the sensors constituting the

cordonline.

Conclusion

A general comment about the above techniques for closed systems is in order here.

In large and complicated urban and suburban environments, it is very di�cult to

envisage availability of complete and accurate information at all exit and entry loca-

tions. This severely hampers the potential application of these techniques to realistic
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situations6. They however remain useful starting points for development of more com-

plicated models. An important challenge in developing more sophisticated models is

in capturing accurately the dynamic mapping between O-D ows and link volumes

in the presence of route choice.

1.2.2 Open Networks

Methods for open networks involve an extension of the static matrix estimation prob-

lem. The dynamic formulation of the matrix estimation process would have at its

core, an equation of this form:

y
lh
=
X
p

X
r

arp
lh
xrp (1.5)

where y
lh

is the ow crossing sensor l in time interval h, xrp is the ow between

O-D pair r that departed its origin during time interval p and arp
lh

is an assignment

parameter reecting the proportion of the demand xrp crossing sensor l in time interval

h.

The di�erence from the static case lies primarily in the dependence of the above

parameters on p and h. The matrix of assignment fractions in the static case does not

reect the e�ects of O-D ows corresponding to prior intervals on the link counts ob-

served in any interval since it lacks the granularity of time representation in dynamic

implementations.

To our knowledge, only three approaches for dynamic estimation have been pro-

posed for open networks. We discuss below the main features of each of these.

Cascetta et al.'s approach

Cascetta et al.[13] obtain estimates of dynamic O-D ows by optimizing a two part

objective function. The �rst part seeks to minimize the di�erence between the es-

timated O-D matrix for an interval and an apriori estimate of the O-D matrix for

6One area in which the intersection turning fraction models could be useful is in optimizing signal
timings within an adaptive tra�c control system.
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that interval. The second part seeks to minimize the di�erence between measured

link volumes and those predicted by the model when the estimated O-D ows are as-

signed to the network. Two estimation procedures are presented { a \simultaneous"

estimation procedure and a \sequential" estimation procedure. The simultaneous

estimator gives in one step the entire set of O-D vectors for all the time-intervals

of estimation using link tra�c counts for all the intervals. The sequential estimator

on the other hand gives in each step, the O-D matrix for one time-interval by using

counts relating to that and previous intervals and possibly, O-D estimates of previous

intervals. Apart from the obvious computational advantage, the sequential estimator

can use estimated O-D ows obtained in a given interval as an apriori value for the

next interval. Cascetta et al. apply a Generalized Least Squares (GLS) estimator

and test the performance of their approach for an Italian freeway with encouraging

results. This model was also implemented for a downtown Boston network with 692

O-D pairs and 1124 links by Khoshyaran[31]. Results for the Boston network were

unsatisfactory and were attributed to inadequacy of available data { only 58 of the

1124 links on the network were instrumented. Moreover, on several key links, detec-

tors provided only partial coverage of lanes and hence measured volumes and speeds

were subject to huge errors.

The above model has some shortcomings. First, no formal procedure is developed

for assigning weights (variances) to the two terms in the objective function. This

feature will be explored in further detail in Chapter 2. Secondly, the model cannot

be used for predicting future O-D ows. Nevertheless, this work is pioneering in that

explicit equations were proposed for modeling the dynamic mapping between O-D

ows and link volumes. Again, this aspect will be dealt with in detail in subsequent

chapters.

An alternative model with predictive ability was developed as part of the DRIVE-

II DYNA project(Inaudi et al.[26]). In this model, estimation and prediction are dealt

with separately. For estimation, the sequential version of the model by Cascetta et

al. is used. Values thus estimated are then used to generate predictions by a separate

\�ltering" approach that combines historical and estimated O-D information using
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the concept of \deviations" proposed by Ashok and Ben-Akiva[2] (see below). The

main disadvantage of this approach is that the prediction component is completely

exogenous to the estimation resulting in a statistically ine�cient estimator.

Okutani's approach

The state vector (set of decision variables) here is the vector of unknown O-D ows.

This technique is based on equation (1.5) with an additional random error present. In

addition, the model includes an autoregressive formulation in which the state vector

for period h is related by correlation factors to state vectors for prior periods. The

degree of lag is pre-speci�ed by the analyst. Okutani uses standard linear Kalman

Filter theory to get optimal estimates of the state vector in each time interval. No

information, however, is provided about how the matrix of assignment fractions farp
lh
g

is computed. Though this model has predictive and updating elements and hence is

amenable for use in real-time, there are serious problems with the autoregressive

speci�cation. These are discussed in detail in Section 2.3. Kachroo et al.[27] have

extended this approach to account for serial correlation of errors in the autoregressive

formulation. This is accomplished by augmenting the state vector with additional

parameters. They report an improvement in results as a result of this modi�cation.

Ashok and Ben-Akiva's approach

Ashok[1] and Ashok and Ben-Akiva[2] present a Kalman Filter based approach for

real-time estimation and prediction7. In order to overcome the inadequacy of Oku-

tani's autoregressive speci�cation for O-D ows (See Section 2.3), they introduce the

notion of deviations of O-D ows from historical estimates. The state-vector is hence

de�ned in terms of O-D deviations that conform to an autoregressive process. The

measurement equation is the same as Okutani's. The assignment fractions are sought

to be obtained either using the equations derived by Cascetta et al.[13] or by us-

ing a DTA. The model is evaluated using actual tra�c data from the Massachusetts

7This model is described in detail in Chapter 2.
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Turnpike with encouraging results.

While the above model overcomes de�ciencies of several of its predecessors, it still

has some shortcomings. First, no attempt is made to capture errors in the assignment

matrix. As explained in Chapter 4, this could induce a bias in the estimates. Secondly,

the model requires augmenting the state for a given interval with states corresponding

to several prior intervals. This has the e�ect of greatly increasing the computational

load associated with the problem, thereby making a real-time application of the model

a formidable task. Finally, the model does not investigate alternate forms of the

transition equation that could improve its predictive performance { this is the subject

of Chapter 3.

Conclusion

In conclusion, there exist very few techniques available for open networks. Each of the

models discussed above has some shortcomings that precludes its use in speci�c situ-

ations. None of the models discussed above captures errors in the mapping between

link volumes and O-D ows. Not all of them can be used for both estimation and

prediction. Only a couple explicitly make use of historical information in the problem

formulation. The framework proposed in this thesis attempts to address these issues.

1.3 Overall Framework for Dynamic O-D Estima-

tion and Prediction

Data for dynamic O-D estimation and prediction come from diverse sources. The

purpose of this section is to cast the O-D estimation and prediction problem in the

form of a data fusion procedure that combines information from these diverse sources

in a statistically e�cient manner. We draw upon in this section, the work of Ben-

Akiva[9] in the context of static O-D estimation.

For dynamic O-D estimation and prediction, the most commonly available data

source is tra�c counts at speci�c locations on the network. Unlike static estimation,
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these counts are typically over short time intervals. Tra�c counts are an example

of indirect measurements8 of the unknown O-D ows. Typically, these counts are

expressed as linear combinations of the O-D ows. The counts could either be in the

middle of a roadway segment, at entry or exit ramps on freeways, or across a cordon

or screenline in an urban area. The mapping between the counts and the O-D ows

is termed the assignment matrix9.

For networks of non-trivial size, the number of counts available is far less than the

number of O-D pairs. Thus, the indirect measurements as given by the link counts

are inadequate for obtaining unique estimates of the O-D ows. This is a fundamen-

tal characteristic of the O-D estimation problem { whether static or dynamic. The

usual way to supplement the link counts is by specifying additional information in

the form of prior O-D matrices. For planning applications, these prior O-D matrices

could come from various sources { a partial survey, an out-of-date database, etc. In

implementations for dynamic tra�c management, these would most likely come from

results of previous estimations { either for a previous day or for an earlier departure

interval the same day. The latter are particularly useful in light of the correlation

between O-D ows across successive time intervals that one typically observes on a

within-day basis. However obtained, these prior matrices constitute direct measure-

ments of the unknown O-D ows.

A critical issue in using indirect measurements such as tra�c counts is in de�ning

the mapping represented by the assignment matrix. This matrix depends upon link

travel times and path choice fractions10. A third source of (indirect) information,

therefore, might be travel speeds on speci�c links or empirically estimated/calibrated

path choice fractions. Instantaneous travel speeds could be obtained for example,

from sensors (as in various case studies in this thesis) or from probe vehicles.

The above, by no means, constitute an exhaustive list of all possible types of

8As in Ben-Akiva[9]
9Note that for a congested network, this mapping would in turn depend on the underlying O-D

ows themselves, resulting in a highly non-linear equation.
10A detailed discussion of the assignment matrix will be deferred until Chapter 4. Su�ce to

know here that the dependence of the assignment matrix on travel times (which in turn depend on
underlying O-D ows) is extremely complicated.
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information. For example, probe vehicles could, in addition to travel times, provide

direct measurements on the O-D ows11. Intersection turning fractions if available

could, in principle at least, provide useful information about network level O-D ows.

Information about special events or incidents could help in modifying the prior ma-

trix. Information about route guidance strategies being employed could inuence

future predictions. We also note that in general, similar type of information could

be obtained from multiple sensors. For example, link speeds could be obtained both

from probe vehicles and from sensors.

Associated with these di�erent types of measurements are di�erent degrees of

error. Broadly, these errors can arise from three sources. The �rst source of error

relates to the inexactness or approximation in the functional form that describes the

relationships between the measurements and the unknown variables. For example, the

serial correlation between O-D ows could be modeled by an autoregressive process

(as in Okutani's work) that is likely to be highly inexact. A second source of error

could be imprecision in the parameters that map the measurements onto the unknown

variables. For example, the assignment matrix, by virtue of its dependence on possibly

erroneous travel times, could be subject to severe errors. A third source of error could

be recording or instrumentation error. An obvious example is when a particular sensor

systematically underestimates or overestimates a link count due to malfunction.

The problem of O-D estimation may now be stated as one of combining and rec-

onciling information of di�erent types with di�erent error characteristics and from

multiple sources. Operationally, this involves jointly estimating the unknown param-

eters of a system of equations. The joint estimation of such a system of equations is

known in econometrics as a mixed estimation problem (See for example, Theil[43]).

If the variances of the error terms in the various equations are known or can be com-

puted, generalized least squares (linear or non-linear) can be used to estimate the

unknown parameters. If the parametric form of the distribution of the error terms

can be speci�ed, a maximum likelihood estimator can be employed. Of course if the

11For a detailed discussion on using probe vehicles as direct measurements, see the discussion
associated with the paper by Hellinga and Van Aerde[4].
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error terms are normal, both approaches are equivalent. In the context of a recursive

estimation procedure, a generalized least squares based approach has de�nite com-

putational advantages. The maximum likelihood estimator, however, provides full

exibility in model speci�cation and has desirable statistical properties under general

conditions.

1.4 Thesis Contributions

This thesis presents various advancements beyond previous research. Speci�cally,

� A comprehensive framework for the dynamic O-D estimation and prediction

problem for open networks is developed. This framework encompasses a variety

of models and has the following main features:

{ Provides a natural way of incorporating information of varying types, with

di�erent levels of accuracy, and from multiple sources.

{ Builds on earlier work ([1], [2]) by retaining the idea of deviations in the

model formulation.

{ Exploits the di�erential temporal variation of originating trips and desti-

nation shares to improve predictions.

{ Incorporates a stochastic mapping between O-D ows and link volumes.

In this aspect, it di�ers quite fundamentally from existing approaches.

� The framework and models are evaluated rigorously using a combination of ac-

tual and synthetic tra�c data from three di�erent networks. These case studies

provide insights into the advantages and disadvantages of speci�c modeling

strategies for di�erent types of networks, extent and quality of available data

and level of computational resources.
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1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 consists of the basic mathematical

framework. This is followed by presentation of an alternate formulation based on

originating trips and destination shares in Chapter 3. We then present a fundamental

extension in Chapter 4 by allowing for a stochastic assignment matrix. The next

chapter discusses in detail, several case studies used for evaluating performance of

various models. We conclude with guidelines on future research in Chapter 6.
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Chapter 2

The Basic Formulation

In this chapter we formalize the ideas discussed in Chapter 1. We �rst establish

the basic equations in the formulation. We then describe an equivalent state-space

based formulation of the problem, following which we describe an o�ine estimation

procedure. We conclude the chapter with a discussion of how the inputs to the model

may be calibrated from historical data.

2.1 Overview of Methodology

Figure 2-1 illustrates the basic inputs and outputs into an O-D estimation and pre-

diction model system. This model obtains historical O-D ow values from a database.

The module also gets a vector of link counts from the surveillance system1. For the

o�ine problem, link counts for the entire analysis period (all the departure inter-

vals) would be available. For the real time problem, at the end of each interval h,

only the counts corresponding to h would be available. And �nally, the module gets

(or computes) estimates of \assignment" matrices, discussed in more detail in later

sections2. By comparison of the link counts that were measured by the surveillance

system with the counts obtaining by assigning the estimated or apriori O-D ows

1More generally, it gets a set of direct and indirect measurements from the surveillance system
(Refer to Chapter 1 for examples of direct and indirect measurements).

2As mentioned in Chapter 1, an assignment matrix maps a set of Origin-Destination matrices
into a set of link ows.
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to the network, the O-D estimation module updates these estimates. For the o�ine

problem, it is possible for this updating to be carried out simultaneously for all the

departure intervals. For the real time problem, however, such an updating would

have to be performed every estimation interval. Finally, for the real time problem,

predictions are generated for intervals h+ 1; h+ 2; ::: and the process continues.

2.2 Preliminary De�nitions

Consider an analysis period of length T divided into equal intervals h = 1; 2; :::; N

of size H. The network is represented as a directed graph that includes a set of

consecutively numbered nodes N and a set of numbered links L. The network is

assumed to have n
LK

links and n
OD

O-D pairs. It is assumed that n
l
of these n

LK

links are equipped with sensors.

We denote by x
rh

the number of vehicles between the rth O-D pair that left

their origin in interval h and by x
H

rh
the corresponding best historical estimate. A

historical estimate typically is the result of estimation conducted during previous

days. Further, let the corresponding (n
OD

� 1) vectors of all O-D ows and the

corresponding historical estimates be given by x
h
and x

H

h
respectively. The estimate

of x
h
is represented by x̂

h
. Finally, denote by y

lh
the observed tra�c counts at

detector station l during interval h and by y
h
the corresponding (n

l
� 1) vector.

We are now ready to de�ne the set of equations describing the model.

2.3 Direct Measurements

By de�nition, a direct measurement provides a preliminary estimate of an O-D ow.

We therefore express a direct measurement as follows:

xa
h
= x

h
+ u

h
(2.1)

where xah denotes the apriori or preliminary estimate of x
h
and u

h
is a vector of

random errors.
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Equation (2.1) admits a variety of expressions for xah. For example, all of the

following are possibilities:

xah = xHh (2.2)

= x̂
h�1

(2.3)

= (xHh =x
H
h�1)x̂h�1

(2.4)

= xHh + �(x̂
h�1

� xHh�1) (2.5)

= �h�1
p=h�q0�p(x

H
h =x

H
p )x̂p ; �p�p = 1 (2.6)

= Ehx
probe
h (2.7)

= �h�1
p=h�q0f

p
h x̂p (2.8)

= xHh + �h�1
p=h�q0f

p
h(x̂p � x

H
p
) (2.9)

Equations (2.2) and (2.3) are clearly the most straightforward possibilities for incor-

porating direct measurements { they represent the historical value for interval h and

the estimate for the previous interval h � 1 respectively. We note that Equations

(2.2) and (2.3) correspond to the simultaneous and sequential models of Cascetta et

al.[13] respectively. Equations (2.4) and (2.5) make use of historical estimates for

intervals h and h � 1 apart from the previous interval estimate. The conjecture un-

derlying Equation (2.4) is that the ratio of interval-over-interval O-D ows is stable

on a day-to-day basis. Equation (2.5) attempts to modify the historical estimate xHh

based on the deviation from historical estimate in the previous interval. Equation

(2.6) is a generalization of Equation (2.4) in that it takes into account many prior

ratios instead of just the ratio (xHh =x
H
h�1).

Equation (2.7) represents the use of information from probe vehicles3 as direct

measurements. xprobeh represents the number of probe vehicles corresponding to each

O-D pair departing during interval h. The matrix Eh is diagonal and represents

an \expansion" factor to account for the fact that probe vehicles constitute only a

3A probe vehicle is de�ned as a vehicle equipped with a device that enables a tra�c management
center to track its progress through the transportation network.
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fraction of the total number of vehicles in the network.

Equations (2.8) and (2.9) are most interesting. Equation (2.8) is a more general

form of (2.6) and corresponds to the Okutani model. It implies that the O-D ows

follow an autoregressive process of order q0. fph is an (nOD �nOD) matrix of e�ects of xp

on x
h
. On the other hand, Equation (2.9) is a more general form of (2.5) and models

the temporal relationship among deviations in O-D ows by an autoregressive process

of order q04. The matrix fph is here an (n
OD

� n
OD

) matrix of e�ects of (xp - x
H

p
) on

(x
h
� x

H

h
). This formulation captures correlation over time among deviations which

arise from unobserved factors that are correlated over time. Such factors include

weather conditions, special events, temporary changes in the transportation network,

etc.

A comparison of Equations (2.8) and (2.9) is in order here. An autoregressive

process such as (2.8) can only capture temporal interdependencies among O-D ows.

Such a model does not represent any structural information about trip patterns. The

pattern of O-D trips is a function of spatial and temporal distribution of activities as

well as characteristics of the transportation system. It is highly unlikely therefore that

a simple autoregressive process (with constant coe�cients) would be able to capture

the complex structure of activities that result in the spatial and temporal pattern of

trip making.

Suppose that O-D matrices have been estimated from historical data for several

previous days or months. These already estimated O-D matrices subsume a wealth of

information about the relationships that a�ect trip making and about their variation

over space and time. One simple way then of incorporating structural relationships

is to include all the prior estimation into the real-time O-D estimation problem. The

simplest way to do this is to use deviations of O-D ows from best available historical

estimates instead of the actual ows themselves as unknown variables. Thus the

estimation and prediction process would have indirectly taken into account all the

experience gained over many prior estimations and would be richer in its structural

content.

4This was used in earlier work by Ashok and Ben-Akiva[2].
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The idea of deviations overcomes another di�culty that was recognized by Oku-

tani. A normal distribution for tra�c variables (such as O-D ows) is a useful property

for available statistical tools such as the Kalman Filtering technique used by Okutani.

However, the tra�c ow variables used by Okutani have skewed distributions whereas

the corresponding deviations would have symmetric distributions and hence be more

amenable to approximation by a normal distribution.

For these reasons, we adopt Equation (2.9) as the preferred choice for most of

the models in this thesis5. In view of the fact that we wish to work with deviations

instead of the O-D ows themselves, it is convenient to rewrite Equations (2.1) and

(2.9) as follows:

@xah = @x
h
+ u

h
(2.10)

@xah = �h�1
p=h�q0f

p
h
^@xp (2.11)

where @x
h
denotes the deviation in x

h
(i.e., the quantity (x

h
�xH

h
)) and @xah denotes

its apriori estimate6.

Computation of the matrix f
p

h
involves estimation of linear regression models for

each O-D pair. The error covariance matrix Q
h
could be approximated from the

residuals of these regressions. The exact mechanics will be deferred to Section 2.11.

We close with some important comments. Firstly, it is conceivable that in many

situations, one might have multiple sources of information for the same direct mea-

surements. In such a situation, we simply write a version of Equation (2.1) (or (2.10))

for each measurement source. The fact that these sources of information could have

di�erent degrees of error is taken into account by specifying di�erent variances for

the error term u
h
in each of these equations. Thus Equation (2.10) provides an easy

way of incorporating the same information from multiple sources.

Secondly, it is conceivable that one might have more than one type of direct

5We also use (2.4) for some of our o�ine models.
6Note that in similar fashion, we can rewrite Equation (2.10) for each of the forms (2.2){(2.8) by

subtracting x
H

h
from the respective right hand sides.
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measurement. For example, one might wish to use both Equations (2.7) and (2.11).

Again, in such a situation we simply use both sets of equations and specify error

variances separately7. Alternatively, we could use a weighted (convex) combination

of the two direct measurements where the weights depend on the relative variances

of the two8. These ideas will be formalized in later sections.

2.4 Indirect Measurements

As mentioned in Chapter 1, link counts constitute the most common type of indirect

measurements. The relationship between counts and the unknown O-D ows can be

expressed as a linear relationship as follows:

y
lh
=

hX
p=h�p0

n
ODX
r=1

arp
lh
xrp + v

lh
(2.12)

where arp
lh
is the fraction of the rth OD ow that departed its origin during interval

p and crossed the counting point on link l during interval h. v
lh
is the measurement

error while (p0+1) is the maximum number of time intervals taken to travel between

any O-D pair of the network. In matrix form the above equation reduces to:

y
h
= �hp=h�p0a

p

h
xp + v

h
(2.13)

where the matrix a
p

h
is an (n

l
� n

OD
) assignment matrix of contributions of xp to yh

and v
h
is the vector of measurement errors9.

The interpretation of Equation (2.13) is straightforward. The ow across any

detector station during interval h is comprised of contributions from O-D ow vectors

corresponding to departures during h,h-1,...,h-p0. The assignment matrix consists of

the proportions of these O-D ows that constitute the link ow. The error term

7If the information from the sources are not independent, covariances have to be speci�ed as well.
8Ben-Akiva and Bolduc([5],[6]) use such techniques in a di�erent context of \transferability" of

discrete choice model coe�cients.
9In reality, Equation (2.13) will be highly non-linear because the assignment matrix depends

indirectly upon O-D ows. We will consider this issue in Chapter 4.
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reects the possibility of imperfect measurements.

Since we wish to work with deviations, Equation (2.13) can be rewritten as follows:

y
h
� yH

h
= �hp=h�p0a

p

h
(xp � xH

p
) + v

h
(2.14)

where yH
h
= �

h

p=h�p0a
p

h
xH
p
.

While the error covariance matrix R
h
can be easily computed from historical

data (Section 2.11), computation of the matrices a
p

h
is a complicated exercise. The

fractions contained in these matrices depend on path choice probabilities as well as

the stochastic mapping of time-dependent path ows to link ows10. One way of

determining the former is by means of discrete choice models. To estimate the latter,

one would need in addition, knowledge about time-dependent travel times. Travel

times could be obtained from a tra�c surveillance system (e.g. probe vehicles or

sensors) or from a simulationmodel. Explicit modeling of the assignment matrices and

implications of errors in these on the O-D estimation/prediction process is discussed

in detail in Chapter 4.

We make two �nal observations. Firstly, note that though we have described

yh as a vector of link tra�c counts, we could easily handle other types of counts

such as screenline counts, cordonline counts, entry/exit counts, etc. by appropriate

speci�cation of the assignment matrix a
p

h
. Secondly, just as for direct measurements,

we could have multiple sensors with di�erent error propensities measure the same

link volume. Again, such a situation can be handled by the framework in a natural

fashion by appropriate choice of error variances.

2.5 An Equivalent State-Space Model

A classical technique of dealing with dynamic systems is state-space modeling (Ap-

pendix A). In this section, we demonstrate how the framework presented in previous

10Note that in static O-D matrix estimation, the mapping of path to link ows is given trivially
by a link-path incidence matrix { a matrix of zeros and ones. Because of complicated interaction
across time-intervals, this is clearly inappropriate in the dynamic case.
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sections can be viewed, under most circumstances, as a state-space based formulation.

Since state-space based models have been extensively studied and e�cient algorithms

have been developed to solve such systems, such an exercise is extremely useful.

To develop a state-space model, we �rst need to de�ne a state. Following the

arguments advanced thus far, it is natural to de�ne our state to be the vector of

deviations in O-D ows from historical estimates. Once a state is de�ned, we need to

specify transition and measurement equations.

In a dynamic system, transition equations describe the evolution of the state over

time. Measurement equations on the other hand relate the unknown state to their

observed indicators. To relate these to the terminology of Sections 2.3 and 2.4, we

remark that direct measurements such as (2.6), (2.8), or (2.9) would be expressed by

transition equations since they imply a within-day dynamic or evolutionary process

that O-D ows or their deviations subscribe to. Direct measurements such as (2.7)

would be, in state-space terminology, represented by measurement equations since

they do not de�ne a dynamic process that the state evolves according to. For the

same reason, indirect measurements in Section 2.4 would always be represented by

measurement equations in state-space terminology.

Recalling that Equations (2.10) and (2.11) imply an underlying autoregressive

process on the O-D ow deviations, we describe the transition equation11 as follows:

x
h+1

� x
H

h+1
= �

h

p=h+1�q0f
p

h+1
(xp � x

H

p
) +w

h+1
(2.15)

or alternatively,

@x
h+1

= �hp=h+1�q0f
p

h+1
@xp +w

h+1
(2.16)

where xp, x
H

p
, f

p

h+1
are as before and w

h+1
is the random error12. In scalar form, this

11Since we placed no restriction on the number and type of direct measurements, we could in gen-
eral have multiple direct measurements that could be cast as transition equations. We demonstrate
in Section 2.7 how this might be handled.

12Notice that the error terms in Equations (2.16) and (2.10) are di�erent (though, as one would
expect, they are closely related). We elaborate on this a bit later.
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equation can be stated as follows:

x
rh+1

� x
H

rh+1
=

hX
p=h+1�q0

n
ODX
r0=1

f
r0p

rh+1
(x

r0p
� x

H

r0p
) + w

rh+1
(2.17)

where the coe�cients f
r0p

rh+1
describe the e�ect of the deviation (x

r0p
� x

H

r0p
) on the

deviation (x
rh+1

� x
H

rh+1
) and w

rh+1
is the random error.

We make the following assumptions:

1. E[w
h
] = 0

2. E[w
h
w0

l
] =Q

h
�
hl
where �

hl
= 1 if h=l and 0 o.w. 8h; l andQ

h
is an (n

OD
�n

OD
)

variance-covariance matrix.

The assumption of no serial correlation can be defended because the unobserved

factors in the transition equation that could be correlated over time are captured by

the historical matrix x
H

h
. In some situations however (e.g. incidents), this assumption

might break down. A violation of this assumption can be easily taken care of by using

a variant of the estimation algorithm we describe in later sections13.

The measurement equation which we shall use is identical to (2.13) or in deviation

form (2.14), reproduced below for completeness.

y
h
� yH

h
= �

h

p=h�p0a
p

h
@xp + v

h
(2.18)

We typically assume that

1. E[v
h
] = 0

2. E[v
h
v0
m
] = R

h
�
hm

where �
hm

= 1 if h=m and 0 o.w. 8h;m and R
h
is an

(n
l
� n

l
) variance-covariance matrix.

Again, there could be situations in which the assumption of no serial correlation

might break down. An example could be, if a speci�c detector { perhaps because of

13An algorithm to handle correlated errors in the transition or measurement equations can be
found, for example, in Chui[17].
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incorrect calibration { consistently over-estimates or under-estimates a link volume

on a particular day. Again, it is easy to relax this assumption and use a variant of

the estimation algorithm we describe in later sections.

If additional measurements are available, we simply expand the set of measurement

equations to include the additional information. For example, information from probe

vehicles would be represented by:

~y
h
= @x

h
+ ~v

h
(2.19)

where ~y
h
= E

h
xprobe
h

� xH
h
(all de�nitions as before) and ~v

h
the error14. Thus, we

would now have two sets of measurements equations15.

In conclusion, we might mention that the framework in Sections 2.3 and 2.4 does

not always lend itself to a state-space interpretation. For example, if we choose

Equation (2.2) as a direct measurement instead of Equation (2.9), we cannot write a

transition equation. Though choosing (2.2) over (2.9) is not recommended, it could

be necessary for example, if existing historical data were insu�cient to accurately

calibrate f
p

h

16. In a dynamic tra�c management system, however, it is envisaged that

data would be available over multiple days, and hence, after a \warm-up" period of

a few days, one would be able to calibrate f
p

h
(and other model inputs) leaving no

further reason to prefer (2.2). We revisit these issues later.

2.6 State Augmentation

An examination of Equation (2.13) suggests that a link count corresponding to time-

interval h provides information not only about x
h
but also about x

h�1
, x

h�2
, ...,

14~v
h
is formally the same as u

h
in Equation (2.1).

15An equivalent way of representing (2.19) is as follows:

~y�
h
= E�

h
@x

h
+ ~v�

h
(2.20)

where E�
h
= E�1

h
, ~y�

h
= xprobe

h
� E�

h
xH
h

and ~v�
h
= E�

h
~v
h
. The matrix E

h
is guaranteed to be

invertible since it is diagonal with expansion factors �1.
16One way of handling this situation might be to add a random walk in O-D ows or deviations.
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x
h�p0

. Similarly, Equation (2.11) implies a serial correlation in O-D deviations that

extends over multiple time periods. This suggests that in order to fully exploit this

information, each O-D ow be estimated multiple times. More speci�cally, it suggests

that each O-D ow be estimated max(p0 + 1; q0) times.

The standard technique of achieving this is through State Augmentation17. We

develop in this section the resulting modi�cations in speci�cation of the direct and

indirect measurements. For the purposes of this section, we assume the existence

of an equivalent state-space model, speci�cally that the O-D ow deviations follow

an autoregressive process governed by Equation (2.15). We defer the (less common)

situation of no transition equation to a later section.

State Augmentation implies that we re-de�ne the state to include additional vari-

ables to be estimated. Since we wish to estimate lagged O-D ows (or rather, O-D

ow deviations), we de�ne:

X
h
=
�
@x0

h
@x0

h�1
::: @x0

h�s

�0

where s = max(p0; q0 � 1)

and correspondingly, the vectors

X
h
=
�
x0
h
x0
h�1

::: x0
h�s

�0

X
H

h
=
�
xH

0

h xH
0

h�1 ::: xH
0

h�s

�0

We now consider the modi�cations to the transition and measurement equations.

2.6.1 Transition Equation

Consider the following de�nitions:

F
h
=
�
f
h

h+1
f
h�1

h+1
::: f

h�s

h+1

�

�
h
=

2
64 F

h

I
(n
OD

s�n
OD

s)
0

(n
ODs

�n
OD

)

3
75

17The same technique was employed by Okutani, in his state-space based model.
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and

W
h+1

=
�
w0

h+1
00

(1�n
OD

s)

�0

where

Fh is (nOD � nOD(s+ 1))

�
h
is (n

OD
(s+ 1) � n

OD
(s+ 1))

W
h+1

is (n
OD
(s+ 1) � 1)

In the event that p0 > q0 � 1, the additional elements of �
h
are set to zero.

Then, (2.16) can be written as:

X
h+1

= �
h
X
h
+W

h+1
(2.21)

From earlier assumptions about w
h
, it follows that

1. E[W
h
] = 0

2. E[W
h
W0

l
] = Q

h
�
hl
where Q

h
has a top-left block Q

h
and is zero elsewhere.

We also notice that given the de�nitions X
h+1

;X
h
and �

h
, Equations (2.10) and

(2.11) can be written compactly (for interval h+ 1) as follows:

�
h
X̂
h
= X

h+1
+U

h+1
(2.22)

where the augmented error vector U
h+1

can be derived by noticing the following:

�
h
X̂
h

= �
h
(X

h
+ X̂

h
�X

h
)

= �
h
X
h
+�

h
(X̂

h
�X

h
)

= X
h+1

�W
h+1

+�
h
(X̂

h
�X

h
)

yielding

U
h+1

= �W
h+1

+�
h
�
h

(2.23)
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where �
h
= (X̂

h
� X

h
) denotes the estimation error in X

h
18.

2.6.2 Measurement Equation

De�ne the (n
l
� n

OD
(s+ 1)) matrix

A
h
=
�
a
h

h
a
h�1

h
::: a

h�s

h

�

In the event that q0 � 1 > p0, the additional elements of A
h
are set to zero.

Then, (2.14) can be written as:

y
h
� yH

h
= A

h
(X

h
�XH

h
) + v

h
(2.24)

or more compactly,

Y
h
= A

h
X
h
+ v

h
(2.25)

where

Y
h
= y

h
� yH

h
and

yH
h
= A

h
XH

h
.

We again remark that if additional sets of measurements were available (for exam-

ple, from probe vehicles), we simply append those to Y
h
and appropriately augment

A
h
and v

h
.

We are now ready to describe the estimation and prediction methodology.

2.7 Estimation and Prediction

It is convenient to start the presentation of the methodology with reference to the

state-space model of Section 2.5. We later provide an equivalent estimator that is

based on the idea of fusion of the direct and indirect measurements. In Section 2.11.3,

we discuss the case where the framework in Sections 2.3 and 2.4 cannot be represented

by an equivalent state-space model.

18This explains why the error terms in (2.16) and (2.10) are di�erent.
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Equations (2.21) and (2.25) constitute a discrete time linear Kalman Filter. The

solution of such a system of equations is fairly standard and is summarized below. A

detailed derivation may be found in Appendix A.

Assume that the initial state of the system X
0
has known mean �X

0
and variance

P
0
. Note that knowledge of X

0
implies knowledge of x

0
, x

�1
, x

�2
, ... ,x�s and

the corresponding historical estimates. Then, using the assumptions made about the

errors in sections 2.3, 2.4 and 2.6.119, the following results can be stated20.

�
0j0

= P
0

(2.26)

�
hjh�1

= �
h�1

�
h�1jh�1

�0

h�1
+Q

h
(2.27)

K
h

= �
hjh�1

A0

h
(A

h
�
hjh�1

A0

h
+R

h
)�1 (2.28)

�
hjh

= �
hjh�1

�K
h
A
h
�
hjh�1

(2.29)

X̂
0j0

= �X
0

(2.30)

X̂
hjh�1

= �
h�1

X̂
h�1jh�1

(2.31)

X̂
hjh

= X̂
hjh�1

+K
h
(Y

h
�A

h
X̂
hjh�1

) (2.32)

h = 1; 2; :::N

In Kalman Filter terminology, X̂
hjh�1

represents a one-step prediction of the state

X
h
. It represents the best knowledge of the deviation X

h
prior to obtaining the link

counts for interval h. Equation (2.31) shows how this might be obtained using the au-

toregressive process on deviations. �
hjh�1

and �
hjh

represent the variances of X̂
hjh�1

and X̂
hjh

. Equation (2.27) shows how �
hjh�1

depends upon both the uncertainty in

X̂
h�1jh�1

as well as the variances of the error W
h
in the autoregressive process.

The matrix K
h
is called the gain matrix. Its interpretation becomes clear from

Equation (2.32). Equation (2.32) shows that the �ltered estimate X̂
hjh

can be rep-

19We make two additional assumptions. First, the transition and measurement errors are uncor-
related, i.e., E[w

h
v0
l
] = 0 8h; l. This is reasonable because they arise from two completely di�erent

processes. Second, we assume that the initial state X
0
is independent of the errors v

h
and W

h
.

Again, this does not seem unreasonable.
20The notation ijj indicates an estimate corresponding to interval i based on counts up to and

including interval j.
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resented as the sum of two terms. The �rst is simply the one-step prediction (prior

estimate) X̂
hjh�1

. The second term represents the adjustment to be applied to the

prior estimate in light of the new measurements Y
h
that have just been obtained.

The term A
h
X̂
hjh�1

represents, in a sense, a predicted deviation in link counts, i.e.,

the di�erence between counts obtained by assigning one-step predicted O-D ows and

the counts obtained by assigning historical O-D ows. Y
h
represents the deviation in

counts actually observed. (Y
h
�A

h
X̂
hjh�1

) therefore represents a \residual". In �lter

theory, this sequence of residuals is termed the innovations sequence. The innova-

tions represent the \new" information in each measurement (Y
h
, in our case), i.e., the

di�erence between the actual measurement and the best estimate of the measurement

given all past measurements. The gainK
h
can now be interpreted as the weight given

to this new information. From Equation (2.28), we can see that as the variance R
h

increases, K
h
decreases and the weight given to this new information decreases as it

should.

Equations (2.31) and (2.32) de�ne a linear estimator because they involve a linear

operation on the measurement data (counts). It is proved in Appendix A that the

�lter { as given by the above equations { produces the smallest Mean Square Error

(MSE) for the state vector among all linear estimators. Under additional conditions

of normalcy of the errors, the �lter produces the smallest MSE estimate among all

estimators, whether linear or non-linear. Moreover, the estimate is unbiased and

orthogonal to its error.

To extend the model to k-step prediction, all that is required is to multiply the

�ltered vector by the appropriate � matrices k times.

What is obtained using the above formulae are the deviations; to obtain the O-D

ows themselves, appropriate historical estimates have to be added. A general k-step

estimated/predicted value would thus be given by:

x̂
h+kjh

= �(X̂
h+kjh

) + x̂
H

h+k
8k = 0; 1; ::: (2.33)

where �(.) is an operator that extracts the �rst n
OD

elements of a vector. Moreover,
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one notes from the special structure of the state vector that each ow is �ltered21

s+ 1 times. The �rst time a ow is �ltered (in interval h), the �ltered deviations are

contained in the �rst n
OD

elements of the vector X̂
hjh
. The next time it is �ltered in

interval h+1, the �ltered deviations occupy places (n
OD

+1) to (2�n
OD

) in the vector

X̂
h+1jh+1

. Thus, all the vectors from X̂
hjh

to X̂
h+sjh+s

would contain some estimate of

the deviation in the �ltered ow x̂
hjh
. By adding to these the vector x̂

H

h
, the actual

O-D ow values can be retrieved. Since the last estimate makes use of the most

information, it has the least variance.

The system of equations presented above can also be interpreted in the context

of the direct and indirect measurements of Sections (2.3) and (2.4). Viewed in this

fashion, the equations comprising the update step (Equation (2.32)) of the Kalman

�lter can be viewed as solution of a mixed estimation problem during each interval.

We notice that once the direct and indirect measurements are expressed (Equa-

tions (2.22) and (2.25)), we have a total of (n
l
+n

OD
) equations and n

OD
unknowns to

be estimated during each time interval22. We can now use a Generalized Least Squares

(GLS) approach to estimate the O-D ows for each time interval. Speci�cally, this

involves minimization of the following error criterion:

X̂
hjh

= arg min (X
h
� X̂

hjh�1
)0P�1

hjh�1(Xh � X̂
hjh�1

)

+(Y
h
�A

h
X
h
)0R�1

h (Y
h
�A

h
X
h
) (2.34)

where Phjh�1 denotes the variance-covariance matrix of the prior estimate X̂
hjh�1

23. If

non-negativity constraints on the O-D ows are ignored, the standard GLS estimator

can be used to obtain a closed form expression for the O-D ow estimates. In other

words, the estimate X̂
hjh

would be given by:

X̂
hjh

= (A0

h
P�1

h
A
h
)�1A0

h
P�1

h
Z
h

(2.35)

21We shall use \�ltered" and \estimated" interchangeably.
22We would have more than (n

l
+ n

OD
) equations if we used additional sets of measurements.

23which from equation (2.22) is the variance of the error U
h
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where

A
h
=

2
64 A

h

I
(n
OD

�n
OD

)

3
75,

Z
h
=

2
64 Y

h

X̂
hjh�1

3
75,

and

P
h
=

2
64 R

h
0

(nl�nOD)

0
(nOD�nl)

P
hjh�1

3
75

The key result here is as follows. It can be proved (Appendix B) that the update

equation of the Kalman Filter (Equation (2.32)) is identical to Equation (2.35) with

the variance Phjh�1 comprised within Ph in Equation (2.35) computed recursively

using the �lter variance propagation equations (2.27),(2.28) and (2.29)24.

As we have mentioned earlier, there could arise situations with multiple direct

measurements that could be represented by transition equations. Such situations can

be easily handled either by Equations (2.35) or an extension of (2.26){(2.32). We out-

line the estimation/prediction procedure for the case with two direct measurements;

a generalization to an arbitrary number of measurements is obvious. Assume that

the two direct measurements are of the form:

�
h;1
X̂
h

= X
h+1

+U
h+1;1

(2.36)

�
h;2
X̂
h

= X
h+1

+U
h+1;2

(2.37)

or equivalently,

X
h+1

= �
h;1
X
h
+W

h+1;1
(2.38)

24While a detailed proof is given in the Appendix, we make one quick observation here. From
equation (2.23), the variance of the error U

h
is given by:

var(U
h
) = Q

h
+�

h�1
var(X̂

h�1
�X

h�1
)�0

h�1

= Q
h
+�

h�1
�

h�1jh�1
�0

h�1

which, not-by-accident is identical to (2.27).
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X
h+1

= �
h;2
X
h
+W

h+1;2
(2.39)

We then modify the prediction steps (2.27) and (2.31) as follows:

�
hjh�1;1

= �
h�1;1

�
h�1jh�1

�0

h�1;1
+Q

h;1
(2.40)

�
hjh�1;2

= �
h�1;2

�
h�1jh�1

�0

h�1;2
+Q

h;2
(2.41)

�
hjh�1

= (��1

hjh�1;1
+��1

hjh�1;2
)�1 (2.42)

X̂
hjh�1;1

= �
h�1;1

X̂
h�1jh�1

(2.43)

X̂
hjh�1;2

= �
h�1;2

X̂
h�1jh�1

(2.44)

X̂
hjh�1

= �
hjh�1

(��1

hjh�1;1
X̂
hjh�1;1

+��1

hjh�1;2
X̂
hjh�1;2

) (2.45)

where X̂
hjh�1;1

and X̂
hjh�1;2

denote one-step predictions according to Equations (2.40)

and (2.41) respectively while �
hjh�1;1

and �
hjh�1;2

denote their variances. Then a

\combined" estimate X̂
hjh�1

is constructed by a weighted average, the weights be-

ing the inverse covariance matrices. This weighted average represents the minimum

variance combination of the two estimates X̂
hjh�1;1

and X̂
hjh�1;2

25. This minimum

variance is given by Equation (2.42). Once the one-step prediction X̂
hjh�1

and its

variance are speci�ed, the procedure for computing the gain K
h
, �

hjh
and X̂

hjh
is

exactly the same. For the GLS estimator (2.35), exactly the same equation can be

used with P
hjh�1

now obtained by (2.42). Alternatively, rede�ning

A
h
=

2
666664

A
h

I
(n
OD

�n
OD

)

I
(n
OD

�n
OD

)

3
777775
,

Z
h
=

2
666664

Y
h

X̂
hjh�1;1

X̂
hjh�1;2

3
777775
,

25That this is indeed the minimum variance combination follows from a related proof in Appendix
B. Required here is an assumption that the errors W

h+1;1
and W

h+1;2
are uncorrelated; a more

general case can be easily handled if the covariance matrix is speci�ed. Also, if the two errors are
unbiased, so is the estimate X̂

hjh�1
.
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and

P
h
=

2
666664

R
h

0 0

0 �
hjh�1;1

0

0 0 �
hjh�1;2

3
777775

and applying (2.35) with these new de�nitions yields the same results.

To summarize, the dynamic O-D estimation problem, just like its static counter-

part, can be viewed as one of reconciling information from (at least) two di�erent

sources { the link counts and the apriori O-D ows. The di�erence in the equations

we have presented stems from the fact that the apriori information is in the form of

an evolutionary process (and an estimate of the O-D ows for the �rst estimation

interval). Additionally, if observability (see Section 2.8) conditions are satis�ed, the

e�ect of the initial estimates gradually washes away as the estimation proceeds.

2.8 System Observability

A discussion of \observability"26 which is a desirable property of such dynamic sys-

tems is in order here. Essentially, observability de�nes our ability to determine the

initial state vector X
0
uniquely from a set of measurements. Under conditions of

non-observability, the e�ects of the initial estimates do not disappear with time and

therefore it is critical to obtain accurate initial values. An analogous situation may

be found in conventional static matrix estimation where one typically starts with an

apriori matrix and uses tra�c counts to modify the apriori estimates. The apriori

matrix is necessitated by the fact that the number of observations (tra�c counts) is

much less than the number of O-D pairs. The apriori matrix in e�ect increases the

number of observations. However, the estimates obtained would always depend on

the apriori information provided. In the model proposed here, the initial state vector

X
0
and the transition equation provide information similar to that provided by the

apriori matrix in conventional estimation by exploiting temporal interdependencies

26For a rigorous de�nition of observability, see for example Gelb[20].
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among the O-D ows. The nice feature, however, of dynamic or real-time updating

is that under conditions of observability, the inuence of the initial value of the state

vector would disappear with time.

The most obvious and critical factor a�ecting observability in our problem is the

ratio (n
l
=n

OD
). For a given number of O-D ows, measuring more (independent)

counts increases the chances of observability being satis�ed. The degree of linkage

between O-D ows and counts is another factor. An extreme example of this arises

when an entire column of the assignment matrix is zero implying that a particular O-

D ow never gets measured27. A third consideration is the degree of linkage between

O-D ows over time. Again, an extreme example of this arises when the transition

matrix is fully populated by zeros.

In the context of observability, results from empirical studies (Chapter 5) con-

ducted on the proposed model are encouraging. It was observed that for di�erent

values of initial starting conditions, the model produced identical �ltered estimates.

Another positive indication while testing the model was that it invariably succeeded

in �nding a gain matrix that moved the predicted estimates closer to the true values.

2.9 A Smoothing Algorithm

The model and the associated recursive algorithms (equations (2.35) or (2.26){(2.32))

we have described thus far process measurements sequentially, i.e., interval by inter-

val. More importantly, they address the problem of determining x
h
given link counts

up to and including interval h28. Such a model is particularly relevant for real-time

estimation. While nothing precludes application of the same model for o�ine es-

timation (for example, for constructing the historical database that we have so far

assumed to exist) a distinguishing feature of the latter problem is that the entire

time-series of measurements is available for processing. The question that naturally

27This might however be overcome if that O-D ow is related to other measurable O-D ows by
means of a non-diagonal transition matrix.

28As mentioned before, we will throughout this thesis refer to this as the Estimation or Filtering
problem.
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arises is whether the extra information represented by measurements during intervals

h+1; h+2; :::; N is useful29 in improving estimates of x
h
obtained using measurements

from intervals 1; 2; :::; h. The answer is a�rmative, i.e., the smoothed estimates will

have an error covariance that is at most equal to that of the �ltered estimates30. In-

tuitively, this is because the transition equation of the state-space model postulates a

relationship between states corresponding to multiple time intervals. A measurement

corresponding to interval t > h can hence be related to x
h
for all h < t through a

single application of the associated measurement equation and repeated application

of the transition equation (2.15).

The smoothing algorithm that we describe consists of a set of backward recursions

that start with the �nal quantities X̂
N

and �
N jN

31. The recursion is de�ned as

follows:

X̂
hjN

= X̂
hjh

+G
h
(X̂

h+1jN
� X̂

h+1jh
)

�
hjN

= �
hjh

+G
h
(�

h+1jN
��

h+1jh
)G0

h
(2.46)

G
h

= �
hjh
�0

h
��1

h+1jh

h = N � 1; N � 2; :::1

In the above equations, X̂
hjN

denotes the estimate of X
h
based on the entire set of

link counts (for intervals 1,2,...,N) and �
hjN

denotes its covariance. In order to apply

these equations, we need to �rst apply Equations (2.26){(2.32) for h=1,2,...,N to

obtain X̂
N jN

and �
N jN

{ the �ltered estimate and its covariance for the last interval.

The nice feature of the above equations is that they maintain the principal ad-

vantage of the Kalman Filter as a recursive, computationally e�cient estimation

algorithm. The only extra requirements are that the values of X̂
hjh�1

and X̂
hjh

8h =

1; 2; :::; N along with the covariances have to be stored while running the forward

29This problem of determining x
h
given measurements from intervals 1,2,...t� where 1 � h < t� �

N is referred to in literature as smoothing[20].
30A proof of this assertion may be found in Gelb[20].
31This algorithm is referred to in literature as the Rauch-Tung-Striebel �xed-interval optimal

smoother. Detailed derivations might be found in Rauch[38], Rauch et al.[39], etc.
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�lter32. Since the algorithm is intended for o�ine estimation, the additional compu-

tational burden imposed by the backward pass may be justi�able.

Just as Equation (2.34) de�ned a mixed estimator equivalent to (2.26){(2.32), we

next provide an alternate version of (2.46) that lends itself to easier interpretation.

This involves minimization of the following error criterion33:

X̂
hjN

= arg min (X̂
h+1jN

��
h
X
h
)0Q�1

h+1
(X̂

h+1jN
��

h
X
h
)

+(X
h
� X̂

hjh
)0��1

hjh
(X

h
� X̂

hjh
) (2.47)

From Equation (2.47), a GLS estimator similar to (2.35) may easily be constructed.

Again, this estimator is applied backwards starting from h = N � 1; N � 2; :::; 1,

after a forward pass in which X̂
hjh

and �
hjh

for h = 1; 2; :::; N are computed. To

accommodate any additional direct measurements describing transition dynamics that

may exist, we append additional quadratic terms to (2.47), just as we did to (2.34).

And �nally we provide yet another equivalent form of (2.46) that may be viewed

as a \simultaneous" estimator. This formulation is stated as follows34:

(X̂
0jN

; X̂
1jN

; :::; X̂
N jN

) = argmin[(X
0
� �X

0
)0P�1

0
(X

0
� �X

0
)

+
h=NX
h=1

(Y
h
�A

h
X
h
)0R�1

h
(Y

h
�A

h
X
h
)

+
h=NX
h=1

(X
h
��

h�1
X
h�1

)0Q�1

h
(X

h
��

h�1
X
h�1

) (2.48)

Equations (2.46) and (2.47) are clearly much better forms for computational purposes

but (2.48) serves two purposes. First, it has a nice least-squares interpretation35.

Second, it allows us to evaluate Cascetta et al.'s simultaneous estimator that also

attempts to use the entire set of counts (See Section 2.11.3). The key di�erence is that

the latter does not allow for inclusion of information in the form of the autoregressive

32There are alternate forms of equations (2.46) that do not require storage of the covariances.
33For a proof that this minimization is equivalent to applying (2.46), refer to Rauch et al.[39].
34Again, an algebraic proof that this form is equivalent to the two earlier forms is rather tedious

and will not be attempted here. The interested reader is again referred to Rauch et al.[39].
35If we had additional direct measurements, we append additional quadratic terms to (2.48).
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process or indeed, any form of temporal relationship between O-D ows. This could

be an important limitation since in a dynamic setting, one would strongly suspect

some form of a systematic temporal evolution of O-D ows. In Cascetta et al.'s

formulation, any information other than link counts (i.e., any direct measurements)

can be speci�ed only through an apriori matrix. Another important advantage of

(2.48) is that by virtue of its equivalence with (2.46) or (2.47), the solution can be

expressed recursively, thus breaking up one big problem into many smaller manageable

ones.

2.10 An Approximation

From the nature of the augmentation described in Section 2.6, it can be seen that

during each interval, n
OD
(s + 1) ows are estimated36. This imposes an enormous

computational strain for large and congested networks. For example, the size of the

variance covariance matrix� after augmentation is (n
OD
(s+1)�n

OD
(s+1))37, manip-

ulation of � in Equations (2.27), (2.28), and (2.29) therefore becomes cumbersome.

As the congestion level in the network increases, the problem becomes worse be-

cause the number of lagged states s could increase with increase in travel times. The

approximation we propose is based on the conjecture that much of the information

about an O-D ow is likely to be provided the �rst time it is counted. If this were

true, O-D ows corresponding to prior departure intervals could be held constant at

their prior estimated values and only the ows for the current departure interval need

to be estimated. The measurement and transition equations in the state-space model

would then be expressed as follows:

y
h
= a

h

h
(x

h
� xH

h
) + b

h
+ v

h
(2.49)

and

36Alternatively each O-D ow is estimated s+ 1 times.
37And it is in general, a full matrix.

54



x
h+1

� xH
h+1

= f
h

h+1
(x

h
� xH

h
) + c

h+1
+w

h+1
(2.50)

where

b
h
= �h�1

p=h�p0a
p

h
x̂p + a

h

h
xH
h
,

c
h+1

= �h�1
p=h+1�q0f

p

h+1
(x̂p � xH

p
) and x̂p is a �ltered estimate of xp

38.

The extent to which the conjecture might be true in a given situation depends on

a number of factors. Obviously, it is more likely to hold with low measurement errors

{ a second measurement might not contribute much over the �rst. Paradoxically,

it might also hold in the presence of very high measurement errors { in that case,

measurements become so bad that each additional set o�ers hardly any improvement.

Another factor is the error in the transition equation. If the errors w
h+1

have a high

variance, the importance of the counts as extra sources of information increases and

the conjecture is less likely to hold.

Estimation of the O-D deviations from the above system is similar in spirit to

those presented earlier except for the presence of constants in the transition and

measurement equations. For the sake of completeness, we reproduce them here. Note

that the state now comprises O-D ows only of one departure interval. The matrix

� is as before the variance covariance matrix of the state.

�
0j0

= P
0

�
hjh�1

= f
h�1

h
�
h�1jh�1

f
h�1

h

0

+Q
h

(2.51)

K
h

= �
hjh�1

a
h

h

0

(a
h

h
�
hjh�1

a
h

h

0

+R
h
)�1 (2.52)

�
hjh

= �
hjh�1

�K
h
a
h

h
�
hjh�1

(2.53)

@̂x
0j0

= E(�x
0
� xH

h
)

@̂x
hjh�1

= f
h�1

h
@̂x

h�1jh�1
+ c

h
(2.54)

@̂x
hjh

= @̂x
hjh�1

+K
h
(y

h
� a

h

h
@̂x

hjh�1
� b

h
) (2.55)

h = 1; 2; :::

38Though we state the approximation here for a particular transition equation, clearly the ap-
proach is generalizable to any type of direct measurement.
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where the initial state @x
0
has mean E(�x

0
� xH

h
) and variance P

0
respectively.

2.11 Estimation of Model Inputs

The framework and algorithms described thus far require that several matrices be

fully known. In this section, we shall discuss how the matrices f
p

h
, x

H

h , Qh
and R

h

may be estimated. Computation of the vectors a
p

h
is the subject of Chapter 4.

2.11.1 Estimating f
p

h

As mentioned earlier, the matrix f
p

h
consists of elements ff

r0p

rh
g which are essentially

measures of the e�ects on deviations in the rth O-D ow in period h of lagged O-D

ow deviations. This matrix would be estimated o�ine using historical data on O-D

ows39.

Estimation of the matrix would be done element by element during each interval.

For estimation of f
r0p

rh+1
8r0 = 1; 2; :::; n

OD
, we could have a regression of the form:

x
rh+1

� x
H

rh+1
=

hX
p=h+1�q0

(f
1p

rh+1
(x

1p
� x

H

1p
) + :::::+ f

n
OD

p

rh+1
(xn

OD
p � x

H

n
OD

p
)) + w

rh+1

(2.56)

where w
rh+1

is the error. Thus there would be n
OD

such regressions needed to obtain

the entire f
p

h
matrix. Moreover, one would have to obtain such a matrix for each h {

i.e., each day of history would yield exactly one observation for calibration. However,

if one makes the assumption that the structure of the autocorrelation remains constant

with respect to h, one could write equations similar to (2.56) for each interval of one

day and have enough observations to estimate the elements of the matrix. In that

case, the values of the matrix f
p

h
would only depend on the di�erence h� p and not

on individual values of h and p.

39Often, such data is not available. In such a situation, one of the simpler o�ine models described
in Section 2.11.3 would be used for the �rst few days to generate a preliminary database of O-D
ows.
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To simplify the problem further, it may be reasonable in some situations to assume

that deviations in the rth O-D ow would be most a�ected by those in the preceding

rth O-D ows alone and that contributions from other O-D pairs would be insigni�-

cant in comparison. Under this approximation, we would have n
OD

regressions of a

much simpler form:

x
rh+1

� x
H

rh+1
=

hX
p=h+1�q0

f
rp

rh+1
(xrp � x

H

rp
) + w

rh+1
(2.57)

and the f
p

h
matrix would be diagonal. The value of q0 would be obtained from statis-

tical signi�cance tests on regression coe�cients for various lags. It is expected that

the matrices f
p

h
would be sparse.

2.11.2 Estimating the error covariances

The error covariances can be obtained from historical data in a fairly straightforward

manner. The matrix Q
h
would be obtained by an OLS regression on equation (2.56).

The (i; j)th element of this matrix could be approximated by

Q
ijh

= e0
ih
e
jh
=n (2.58)

where e is the OLS residual vector and n is the number of sample observations. The

above equation assumes dependence on h. This can be removed by assuming that the

structure of the autocorrelation remains constant. In that case, the matrix fQ
ijh
g

would reduce to fQ
ij
g.

Similarly one can obtain the matrix R
h
from the residuals of the measurement

equation. Here the residuals e
h
would be obtained from computing the di�erences

(y
h
��

h

p=h�p0a
p

h
x̂p) over many days. Each day would yield one value for every resid-

ual vector e
h
. From the values of the residuals e

h
over several days, the variance-

covariance matrices R
h
are calculated. Again, it might reasonable in some situations

to let R
h
to be invariant (or perhaps to be constant over a peak period), thereby

simplifying the process.
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2.11.3 Setting up the historical database

So far, we have assumed the existence of a historical database of O-D matrices by

departure time. This database would be constructed from results of estimations

conducted (using possibly, the smoothing model in Section 2.9) in previous days.

The database would be strati�ed by day-of-week, type of weather, special events, etc.

Furthermore, results from the estimation of each day would be used to update the

database. There could be di�erent ways of carrying out this updating. The simplest

technique is to use the latest available estimate (the estimate obtained during the last

day) since this encapsulates all prior history. Another alternative could be to use a

moving average of the last few estimates. A third alternative is to use a smoothing

formula of the following form:

x
H;n

rh
= x

H;n�1

rh
+ �(x̂

n

rh
� x

H;n�1

rh
) (2.59)

where x
H;n

rh
represents the historical value corresponding to O-D pair r and departure

interval h after n days, x̂
n

rh
denotes the estimate on day n and � is a scalar between

zero and one.

The �nal question that remains to be answered pertains to starting the process.

For the �rst few days, the various inputs to the smoothing (or �ltering) model such

as the error-covariance matrices, the autocorrelation matrix, etc. are likely to be

unknown or only approximately known. In such a situation, simpler models such as

those proposed by Cascetta et al.[13] can be used. We start by describing these and

then suggest some enhancements.

Cascetta et al. propose two estimators. In the �rst, the O-D ow matrices x�
h
are

obtained sequentially from solving constrained optimization problems of the form:

x̂
h
= argmin[f

1
(x

h
;x

a

h
) + f

2
(y

h
; ŷ

h
)] (2.60)

over x
h
> 0. x

h
is the current value of the demand vector (the variable over which

the expression is optimized), x
a

h
is an apriori or starting guess of x

h
(can be obtained
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by setting x
a

h
= x̂

h�1
), y

h
is the measured link counts while ŷ

h
is the vector of counts

obtained by assigning the decision variable x
h
.

f
1
and f

2
depend upon the estimation framework. For example, the GLS formu-

lation of problem (2.60) would be

x̂
h

= argmin[(x
h
� x

a

h
)0W�1

h
(x

h
� x

a

h
) +

(y
h
�

h�1X
p=h�p0

a
p

h
x̂p � a

h

h
x
h
)0R�1

h
(y

h
�

h�1X
p=h�p0

a
p

h
x̂p � a

h

h
x
h
)] (2.61)

where the optimization is over x
h
> 0. W

h
is the variance-covariance matrix of the

vector of errors a�ecting the estimate x
a

h
. R

h
is the variance-covariance matrix of

the vector of measurement errors and can be obtained as described in Section 2.11.2.

In the absence of any prior knowledge, Cascetta et al. suggest the use of identity

matrices for the two { reducing the problem to a constrained OLS.

An alternative procedure suggested by them solves for the unknown O-D ows of

several periods simultaneously. This is computationally expensive since it involves so-

lution of a large optimization problem. The equivalent of equation (2.60) for obtaining

the O-D ow vectors for N periods is given by:

(x̂
1
; x̂

2
; :::; x̂

N
) = argmin[f

1
(x

1
;x

2
; :::;x

N
;x

a

1
;x

a

2
; :::;x

a

N
) +

f
2
(y

1
;y

2
; :::;y

N
; ŷ

1
; ŷ

2
; :::; ŷ

N
)] (2.62)

where the minimization is over x
i
� 0 8i = 1; 2; :::; N . All terms in the above

expression have the usual meaning. Again f
1
and f

2
depend upon the estimation

framework with the GLS formulation given by:

(x̂
1
; x̂

2
; :::; x̂

N
) = argmin

NX
h=1

[(x
h
� x

a

h
)0W�1

h
(x

h
� x

a

h
)] +

NX
h=1

[(y
h
�

hX
p=h�p0

a
p

h
xp)

0R�1

h
(y

h
�

hX
p=h�p0

a
p

h
xp)] (2.63)

where all terms have the usual meaning.
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A comparison of the two estimators is useful. The sequential estimator has a very

\local" outlook. As given by (2.61), it makes use only of the �rst measurement in

estimating a particular O-D ow. For all subsequent estimation intervals, the O-D

ow is held �xed at the previously estimated value { a procedure that is likely to

introduce inaccuracies in the presence of large measurement errors. Indeed, this was

the motivation behind the State Augmentation procedure described in Section 2.6.

However, it has attractive computational features and in the absence of good apriori

O-D information, can be used to provide a starting value during each interval. The

simultaneous estimator is obviously more costly computationally, however, it makes

use of more information because the entire set of counts is used to estimate each O-D

vector.

In light of the above discussion, we de�ne a rolling-horizon procedure that at-

tempts to combine the advantages of the sequential and simultaneous estimators as

follows:

X
h
=
�
x0
h
x0
h�1

::: x0
h�p0

�0

A
h
=
�
a
h

h
a
h�1

h
::: a

h�p0

h

�

W
h
= V ar(X

a

h
)

The GLS formulation corresponding to (2.61) would then entail solving the fol-

lowing optimization problem for X
h
during each interval.

X̂
h

= argmin[(X
h
�X

a

h
)0W�1

h
(X

h
�X

a

h
) +

(y
h
�A

h
X
h
)0R�1

h
(y

h
�A

h
X
h
)] (2.64)

As in the sequential estimator, X
a

h
can be obtained by the relationship X

a

h
= X̂

h�1
.

However, we now compute simultaneously, the O-D vectors over (p0+1) intervals {X
h

now represents the augmented O-D vector. Since the last block of n
OD

elements of X̂
h

makes use of the most information in estimating X
h�p0

, it is likely to be statistically
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the most e�cient estimate of the latter. If additional measurements are available, we

add more quadratic terms to (2.64).

Using Equation (2.64) requires calibration of W�1

h
and R�1

h
. Wherever possible,

these might be obtained from residuals of previous days (as in Section 2.11). In the

absence of any prior information, we can use an FGLS procedure[22]. This involves

initial OLS estimation (i.e. setting the variances to identity matrices) and computa-

tion of the associated residuals (separately for each type of measurement { counts,

prior O-D ows, etc.). We next separate the residuals into groups (We hypothesize

that variances are constant within each group). One possible criterion for grouping

is the size of the �tted values, for example, we could divide the residuals for counts

into three groups { low, medium, and high, based on the values of �tted counts. We

use the residuals within each group to compute a common variance for that group.

These variances are �nally used to construct W�1

h
and R�1

h
.

We conclude by observing that situations where a state-space model cannot be

formulated (due to the absence of a dynamic relationship between O-D ows in the

model formulation) can be handled in a straightforward way with the various GLS

estimators proposed in this section.

2.12 Conclusion

In this chapter, we have presented the basic structure of the model system. The main

conclusion in this chapter is that the dynamic O-D estimation and prediction problem

can be viewed as one of integrating multiple sources of information in a consistent and

optimal manner. In subsequent chapters, we develop enhancements of this framework

and discuss implementation issues.
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Chapter 3

Alternate Formulation

In this chapter we discuss an alternate approach to the estimation and prediction

problem. This approach is based on the fact that an O-D ow can be decomposed into

a departure rate from its origin and a split fraction corresponding to its destination.

Each of these two quantities exhibits spatial and temporal variation. In this approach,

we attempt to capture the heterogeneity in temporal variation exhibited by these two

processes in order to improve the statistical e�ciency of the models presented in

Chapter 2. This approach is more in line with those proposed by other researchers

for closed networks (refer to Section 1.2.1) with one signi�cant di�erence. In our

approach, we explicitly estimate (and predict) the departure rates from each origin

while all the previous models (reviewed in Section 1.2.1) assume these to be known

inputs.

We begin the chapter with an examination of empirical evidence on the temporal

evolution of departure rates and split fractions (shares).

3.1 Stability of \Shares"

The number of trips between O-D pair (i; j) departing i in time interval h can be

written as follows:

(Number of trips i j)h = (Total trips from i)h � (Share)i j;h
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Inaudi[25] observed that the shares of each O-D pair in the above expression remained

stable over the course of a day relative to the departing trips. We attempted to verify

this observation using data on actual time-dependent O-D ows that we obtained for

the Massachusetts Turnpike { a 120-mile long expressway that runs east-west from

New York state to Boston1.

The �rst three blocks of �gure 3-1 show the variation of total trips from Fram-

ingham and the variation of shares to each of the two destinations connected to

Framingham. It can be seen that while the total number of trips changes quite sub-

stantially over the four hour period (going from 250 to 500 and back to 100), the

share going to Weston does not display any systematic or substantial change { infact

it only varies from about 0.97 to a minimum of just under 0.9. The coe�cient of

variation (standard deviation/mean) for trips is about 0.47 while that for shares to

Weston is 0.03. A similar e�ect can be found in the variation of total trips from

Westborough and the shares thereof (shown in the next four blocks of �gure 3-1)

with the coe�cients of variation for trips from Westborough and shares to Weston,

0.4 and 0.09 respectively. These �gures support the hypothesis that the shares are

more stable with time compared to the total departing trips2. In following sections,

we present a model that takes advantage of this di�erential variation.

3.2 De�nitions

To formalize the approach, de�ne o
ih
as the number of trips emanating from origin i

during interval h and the corresponding (n
O
�1) vector by o

h
where n

O
is the number

of origins in the network. Denote the rth share3 for departures from the origin during

interval h by  
rh
and the corresponding (n

OD
�1) vector by 	

h
. The new formulation

would then involve estimation of o
h
and 	

h
during each interval h.

1We describe this data in detail in Chapter 5.
2We are interested primarily in the larger shares.
3Since there is a one to one correspondence between shares and O-D pairs, we use a single

subscript for each share for notational simplicity.
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Figure 3-1: Stability of shares with time

64



3.3 Model Formulation

Direct and indirect measurements for this model would be in terms of trips and shares.

Moreover, we wish to work in terms of deviations of trips and shares for similar reasons

as stated in Chapter 2 for the O-D ows.

We express the direct measurements as follows:

o
a

h
= o

h
+ u

o

h
(3.1)

	
a

h
= 	

h
+ u

 

h
(3.2)

where o
a

h
and 	

a

h
denote the preliminary estimates of o

h
and 	

h
respectively and u

o

h

and u
 

h
represent (n

O
� 1) and (n

OD
� 1) random errors4.

Just as there were many ways of specifying x
a

h
in Equation (2.1), there are many

ways of specifying o
a

h
and 	

a

h
. Based on the arguments in Chapter 2, we choose the

following representation:

o
a

h
= o

H

h
+ �

h�1

p=h�q0o
�

p

h
(ôp � o

H

p
) (3.3)

	
a

h
= 	

H

h
+ �

h�1

p=h�q0
 
�
p

h
(	̂p �	

H

p
) (3.4)

where o
H

h
and 	

H

h
are the best historical estimates for trips and shares, �

p

h
and

�
p

h
are autocorrelation matrices for trips and shares deviations analogous to the f

p

h

matrices in Chapter 2, and q0o and q
0
 are the orders of the two autoregressive processes.

By specifying a di�erent dynamic process for shares and trips in Equations (3.3) and

(3.4), we attempt to capture their di�erential temporal variation.

Speci�cation of indirect measurements is more complicated. Since an indirect

measurement involves a mapping between O-D ows and link counts and the former

involves a product of trips and shares, it is non-linear in the state variables. In matrix

form, it can be stated as follows:

4We could represent the same in deviation form.
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y
h
= �

h

p=h�p0a
p

h
�pop + v

h
(3.5)

In the above equation, �p is a (n
OD
� n

O
) matrix in which each row has exactly one

non-zero element corresponding to one O-D pair r5. All other terms have the same

meaning as before. We note that we could rewrite the above equation in deviation

terms on the same lines as in Chapter 2.

The above model can be equivalently represented by a state-space formulation

where the state comprises the trip and share deviations. The formulation involves

two sets of transition equations as follows:

o
h+1

� o
H

h+1
= �

h

p=h+1�q0o
�

p

h+1
(op � o

H

p
) +w

o

h+1
(3.6)

	
h+1

�	
H

h+1
= �

h

p=h+1�q0
 
�
p

h+1
(	p �	

H

p
) +w

 

h+1
(3.7)

wherew
o

h+1
andw

 

h+1
are error vectors of dimensions (n

O
�1) and (n

OD
�1) respectively

and all other de�nitions are as before. The measurement equation for this formulation

is identical to (3.5).

We make the usual assumptions of zero mean and no serial correlation on errors

w
o

h
, w

 

h
and v

h
. In addition, we assume that w

o

h
and w

 

h
are uncorrelated with v

h
.

Just as in Chapter 2, we could represent Equations (3.3) and (3.4) (or equivalently

(3.6) and (3.7)) more compactly by de�ning an augmented state consisting of lagged

trip and share deviations.

Estimation of the matrices �
p

h+1
, �

p

h+1
as well as the error covariance matrices

Q
o

h
, Q

 

h
and R

h
that represent the variances of errors w

o

h
, w

 

h
and v

h
respectively,

is performed in a manner identical to the procedure described in Section 2.11. Note

that we now have separate regressions for the trips and shares.

We next describe the estimation and prediction methodology.

5It can be seen that there is a unique mapping between the vector	 and the matrix�. Knowledge
of either implies that the other can be constructed.
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3.4 Estimation and Prediction

The estimation methodology that we present in this section makes use of the ap-

proximation suggested in Section 2.10, i.e., each trip and share deviation is estimated

exactly once. One could easily write similar equations for the case when the state is

augmented to include lagged trip and share deviations.

One of the most popular ways to tackle the problem of non-linear estimation

in dynamic systems has been to use the Extended Kalman Filter (EKF) algorithm

(See for example Gelb[20]). This involves a �rst-order Taylor linearization of the

measurement equation about the best available estimate of the state vector. The

resulting update equations for the �lter closely resemble those of the conventional

Kalman Filter. Estimates obtained from the EKF could be improved by performing

successive iterations of linearization and re-estimation leading to an Iterated EKF6.

We summarize below, the EKF solution for the approximate model7:

�
0j0

=

2
64 P

o

0
0

0 P
 

0

3
75 (3.8)

�
hjh�1

=

2
64 �

h�1

h
0

0 �
h�1

h

3
75�

h�1jh�1

2
64 �

h�1

h
0

0 �
h�1

h

3
75
0

+

2
64 Q

o

h
0

0 Q
 

h

3
75 (3.9)

K
h

= �
hjh�1

D
h

0(D
h
�
hjh�1

D
h

0 +R
h
)�1 (3.10)

�
hjh

= �
hjh�1

�K
h
D0

h
�
hjh�1

(3.11)

ẑ
0j0

=

2
64 E(�o

0
� oH

0
)

E(�	
0
�	H

0
)

3
75 (3.12)

ẑ
hjh�1

=

2
64 �

h�1

h
0

0 �
h�1

h

3
75 ẑ

h�1jh�1
+

2
64 �

h�2

p=h�q0o
�

p

h
ôp

�
h�2

p=h�q0
 
�
p

h
	̂p

3
75 (3.13)

ẑ
hjh

= ẑ
hjh�1

+K
h
(y

h
� a

h

h
�̂
hjh�1

ô
hjh�1

� �
h�1

p=h�p0a
p

h
�̂
pjp
ô
pjp
) (3.14)

h = 1; 2; :::

6An excellent discussion of the EKF as well as other non-linear �ltering techniques may be found
in Gelb[20].

7We assume, in addition, that the initial state is uncorrelated with the transition and measure-
ment errors.
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where the modi�ed state vector z consists of deviations in both trips and shares,

the initial state has mean

2
64 E(�o

0
� oH

0
)

E(�	
0
�	H

0
)

3
75 and variance

2
64 P

o

0
0

0 P
 

0

3
75, D

h
denotes

the matrix of �rst derivatives
@(a

h

h
�
h
o
h
)

@z
evaluated at ẑ

hjh�1
, �

hjh�1
and �

hjh
denote

the variances of the estimates ẑ
hjh�1

and ẑ
hjh
, and Q

o

h
and Q

 

h
denote the variance-

covariance matrices of the error terms w
o

h
and w

 

h
respectively. We observe that

Equations (3.8){(3.14) are identical in spirit (and interpretation) to those for a linear

Kalman Filter ((2.51){(2.55)) except for the presence of the �rst derivative D
h
. We

remark, in this regard, that the EKF process is suboptimal since it replaces the non-

linearity by a linearization that is only approximate. However, it is a computationally

e�cient algorithm and hence is widely used when the type of non-linearity is simple

(such as in our case, where the non-linearity arises from a product).

A k step prediction of O-D ows involves three steps { a k step prediction of trip

and share deviations using (3.13) k times, adding to these deviations the correspond-

ing historical estimates for interval h+ k and �nally, constructing the predicted O-D

ows by multiplying the predicted trips and shares.

3.5 Comments

A comparison of the trip/share approach with that of the previous chapter reveals

that each has its advantages. The trip/share approach clearly provides a better way of

modeling the dynamic evolution of O-D ows. This could result in a model with better

predictive capabilities. On the other hand, it su�ers from several disadvantages. First,

the model is non-linear and the EKF procedure involves approximations because of

the linearization. There is also the related issue of extra computational requirements

{ especially for the iterated version of the EKF. The �nal issue with the trip/share

model comes from realizing that it makes no attempt to satisfy the natural constraints

that for each origin, shares headed toward each destination should be between zero
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and one and that the shares should sum up to one8. For these reasons, it is di�cult

to say categorically, which is a \better" approach.

3.6 Conclusion

We have presented a di�erent formulation in this chapter that models departure rates

and destination shares separately. Arguably, such a formulation could result in a

model with better predictive capabilities. In Chapter 5, we compare the performance

of this model with that presented in Chapter 2.

8Empirical evidence (Chapter 5) however indicated that it was rare for an estimated share to be
negative or greater than one.
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Chapter 4

The Assignment Matrix

In previous chapters, we have talked briey about the assignment matrix and its key

role in the O-D estimation and prediction problem. While the role of this matrix in

static estimation is well understood and modeled, the same cannot be stated in the

dynamic context. We devote this chapter to a detailed examination of this matrix

and of how errors in this matrix can be explicitly captured in the model formulation.

We start with a description of the assignment matrix as a function of link travel

times and route choice fractions. We then focus our attention on situations where the

assignment matrix is imperfectly known or endogenous. These could occur for exam-

ple, when travel times are unobserved, or are subject to large measurement errors.

We �nally discuss modeling strategies that incorporate the e�ect of an imperfect or

a stochastic assignment matrix into the O-D estimation and prediction process.

4.1 Parameterizing the Assignment Matrix

Let each O-D pair r be connected by a set of pathsKr . Assume that there exist in total

K paths between the n
OD

O-D pairs in the network i.e. K = kK
1
[K

2
[ :::[KnOD

k.

Each path k = 1; 2; ::; K corresponds to a unique O-D pair. Denote by L
k
the set of

links comprised in path k. Finally, denote by F
k

h
the ow along path k departing the
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origin in interval h. Thus during any interval h, the following relationship holds:

x
rh

= �
k2Kr

F
k

h
(4.1)

Let q
kh

denote the fraction of travelers corresponding to O-D pair r and departure

interval h that choose path k, with �k2Krqkh = 1 8 r; h. We then get the following

relationship between O-D and path ows:

F
k

h
= x

rh
q
kh

(4.2)

Recognizing that the link ows are comprised of contributions from many di�erent

path ows, Equation (2.12) can be restated in terms of path ows as follows:

y
lh
= �

h

p=h�p0�
K
k=1�

kp

lh
F
k

p
+ v

lh
(4.3)

where �
kp

lh
de�nes a mapping between path and link ows and is de�ned as the con-

tribution of the kth path ow departing the origin during interval p towards the ow

across detector l during interval h1.

Finally, as shown by Cascetta et al.[13], a simple manipulation of equations (2.12),

(4.2) and (4.3) yields the following expression for the assignment matrix:

arp
lh
= �k:k2Kr�

kp

lh
q
kp

(4.4)

Analytical expressions for the link-path incidence fractions can be obtained using

information about link travel times. In addition to these travel times however, an as-

sumption about movement of vehicles through the network is required. For example,

Cascetta et al.[13] derive expressions based on the assumption that vehicles within a

group (k; p) (henceforth referred to as a packet) are uniformly comprised within the

departure duration H and stay within this interval as they move across the network.

In other words, vehicles within a packet are uniformly distributed between the leader

1In conventional static estimation, this would be either one or zero. A matrix of these fractions
is the familiar link-path incidence matrix.
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and the last follower over a span of time H. This assumption can be easily relaxed

to permit the e�ects of \stretching" and \squeezing" of packets as they traverse the

network. Such e�ects could be signi�cant for example, if trip durations are relatively

large or travel time variations across successive time-intervals are signi�cant. Un-

der this situation, the link-path incidence fractions would be given by the following

expression:

�
kp

lh
= 1 if (h� 1)H < �

kp

1l
< �

kp

2l
< hH

= (hH � �
kp

1l
)=(�

kp

2l
� �

kp

1l
) if (h� 1)H < �

kp

1l
< hH < �

kp

2l

= H=(�
kp

2l
� �

kp

1l
) if �

kp

1l
< (h� 1)H < hH < �

kp

2l
(4.5)

= (�
kp

2l
� (h� 1)H)=(�

kp

2l
� �

kp

1l
) if �

kp

1l
< (h� 1)H < �

kp

2l
< hH

= 0 otherwise

where �
kp

1l
and �

kp

2l
represent the crossing times of the �rst and last vehicle in the

packet (k; p) at detector l. To use the above relationship, one would in addition have

to know the departure times of the �rst and last vehicles. A convenient assumption

might be to have the �rst depart at the beginning of a departure interval and the last

at the end.

Travel times (or more typically, speeds) can be obtained either from a tra�c

surveillance system (e.g. sensors on the roadway, video cameras, probe vehicles) or

a DTA model. In addition to link and path travel times, information about the

path choice fractions q
kh

is required in order to apply equation (4.4). One way of

obtaining these is by using discrete choice models that utilize information about

generalized costs along di�erent paths during each interval. An example of such a

model is provided by Cascetta et al.[14].

To summarize, computation of the assignment matrix is highly complicated. More-

over, the estimates obtained from application of equations (4.4) and (4.5) may su�er

from errors on several fronts

� Travel times obtained from the surveillance system are subject to measurement
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error due to, for example, sensor malfunction.

� The assumption of uniform distribution of vehicles within a packet might be

invalid under certain situations e.g. an incident.

� Choice fractions obtained from route choice models might be erroneous because

of inaccuracies either in the model coe�cients or in the data.

� True departure times of �rst and last vehicles are unknown.

Finally, there could be scenarios in which some (or all) travel times might be en-

tirely unobserved (are endogenous). These are explored in greater detail in following

sections.

4.2 Endogeneity in the Assignment Matrix

We turn our attention now to the case of erroneous travel times resulting in an

imperfect assignment matrix. In such a case, we can write:

ap
�

h
= a

p

h
+ �p

h
(4.6)

where ap
�

h
denotes the erroneous assignment matrix and �p

h
a random error. Equation

(2.13) becomes

y
h

= �
h

p=h�p0a
p�

h
xp � �p

h
x
h
+ v

h
(4.7)

y
h

= �
h

p=h�p0a
p�

h
xp + ~v

h
(4.8)

where the new error term ~v
h
= v

h
��p

h
x
h
. Clearly, ap

�

h
and ~v

h
are correlated because

of Equation (4.6). Thus, applying a GLS estimator of the form (2.35) to (4.8) yields

biased and inconsistent estimates for x
h
2. Depending on the level of uncertainty in

the assignment matrix, the extent of bias might be signi�cant.

2This constitutes a standard error-in-variables problem in econometrics (Greene[22]).
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The impact of this inconsistency could be even more severe if the O-D ows and

assignment matrix were to be obtained by an iterative scheme3. This could be the

case, for example, if the travel times were entirely unobserved and the assignment

fractions were obtained by applying the following series of steps: (a) Load a pre-

liminary set of O-D ows to a tra�c simulator. (b) Use the observed assignment

matrix to recompute the O-D ows. (c) Repeat (a) using updated O-D ows. In

such a situation, even if convergence in O-D ows and assignment fractions were to

be attained4, the �nal estimates could be highly biased since errors in the assignment

matrix are not explicitly accounted for, during each iteration. It is likely, of course,

that these iterations may reduce the error in the assignment matrix.

This brings us to the central theme of this chapter. In the following sections,

we describe two approaches that explicitly take into account the stochasticity of the

assignment matrix and accordingly modify the formulations developed in previous

chapters.

4.3 Modeling a Stochastic Assignment Matrix

In the �rst approach, we envisage adding randomness to the assignment matrix by

means of additional measurement equations of the following form:

�(ap
�

h
) = �(a

p

h
) + �(�p

h
) (4.10)

In the above equations, ap
�

h
is the (erroneous) value of the assignment matrix

computed from equations (4.4) and (4.5) using measured or estimated travel times

3In such a situation, the assignment fractions are endogenous and indirectly depend on the O-D
ows. To see this dependence, we �rst notice that link travel times depend directly upon link ows.
The latter is related to path ows (since a link ow is essentially a weighted combination of several
path ows using that link). Finally, the path ows are related to the O-D ows through equation
(4.2). Thus, equation (2.13) should be expressed as:

y
h
= �

h

p=h�p0a
p

h
(x

h
;x

h�1
; :::;x

h�p0
)xp + vh (4.9)

4which in itself is far from guaranteed
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and route choice fractions. �(:) is an operator that re-arranges the elements of a (m�n)

matrix into a (mn � 1) vector. The error term �p
h
reects the fact that the estimate

ap
�

h
is subject to error. As mentioned earlier, this error could arise either because

of imperfect measurements/estimates of travel times and route-choice fractions or

because of incorrectness of assumptions involved in equations (4.5).

Equation (4.10) represents a straightforward approach of incorporating stochas-

ticity in the assignment matrix. The disadvantage of this method is the additional

computational load imposed by adding a large number of decision variables fa
p

h
g. In

practical applications therefore, it may be necessary to prune the number of assign-

ment fractions that are considered random in order to make the technique computa-

tionally tractable. For example, one might wish to add additional equations (4.10)

only for assignment fractions corresponding to O-D pairs with high ows.

Deeper examination of the assignment matrix and its dependence on travel times

and route-choice fractions as given by equations (4.4) and (4.5) suggests an alternative

approach. De�ne the assignment matrix a
p

h
by the following relationship:

a
p

h
= a(t

h
; t
h�1

; :::; t
h�p0

;qp) (4.11)

where t
h
denotes a (n

LK
� 1) vector of travel times for interval h, qp a (K � 1) vector

of route choice fractions for departure time-interval p and the function a(:) de�ned

by equations (4.4) and (4.5)5. The above equation can be compactly represented as:

a
p

h
= a(T

h
;qp) (4.12)

where T
h
denotes the augmented vector [t

h
t
h�1

:::t
h�p0

]0.

If we assume that the above relationship is exact, the only remaining sources of

errors in the assignment matrix are those in T
h
and qp. This provides the motivation

for the second approach. Instead of directly dealing with the assignment matrix

5Note that a(:) could also in general be a function of future travel times. This dependence
comes from equation (4.5) as well as the fact that the q's could depend on future travel times. The
formulation to be presented captures errors in future travel times through stochasticity of the q's.
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fractions as in the earlier approach, we work with the underlying travel times and

route-choice fractions in the second. We thus specify measurement equations of the

following form:

T�

h
= T

h
+�T

h
(4.13)

q�
p

= qp +�q
p

(4.14)

where T�

h
and q�

p
denote the measured/estimated values of T

h
and qp and �T

h
and

�q
p
represent vectors of random error terms.

Again for computational reasons, one might wish to treat some or all of the route

choice fractions as �xed. Note that if the route choice fractions qp can be explicitly

represented as a function of travel times tp (for example using a logit formula6),

this relationship could be substituted into equation (4.12), and equations (4.14) are

rendered unnecessary { travel times are the only additional variables to be estimated.

Both the approaches presented above have advantages and shortcomings. While

the �rst approach is likely to be more computation intensive (due to the size of the

assignment matrix), it could be useful in modeling situations where the assumptions

behind equations (4.5) break down. For example, the assumption that vehicles within

a packet stay uniformly distributed between a leader and follower might be violated on

urban networks with tra�c control signals. On the other hand, the second approach

is more e�cient because it bene�ts more directly from the information contained in

equation (4.12). It could be used in freeways or on moderately congested arterials. It

could also be more useful when speci�c information can be obtained on sensor errors,

for example, when it is known that a particular sensor systematically overestimates

or underestimates, say travel speeds.

6Such a model would use path travel times. If we assume additivity, these could be obtained from
link travel times.
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4.4 The Enhanced Model

4.4.1 Direct and Indirect Measurements

To extend the framework developed in Chapters 2 to incorporate the ideas described

thus far in this chapter, we need to specify additional measurement equations. For

the second approach, we augment the state by the travel times (or speeds) and route

choice fractions and add new direct measurements as follows:

t�
h

= t
h
+�t

h
(4.15)

q�
h

= q
h
+�q

h
(4.16)

where t�
h
and q�

h
denote the measured/estimated values of t

h
and q

h
and �t

h
and �q

p

represent vectors of random error terms.

In addition, we hypothesize that the ratio of travel times (or speeds) and route-

choice fractions over two successive intervals is stable on a day-to-day basis. This

information can be represented in the form of additional direct measurements:

ta
ih

= t
ih
+ t

ih
(4.17)

qa
ih

= q
ih
+ q

ih
(4.18)

where

ta
ih

=
t
H

ih

tH
ih�1

t̂
ih�1

(4.19)

qa
ih

=
q
H

ih

qH
ih�1

q̂
ih�1

(4.20)

In the above equations, t
ih
and q

ih
denote the ith travel time and route-choice frac-

tion, ta
ih

and qa
ih

denote preliminary estimates of these, and the superscript H, as

always, indicates historical values. In matrix form, Equations (4.17) and (4.18) can
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be represented as follows:

ta
h

= t
h
+ �t

h
(4.21)

q
h

= q
h
+ �q

h
(4.22)

with

ta
h

= Mt

h
t̂
h�1

(4.23)

qa
h

= Mq

h
q̂
h�1

(4.24)

whereMt

h
andMq

h
are diagonal matrices with the (i; i)th element given by (t

H

ih+1
=t
H

ih
)

and (q
H

ih+1
=q

H

ih
) respectively.

Similarly for the �rst approach, we have two additional sets of direct measure-

ments. The �rst is simply (4.10), i.e.,

�(ap
�

h
) = �(a

p

h
) + �(�p

h
) (4.25)

In addition, we hypothesize that the ratios (arp+1

lh+1
=arp

lh
) remain stable on a day-to-day

basis yielding the familiar form:

�(ap
h
)� = �(a

p

h
) + �a

h
(4.26)

�(ap
h
)� = Ma

h
�(â

p�1

h�1
) (4.27)

fMa

h
gii = [�(âp

H

h
)]i=[�(â

p�1H

h�1
)]i (4.28)

where �(ap
h
)� denotes the preliminary estimate and Ma

h
is a diagonal matrix whose

ith element is given by (4.28). �a
h
represents the random error while as before, the

superscript H indicates a historical value.
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4.4.2 State-Space formulation

Both of the above models can be expressed easily in state-space form. For the second

approach, the state is now comprised of O-D deviations augmented by travel times

and route-choice fractions. We represent (4.15) and (4.16) as additional measure-

ment equations. The information in (4.17) and (4.18) can be expressed as transition

equations as follows:

t
h+1

= Mt

h+1
t
h
+�t

h+1
(4.29)

q
h+1

= Mq

h+1
q
h
+�q

h+1
(4.30)

where �t

h+1
and �q

h+1
are error terms and all other de�nitions are as before. A com-

plete speci�cation of this approach, therefore, requires (2.50), (4.29) and (4.30) as

transition equations and Equations (2.49), (4.15) and (4.16) as measurement equa-

tions.

Similarly for the �rst approach, the state is comprised of O-D deviations aug-

mented by assignment fractions. The additional measurement equation is given by

(4.10). The information in (4.26) can be expressed as a transition equation as follows:

�(a
p+1

h+1
) =Ma

h+1
�(a

p

h
) +�a

h
(4.31)

where �a

h
is the random error and other de�nitions are as before. A complete speci-

�cation of this approach therefore involves Equations (2.50) and (4.31) as transition

equations and Equations (2.49) and (4.10) as measurement equations.

4.4.3 Estimation and Prediction

Estimation and prediction of O-D ows and additional travel time or assignment

parameters may be carried out as in Chapter 3 using the EKF, with the usual as-

sumptions on the error terms. Additional input parameters Mt

h
, Mq

h
and Ma

h
may

be calibrated from historical data in a similar fashion. The variances of the extra

error terms can be calibrated from residuals corresponding to previous days in a
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straightforward fashion using similar formulae as in Section 2.11.

4.4.4 Comments

We make an important observation. In this entire section, we have described \approx-

imate" versions of stochastic assignment matrix models in the following sense. We

can conceive of link counts during interval h providing indirect information not only

about O-D ows corresponding to h � 1; h � 2; :::h � p0 but also about travel times

and route-choice fractions t
h
; t
h�1

; :::; t
h�p0

;q
h
;q

h�1
; :::;q

h�p0
(and hence about as-

signment matrices a
h�1

h
; a

h�2

h
; :::; a

h�p0

h
). Nothing precludes us from constructing an

augmented model (just as in Section 2.6) to estimate during each interval, lagged

travel times and route-choice fractions or assignment matrices. No doubt this would

lead to more e�cient models; however, the associated computational overheads could

make the enhanced models intractable. For notational simplicity, we have avoided

detailed exposition of such a model. For small networks, this could be useful.

4.5 Modi�ed O�ine Models

The models described in the previous section require historical data in order to cali-

brate the additional input parameters. Just as we described the use of the sequential

estimator proposed by Cascetta et al.[13] in Section 2.11.3 in the context of cali-

brating input parameters for the models in Chapter 2, we present in this section a

modi�cation of the sequential estimator that incorporates a stochastic assignment

matrix.

Consider the second of the two approaches suggested in Section 4.3. Since the

sequential model only estimates O-D ows corresponding to one period and holds O-

D ows corresponding to prior periods constant, equations (2.13), (4.13) and (4.14)

are modi�ed as follows:

y
h

= �h�1
p=h�p0a(T̂h�1

; t
h
; q̂p)x̂p + a(t

h
;q

h
)x

h
+ v

h
(4.32)

t�
h

= t
h
+�t

h
(4.33)
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q�
h

= q
h
+�q

h
(4.34)

where x̂p, T̂p, and q̂p denote estimates from prior intervals that are �xed during

interval h.

A GLS based solution would then involve minimization of the following error

criterion for each interval:

[x̂
h
; t̂
h
; q̂

h
] = arg min [(x

h
� x̂

h�1
)0W�1

h (x
h
� x̂

h�1
) + (y

h
� y�

h
)0V�1

h (y
h
� y�

h
)

+(t
h
� t�

h
)0Pt�1

h (t
h
� t�

h
) + (q

h
� q�

h
)0Pq�1

h (q
h
� q�

h
)(4.35)

where y�
h
= �h�1

p=h�p0a(T̂h�1
; t
h
; q̂p)x̂p+a(th;qh)xh. Vh, P

t�1

h and Pq�1

h represent the

covariances of the error terms v
h
, �t

h
and �q

h
in equations (4.32), (4.33) and (4.34)

respectively; their inverses as before reect the degree of con�dence placed on the

various sources of information. Wh represents the covariance of the error in the prior

estimate x̂
h�1

(we use the estimate for the previous interval h� 1 as apriori value for

interval h). The optimization would be subject to non-negativity constraints on x
h
,

t
h
and on the fact that �k2Krqkp = 1 8 (r; p) and 0 � q

kp
� 1 8 (k; p).

Following a similar vein, the �rst approach suggested in Section 4.3 would involve

minimization of the following error criterion:

[x̂
h
; â

h

p
] = arg min [(x

h
� x̂

h�1
)0W�1

h (x
h
� x̂

h�1
)

+(y
h
� y�

h
)0V�1

h (y
h
� y�

h
)

+�hp=h�p0(�(a
h

p
)� �(ap

�

h
))0(Pa

h)
�1(�(a

h

p
)� �(ap

�

h
))] (4.36)

where Pa
h is the covariance matrix for the error term �p

h
in equation (4.10). ap

�

h

represents the value of the assignment matrix computed from the equations (4.4) and

(4.5) using measured or estimated travel times and route choice fractions7.

7In Section 2.11.3, we described a modi�cation of the sequential estimator to estimate, in addition,
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4.6 Conclusion

In this chapter, we have described in detail, the role played by the assignment matrix

in the O-D Estimation and Prediction problem. Recognizing the fact that in most

practical situations, these matrices are likely to be, at best, imperfectly known, we

have proposed two models that explicitly capture their stochasticity. Both the models

fall naturally into the overall framework described in Chapters 1 and 2. In the next

chapter, we evaluate the performance of each of the models developed in this thesis

thus far.

several lagged O-D ows. In similar fashion, it is possible to modify error criteria (4.35) and (4.36)
to construct a model with increased decision variables { travel times, route choice fractions or
assignment fractions corresponding to prior intervals (See also Section 4.4.4). Again, to keep the
notation simple, we choose not to provide a detailed treatment.
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Chapter 5

Case Studies

In previous chapters, we have developed a suite of models for Dynamic O-D Esti-

mation and Prediction. The objective of this chapter is to use actual tra�c data to

demonstrate the performance of the various models. While tests using real data are

extremely useful, in most cases, the true O-D ows are unknown. In an attempt to de-

rive further insights into performance characteristics of di�erent models, we therefore

generate synthetic tra�c data to supplement that actually observed.

5.1 Data Description

For this research, we had available to us three di�erent data sources. We describe

briey the main features of each.

5.1.1 The Massachusetts Turnpike

This stretch of I-90 from New York State to Weston (I-95) comprises a distance of

about 120 miles with 15 entry/exit ramps. Any combination of an entry and exit

ramp constitutes an acceptable O-D pair. Hence, the network has 210 possible O-D

pairs. However, in the analysis, only East Bound tra�c was considered; hence the

number of O-D pairs was reduced by half. Data on tra�c movements was available

for three days.
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Each line of the data �le contained information speci�c to a particular vehicle.

Information was available on entry and exit ramps of the vehicle, entry and exit

times, vehicle type and transaction type (whether toll was paid in cash/non-cash).

The information about the entry times of the vehicles, however, was not considered

su�ciently accurate1. Hence, the entry times were back-calculated from the exit-times

assuming a uniform average speed2.

The advantage of this dataset is that true O-D ows can be computed { a luxury

not available in a vast majority of applications.

5.1.2 I-880 near Hayward, California

The second dataset covered a 5.2 mile (NorthBound) stretch of I-880 near Hayward,

California. This section had 4 on-ramps and 5 o� ramps with 20 O-D pairs. Ten

minute detector data on tra�c volumes and average speeds was available at 10 detec-

tor locations for a 2.5 hour morning peak period. Data over seven days was available.

The advantage of using this dataset was that unlike the Turnpike data, congestion

level was heavy during certain time intervals with speeds reaching 15-20 mph at some

locations. A schematic layout of this network is shown in Figure 5-1.

5.1.3 Amsterdam Beltway

This is a 32 km freeway encircling the city of Amsterdam with 20 entrance and exit

ramps. The layout of this network is depicted in Figure 5-2. Both the datasets

mentioned earlier, su�er from the limitation that they do not capture route choice.

This dataset is intended to address this limitation by allowing for two routes between

each O-D pair { clockwise and anticlockwise. Moreover, in this dataset, we use

a combination of actual and synthetic data to gain additional insight into model

1The data was generated from tickets used during toll collection. As each vehicle enters the
freeway, the driver is issued a ticket (at the entry ramp). Toll collectors are expected to punch the
ticket just before handing it to the driver. This time is then recorded as the entry time of the vehicle.
In reality however, during periods of heavy demand, toll collectors often \gang-punch" tickets in
advance to help expedite the process of issuing. The entry times hence are generally unreliable.

2More on the speed assumption later.
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performance. After removing sensors with large errors from the dataset, information

on average speeds and link counts was available at 65 locations over one minute

intervals for one day. Synthetic data was generated for an additional day using a

process described in Section 5.2.3.

5.2 Implementing the models

5.2.1 The Massachusetts Turnpike

As mentioned earlier, the data-�le consisted of information about every vehicle that

used the turnpike on the three days. The period of analysis chosen was from 6:15

A.M. to 9:45 A.M. with the length of each departure interval chosen to be 15 minutes.

Since the data was in disaggregate form, it had to be aggregated to obtain time-

dependent tra�c counts for each of the 14 links in the network. This aggregation was

carried out by assuming an average vehicle speed of 55 mph and using this speed to

calculate the entry time of each vehicle on each link3. Under the assumption that a

counting station is located near the entrance to each link, the tra�c counts for an

interval represent the number of vehicles that enter each link during that interval.

Hence, time dependent counts at these hypothetical counting stations could be easily

abstracted from information about network-entering times and average speeds. Since

to employ the Kalman Filter, the initial state of the system is required and since

the initial state in our case encompasses several prior time-intervals (because of the

transformation of variables), all vehicles that had entering times after 4.00 A.M. were

processed. The values of the assignment matrices and counts were computed such

that the relationship

y
lh
=

hX
p=h�p0

n
ODX
r=1

a
rp

lh
xrp (5.1)

held exactly.

3This assumption of a uniform average speed for all vehicles at all times is unrealistic. However,
for the purposes of implementing and evaluating the proposed model, all that is needed is a set of
\reasonable" O-D matrices, counts and assignment matrices consistent with each other. The issue
of whether the speeds assumed for generating counts is realistic is not directly relevant.
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Figure 5-2: The Amsterdam Beltway (A10)
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The details are as follows. All the variables were initialized to zero. The data

�le was processed line by line. Assuming the origin and destination of the vehicle

currently being processed corresponded to the O-D pair r and that its entrance time

was comprised in the interval p, the variable xrp was incremented by one. Then, the

movement of the vehicle was tracked using the constant speed assumption. Since the

network was linear, no path choice model was required. For each link l in the path

of the vehicle the entering time was computed. Assuming that this time fell in the

interval h, the variables y
lh
and a

rp

lh
were incremented by one4. When all the vehicles

entering the network during the interval p were treated, the variables a
rp

lh
were divided

by xrp to obtain the actual fractions. This procedure ensured that Equation (5.1)

was satis�ed exactly.

The data for the third day (of the three days for which data was available) was

chosen for implementing various models. The historical database of O-D ows and

counts was created from the data of the �rst day. The transition matrices in Sections

2.5 and 3.3 were computed by simple Ordinary Least Squares regressions using the

deviation of O-D ow values of the second day from those of the �rst. Two assump-

tions were made in the process of obtaining these matrices. Firstly, it was assumed

that the structure of the autocorrelation remained constant over the whole day so

that one could have enough observations in one day to estimate all the parameters.

Secondly, it was assumed that a ow between O-D pair r for a period was related only

to rth O-D ows of prior intervals. The covariance of the transition equation error

was retrieved from these regressions as explained in Section 2.11.2. By virtue of the

�rst assumption, this matrix was time-invariant. It was found that an autoregressive

process of order 4 �t the data best. Because of the exactness of equation (5.1), there

was no measurement error in the problem. The obvious choices for the initial esti-

mates for the state-vector and its initial covariance matrix were the corresponding

historical values.

4Note that this procedure ignores vehicles that had entering times before 4.00 A.M. but remain
on the network after 4.00 A.M. There is therefore an implicit assumption that all vehicles entering
before 4.00 A.M. have left the network before 6.15 A.M.
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This case study was primarily used to compare the O-D ow deviation based

models with the trip/share deviation based models. For the former, there were 105

unknown ows to be estimated in each 15-minute departure interval, while for the

latter, there were 119 state variables. However, for the model with state augmentation

(Section 2.6), there were also ows corresponding to s prior intervals to be estimated.

In this case study, p0 was set equal to 8 since the maximum time taken to traverse

the network was about 120 minutes (= 8 � 15). Since q0 was only 4, the value of s

was 8. Hence the number of unknown O-D ows to be estimated during each interval

equaled 945.

5.2.2 The I-880 dataset

The �rst six days of data were used in constructing the historical database and cali-

brating model parameters. The historical database was constructed using GLS based

models as in Cascetta et al.[13]5. Data from the last day was used for testing the

models. The transition matrices and the error variances were computed exactly as

in the earlier dataset. Again, an autoregressive process of order four was used. Since

the maximum travel time between any O-D pair was about 9 minutes, the value of

s = max(p0; q0 � 1) = max(1,3) = 3. Thus there were (3+1)*20=80 O-D ows to be

estimated in each interval for the model with state augmentation. Measurement error

covariance matrices for each interval h were computed from the residuals obtained

for h from the GLS procedure6 for the �rst six days.

In addition, this dataset was also used to evaluate the performance of models with

stochastic assignment matrices. For the o�ine models (i.e. those in Section 4.5), two

apriori O-D matrices were used7. The �rst was obtained from the estimation results

5In Cascetta's sequential model, the apriori estimate for the O-D ow x
h
is taken to be the

estimate x�
h�1

(See section 2.11.3). In our o�ine model, we multiply this quantity by the factor

xH
h
=xH

h�1
where the superscript H refers to historical values { in this case, those computed for

previous days. This factor helps in accounting for the interval-over-interval variation in O-D ows
more e�ectively. Note that this factor cannot be computed for the �rst day since there is no prior
history.

6For the �rst two days of o�ine estimation, we used an FGLS procedure as in Section 2.11.3.
7Thus there would be two quadratic terms in the error criterion with di�erent weighting factors.

89



of previous days i.e. the apriori matrix for interval h corresponded to the estimated

matrix for interval h for a previous day. The second matrix corresponded to the

estimate obtained on the same day in interval h � 18. The covariance matrices for

both error terms were calibrated from residuals for the previous days exactly as in

Section 2.11.

For stochastic assignment matrix modeling using the second approach, two sets

of travel speeds9 were used. The �rst corresponded to the estimation result for the

previous period (h � 1). The second corresponded to the values measured by the

sensors during the current period h. Again, error variances for both error terms were

calibrated from residuals for previous days.

Similarly for the �rst approach, two sets of assignment matrix fractions were used.

The �rst corresponded to the estimation result for the previous period (h�1) while the

second, to the values computed using equations (4.5) and the measured speeds during

the current period h. As before, error variances were calibrated from residuals for

previous days. For this case study, 39 of the 106 assignment fractions were estimated

along with the O-D ows. The remaining fractions corresponded to O-D pairs with

very low ows and hence their randomness was not considered.

Since p0 = 1, during any interval p, only a
p�1

p
and a

p

p
needed to be estimated.

Because no route choice existed, the elements of a
p�1

p
had to obey the following

relationship.

arp�1

lp
= 1� arp�1

lp�1
(5.2)

The above relationship had to be satis�ed for all (l; r) pairs for which l 2 Lk for any

k 2 Kr. We enforced this constraint in the following manner. For any interval h,

we estimated the assignment fractions arh
lh
. We then computed arh

lh+1
using (5.2) and

moved to interval h+ 1.

In the implementation of the real-time models with stochastic assignment matri-

8In other words, we used Equations (2.2) and (2.3) as direct measurements.
9Speeds were used as the fundamental entities instead of travel times in all the models i.e. all

the equations described in Sections 4.3, 4.4 and 4.5 were written for speeds rather than travel times.
The structure of the equations, however, was exactly the same.
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ces, i.e. the models in Section 4.4, matricesMt

h
,Mq

h
andMa

h
were directly computed

from historical estimates. The error variances for the measurement equation were the

same as for the modi�ed o�ine methods described earlier. Constraints (5.2) were

enforced exactly as before. We also note that the EKF procedure does not guarantee

that the estimated assignment fractions lie between zero and unity as required. We

therefore truncate each negatively estimated fraction to zero and each fraction greater

than unity to one10.

5.2.3 The Amsterdam Beltway

The main objective of this dataset was to provide a combination of synthetic and

actual data to better evaluate di�erent models. Synthetic data was generated by the

following series of steps:

1. Generate \True" O-D ows and speeds for Day 1: This process is shown

schematically in Figure 5-3. The sequential model of Cascetta et al. (Equation

(2.61)) was implemented for one day of actual (observed) volume and speed

data. This involved estimating 365 O-D pairs for each interval using 65 mea-

surements on link counts and speeds. A constrained FGLS procedure was used.

For route-choice, a simple logit model with path travel time as the only at-

tribute for each route was used. The coe�cient for this variable was �xed such

that the resulting model provided best �t to observed link counts (See Section

5.3.3). The estimated O-D ows and observed speeds were then taken to be the

\true" ones for subsequent analysis.

2. Generate \True" O-D ows and speeds for Day 2: This process is shown

schematically in Figure 5-4. This consists of the following steps.

� Generate O-D ow deviations and speeds for interval 1: True O-D ows

for the �rst interval of the �rst day are perturbed to yield O-D ows for

10Our empirical results indicated that these were rare occurrences.
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the �rst interval of the second day according to the following formula:

od interval 1 day2 = od interval 1 day1 � (1:0 + �1 � U) (5.3)

where U is a random number uniformly distributed between zero and one

and �1 is a scalar between zero and one11. Before applying the equation,

O-D pairs were divided into di�erent groups based on size. Di�erent �1

values were used for each group12. Once the O-D ows for interval one for

Day 2 are computed, deviations for interval one readily follow.

Similarly, the �rst interval speeds for Day 2 are computed from those for

Day 1 by using the following equation:

spd interval 1 day2 = spd interval 1 day1 � (1:0� �2 � U) (5.4)

where �2 is positive and between zero and one13.

� Generate O-D ows and speeds for other intervals: Once O-D ow devia-

tions for the �rst interval were obtained, the transition equation (2.17)

was then applied recursively to generate deviations for subsequent inter-

vals. The errors w
rh

were generated from a uniform distribution between

-E and +E14. This process required knowledge of the transition matrices

f
p

h
; accordingly, these were assigned �xed values between 0 and 115.

Speeds for subsequent intervals were computed by a similar procedure.

This involved using equation (4.29)16. The matrix Mt

h
was computed

from speeds of the �rst day. Again, the errors �t

h
were generated from a

uniform distribution between �xed thresholds -V and +V .

11Day 2 can therefore, be construed as a \high volume" day.
12The Turnpike data, for which true O-D ows were known for multiple days, was taken as a

guideline for choosing �1.
13reecting the fact that higher O-D ows for day two would lead to lower speeds
14The thresholds E were strati�ed by size of O-D ow.
15Again, the Turnpike data provided useful guidelines on choosing the elements of the transition

matrix. The transition matrices were assumed to be diagonal and q0 was set equal to 4, as in the
other case studies.

16for speeds instead of travel times
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Once O-D ows and speeds were generated for the second day, the testing pro-

cedure was straightforward (Figure 5-5). Essentially, the true speeds and O-D ows

were used to compute true link counts. These were then perturbed using the equations

Measured counts = True counts � (1� �cts + 2 � �cts � U) (5.5)

Measured speeds = True speeds � (1� �spd + 2 � �spd � U) (5.6)

to generate measured counts and speeds respectively which were �nally used by var-

ious models in an e�ort to replicate the original true set of O-D ows17. For each

scenario, multiple runs were conducted because data was generated stochastically and

average error estimates were computed.

We conclude this section with a brief discussion on computation of variance-

covariance matrices required as input for various models. Variance of the initial state

for O-D ow deviations and speeds may be obtained exactly since the initial state

for Day 2 is obtained by using equations (5.3) and (5.4) for O-D ows and speeds

respectively18. For the model with state de�ned by O-D deviations and assignment

fractions, variances were obtained by drawing a large sample of speeds from the uni-

form distribution, computing assignment fractions corresponding to each, and �nally

computing the sample variance using these assignment fractions.

Similarly, since measurement errors for counts and speeds were generated by Equa-

tions (5.6) and (5.5), and transition errors w
h
and �t

h
were generated from the uni-

form distribution mentioned earlier, measurement and transition error variances could

be computed exactly for most of the models. Again, the only situation where error

variances could not be obtained exactly was for the model with stochastic assignment

fractions. For this case, as with the initial state variance, transition error variances

were approximated by generating a large sample of errors in speeds, �t

h
(according

to the governing uniform distribution), computing the residuals �a

h
corresponding to

17The o�ine analysis for Day 1 showed that 69 of the 365 O-D pairs had zero ows almost all day.
For computational convenience, these were �xed at zero and only 291 O-D pairs were considered for
subsequent estimation and prediction.

18The variance of a random variable uniformly distributed between a and b is (b� a)2/12.
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these, and �nally, computing the sample variance from the residuals. Exactly the

same procedure was used for computing measurement error covariance, except that

now, a large sample of errors �
h
was generated.

5.3 Results

In what follows, we use the following shorthand for describing various models.

� Model with state given by O-D ow deviations of current and prior departure

intervals (Section 2.7): Base

� Approximate model with state given by O-D ow deviations only of current

departure interval (Section 2.10): Base-Appx

� Same as Model Base-Appx but O-D ow deviations smoothed (Section 2.9):

Sm-Base-Appx

� Trip/share based model with the approximation in Section 2.10: T/s-Appx

� Basic O�ine model (as in Cascetta et al.[13]): O�-Base

� Modi�ed (rolling horizon) O�ine Model (Section 2.11.3, Equation (2.64)): O�-

Mod-Base

� O�ine model with stochastic speeds (Section 4.5): O�-Stoc-Spd

� O�ine model with stochastic assignment fractions (Section 4.5): O�-Stoc-Assg

� Base-Appx with stochastic speeds (Section 4.4): Stoc-Spd

� Base-Appx with stochastic assignment fractions (Section 4.4): Stoc-Assg

5.3.1 The Turnpike Data
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Figures 5-6 through 5-8 show results for Model Base presented for some O-D

pairs19. Note that Figure 5-6 shows the initial �ltered ow { because of transforma-

tion of variables, each ow is �ltered 9 times. It is apparent from �gure 5-6 that the

�ltered estimates are signi�cantly closer to the true values than the corresponding

historical values for both O-D pairs Natick-Weston and Framingham-Weston. Fig-

ures 5-7 and 5-8 show one-step (15 minute), two-step (30 minute) and three-step (45

minute) predictions. It can be seen that the quality of the predictions deteriorates

progressively as the prediction time-step is increased and that the predicted estimates

tend to converge to the historical values. This is to be expected given the autore-

gressive formulation because for every one-step-ahead prediction, we are e�ectively

multiplying the deviation (in the prior interval) by a fraction. The deviations are

small given the limited variability in tra�c ow over the three days. Multiplying

them repeatedly by a fraction reduces them still further. Adding them to the his-

torical values { which are much larger in magnitude in comparison { hence yields

estimates that do not di�er by much from the historical values.

In the above implementation, there is little variability in the tra�c demand over

the three days of analysis and hence, the historical ows themselves provide a good

approximation to the true values. To test the performance of the �lter in replicating

the true values in the presence of poor historical information, another implementation

was carried out using very poor historical values20. The choice of initial conditions is

also therefore very poor. Figures 5-9 and 5-10 show results for O-D pair Framingham-

Weston. It is seen that the �ltering procedure is fairly robust and the quality of

the �ltered estimates does not seem to be very sensitive to historical information.

However, the predicted estimates { though signi�cantly better than the historical

values { leave room for improvement.

The results presented thus far were for speci�c O-D pairs. The following two

statistics were computed to get a better overall comparison of the historical estimates

and those estimated by the model.

19The results in this section for model Base come from earlier work by Ashok and Ben-Akiva[1].
20These actually corresponded to historical values for the evening peak.
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Figure 5-9: Estimates and One-step Predictions with poor history: Model Base
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Base Base A Base B Base-Appx Historical

Filtered 5.3449 * * 5.7798 8.7015
RMS 1-Step Predicted 9.1061 13.1631 10.9520 9.1916 8.9501
Error 2-Step Predicted 8.7558 18.2373 9.4515 8.7290 9.1146

3-Step Predicted 9.3090 25.3705 11.6322 9.2937 9.2490
Filtered 0.2905 * * 0.3141 0.4729

RMSN 1-Step Predicted 0.4783 0.6913 0.5752 0.4878 0.4701
Error 2-Step Predicted 0.4502 0.9378 0.4860 0.4525 0.4687

3-Step Predicted 0.4721 1.2866 0.5899 0.4701 0.4690

Table 5.1: RMS and Normalized RMS Error Values (I-90)

1. Root Mean Square (RMS) Error =

rP
i
(x
i
�x̂

i
)2

N

2. Root Mean Square Error Normalized (RMSN) =

q
N
P
i
(x
i
�x̂

i
)2P

i
x
i

where the summation is over all O-D pairs and all intervals for which analysis

was carried out.

Shown in Table 5.1 are results for Base and Base-Appx. The second and third

columns (Base A and Base B) correspond to Base models that use alternate schemes

for predictions. Model Base A corresponds to a \no prediction" case { the O-D

ows estimated by Base during a given interval are the \predictions" for all future

intervals. Base B corresponds to a prediction method that uses constant deviations

i.e., the deviations in O-D ows estimated by Base during a given interval are assumed

to be identical for all future intervals. Next in the table are errors corresponding to

Model Base-Appx. The �nal column displays the errors when the historical O-D ows

for each interval were used in lieu of estimates/predictions from the two models.

We make the following observations. First, the RMS errors are relatively low

and the �ltered estimates from both Base and Base-Appx are much more accurate

than the historical values. We next see that there is some loss in accuracy in moving

from Base to Base-Appx especially in the �ltered estimates; however these have to be

traded o� against the vast computational gains { instead of estimating 945 parameters

in Base, only 105 parameters need to be estimated in Base-Appx. While predictions
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from Base are signi�cantly better than those from Models Base A and Base B, they

are not much di�erent from the historical values. As mentioned earlier, this could

be because there was not much variability in O-D ows during the three day period

and the historical ows provided good approximations to the O-D ow on the day of

interest.

Following the observation that most of the O-D ows in the case study were

extremely small, we next computed errors for Base and Base-Appx only for the high

ows. Table 5.2 shows that RMSN errors are drastically reduced showing that both

models perform signi�cantly better while estimating and predicting high O-D ows.

Of course one reason for the small gap in performance between Base and Base-

Appx could be the fact that there was no measurement error in the problem. This

could explain why most of the information about an O-D ow could be obtained

from just one measurement. To perform a more \fair" comparison21 between the two

models, we �rst perturbed the assignment matrix using the following formula:

anew = a
correct

[(1� �) + U � 2�]

for di�erent values of �. U is a random number drawn from a uniform distribution

between zero and one. The performance of �ltered estimates for a value of � = 0.222

is shown in Table 5.3. Expectedly, the errors are higher for both models with the

gap between Base and Base-Appx widening.

Table 5.4 (only for high O-D ows) con�rms our conclusion from Figures 5-9 and

5-10 that both models continue to be signi�cantly superior to historical values when

an extremely poor historical database is used.

Overall, results seem to indicate that the augmentation of the state-vector with

variables corresponding to prior departure intervals does not o�er signi�cant improve-

ment to warrant the extra computations that are required.

Tables 5.5 and 5.6 show RMS and RMSN errors for Models T/s-Appx based on

21In general, interaction across multiple intervals came from two sources { the presence of O-
D pairs on the network over many time intervals and the multi-order autoregressive formulation.
Hence, the comparisons in Tables 5.1 and 5.2 have some value even in the absence of measurement
error.

22This can be loosely interpreted as a +20% error in the assignment matrix.
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Base Base-Appx Historical

Filtered 15.0397 15.8635 38.6223
Flows 1-Step Predicted 39.2869 39.8425 39.5175
� 100 2-Step Predicted 36.7074 36.6537 39.8209

RMS 3-Step Predicted 40.1668 40.1617 40.6043
Error Filtered 15.1953 16.3323 44.8590

Flows 1-Step Predicted 44.8964 45.5796 45.3617
� 150 2-Step Predicted 42.0653 42.0238 46.2092

3-Step Predicted 47.1325 47.1934 47.7631
Filtered 0.0584 0.0616 0.1499

Flows 1-Step Predicted 0.1484 0.1505 0.1493
� 100 2-Step Predicted 0.1380 0.1378 0.1497

RMSN 3-Step Predicted 0.1503 0.1503 0.1519
Error Filtered 0.0472 0.0507 0.1393

Flows 1-Step Predicted 0.1378 0.1399 0.1392
� 150 2-Step Predicted 0.1263 0.1262 0.1388

3-Step Predicted 0.1382 0.1384 0.1400

Table 5.2: RMS and RMSN Error Values for high O-D ow pairs (I-90)

Base Base-Appx Historical

Filtered 7.4698 8.4265 8.7015
RMS 1-Step Predicted 8.7998 8.4310 8.9501
Error 2-Step Predicted 9.0479 8.5518 9.1146

3-Step Predicted 9.3242 9.7057 9.2490
Filtered 0.4060 0.4579 0.4729

RMSN 1-Step Predicted 0.4670 0.4474 0.4701
Error 2-Step Predicted 0.4691 0.4434 0.4687

3-Step Predicted 0.4716 0.4909 0.4690

Table 5.3: RMS and RMSN errors with erroneous assignment matrix (I-90)

106



Base Base-Appx Historical

Filtered 47.7839 57.3556 141.6710
Flows 1-Step Predicted 111.2135 109.1876 144.6273
� 100 2-Step Predicted 132.6936 131.5689 146.6274

RMS 3-Step Predicted 144.6440 144.3848 149.9019
Error Filtered 46.8046 58.4643 162.3158

Flows 1-Step Predicted 121.3750 119.6109 164.3451
� 150 2-Step Predicted 149.8922 149.2868 168.4647

3-Step Predicted 167.0358 167.4073 174.5907
Filtered 0.1854 0.2226 0.5498

Flows 1-Step Predicted 0.4201 0.4124 0.5463
� 100 2-Step Predicted 0.4988 0.4946 0.5512

RMSN 3-Step Predicted 0.5412 0.5403 0.5609
Error Filtered 0.1454 0.1816 0.5042

Flows 1-Step Predicted 0.3725 0.3671 0.5043
� 150 2-Step Predicted 0.4502 0.4483 0.5059

3-Step Predicted 0.4897 0.4908 0.5119

Table 5.4: RMS and RMSN Error Values with poor historical information (I-90)

the departure-rate/share based formulation. The table shows two di�erent versions of

these. The trip-share based models require that the estimated shares lie between zero

and unity and that the shares corresponding to each origin add to unity. Since the

EKF procedure does not guarantee this, we truncate each negatively estimated share23

to zero and normalize all shares during each interval. The \A" model incorporates

this truncation/normalization feature while the \B" model ignores these constraints.

We observe that both T/s-Appx A and T/s-Appx B out-perform the linear models

in predictive power. At an intuitive level, this could be explained by the fact that the

transition equation now allows for di�erential variability of departing trips and shares.

On the other hand, they exhibit worse performance in �ltering which could be because

of the non-linearity in the measurement equation and the resulting approximation.

Also, the \B" model is marginally inferior to the \A" model in its �ltered estimates.

The number of iterations in implementation of the Iterated EKF algorithm de-

23Our empirical results indicated that this was an infrequent occurrence and and happened only
for O-D pairs with extremely low ow.

107



T/s-Appx A T/s-Appx B Historical

Filtered 6.8346 7.0359 8.7015
RMS 1-Step Predicted 8.9679 8.9654 8.9501
Error 2-Step Predicted 8.3042 8.3049 9.1146

3-Step Predicted 9.2028 9.1839 9.2490
Filtered 0.3714 0.3824 0.4729

RMSN 1-Step Predicted 0.4710 0.4709 0.4701
Error 2-Step Predicted 0.4270 0.4271 0.4687

3-Step Predicted 0.4667 0.4657 0.4690

Table 5.5: RMS and RMSN Errors for alternate formulation (I-90)

T/s-Appx A T/s-Appx B Historical

Filtered 23.2466 23.8482 38.6223
Flows 1-Step Predicted 39.1845 38.9744 39.5175
� 100 2-Step Predicted 34.7828 34.7210 39.8209

RMS 3-Step Predicted 40.3939 40.2259 40.6043
Error Filtered 25.3686 26.3215 44.8590

Flows 1-Step Predicted 44.9034 44.6657 45.3617
� 150 2-Step Predicted 39.9146 39.8508 46.2092

3-Step Predicted 47.2156 46.9441 47.7631
Filtered 0.0902 0.0925 0.1499

Flows 1-Step Predicted 0.1480 0.1472 0.1493
� 100 2-Step Predicted 0.1308 0.1305 0.1497

RMSN 3-Step Predicted 0.1511 0.1505 0.1519
Error Filtered 0.0788 0.0818 0.1393

Flows 1-Step Predicted 0.1378 0.1371 0.1392
� 150 2-Step Predicted 0.1199 0.1197 0.1388

3-Step Predicted 0.1384 0.1376 0.1400

Table 5.6: RMS/RMSN Error Values for high ows using alternate formulation (I-90)
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Iterations T/s-Appx A T/s-Appx B

1 7.5903 10.9918
2 6.8239 7.0034
3 6.8302 7.0341
6 6.8346 7.0353
7 6.8346 7.0359

Table 5.7: RMS Errors in �ltered estimates vs number of iterations (I-90)

pends upon both the sensitivity of the results to number of iterations and the compu-

tational e�ort associated with each additional iteration. Table 5.7 shows the �ltering

errors associated with di�erent number of iterations using the \A" and \B" models.

It is seen that the error values quickly stabilize.

5.3.2 The I-880 Data

Results from the I-880 dataset showed the same overall trends for the various models

as can be seen in Table 5.8. Note that the errors in Table 5.8 are with respect to link

counts and not the true O-D ows. This error measure should be interpreted with

caution since (a) the measured counts are themselves erroneous and (b) it is possible

that even though the estimated link counts closely match the measured link counts,

the estimated O-D ows di�er considerably from the true O-D ows. Thus, while

these results are useful for identifying general trends, to reach de�nitive conclusions

based on these would be premature.

Again, Base-Appx displays higher errors relative to Base. Another interesting

observation relates to the variances of the estimated O-D ows in Base. Since each

O-D ow is estimated multiple (in this case four) times, one would expect the variance

of the estimates to decrease with each successive estimate. This was borne out in

the results. Figure 5-11 shows the relationship between the variance of the �ltered

estimates and the number of estimates for several O-D pairs for a speci�c departure

interval. It is seen that most of the reduction in variance takes place within two

estimations. This could be because in this case-study, vehicles can remain on the
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Figure 5-11: Variance of Filtered OD ows vs number of estimates (I-880)

network for at most two successive time-intervals24. Finally, T/s-Appx A and T/s-

Appx B out-perform their linear counterpart (Base-Appx) in predictive power just as

in the I-90 dataset25.

We turn our attention next to the models with a stochastic assignment matrix.

Table 5.9 shows the relative performance of the four o�ine models. The last column

shows the e�ect of assigning historical O-D ows to the network (where the assignment

matrix is computed using measured speeds). We observe that though all the models

signi�cantly outperform the historical values in terms of �t to link counts, there is

almost no di�erence between the performance of the three models. An examination

of the estimated O-D ows for the three indicated very little di�erence as well. One

24That there is still a reduction in variance beyond two estimations is because the autoregressive
process is of order 4.

25Predicted values for link counts depend on predicted O-D ows and predicted assignment frac-
tions. Those in Table 5.8 have been obtained by using predicted (or historical, in the case of the
last column) O-D ows and assignment matrices held constant, based on the speeds observed for the
current interval observed speeds.
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Base Base-Appx T/s-Appx A T/s-Appx B Historical

Filtered 20.8819 27.6405 29.8567 23.2492 85.1615
RMS 1-Step 57.9496 77.6307 67.3107 70.6092 82.2823
Error 2-Step 52.9301 70.0270 55.4017 58.3487 76.7824

3-Step 47.7663 92.8057 47.3866 54.3810 63.8978
Filtered 0.0197 0.0261 0.0282 0.0219 0.0808

RMSN 1-Step 0.0546 0.0732 0.0635 0.0666 0.0776
Error 2-Step 0.0500 0.0662 0.0524 0.0552 0.0726

3-Step 0.0457 0.0887 0.0453 0.0520 0.0611

Table 5.8: RMS and RMSN Errors in Link Volumes (I-880)

Errors O�-Base O�-Mod-Base O�-Stoc-Spd O�-Stoc-Assg Historical

RMS 26.9748 26.5299 26.8931 26.7943 85.6206
RMSN 0.0254 0.0247 0.0254 0.0253 0.0812

Table 5.9: RMS and RMSN Errors in Link Volumes Using O�ine Models

explanation for these results could be that for a linear network (with no route-choice)

where speeds do not change drastically interval-over-interval, Model O�-Base is fairly

insensitive to errors in the assignment matrix26.

26Indeed, for Model O�-Stoc-Spd, an RMSN measure that compared estimated speeds with the
measured ones indicated a di�erence of 13.7% between the two. It is interesting that this large
di�erence in speeds does not seem to have translated into comparable di�erences in O-D and link
ow estimates. Again, this might have to do with the linear structure of the network.

Base-Appx Stoc-Spd Stoc-Assg Historical

Filtered 27.6405 21.7885 21.3744 85.1615
RMS 1-Step Predicted 79.4600 111.1101 72.4859 88.1974
Error 2-Step Predicted 77.4488 116.1716 67.2875 86.2065

3-Step Predicted 102.3850 102.1264 74.9402 68.7522
Filtered 0.0261 0.0205 0.0202 0.0808

RMSN 1-Step Predicted 0.0749 0.1062 0.0683 0.0832
Error 2-Step Predicted 0.0732 0.1126 0.0636 0.0815

3-Step Predicted 0.0979 0.1012 0.0717 0.0657

Table 5.10: RMS and RMSN Errors in Link Volumes
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And �nally, we conclude this section with Table 5.10 that displays results from

the state-space models based on stochastic assignment matrix27. Again, results using

the historical O-D ows have been shown for comparison.

We make several observations. Firstly, as in the o�ine case, all the three models

show signi�cantly better performance in estimation, compared to historical values.

Except for Stoc-Spd, one-step and two-step predictions are better as well. The most

interesting �nd however is that unlike in the o�ine case, Models Stoc-Spd and Stoc-

Assg signi�cantly outperform Base-Appx. One reason could be that insofar as the

state-space model works with deviations in O-D ows and uses an autoregressive

process, it represents a di�erent statistical model with di�erent properties compared

to the GLS based o�ine model28. Also, unlike the o�ine methods, the transition

equations in the real-time case provide an explicit modeling of the relationship be-

tween speeds and assignment fractions across time-intervals29. We �nally notice that

Stoc-Spd performs worse than the others in prediction indicating perhaps a need for

examining other alternatives to equation (4.29).

5.3.3 The Amsterdam Data

We start with results for the �rst day. Figure 5-12 shows the �t to counts when the

o�ine sequential model O�-Base is applied to Day 1. Results are shown for di�erent

values of the travel time coe�cient in the logit model. Figure 5-12 indicates that

best results are provided for an all or nothing assignment to the shortest path. We

therefore used a very low value of � = �6 for all subsequent analysis. This has the

e�ect of magnifying even extremely small travel time di�erences between alternate

paths. Once O-D ows were estimated for the �rst day using O�-Base, data was

27In this case, a k step ahead prediction for Base-Appx uses the assignment fractions based on
observed speeds k steps ahead. Predictions for Stoc-Spd and Stoc-Assg use the transition equations
(4.29) and (4.31). Historical predictions use the same assignment fractions as Base-Appx. This
explains the di�erence in entries between Tables 5.10 and 5.8 for Base-Appx and Historical.

28For example, the error terms in equation (2.50) are more amenable to a normal approximation
than those in Cascetta et al.

29These equations also used historical speeds and assignment fractions { something the o�ine
models did not.
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Figure 5-12: Error in Fit to counts for Model O�-Base for Day 1

generated for the second day using the procedure explained in the previous section.

The remainder of this section deals with application of various models on synthetic

data for the second day.

Figure 5-13 shows the degradation in model performance30 as the measurement

error parameter �cts (equation (5.5)) is varied31. Errors are strati�ed by size of O-

D ow. Each bar shows the RMS/RMSN errors for a speci�c value of �cts. For

comparison, errors in employing historical O-D ows (in other words, the di�erence

between O-D ows on the �rst and second days) are shown in the last bar. It can be

seen that the model is fairly robust with respect to quality of link counts. A similar

conclusion is reached in Figure 5-14 which investigates the extent of bias as the error

parameter in speeds (equation (5.5)) is varied. The bias becomes signi�cant, however,

for very large values of �spd.

30The notation (xx; yy) in �gures in this section indicate that �cts, the error parameter for counts
is xx and �spd, the error parameter for speeds is yy.

31Recall that �cts = e implies a measurement error within +e% in link counts.
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Figure 5-13: Model performance as a function of accuracy of counts : Base-Appx
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Figure 5-14: Model performance as a function of accuracy of speeds : Base-Appx
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Figure 5-15: Fixed and Stochastic Assignment Matrix Models
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We move next to Figure 5-15 that compares the �xed and stochastic assignment

matrix models for �cts = 0.1 and �spd = 0.8. The �rst bar pertains to the model Base-

Appx with true speeds, i.e., �spd = 0. The second bar pertains to the application

of Base-Appx with �spd = 0.8. The third and fourth bars pertain to the Stoc-Spd

and Stoc-Asg models respectively. Again, errors in historical estimates are shown for

comparison. We see that the model Stoc-Spd performs extremely well { in fact, its

performance almost rivals that of Base-Appx with true speeds. The same cannot be

said, however, for the Stoc-Asg model which does no better than Base-Appx. This

poor performance of Stoc-Asg relative to Stoc-Spd could be because of the following

reasons:

� Speeds for the second day were generated by application of equation (4.29).

Thus, the extra information provided by (4.29) was extremely valuable for model

Stoc-Spd (since this was true information). Relatively, the information provided

by (4.29) for Stoc-Asg was not as useful since the transition equation (4.31) used

by Stoc-Asg was not completely consistent with the data generation procedure.
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� Because of computational reasons, all the assignment fractions could not be

estimated. Only those corresponding to high O-D ows (234 in number) were

considered stochastic.

� Round-o� errors could have contributed to inaccuracies in the �nal results.

The conclusion to be drawn from Figure 5-15 is that a good knowledge of the

underlying process (both in terms of the structure of the transition equations, as well

as in the error covariances) that describes temporal evolution of speeds or assignment

fractions is needed in order for these more complicated models to perform better.

In this context, an advantage of the stochastic speeds approach over the stochastic

assignment fractions approach is that since speeds are directly observed, it could

be easier to calibrate more complicated transition equations for this approach. A

reassuring result { particularly for the stochastic speeds approach { in applying these

models is that the impact of nonlinearities in the measurement equation do not appear

to be the source of biases.

We �nally compare results from the smoothed and estimated models in Figure

5-16. The �rst pair of bars are for the case �cts = 0.6, �spd = 0 while the last two

are for �cts = 0.1, �spd = 0.9. We see that some gain is realized from using smoothed

estimates. We also observe a reduction (albeit small) in the variance of the estimated

O-D ows in Figure 5-17.

5.4 Major Findings

We conclude the chapter with a summary of the major �ndings from the three case

studies.

1. Estimated O-D ow values for virtually all the models tested are substantially

better (in the sense of being closer to the true values) compared to the corre-

sponding historical values. Also, the estimation procedure seems to be fairly

robust with respect to quality of historical information.
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2. The one-step and two-step predictions perform better than the corresponding

historical values for O-D pairs with high O-D ows. If there is not much vari-

ability between the historical O-D ows and the actual ows during the period

of analysis, the predictions are not much better than the historical values. There

is not much to be gained from three step predictions over the historical values.

The predicted values tend to converge to the historical values with increasing

prediction horizon.

3. The approximation introduced in the measurement equation by Model Base-

Appx has only a slight impact on quality of estimated O-D ows relative to

Base. Because of the computational savings, it seems the preferred method for

real-time implementation.

4. Model Base-Appx is fairly robust with respect to measurement error in link

counts and speeds. However, the bias due to inaccuracies in measuring speeds
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can be signi�cant at high levels of error.

5. Formulations that are based on modeling departure rates and shares separately

perform better than their linear counterparts in predictions. The non-linear

models tend to converge fairly quickly to reasonable values.

6. Smoothed O-D Flows are in general better than estimates, both in terms of

reducing the RMS error as well as in reducing the variance of the estimates.

These are therefore the preferred models for o�ine estimation.

7. In o�ine estimation, generalized models that incorporate a stochastic assign-

ment matrix do not show much improvement over conventional models. As men-

tioned earlier, this could be because of the linear network structure in the I-880

case study. The modi�ed o�ine models O�-Mod-Base that estimate O-D ows

corresponding to multiple departure intervals simultaneously o�er improvement

over O�-base.

8. In real-time estimation and prediction, the two models with stochastic assign-

ment matrix show mixed performance. A critical factor in the success of such

models seems to be good understanding of the transition dynamics and the

associated variance-covariance matrices.

9. The models with stochastic assignment matrices are computationally more in-

tensive than the conventional models. In practical applications therefore, a

judicious choice of additional decision variables (travel times, route-choice frac-

tions and assignment parameters) should be made.

In the next chapter, we describe other implementation issues related to the model

system.
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Chapter 6

Conclusion

We begin this chapter with an assessment of the contribution of this research to the

state of the art of O-D estimation and prediction models. We then provide a brief

discussion of some practical issues that arise in implementation of such models. We

conclude with further suggestions for future research.

6.1 Contribution to state of the art

This research represents an advancement of the state of the art in estimation and

prediction of time-dependent Origin-Destination ows. All the models developed

in this thesis can be applied to open networks and represent signi�cant modeling

improvements over their predecessors. Speci�cally,

� The framework developed here allows for incorporation of multiple sources of

information with di�erent degrees of reliability in a natural fashion. Many of

the existing models that use limited sources of information can be expressed

as special cases lying within the framework. Estimation and Prediction are

conducted simultaneously within the same framework. The framework is used

to address both the real-time and o�ine problems.

� An alternate way of formulating the real-time estimation and prediction problem

in terms of originating trips and destination shares has been developed. This
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formulation is based on the empirical observation that destination shares show

greater within-day stability compared to the originating trips. The resulting

models have shown improved predictive ability over the conventional models.

� It is shown that models based on a deterministic assignment matrix lead to

biased and inconsistent estimates of the O-D ows since the assignment matrix

is usually computed with error. As a remedy, two models based on a stochastic

mapping between counts and O-D ows have been developed. This represents

a fundamental extension of existing work.

� To improve computational aspects of these models, an approximation based on

estimating each O-D ow only once { the �rst time it is measured { has been

developed and tested.

� The models have been subjected to rigorous empirical testing based on a com-

bination of actual and synthetic tra�c data with encouraging results. With

this elaborate process of validation, the model system is ready for implemen-

tation within a prototype tra�c management system and for o�ine planning

applications.

6.2 Application Issues

In this section, we focus on issues related to implementation of the models within a

dynamic tra�c management system.

6.2.1 Estimation Interval

An important issue in dynamic estimation is the choice of estimation interval. Of pri-

mary relevance here is the time granularity required for the application (for example,

a DTA) that makes use of these matrices. Also, if the time intervals involved are very

short, the predictability of the autoregressive process would be reduced since over

very small intervals of time, uctuations in tra�c movements are essentially random.
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Very large estimation intervals on the other hand hold out the danger of masking

the information contained in time-varying link counts. And �nally, computational

considerations are also important in choice of estimation interval because for small

intervals, the number of lags to be considered (and hence the dimensionality of the

augmented state vector) would be high. Our empirical work indicates that as a rule

of thumb, an interval of 10-15 minutes seems to be reasonable.

6.2.2 Computing the Assignment Matrix

At various points in this thesis, we have dealt with the assignment matrix { a cru-

cial input into the O-D estimation and prediction process. When travel times in the

network are observable (and route-choice fractions can be estimated), the analytical

expressions given in Chapter 4 may be used to compute the matrix. In addition,

to accommodate considerations of erroneous travel times or route-choice fractions, a

stochastic assignment matrix based model might be preferred. There would be situa-

tions, however, where the available surveillance system only allows for measurement

of link counts. Under such a scenario, the assignment matrix would be obtained

through an iterative application of the O-D estimation and prediction module and a

DTA.

To see how the iterative scheme would proceed, consider a time instant t which

corresponds to the end of the departure time-interval h and the beginning of de-

parture time-interval h + 1. At this point in time, the O-D module gets a set of

link counts for the departure interval h from the surveillance system. Further it has

available, a set of trial assignment matrices a
h

h
, a

h�1

h
, a

h�2

h
, ... , a

h�p0

h
. Using these

counts and assignment matrices, the O-D estimation module computes �ltered O-D

ows for interval h (apart from updated estimates for prior intervals h � 1,h � 2, ...

, h � p0). These �ltered O-D ows may be quite di�erent from the (one-step pre-

dicted) ows that were used to determine the assignment matrices in the �rst place.

Hence, the newly �ltered ow of interval h (and possibly also the newly updated

ows of prior intervals) is reloaded again on to the DTA to get revised estimates of

the assignment matrices. This cycle of �ltering/updating{computation of assignment
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matrices{�ltering/updating continues till convergence is reached. Once convergence

is attained, a one-step prediction is performed to generate estimates of O-D ows for

interval h+ 1. This is now used along with the �ltered/updated ows of intervals h,

h� 1, ... , h+ 1� p0 to get preliminary estimates of assignment matrices for interval

h+ 1 and the process continues.

We note that in the event of an iterative solution technique, though convergence

cannot be guaranteed, empirical study (Chapter 5) indicates that the �ltering proce-

dure is fairly robust with respect to the quality of assignment matrices and hence one

would expect the quality of the O-D ow estimates to get better with each iteration.

Also, wherever computational resources permit, one of the stochastic assignment ma-

trix based methods (Chapter 4) should be used. In that case, one need not have to

iterate until convergence { consistent estimates of O-D ows are obtained at each

step.

6.2.3 Missing Measurements

Sensor failures are not uncommon occurrences. It is important, therefore, that the

models are robust with respect to such failures. The framework presented in this thesis

can easily accommodate missing observations arising as a result of sensor failures. The

easiest way to do this would be to assign a default value (perhaps a historical average

if one exists) and a very high measurement error variance to the missing observation.

The solution procedure would automatically attach a low weight to the problematic

observation and the estimation and prediction methodology would otherwise remain

the same.

6.2.4 Computational Issues

Given the large size of most real-life tra�c networks, computational considerations

assume an important role in any practical implementation. In general, the compu-

tational costs of implementing various models proposed in this thesis seem to be a

function primarily of the following four parameters:
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1. Number of O-D pairs and measurements.

2. Spatial distribution of the network.

3. Congestion level in the network.

4. Degree of autoregressive process.

The number of O-D pairs is an obvious parameter since it is directly related to the

dimensionality of the unknown vector to be estimated. The number of measurements

dictates the size of the matrix to be inverted in the estimation process. The spatial

distribution of the network is important because the number of lagged intervals in

the measurement equation depends upon the maximum travel time between any two

points in the network. This in turn depends upon whether the network is \clustered"

or \dispersed". For the same number of O-D pairs therefore, one would expect the

computational costs associated with a linear network (a freeway or arterial) to be

higher compared to an urban network of a few intersections1. The congestion level in

the network is also related to this fact. High congestion levels in the network would

increase the maximum travel times and hence increase the number of lags. Similarly,

a high order autoregressive process implies an augmented state of higher dimension.

We can conceive of either modeling or numerical devices to improve the computa-

tional performance of the O-D estimation/prediction models proposed in this thesis.

We discuss various possibilities below.

Modeling Approximations

Approximate Model

In Section 2.10, we presented an approximate model that did not require re-estimation

of already computed O-D ows. For networks with large number of O-D pairs, this

seems to be the preferred approach for real-time estimation. For o�ine estimation.

a full blown augmented state model could be used. Infact, the number of lags could

vary anywhere from zero to p0 depending on the computational resources available.

1Unless the latter experiences high congestion.

125



State Reduction

This might be accomplished in two ways. The �rst and most obvious is to de�ne

origins and destinations in an aggregate fashion. Another technique is based upon

the fact that in any practical situation, an overwhelmingly large proportion of O-

D ows are either zero or extremely small. It might be desirable in some situations

therefore, to �x deviations in these ows to zero. The measurement equation of course

has to be adjusted suitably by adding a term that would reect the contribution of

all the \constant" O-D ows to the observed link volumes. The additional term

would be time-varying with estimates obtained from historical data. It is clear that

there would be dramatic savings in computational requirements by employing this

approach; whether this is achievable without signi�cant loss in accuracy is a matter

of empirical testing.

Spatial Decomposition

Another idea to reducing the computational load in the O-D estimation process is

to split the network into subnetworks. This would split the big problem into several

problems of signi�cantly smaller size. The disadvantages in this approach of course

are that (a) each smaller network has less information to work with and (b) O-D

pairs would now be \locally" de�ned within each subnetwork. Regarding the former, a

mechanism for interaction and information transfer between these subnetworks would

appear to be the ideal solution. One way of doing this might be to incorporate

spatial correlation factors in the transition equation (for each subnetwork) that relate

O-D ows passing through a subnetwork in a particular time interval to O-D ows

passing through adjacent \upstream" subnetworks in prior time intervals. Separate

measurement equations would be speci�ed for each subnetwork. All of this would

introduce a signi�cant complication in the modeling process but is computationally

attractive since each subnetwork could be processed in parallel by di�erent processors

with some real-time information exchange between them during each interval.
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Numerical Improvements

At question here are two issues { numerical robustness of the �ltering equations and

relative speeds of various algorithms.

The conventional approach to recursive estimation involves propagation of a state

estimate and an error covariance matrix from stage to stage. For the system described

by

X
h+1

= �
h
X
h
+W

h
(6.1)

Y
h

= A
h
X
h
+ v

h
(6.2)

with de�nitions as in Section 2.6, this involves the following equations:
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In several practical problems, propagation of the error covariance matrix by means of

Equations (6.3) and (6.5) results in a matrix which is not positive semide�nite. This

may occur, for example, when a particular linear combination of state vector com-

ponents is known with great precision2 while other combinations are less observable.

This has given rise to development of alternate recursive relationships that propagate

a state estimate and a square root error covariance instead3. In other words, the

square root �lter involves replacement of the covariance matrix � by the square root

2For example, the combination of O-D ows constituting an observable entry ramp ow
3The square root covariance S is de�ned by the following relationship:

� = SS0 (6.8)

S is not uniquely determined by this relationship. This lack of uniqueness is not generally a problem
as a unique square root may be de�ned, for example, by Cholesky decomposition.
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covariance S, then replacing Equations (6.3) and (6.5) by equivalent relationships

for propagating the square root. This approach is motivated by two considerations:

(a) The product SS0 can never be inde�nite even in the presence of roundo� errors,

while roundo� errors sometimes cause the computed value of � to be inde�nite; (b)

the numerical conditioning of S is generally much better than that of �. In this

spirit, several recursive square root solutions have been proposed for the �ltering and

smoothing problems4.

Square root algorithms impose some additional computational burden over the

conventional algorithm. While there has been signi�cant work is designing faster

versions of these (see for example Bierman[11]), the problem still remains compu-

tationally challenging. For O-D Estimation and Prediction, it might be possible to

realize signi�cant gains by recognizing that most of the large matrices involved in the

model are likely to be very sparse. This highlights the need for design of e�cient data

structures for handling and storage of sparse matrices in computation.

6.2.5 An Ongoing Application

We conclude this section with a brief description of an ongoing application of models

presented in this thesis. A Dynamic Tra�c Assignment (DTA) system to support

real-time applications such as dynamic route guidance and adaptive tra�c control is

currently being developed[37]. The main components of this DTA are as follows:

� Real-time O-D estimation and prediction

� Network tracking simulator to continuously assess the current state of the net-

work

� Network performance simulator to anticipate future tra�c conditions

� Route guidance generator based on predicted tra�c conditions.

The DTA is designed to reside in Tra�c Management Centers.

4A review and references might be found in Sorenson[41].
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For real-time O-D estimation and prediction, the model being implemented in the

initial prototype is the approximate model described by equations (2.49) and (2.50),

i.e.,

y
h
= a

h

h
(x

h
� xH

h
) + b

h
+ v

h
(6.9)

and

x
h+1

� xH
h+1

= f
h

h+1
(x

h
� xH

h
) + c

h+1
+w

h+1
(6.10)

where all terms have the same meaning as before. The assignment matrix is obtained

from the network tracking simulator, possibly by successive iterations as explained in

Section 6.2.2.

For numerical robustness, a square root algorithm is proposed. The candidate

algorithm is given by the following series of steps[17]:

1. Compute J00 = (V ar(@x0))
c, where the superscript c denotes the Cholesky

square root.

2. For h = 1,2,..., compute
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) and for h = 1,2,..., using the information from

step (2), compute the matrix:
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In the above equations, the matrices J represent the square root covariance of the

state, i.e., Jh�1
h Jh�1

h

0
= �hjh�1 and J

h
hJ

h
h

0
= �hjh. These de�nitions imply that the

matrix K
h
in Equation (6.14) is identical to the gain matrix of earlier chapters. We

notice that we only have to invert triangular matrices and in addition, these matrices

are square roots of the ones which might have very large or very small entries.

Since the O-D module in this application continuously interacts with the tracking

and performance simulators, e�cient data structures for storing and manipulating

common data items such as O-D ows and assignment matrices are needed. In de-

signing these data structures, there are two important considerations. First, these

matrices are highly sparse. Second, the data structures should be designed taking

into account the needs of the application that uses the data. For example, the data

structure holding the O-D matrix should enable e�cient iteration over origins and

destinations. The assignment matrix should allow for e�cient iteration over O-D

pair r and departure interval p given a sensor l and an estimation interval h. Can-

didate data structures that satisfy these considerations are shown schematically in

Figure 6-1. For the O-D matrix, only non-zero ows are stored. For each origin, a

list of destinations with non-zero ows can be accessed sequentially. Likewise, for

each destination, all the origins with non-zero ows can be accessed e�ciently. For

the assignment matrix, each link l (for a given estimation interval h) is connected

to a list of prior departure intervals of size p0+1. Each element p of this list is fur-

ther connected to another list containing non-zero contributions from O-D pairs r

that departed during p. This structure permits e�cient access to, and summation of,

contributions of the vehicle groups (r,p) to the link ows (l,h).

The system is being implemented using object oriented techniques using the pro-

gramming language C++.
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6.3 Further Research

6.3.1 O-D Prediction and Traveler Information

In a Dynamic Tra�c Management System, pre-trip (prediction based) information

could be available to travelers. This information would presumably a�ect departure

time choice (as well as route-choice) over future time intervals. The prediction of

O-D ows in various models proposed in this thesis is by means of an autoregressive

process on deviations (in either O-D ows or trips and shares) that does not explicitly

account for the e�ect of information5. Arguably, the prediction could bene�t from

a knowledge of the information about future tra�c conditions provided to travelers

during the current time-interval.

Modeling the impact of information on O-D prediction is non-trivial. One way

of handling this would be to include additional terms in the transition equation that

reect the aggregate e�ect of switches from the \desired" departure times of all the

trips in the network due to information. While this is the most direct approach to the

problem, it is unclear what the form of the additional terms should be. Moreover, it is

di�cult to isolate the e�ects of the additional terms from the already existing terms6.

And �nally, the information itself could be based partly on the O-D predictions

resulting in a �xed point problem.

A second technique to accommodate the e�ect of information might be to adap-

tively estimate the auto-correlation fractions in real-time7. This can be thought of

as a purely \statistical" approach to the problem. The primary disadvantage of this

approach is that it vastly increases the size of the state vector to be estimated. Also,

Equations (2.15) and (3.7) now become non-linear, again increasing the computa-

tional load.

5If the nature and content of information does not vary by much day over day and in the absence
of incidents or other unexpected events, the models indirectly capture the e�ect of information. This
is because the autocorrelation matrices are calibrated from historical O-D ows that, in turn, are
estimated from historical link volumes. The link volumes, in turn, reect the e�ect of information
provided (on the historical day).

6See previous footnote.
7The fractions estimated during prior intervals (and days) would be used as measurements in

this approach.
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A third technique to incorporate the e�ect of information is to adjust the historical

matrices xH
h
by a separate process before the estimation and prediction. This tech-

nique is being employed in the application described in Section 6.2.5. The adjustment

is done by means of discrete choice models that compute, for all travelers departing

over a future rolling horizon, the probability of switching departure times from their

habitual departure intervals. These probabilities are then used to adjust the histor-

ical database over the rolling horizon. This procedure is exible in that it can also

handle decisions regarding changes in mode (to public transportation), trip cancella-

tion, habitual route, etc. in response to information. It however requires information

on individual characteristics (such as socio-economic characteristics) for each traveler

in the historical database, or at least a distribution of these over the driver popu-

lation. Moreover, the autoregressive coe�cients would have to be calibrated on the

\adjusted" historical matrices.

6.3.2 The Assignment Matrix

Additional forms should be investigated for the transition equations (4.29), (4.30)

and (4.31) that describe the temporal evolution of assignment fractions, or of the

fundamental parameters constituting these such as the speeds, travel times, and route-

choice fractions. It might also be possible to use information from turning fractions

at intersections (which might be based on empirical observation) in estimating these

fractions.

6.3.3 Mode Choice

This thesis has been about vehicle trips. No distinction has been made between

individual and car-pool trips or between auto and public transportation. For the

purpose of implementing an O-D prediction model within a DTA, it might also be

desirable to incorporate the e�ect of mode choice. This need arises because O-D

predictions could be a�ected by travelers switching from auto to public transportation

(or vice-versa) in response to information provided by a DTA. It might be possible,
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therefore, to realize improvements in prediction by enhancing the framework in this

thesis with a mode choice model. This could be done by adjusting the historical

matrices exactly in the same manner as for departure time choice.

6.3.4 Empirical Testing on Urban Networks

Due to limitations of existing data, the framework and models developed in this

thesis remain to be applied to urban networks. Urban networks present unique prob-

lems unlike any encountered in the freeway case studies in this thesis. Some of the

distinguishing characteristics are as follows:

� Absence of a clear set of origins and destinations: Unlike in the freeway case

studies in this thesis, there is no obvious or easy way of de�ning origins and

destinations in a general urban network. Clearly, it is impractical to de�ne

every parking lot or o�ce building as an origin or destination. Equally, a very

aggregate de�nition would involve signi�cant approximations and could result

in ignoring short trips.

� Large number of O-D pairs coupled with a relatively sparse surveillance system.

� Need for a parking model: On urban streets, vehicles often circle urban blocks

in search of parking spaces. This might lead to vehicles being counted multiple

times resulting in over-estimation of O-D ows.

� Larger set of routes for each O-D pair, more route-switching opportunities and

therefore, a greater need for a fully calibrated route-choice model.

6.3.5 Evaluation of the Model System

Another important set of research issues to be addressed relate to the evaluation

of O-D estimation and prediction models. As we have mentioned before, true O-

D ows are seldom observed. Moreover, in most planning and tra�c management

applications, estimation and prediction of O-D ows is not an end in itself, but

a necessary step to determining network performance measures such as link ows,
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queue lengths, travel times, fuel consumption, etc. Given these objectives, one way

of evaluating the accuracy of the O-D models is a joint test of their performance with

a DTA, i.e., comparing the estimates and predictions of link ows, travel times, etc.

from the joint O-D/DTA models with those observed by the surveillance system.

This might be taken a step further. Together, O-D Estimation/Prediction and

DTA constitute an overall tra�c prediction capability within a dynamic tra�c man-

agement system. The other important component of such a system is Tra�c Control.

Prediction and Control are clearly interdependent and contribute collectively towards

the performance of the system. An important research question that has not been

addressed completely yet, pertains to the sensitivity of performance of this collective

system to errors in tra�c prediction8 { these errors could be either in O-D prediction

or in the DTA.

A promising approach to evaluating di�erent O-D estimation and prediction mod-

els jointly with a DTA and control system is use of a simulation laboratory([48],[49]).

Yang et al.[49] use a microscopic simulator, MITSIM, to track and move individual

vehicles on the network. They also use a mesoscopic simulator that is similar in struc-

ture to a DTA as a tra�c predictor (given predicted O-D ows as input). Such an

evaluation framework can be directly applied to gauge the sensitivity of the perfor-

mance of a dynamic tra�c management system to the extent of estimation/prediction

errors in time-dependent O-D ows.

6.4 Conclusion

A comprehensive framework for estimation and prediction of time-dependent O-D

ows has been presented in this thesis. The models developed here have been tested

using actual tra�c data from di�erent sources. Results obtained thus far are encour-

aging and indicate that the model system is robust with respect to quality of inputs

and is ready for prototype implementation.

8Ben-Akiva et al.[8] provide some results for route-guidance based on an analytic study of a two
route network. Van Toorenburg et al.[45] investigate conditions under which some types of predictive
control are useful.
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Appendix A

State Space Modeling

In this appendix we give a brief overview of State Space Modeling and the Kalman

Filter. For more extensive coverage of the material, the reader is referred to Gelb[20].

A.1 The model

The State Space model typically consists of two equations { the measurement1 equa-

tion and the transition2 equation.

Measurement Equation : y
h
= A

h
x
h
+ v

h
(A.1)

Transition Equation : x
h+1

= F
h
x
h
+w

h
(A.2)

where x
h
is the vector that represents the latent \true state" of the system during

interval h. y
h
is a vector of observations made in interval h. A

h
and F

h
are known

matrices. w
h
and v

h
are vectors of random errors.

We typically make the following assumptions about the model:

1. fv
h
g and fw

h
g are independent, zero mean, gaussian3 processes with

E[v
h
v0
l
] = R

h
�
hl
and E[w

h
w0

l
] = Q

h
�
hl

�
hl
= 1 if h = l and 0 otherwise.

1Or observation
2Or system
3Normality assumption made only for ease of exposition.
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2. Initial system state x
0
is gaussian4 with mean �x

0
and covariance P

0
and is

independent of v
h
and w

h
8h = 0; 1; :::.

Given these assumptions, the �ltering problem is to estimate the quantity x̂
hjh

=

E[x
h
jY

h
] where Y

h
denotes the set fy

0
, y

1
, .... ,y

h
g. A one-step prediction problem

is to estimate the quantity x̂
hjh�1

= E[x
h
jY

h�1
]. Finally, the smoothing problem is

to estimate the quantity x̂
hjT

= E[x
h
jY

T
] where T > h.

The applications of such models are extremely diverse, ranging from spacecraft or-

bit determination(See Campbell[12] for example) to predicting cattle populations[32].

In the oft-quoted example of satellite tracking, the state vector x could consist of the

position (in terms of a spherical coordinate system with center at the center of the

earth) and velocity of the satellite. Since it is not possible to measure these directly,

the measurements (the y's) made are angles and distances from tracking stations

around the surface of the earth. The laws of geometry that map these angles and

distances into the state coordinates are embedded in the matrixA. The errors in mea-

suring the y's are modeled by v. Also, the laws of physics for orbiting bodies predict

the movement of the satellite with time { these laws are incorporated in the matrix

F. Deviations from these laws due to for example the non-uniform gravitational �eld

of the earth are allowed for by the error term w.

A.2 The Kalman Filter

A.2.1 Derivation

Given a prior estimate of the state of the system at time h denoted by x̂
hjh�1

, we

wish to obtain an updated estimate x̂
hjh

after measurement y
h
is known5. Further

to avoid storing past measurements, we seek an estimator in the following form.

x̂
hjh

= K1

h
x̂
hjh�1

+K2

h
y
h

(A.3)

4Again an assumption not strictly necessary.
5The �ltering equations shall be derived for the discrete-time case. The presentation here is based

on [20]. Readers interested in a more rigorous derivation are referred to [28].
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where K1

h
and K2

h
are two time-varying weighting matrices as yet unspeci�ed. Let

us de�ne estimation errors before and after the measurement y
h
by the following

relations.

x̂
hjh

= x
h
+ ~x

hjh

x̂
hjh�1

= x
h
+ ~x

hjh�1
(A.4)

where ~x
hjh�1

represents the error in the estimate of x
h
made prior to recording the

measurement y
h
and ~x

hjh
the error in the estimate of x

h
made after the measurement.

Substituting the measurement equation and equation (A.3) into equations (A.4), we

obtain

~x
hjh

= (K1

h
+K2

h
A
h
� I)x

h
+K1

h
~x
hjh�1

+K2

h
v
h

(A.5)

where I is the identity matrix. By assumption, E[v
h
] = 0. Also, if E[~x

hjh�1
] = 0 the

estimator we desire will be unbiased (i.e., E[~x
hjh

] = 0) only if

K1

h
= I�K2

h
A
h

(A.6)

implying that the estimator can be written as

x̂
hjh

= (I�K2

h
A
h
)x̂

hjh�1
+K2

h
y
h

(A.7)

or alternatively,

x̂
hjh

= x̂
hjh�1

+K2

h
(y

h
�A

h
x̂
hjh�1

) (A.8)

Error Covariance Updates

Before proceeding to choose the weighting matrix K2

h
, let us consider the error co-

variance updates. Using the de�nition �
hjh

= E[~x
hjh
~x
0

hjh
] and equation (A.8),

�
hjh

= Ef(I�K2

h
A
h
)~x

hjh�1
(~x

0

hjh�1
(I�K2

h
A
h
)
0

+ v
0

h
K2

0

h
) +

K2

h
v
h
(~x

0

hjh�1
(I�K2

h
A
h
)
0

+ v
0

h
K2

0

h
)g (A.9)
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Using the de�nitions E[~x
hjh�1

~x
0

hjh�1
] = �

hjh�1
, E[v

h
v
0

h
] = R

h
and the fact that

E[~x
hjh�1

v
0

h
] = E[v

h
~x
0

hjh�1
] = 06 (A.10)

we obtain the following expression for the error covariance.

�
hjh

= (I�K2

h
A
h
)�

hjh�1
(I�K2

h
A
h
)
0

+K2

h
R
h
K2

0

h
(A.11)

Choice of K2

h

Let us �rst dispense with the superscript and simply write K2

h
as K

h
. The criterion

for choosing this matrix is to minimize the sum of squared errors ~x
hjh
. In other words,

we choose the function to be minimized as:

J
h
= trace[�

hjh
] (A.12)

Partially di�erentiating J
h
with respect to K

h
and setting it to zero,

@

@K
h

(trace[�
hjh
]) = 0 (A.13)

From equation (A.11) and using the relationship

@

@A
(trace[ABA

0

]) = 2AB (A.14)

for a symmetric matrix B we get

@

@K
h

J
h
= �2(I�K

h
A
h
)�

hjh�1
A

0

h
+ 2K

h
R
h
= 0 (A.15)

which yields the result

K
h
= �

hjh�1
A

0

h
(A

h
�
hjh�1

A
0

h
+R

h
)�1 (A.16)

6This can be shown to follow from the assumptions that the measurement error v
h
is uncorrelated

over time and uncorrelated with the error in the transition equation.
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This matrix K
h
is called the Kalman gain matrix. One can verify by di�erentiating

Equation (A.15) that the Hessian of J
h
(given by @2J

h
=@K2

h
) is positive semide�nite

con�rming that this value of K
h
does indeed minimize J

h
.

Substituting this value of K
h
in (A.11), we obtain after some algebraic manipu-

lation, a recursive formula for the error covariance as

�
hjh

= (I�K
h
A
h
)�

hjh�1
(A.17)

By using the transition equation, it is straightforward to show that the one-step

predicted estimate for the state vector would be given by

x̂
h+1jh

= F
h
x̂
hjh

(A.18)

and the corresponding error covariance behaviour by

�
h+1jh

= F
h
�
hjh
F

0

h
+Q

h
(A.19)

This completes our derivation. Further, it may be stated that general k step predic-

tions would be given by

x̂
h+kjh

= (F
h
)kx̂

hjh
(A.20)

and the corresponding variances would be computed by recursive application of equa-

tions (A.19) and (A.20).

Summary

To summarize the equations comprising the Kalman Filter,

�
0j0

= P
0

�
hjh�1

= F
h�1

�
h�1jh�1

F0

h�1
+Q

h�1

K
h

= �
hjh�1

A0

h
(A

h
�
hjh�1

A0

h
+R

h
)�1

�
hjh

= �
hjh�1

�K
h
A
h
�
hjh�1

(A.21)
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x̂
0j0

= �x
0

x̂
hjh�1

= F
h�1

x̂
h�1jh�1

x̂
hjh

= x̂
hjh�1

+K
h
(y

h
�A

h
x̂
hjh�1

)

h = 1; 2; : : :

A.2.2 Important Properties

Some of the important properties of the �lter are:

� The �lter produces the smallest Mean Square Error (MSE) covariance matrix

among a class of linear estimators whether or not the gaussian assumptions

hold. If the gaussian assumptions hold, then the �lter produces the smallest

MSE among all estimators { linear or nonlinear.

� The estimate is unbiased and orthogonal to its error i.e. E[x̂
hjh
~x
0

hjh
] = 0.

� The �lter has signi�cant computational advantages; because of its recursive

form, all previous information need not be stored. All historical information is

subsumed in the previous estimate.

� The �lter can be applied to non-linear systems with some modi�cations. Es-

sentially, the non-linear system is approximated by linearizations during each

time interval about the latest state estimate. This algorithm is referred to as

the Extended Kalman Filter.

� There are several ways in which the assumptions proposed here could be relaxed.

One could for instance allow the measurement and transition errors to be cor-

related. One could also allow these errors to be correlated over time, thereby

relaxing the white noise assumption. Under certain conditions, one could avoid

having to perform a matrix inversion in every time-step, thus eliminating what

could be a computationally challenging task.

� If the system has not been modeled properly, it is possible that the usefulness

of the �lter may be nulli�ed by a phenomenon known as Divergence. In this
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phenomenon, after an extended period of operation of the �lter, the errors in the

estimate eventually diverge to values entirely out of proportion to that predicted

by theory. In such cases usually, the calculated covariance matrix becomes

unrealistically small, so that undue con�dence is placed in the estimates and

subsequent measurements are e�ectively ignored. A good collection of literature

in this area may be found in Sorenson[41].

� One of the most important concerns while considering use of the �ltering tech-

nique is the requirement that P
0
, Q, R, A, F and �x

0
be exactly known. Since

this may be unrealistic in most practical applications, no �lter design is really

optimal. This then raises the question of whether one could deduce non-optimal

behavior during operation and improve the quality of �lter performance. Within

certain limits, this is possible and is known in literature as Adaptive Filtering.

Several investigators have considered the e�ect of errors in Q and R on the

performance of the �lter. Several others have proposed on-line schemes to iden-

tify Q and R. And �nally, there also exist some techniques to compensate for

incorrect choice of P
0
and �x

0
. A detailed discussion of these issues, except as

they pertain to our problem, is beyond the scope of this thesis. The interested

reader is referred to Sorenson[41] for details.
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Appendix B

Equivalence of Kalman Filtering

and Generalized Least Squares

In this Appendix, we point out the intimate connection between Kalman and Least

Squares Estimation theory. More precisely, we show that the application of results

obtained by classical Generalized Least Squares (GLS) to discrete stochastic linear

processes leads to the Kalman Filter. While this may be shown in several ways, we

rely here on the presentation by Genin[21].

B.1 Generalized Least Squares

Consider the following equation of measurements:

z = Hx+ v (B.1)

where z is a m-dimensional vector of measurements, x a n-dimensional (n < m)

constant state vector to be determined, H a m � n matrix of maximal rank and v a

m-dimensional vector of errors with zero mean and positive de�nite covariance matrix

R.

Then, the unbiased estimate x̂ of the unknown state x which is a linear combina-

tion of the measurements z and has the smallest variance for each of its components,
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is given by1

x̂ = (H0R�1H)�1H0R�1z (B.2)

with covariance matrix

P = (H0R�1H)�1 (B.3)

B.2 Recursive Estimation

Next, consider a partition of the measurements vector z in two subvectors [zk�1; zk].

Partitioning v and H accordingly, Equation (B.1) may be written as

zk�1 = Hk�1x+ vk�1

zk = Hkx+ vk (B.4)

and we assume the set vk�1 to be uncorrelated with the set vk, so that R has the

form

R =

2
64 Rk�1 0

0 Rk

3
75 (B.5)

Let x̂k�1 and Pk�1 be the minimum variance unbiased estimate and its associated

covariance matrix, de�ned on the subset zk�1 only. We can then prove that the

minimum variance unbiased estimate x̂k de�ned on the set of measurements [zk�1; zk]

may be obtained without reprocessing the subset zk�1 and is given by

x̂k = x̂k�1 +Kk(zk �Hkx̂k�1) (B.6)

with Kk de�ned by

Kk = Pk�1H
0
k(HkPk�1H

0
k +Rk)

�1 (B.7)

while the covariance matrix Pk is obtained by

Pk = (I�KkHk)Pk�1 (B.8)

1A proof of this result may be found in any statistics text.
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To demonstrate the above relations, note that, in view of Equation (B.3), the inverse

covariance matrix is

P�1
k = H0R�1H

= H0
k�1R

�1
k�1Hk�1 +H0

kR
�1
k Hk

= P�1
k�1 +H0

kR
�1
k Hk (B.9)

This expression has a classical form in matrix algebra, known as the Frobenius form,

so that the inverse may be readily obtained using the matrix inversion lemma2:

Pk = Pk�1 �Pk�1H
0
k(HkPk�1H

0
k +Rk)

�1HkPk�1

= (I�KkHk)Pk�1 (B.10)

On the other hand, in view of Equation (B.2), the new estimate x̂k has the form

x̂k = PkHR
�1z

= Pk(H
0
k�1R

�1
k�1zk�1 +H0

kR
�1
k zk) (B.11)

Combination of Equations (B.10) and (B.11) yields the desired result after some

manipulation.

x̂k = (I�KkHk)Pk�1(H
0
k�1R

�1
k�1zk�1 +H0

kR
�1
k zk)

= (I�KkHk)x̂k�1 + (I�KkHk)Pk�1H
0
kR

�1
k zk

= (I�KkHk)x̂k�1 +Pk�1H
0
kR

�1
k zk

�Pk�1H
0
k(HkPk�1H

0
k +Rk)

�1(HkPk�1H
0
k +Rk)R

�1
k zk

+Pk�1H
0
k(HkPk�1H

0
k +Rk)

�1zk

= x̂k�1 +Kk(zk �Hkx̂k�1) (B.12)

2See for example Householder[24].
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B.3 The Kalman Filter

We now show that the Kalman Filter is a direct consequence of the relationships in

Sections B.1 and B.2, when applied to �rst order discrete linear systems.

Consider an n-dimensional non-constant state vector, taking the value xi at time

ti and obeying the equation (i=1,2,...,N):

xi = �i�1xi�1 +wi�1 (B.13)

where wi�1 is a white noise random vector sequence with zero mean and positive

de�nite covariance matrix Qi�1. At each time ti, the state vector xi is observed

through the measurement equation:

zi = Hixi + vi (B.14)

with the same de�nitions for zi, Hi, and vi as in Section B.2. It is further assumed

that the two white noise random sequences vi and wi�1 are uncorrelated.

Then, the problem may be formulated as follows. Find from the measurements

(zi; zi�1; :::; z1) the minimum variance unbiased estimate x̂i (covariance matrix Pi) of

the state xi, depending linearly on the measurements, assuming the minimumvariance

unbiased estimate x̂i�1 (covariance matrix Pi�1) to be known from the measurements

(zi�1; zi�2; :::; z1).

In order to apply the results of the preceding sections to the problem at hand, let

us introduce the vectors xi,zi,wi�1,vi de�ned by the following recurrence relations:

xi =

2
64 xi

xi�1

3
75, zi =

2
64 zi

zi�1

3
75, wi�1 =

2
64 wi�1

wi�2

3
75 and vi =

2
64 vi

vi�1

3
75

If we similarly de�ne the variance-covariance matrices Qi�1 and Ri as well as

matrices Hi, �i and Fi given by3

Hi =

2
64 Hi 0

0 Hi�1

3
75, �i =

2
64 I

�i�1��1
i�1

3
75 and Fi =

2
64 0 0

�i�1��1
i�1 Fi�1

3
75

3The matrix �i�1 is assumed to have an inverse ��1
i�1.
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the whole set of equations (B.13) and (B.14) for i running from 1 up to i can be

globally written as

zi = Hi�ixi �H
iFiwi�1 + vi (B.15)

or equivalently,

zi = Hi�ixi + ei (B.16)

where

ei = �HiFiwi�1 + vi (B.17)

with zero mean and covariance matrix Ci given by:

Ci = HiFiQi�1(HiFi)0 +Ri (B.18)

Since Equation (B.16) has the form of Equation (B.1), the estimate x̂i�1 may be

written as

x̂i�1 = Pi�1(H
i�1�i�1)0C�1

i�1z
i�1 (B.19)

Pi�1 = [(Hi�1�i�1)0C�1
i�1(H

i�1�i�1)]�1 (B.20)

in view of Equations (B.2) and (B.3).

Before computing x̂i, let us compute the minimum variance unbiased estimate x̂�i

(covariance matrix P̂�
i ) of the state xi based upon the measurements (zi�1; zi�2; :::; z1)

only.

Introducing Equation (B.13) in the generalized measurement equation

zi�1 = Hi�1�i�1xi�1 + ei�1 (B.21)

we obtain

zi�1 = Hi�1�i�1��1
i�1xi + e�i (B.22)
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where e�i is a new random vector variable:

e�i = ei�1 �Hi�1�i�1��1
i�1wi�1 (B.23)

with zero mean and covariance matrix C�
i :

C�
i = Ci�1 +Hi�1�i�1��1

i�1Qi�1(H
i�1�i�1��1

i�1)
0 (B.24)

Again, a Frobenius form is recognized in the above equation, therefore,

(C�
i )

�1 = C�1
i�1�C

�1
i�1H

i�1�i�1��1
i�1[(�

�1
i�1)

0P�1
i�1�

�1
i�1 +Q

�1
i�1]

�1(Hi�1�i�1��1
i�1)

0C�1
i�1

(B.25)

so that the covariance matrix P�
i which may be written in view of Equation (B.3),

(P�
i )

�1 = (Hi�1�i�1��1
i�1)

0(C�
i )

�1(Hi�1�i�1��1
i�1) (B.26)

reduces to

(P�
i )

�1 = (��1
i�1)

0P�1
i�1�

�1
i�1

�(��1
i�1)

0P�1
i�1�

�1
i�1[(�

�1
i�1)

0P�1
i�1�

�1
i�1 +Q�1

i�1]
�1(��1

i�1)
0P�1

i�1�
�1
i�1

= [�i�1Pi�1�
0
i�1 +Qi�1]

�1 (B.27)

as can be easily veri�ed using Equations (B.20) and (B.25). Thus, P�
i is given by

P�
i = �i�1Pi�1�

0
i�1 +Qi�1 (B.28)

A similar manipulation of x̂�i , which by Equation (B.2) is de�ned to be

x̂�i = P�
i (H

i�1�i�1��1
i�1)

0(C�
i )

�1zi�1 (B.29)
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leads via Equations (B.19), (B.20), (B.25) and (B.28) to the result

x̂�i = �i�1x̂i�1 (B.30)

We can now derive the Kalman Filter equations in a straightforward manner since

we can directly apply results of Section B.2 with

zk = zi, Pk�1 = P�
i , x̂k�1 = x̂�i , Hk = Hi, Rk = Ri

so that the estimate x̂i is immediately given by Equations (B.6), (B.7) and (B.8):

x̂i = x̂�i +Ki(zi �Hix̂
�
i ) (B.31)

Ki = P�
iH

0
i(HiP

�
iH

0
i +Ri)

�1 (B.32)

Pi = (I�KiHi)P
�
i (B.33)

Equations (B.28), (B.30), (B.31), (B.32) and (B.33) constitute the equations com-

prising the solution to the discrete time linear Kalman Filter.
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