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We address three methodological issues that arise when modelling time-of-travel
preferences: unequal period lengths, schedule delay in the absence of desired time-
of-travel data and the 24-hour cycle. Varying period length is addressed by using
size variables. Schedule delay is treated by assuming either arrival or departure
time sensitivity and using market segment specific utility functions of time-of-
travel, or using distributions of the desired times-of-travel. The 24-hour cycle is
modelled by using a trigonometric utility functional form. These methodologies
are demonstrated in the context of a tour-based travel demand model using the
2000 Bay Area travel survey.

Keywords: time-of-travel modelling; time of day modelling; schedule delay;
cyclicality; tour-based model

1. Introduction

1.1. Motivation and objective

Modelling time-of-travel preferences is required for the prediction of transportation
system performance and the evaluation of policies, such as congestion pricing. We advance
the state of the art of modelling time-of-travel preferences by addressing three
methodological issues: (1) modelling time periods of unequal length, (2) accounting for
schedule delay when data on the desired times-of-travel are unavailable and (3) modelling
the cyclical properties of time-of-travel preferences.

The first issue arises because of the discretisation of continuous time into time intervals
or periods. These time intervals are often of varying length, for example, due to the small
volume of trips observed during certain time intervals. We show how to specify a time-of-
travel model that accounts for time periods of unequal length.

The second issue is related to schedule delay, which is a fundamental concept in
modelling the time-of-travel choice (Kraft and Wohl 1967, Vickrey 1969, Cosslett 1977,
Abkowitz 1980, Hendrickson and Kocur 1981, Small 1982). It postulates that travellers
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have desired arrival or departure times, and that travel at other times incurs disutility.
If the desired times-of-travel were known, it would be relatively straightforward to include
schedule delay in a time-of-travel choice model. However, these data are often not
collected especially in revealed preferences surveys and are difficult to forecast, and
therefore it is important to find methods that account for schedule delay when it is not
observed.

The third issue arises because of the 24-hour cycle and its implications on time-
of-travel preferences. That is, for a model designed for a one-day time frame, times t and
tþ 24 hours exhibit the same time-of-travel preference and should have the same utility of
arrival (or departure). We wish to address how to account for these cyclical properties in
the specification of the time-of-travel model.

1.2. Literature review

Time-of-travel choice has been studied using different methodological approaches which
vary by the level of temporal analysis, model structure and type of data collected. These
various approaches include the use of discrete (see, e.g. Small 1982) versus continuous time
models (Wang 1996, van Vuren et al. 1999); model structures ranging from logit to other
more general models such as nested logit (Brownstone and Small 1989), ordered
generalised extreme value (Small 1987), bivariate and multinomial probit (Liu and
Mahmassani 1998, Lemp et al. 2011), error components logit (Bhat 1998, de Jong et al.
2003, RAND Europe 2005, Hess et al. 2007, Holyoak 2007, Kristoffersson and Engelson
2008), continuous hazard-based logit (Bhat and Steed 2002), continuous cross-nested logit
(Lemp et al. 2010), and the presence of schedule delay terms, generally available from
stated preferences but not revealed preferences surveys (see, e.g. de Jong et al. 2003).

Next we discuss how the literature has generally treated the methodological issues
raised in this article. First, the number and length of the time periods used have varied,
with earlier efforts using a small number of coarse time periods and more recent work
using a larger number of time periods. For example, in RAND Europe (2005), Hess et al.
(2007) and Kristoffersson and Engelson (2008), periods as short as 1 h or 15min are used
in the model. Generally, time period-specific constants for arrival time, departure time
and/or duration are included in the utility equations of the time periods. If the periods are
of unequal length, these constants will capture the effect of unequal lengths but will mask
the pattern of time-of-travel preferences, and therefore the use of size variables is
preferred, as discussed later.

Second, schedule delay information has generally been included in time-of-travel
models estimated from stated preferences data where information about preferred times-
of-travel is likely to be collected. However, when these models are used in application or
when models are estimated from revealed preferences data, the schedule delay terms are
normally excluded since information about scheduling preferences are unavailable or
difficult to forecast (see, e.g. Hess et al. 2007). The inherent assumption is that the
alternative-specific constants will capture these schedule delay effects, among other things.
However, as we show later in this article, the constants capture the effects of schedule
delay only if additional assumptions are employed. Using revealed preferences data,
Koppelman et al. (2008) include a variable defined as the weighted average of the
differences between a departure time alternative and all time periods, where the weights
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capture departure time preferences for different periods. Kristoffersson and Engelson

(2008) address the problem of applying a previously estimated model with schedule delay

in situations where there are no data on preferred times-of-travel. They present an

approach to use the model and observed times-of-travel to estimate aggregate distributions

of preferred times-of-travel.
Third, functional forms have been developed to approximate alternative-specific

constants so as to avoid overfitting and identification problems as the number of these

constants increases with the number of time periods. For example, in Hess et al. (2005),

exponential, power and empirical functions are used to approximate these constants.

However, to the best of our knowledge, the cyclical properties of time-of-travel preferences

have not been dealt with in developing time-of-travel choice models except in recent work

referenced in the following section that has built on the methodology described in this

article. In addition, Grammig et al. (2005) have explored a similar idea to the one we have

proposed.

1.3. Contributions and organisation

The contributions of this research are (1) the use of size variables to account for unequal

period lengths, (2) the development of methods which obviate the need for explicitly

incorporating schedule delay in the utilities of the time period alternatives while

accounting for its effect on the utility, (3) the use of continuous cyclic functions of time

which ensure that the utility at a time t is equal to the utility at time tþ 24 hours and (4)

the demonstration of the developed methods empirically using a tour-based travel demand

modelling approach for the San Francisco Bay Area. These methodological issues and

their solutions have been developed by the authors of this article for a project whose

results are documented in Cambridge Systematics, Inc. (2005) and Abou Zeid et al. (2006).

The project aimed to develop practical time-of-travel forecasting methods that can be used

to supplement existing operational travel demand model systems developed using standard

transportation planning surveys. The purpose of this article is to provide the detailed

derivations and analyses.
The methodologies developed in this article have been used and sometimes extended in

several applications. A case study in Tel-Aviv uses our modelling approach to model time-

of-travel in a tour-based context (Popuri et al. 2008). Other papers apply only the

cyclicality property (see, e.g. Lemp et al. 2010). Carrier (2008) models time-of-travel choice

for airline travellers by using trigonometric functions to represent time as a continuous

variable. Brey and Walker (2011) apply one of the methods we suggest for dealing with

unobserved desired time-of-travel and extend the method, as will be described later in this

article.
The remainder of this article is organised as follows. Section 2 discusses the issue of

unequal period lengths and proposes a method to account for it. Section 3 develops

methods for incorporating schedule delay when desired times-of-travel are unobserved.

Section 4 derives the continuous functions of time that satisfy the cyclicality property of

time-of-travel. Section 5 presents a case study describing the application of these

methodological issues to the San Francisco Bay Area and presents selected model

estimation results to illustrate the concepts. Section 6 concludes this article.
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2. Modelling time periods of unequal length

In discrete choice models of time-of-travel, a number of alternatives are defined which
could be of varying lengths. In this section, we discuss how to account for this issue in the
utility specification of the model.

Let t be an index for continuous time, where t 2 ½0, 24�. Let vðtÞ denote the systematic
utility of time-of-travel t and f ðtÞ be the probability density function of t. For a continuous
logit model (Ben-Akiva and Watanatada 1981, de Palma et al. 1983), f ðtÞ is given by

f tð Þ ¼
ev tð ÞR 24

0 ev t0ð Þdt0
ð1Þ

We discretise the 24-hour time horizon into H periods. For a time period h where
h ¼ 1, . . . ,H, let tsðhÞ denote its start time (with respect to an arbitrary reference point), Dh

its length and PðhÞ the choice probability of time period h. PðhÞ can be expressed as
follows:

P hð Þ ¼

Z ts hð ÞþDh

ts hð Þ

ev tð ÞR 24
0 ev t0ð Þdt0

dt ¼

R ts hð ÞþDh

ts hð Þ
ev tð ÞdtR 24

0 ev t0ð Þdt0
ð2Þ

Applying the mean-value theorem for integrals, define for the interval ½tsðhÞ, tsðhÞ þ Dh�

the systematic utility VðhÞ of period h, equal to the value of vðtÞ at a ‘mid-point’1 of time
interval h, and express (2) as follows:

P hð Þ ¼
eV hð ÞDhR 24
0 ev t0ð Þdt0

¼
eV hð ÞDhPH

h0¼1 e
V h0ð ÞDh0

¼
eV hð ÞþlnDhPH

h0¼1 e
V h0ð ÞþlnDh0

ð3Þ

Thus, time periods of unequal length can be accounted for by adding the natural
logarithm of the length of the period (size variable) to its systematic utility and
constraining the coefficient of the size variable to 1.

3. Accounting for schedule delay

Schedule delay is a fundamental concept in modelling time-of-travel choice which captures
the disutility caused by travelling at times other than the desired times-of-travel. In this
section, we discuss two approaches that can be used to account for schedule delay when
data on the desired times-of-travel are unavailable.

Let h denote a time-of-travel period, h� denote a desired time-of-travel period, a denote
an arrival time period, a� denote a desired arrival time period, d denote a departure time
period, d� denote a desired departure time period, TTðhÞ denote the travel time in period h
and SDðh, h�Þ denote the schedule delay for travel period h given a desired time-of-travel
period h�. Let t denote a time-of-travel, t� denote a desired time-of-travel, ttðtÞ denote the
travel time corresponding to time-of-travel t and sd ðt, t�Þ denote the schedule delay for
time-of-travel t given a desired time-of-travel t�.

3.1. Approach 1: assume constant desired times-of-travel by market segment

It can be assumed that some trips are associated with a desired arrival time, such as the trip
from home to work, while other trips are associated with a desired departure time such as
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the trip from work to home. The idea that we pursue is to try to reduce schedule delay to a
constant. We wish to prove that, for trips that are arrival time sensitive, modelling arrival
time choice reduces schedule delay to a constant if desired arrival time is assumed to be
constant for individuals in a market segment. Similarly, for trips that are departure time
sensitive, modelling departure time choice reduces schedule delay to a constant if the
desired departure time is assumed to be constant for individuals in a market segment.

3.1.1. Arrival time sensitive trips

Consider first trips that are arrival time sensitive, i.e. where the individual has a desired
arrival time period a�. We specify the systematic utility of a time-of-travel period as a
function of the travel time, schedule delay and size of the period. We also include an
alternative-specific constant and allow the specification to include other explanatory
variables. The systematic utility of an arrival time period a can be expressed as follows:

V að Þ ¼ �1 að Þ þ �1TT að Þ þ �1SD a, a�ð Þ þ lnDa þ � � � ð4Þ

where �1 að Þ is an alternative-specific constant, �1 and �1 are coefficients to be estimated
and lnDa is the size variable described in the previous section.

For a desired arrival time period a�, modelling arrival time choice means that
�1SDða, a

�Þ, which is a function of the difference between a and a�, can be expressed as a
function g1ðaÞ for a given market segment if a� is assumed to be constant for individuals in
that market segment. g1ðaÞ is then an attribute of period a (whose value does not vary
across individuals in a market segment) and is absorbed by the alternative-specific
constant (for the respective market segment) of the systematic utility of period a; in this
case, there is no need to explicitly include a schedule delay term in the systematic utility as
long as an alternative-specific constant for the respective market segment is included.

Suppose, on the other hand, that departure time choice is modelled for a trip with
desired arrival time. The utility of departing at time td will include a schedule delay term
sd ðta, ta� Þ, where ta is the arrival time which corresponds to a departure time td and is given
by ta ¼ td þ ttðtd Þ. In this case, the schedule delay, which is a function of the difference
between ta and ta� , would depend on td, travel time ttðtd Þ, and ta� . Even if ta� is assumed to
be constant for individuals in a market segment, the travel time ttðtd Þ will assume a
different value for individuals in that market segment who travel between different origins
and destinations. Therefore, schedule delay would depend on travel time and cannot be a
constant.

3.1.2. Departure time sensitive trips

For trips with a desired departure time, the systematic utility of a departure time period d
can be expressed as follows:

V dð Þ ¼ �2 dð Þ þ �2TT dð Þ þ �2SD d, d�ð Þ þ lnDd þ � � � ð5Þ

where �2ðd Þ is an alternative-specific constant, �2 and �2 are coefficients to be estimated,
and lnDd is a size variable. By a similar argument as above, for trips with a desired
departure time, modelling departure time choice reduces the schedule delay SDðd, d�Þ to a
constant if the desired departure time d� is assumed to be constant for individuals in a
market segment.
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To sum up, we model arrival time choice if the trip is arrival sensitive (i.e. with a
desired arrival time) and model departure time choice if the trip is departure sensitive (i.e.
with a desired departure time). Schedule delay functions become arrival- and departure-
specific constants by market segment.

This approach assumes that it is known whether a trip has a desired arrival time or a
desired departure time. It may be that for a given trip (e.g. from home to work) some
individuals have a desired arrival time while others have a desired departure time.
Moreover, the approach employs a priori segmentation of constant desired times-of-travel
based on socio-economic or demographic characteristics. These two assumptions can be
relaxed using latent segmentation, e.g. through latent classes and Hybrid Choice models
(Ben-Akiva et al. 2002, Walker and Ben-Akiva 2002). We do not attempt to do so here as
the objective of this article is to develop practical methods that can be easily integrated
within operational travel demand model systems and using standard travel surveys.
However, the second approach discussed next briefly describes how a latent desired time-
of-travel can be modelled.

3.2. Approach 2: latent desired times-of-travel

An alternative approach to the one described above is to assume a probability density
function f ðt�Þ for the latent (unobserved) desired time-of-travel t� (arrival or departure
time, as appropriate) such that:

Z 24

0

f t�ð Þdt� ¼ 1 ð6Þ

and

f 0ð Þ ¼ f 24ð Þ ð7Þ

where Equation (7) assumes a cycle length for time-of-travel preferences of 24 h.
Let Pðhjt�Þ denote a time-of-travel choice model with an explicit schedule delay term

that depends on t�. Then, the time-of-travel choice probability PðhÞ can be computed by
integrating the conditional choice probability Pðhjt�Þ over the density of the desired time-
of-travel as follows:

P hð Þ ¼

Z 24

0

P hjt�ð Þ f t�ð Þdt� ð8Þ

Brey and Walker (2011) apply this method in the context of airline itinerary choice
using a stated preferences survey and extend it by using a Hybrid Choice model
framework, where the desired time-of-travel is explained by trip and individual character-
istics and is measured by indicators from the survey (stated desired time-of-travel).

4. Modelling the 24-hour cycle

In this section, we discuss the specification of the alternative specific constants of the
model. These constants are specified as continuous functions of time to smooth the
discontinuities in the utility function that would result if dummy variables for the periods
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were used instead and to reduce the number of unknown parameters which need to be
estimated, especially if the data do not contain observations for all arrival and departure
time periods.

The contribution of our specification is accounting for the cyclicality of time-of-travel.
The cycle length for weekday urban trips is 24 h. The implication of this observation is that
the utility of arrival (departure) at a time t should be equal to the utility of arrival
(departure) at time tþ 24 hours. Therefore, in addition to using continuous functions of
time, as discussed above, these functions need to satisfy the cyclicality property. We
discuss below one type of function which can be used for this purpose. The proposed
approach can be used to model cycles of lengths other than 24 h. For example, in the
context of time-of-travel choice for airline itineraries, Carrier (2008) models the cyclicality
of time-of-travel preferences and additionally estimates the cycle lengths which are found
to be 16 h for overnight bookings and 9 h for day trip bookings.

4.1. Trigonometric function

We make use of the property that for any trigonometric function yð�Þ, we have
yð0Þ ¼ yð2k�Þ, where k 2 Zþ. Since for our application we require that vð0Þ ¼ vð24Þ, we
define a mapping function zkðtÞ that maps t ¼ 0 to 0 and t ¼ 24 to 2k� as follows:

zk tð Þ ¼
2k�t

24
, 0 � t � 24, k 2 Zþ ð9Þ

with zkð0Þ ¼ 0 and zkð24Þ ¼ 2k�.
Therefore, a utility function which is a trigonometric function of the mapped

arguments will then guarantee that vð0Þ ¼ vð24Þ. Consider, for example, the following
function, which is based on the idea of the Fourier series (Fourier 1822):

v tð Þ ¼ �1 sin
2�t

24

� �
þ �2 sin

4�t

24

� �
þ � � � þ �K sin

2K�t

24

� �

þ �Kþ1 cos
2�t

24

� �
þ �Kþ2 cos

4�t

24

� �
þ � � � þ �2K cos

2K�t

24

� �
ð10Þ

For sufficiently large K this series can be used to approximate any cyclical function.
The coefficients �1, . . . ,�2K need to be estimated from data.

Letting th denote the mid-point of time period h (measured from some arbitrary
reference point), the utility of arrival or departure in period h can be expressed as follows,
where the mid-point of a time period is used to represent the period:

V hð Þ ¼ v thð Þ

¼ �1 sin
2�th
24

� �
þ �2 sin

4�th
24

� �
þ � � � þ �K sin

2K�th
24

� �

þ �Kþ1 cos
2�th
24

� �
þ �Kþ2 cos

4�th
24

� �
þ � � � þ �2K cos

2K�th
24

� �
ð11Þ

This utility function satisfies the cyclicality property since vðtÞ ¼ vðtþ 24Þ. Note that
this trigonometric function is specified as a combination of sines and cosines of angles with
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different frequencies. Having both sines and cosines in the formulation (as opposed to
having only sines or cosines) is needed to ensure that every time t between 0 and 24 will
have a unique utility value. Moreover, the use of angles with different frequencies is needed
to get a better model fit compared to using only one frequency. The truncation point K
could be determined empirically based on the resulting profile of the utility function and
the statistical significance of the terms comprising the function. Including socio-economic
variables in the utility can be done by interacting them with a trigonometric function as in
the above expression. This is demonstrated in the case study in Section 5.

4.2. Other functions

Other functions that guarantee the cyclicality property of time-of-travel may be used. One
example is the piecewise linear function with additional constraints on the slopes to ensure
that the cyclicality property is preserved (see, e.g. Abou Zeid et al. 2006). This function is
however not smooth; a piecewise quadratic function with constraints ensures both
cyclicality and smoothness.

5. Empirical results

In this section, we describe a case study that shows the application of the above modelling
methods to the San Francisco Bay Area using the 2000 travel survey. We first present an
overview of the approach used and then show selected model estimation results.
Additional details on the methodology, model estimation, and application can be found
in Cambridge Systematics (2005) and Abou Zeid et al. (2006).

5.1. Overview of the modelling approach

We use the 2000 Bay Area travel survey to estimate logit time-of-travel choice models
using a tour-based approach. The models are estimated for auto tours/trips of different
purposes: work, school, shopping, eat-out, personal business, pick-up/drop-off,
discretionary and work-based (subtours). The explanatory variables used include the
level of service variables (such as travel time), demographic variables, mode (drive-alone
vs. carpool), etc. A total of 35 time periods are used, all of which are half-hours except for
the first and last periods (early morning and late evening hours) which are of longer
duration.

Time-of-travel choice modelling is done at two levels: primary activity and secondary
activity. A primary activity of the tour can be defined to be the activity of longest duration
on the tour, the activity with highest priority, etc.; all other activities are considered
secondary.

The primary activity divides the tour into two half-tours. Since scheduling decisions on
a tour are interrelated, the two half-tours comprising a tour are scheduled simultaneously.
We assume that the half-tour from home to the primary activity is arrival time sensitive,
while the half-tour from the primary activity to home is departure time sensitive.
Therefore, we model the joint choice of arrival time and departure time at the primary
activity. Since there are 35 time periods, scheduling the tour at this level involves a choice
among 630 alternatives (equal to 35�(35þ 1)/2). An alternative ða, d Þ is thus characterised
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by an arrival time period a, a departure time period d and a duration td � ta, and its
systematic utility can be expressed as follows:

V a, dð Þ ¼ �1 að Þ þ �1TT að Þ þ lnDa

þ �2 dð Þ þ �2TT dð Þ þ lnDd

þ �3 td � tað Þ þ � � � ð12Þ

where we have included size variables for the arrival and departure time periods, defined as
the number of half-hour periods within a given time period, since not all periods are of
equal duration. The schedule delay terms for both half-tours are accounted for by
alternative-specific constants by market segment, assuming that desired times-of-travel are
constant by market segment.

For secondary activities before the primary activity, we can compute (in model
application) the departure time tsd from the secondary activity given the modelled arrival
time ta (corresponding to period a) at the primary activity, as follows: tsd þ ttðtsdÞ ¼ ta,
where ttðtsdÞ is the travel time corresponding to departure time tsd. Time-of-travel choice for
secondary activities before the primary activity is then a choice of arrival time from a
choice set of at most 35 time periods (periods corresponding to arrival times larger than tsd
will be unavailable).

Similarly, for secondary activities after the primary activity, we can compute (in model
application) the arrival time tsa at the secondary activity given the modelled departure time
td (corresponding to period d) at the primary activity and the travel time ttðtd Þ
corresponding to departure time td, as follows: t

s
a ¼ td þ ttðtd Þ. Time-of-travel choice for

secondary activities after the primary activity is then a choice of departure time from a
choice set of at most 35 time periods (periods corresponding to departure times smaller
than tsa will be unavailable).

5.2. Selected model estimation results

The original 2000 San Francisco Bay Area travel dataset included survey data of 36,680
individuals from 15,064 households. The presentation in this section focuses on time-of-
travel preferences related to home-based work tours, and after cleaning the data, the
number of observations used in this model is 11,405 tours.

The utility of an (arrival time period a, departure time period d) combination for the
home-based work tour is specified as the sum of an arrival time component, a departure
time component and a duration component as follows:

V a, dð Þ ¼ Va tað Þ þ Vd tdð Þ þ Vdur td � tað Þ ð13Þ

where ta is the arrival time corresponding to period a (taken as the mid-point of period a)
and td is the departure time corresponding to period d (taken as the mid-point of period d);
VaðtaÞ, Vd ðtd Þ, and Vdurðtd � taÞ are the arrival time, departure time, and duration
components of the systematic utility, respectively.

Define the trigonometric functions sarðtaÞ and sdrðtd Þ as follows:

sar tað Þ ¼ �
ar
1 sin

2�ta
24

� �
þ �ar2 sin

4�ta
24

� �
þ �ar3 sin

6�ta
24

� �
þ �ar4 sin

8�ta
24

� �

þ �ar5 cos
2�ta
24

� �
þ �ar6 cos

4�ta
24

� �
þ �ar7 cos

6�ta
24

� �
þ �ar8 cos

8�ta
24

� �
ð14Þ
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sdr tdð Þ ¼ �
dr
1 sin

2�td
24

� �
þ �dr2 sin

4�td
24

� �
þ �dr3 sin

6�td
24

� �
þ �dr4 sin

8�td
24

� �

þ �dr5 cos
2�td
24

� �
þ �dr6 cos

4�td
24

� �
þ �dr7 cos

6�td
24

� �
þ �dr8 cos

8�td
24

� �
ð15Þ

VaðtaÞ and Vd ðtd Þ are then specified as follows:

Va tað Þ ¼
X8

r¼1
xrs

ar tað Þ þ �1 � travel timeþ lnðnumber of half� hour periods in period aÞ

ð16Þ

Vd tdð Þ ¼
X7

r¼1
xrs

dr tdð Þ þ �2 � travel timeþ lnðnumber of half� hour periods in period dÞ

ð17Þ

where: x1¼ 1; x2¼ part-time worker dummy; x3¼ no work flexibility dummy; x4¼ female

with kids dummy; x5¼ high household income dummy; x6¼ distance; x7¼ shared-ride
dummy; x8¼ bridge crossing dummy. The distance, shared-ride dummy, bridge crossing

dummy and travel time variables are defined for the home to work direction in the arrival
time utility function (Equation (16)) and for the work to home direction in the departure
time utility function (Equation (17), except for the bridge-crossing dummy which is not

included in the departure time utility.
The specification of VaðtaÞ and Vd ðtd Þ thus includes a ‘base’ alternative-specific

constant net of all interactions with other variables (e.g. the terms �a11 sin 2�ta
24

� �
þ

� � � þ �a18 cos 8�ta
24

� �
in the arrival time utility), alternative-specific constants by market

segment (e.g. part-time worker dummy * �a21 sin 2�ta
24

� �
þ � � � þ �a28 cos 8�ta

24

� �� �
in the arrival

time utility), travel time and a size variable.
The duration component Vdur td � tað Þ is specified as a power series expansion as

follows:

Vdur td � tað Þ ¼ �dur1 td � tað Þ þ �dur2 td � tað Þ
2
þ �dur3 td � tað Þ

3
þ �dur4 td � tað Þ

4

þ �dur5 td � tað Þ
5
þ�dur6 td � tað Þ

6
þ �dur7 td � tað Þ

7
ð18Þ

In the above utility equations, the choices of variables to include, the truncation point

K ¼ 4 in the trigonometric functions of arrival time and departure time and the degree 7 of
the power series expansion of the duration function are based on empirical considerations.

The unknown parameters to be estimated are: �ar1 , . . . ,�ar8 and �dr1 , . . . ,�dr8 for every

variable xr that is interacted with sarðtaÞ and sdrðtd Þ in the arrival and departure utility
functions, the travel time parameters �1 and �2 and the parameters �dur1 , . . . ,�dur7 in the
duration utility function. The model was estimated using standard logit estimation

software. The model statistics are shown in Table 1.
Figures 1 and 2 show the utility function values corresponding to the estimated

departure time component of the systematic utility for work tours. The ‘base’ plot
represents the utility component �d11 sin 2�td

24

� �
þ � � � þ �d18 cos 8�td

24

� �
, which is not interacted

with other variables. All other plots represent the sum of the ‘base’ departure time utility
and the alternative-specific constant for a certain market segment (e.g. the plot

labelled part-time worker represents �d11 sin 2�td
24

� �
þ � � � þ �d18 cos 8�td

24

� �
þ �d21 sin 2�td

24

� �
þ

� � � þ �d28 cos 8�td
24

� �
). The values depicted are relative utilities, computed as the utility

components described above divided by the utility function value at 8 AM.
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Figure 1. Departure time utility functions for the work tour model.
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Figure 2. Departure time utility functions for the work tour model (cont.). For the distance plot, a
distance of 10 miles is used.

Table 1. Statistics for the home-based work tour time-of-travel
choice model.

Number of observations 11,405
Log-likelihood with zero coefficients �73,513.43
Final value of log-likelihood �56,842.83
Number of estimated parameters 129
Rho-squared 0.227
Adjusted rho-squared 0.225
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The results shown in Figures 1 and 2 can be interpreted as follows. Compared to a full-
time worker, the utility of departure from work for a part-time worker is larger between
6 AM and 5 PM and between 9 PM and 12 AM, which may be due to the nature of part-
time jobs that may start in the morning and end in the early afternoon or occur during
night shifts. The utility of departure is largest at 12 PM. The effect of work time flexibility
on departure time utility is not very intuitive from the utility curve as time periods just
before 5 PM seem to be more favourable to periods just after 5 PM for workers with no
work time flexibility compared to those with work time flexibility. For a female with kids
in the household, the utility of departure prior to 5 PM (between 7 AM and 5 PM) is larger
than that of females without kids or of males, which is expected due to various
responsibilities related to the kids (e.g. picking up kids from school, household chores),
and is also larger for the period 9 PM to 1 AM.

For workers carpooling from work to home, the utility of departure before 5 PM is
larger compared to workers driving alone from work to home and is smaller after 5 PM
(except for the period 8 PM to 12 AM). Workers who carpool might not have the
flexibility to stay late at work because of the constraints of the people carpooling with
them. In the time periods surrounding 5 PM, the effect of the distance variable is to
increase the utility of departure time periods prior to 5 PM; workers whose commutes are
longer tend to depart from work earlier. Similarly, in the time periods surrounding 5 PM,
workers with high household income tend to depart later relative to workers with low or
medium household income, perhaps because the positions they hold require longer
working hours.

6. Conclusion

This article has addressed three methodological issues related to time-of-travel modelling
and proposed practical approaches for handling them in the context of operational travel
demand model systems. The issues are unequal period lengths, schedule delay and the
24-hour cycle. We deal with the first issue by using size variables to account for time
intervals of different lengths. Two methods are proposed for modelling schedule delay
when desired times-of travel are unobserved. The first one is to use market
segment-specific utility functions of time-of-travel and model arrival time choice for
arrival-sensitive trips and departure time choice for departure-sensitive trips. The second
one is to use a probability density function of the latent desired time-of-travel. The third
issue is that the utility function of time-of-travel needs to be cyclical and can be modelled
using a trigonometric function.

A case study was presented to demonstrate the time-of-travel modelling methodologies
developed in this article. Tour-based time-of-travel models were estimated using the 2000
Bay Area travel survey, and selected model estimation results for work tours were
presented. Thirty-five time periods, all consisting of 30-minute intervals except for two
periods of longer duration, were used in the model. A trigonometric utility function was
demonstrated. The approach developed here has also been used to estimate time-of-travel
choice models for tours of other purposes both at the primary and secondary activity
levels. The estimated models have then been incorporated in the San Francisco County
Transportation Authority model, a microsimulation activity-based model, and used to test
various scenarios such as highway and transit improvements and congestion pricing.
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The tests showed that the time-of-travel distributions were reasonable and peak spreading
was observed when congestion levels increased. Furthermore, the time-of-travel distribu-
tions predicted by the model for a baseline scenario compared favourably with the
observed patterns.

Acknowledgements

The methodologies presented in this article have been developed as part of the Federal Highway
Administration ‘Forecasting Person Travel by Time of Day’ project whose results are documented in
Cambridge Systematics (2005) and Abou Zeid et al. (2006). This article has been presented at the
11th World Conference on Transport Research in Berkeley in June 2007, and at the 4th International
Kuhmo Nectar Conference in Urbino, Italy, in July 2007. We thank Farah Machlab for her
contribution to the literature review.

Note

1. In application, if short time intervals are used such that there is limited variation of the utility
within an interval, then the exact choice of the ‘mid-point’ of the interval is not an issue.
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