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Microscopic traffic simulation tools are becoming increasingly popular in
evaluating transport options. Driving behaviour models (e.g. route choice
models, lane-changing models, etc.) are essential components of these tools.
The state-of-the-art driving behaviour models assume that drivers make instan-
taneous decisions. However, in reality, many of the driving decisions are based on
a specific plan. The plan is however unobserved or latent and only the
manifestations of the plan through actions are observed. Examples include
selection of a target lane before execution of the lane change, choice of a merging
tactic before execution of the merge. Ignoring the effect of plans in the decision
framework can lead to incorrect representation of congestion in traffic simulation
tools. In this article, we present a modelling methodology to address the effects of
unobserved plans in the decisions of the drivers. The actions of the driver are
conditional on the current plan and can be influenced by anticipation of
downstream traffic conditions. The heterogeneity in decision making and
planning capabilities of drivers are explicitly addressed. The methodology has
been applied in developing lane-changing behaviour models with disaggregate
trajectory data extracted from video recordings of an urban road using the
maximum likelihood technique. Estimation results show that the latent plan
models have a significantly better goodness-of-fit compared to the ‘reduced form’
models where the latent plans are ignored. The latent plan models were also found
to outperform the reduced form models in validation case studies within the
microscopic traffic simulator MITSIMLab.

Keywords: driving behaviour; lane-changing; traffic simulation; latent plan

1. Introduction

Microscopic traffic simulation tools, which mimic individual drivers to deduce real world
traffic situations, are ideal tools to analyse and test different congestion management
strategies in a controlled environment. These tools analyse traffic phenomena through
explicit and detailed representation of the behaviour of individual drivers. Driving
behaviour models are thus an important component of the microscopic traffic simulation
tools. These models include route choice models, speed/acceleration models and lane
changing models. Speed/acceleration models describe the movements in the longitudinal
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direction and lane changing models describe drivers’ lane selection and gap acceptance
behaviours.

Driving decisions are influenced by a wide range of factors. These include
neighbourhood conditions, features of the vehicle and characteristics of the driver,
attributes of the network, overall traffic situation, etc. Therefore, in the same network,
drivers can behave differently in different traffic situations. In particular, the level of
congestion can have a significant impact on driving decisions (Toledo 2007). For example,
in heavily congested situations, there can be significant cooperation among the drivers;
they are likely to be more alert and conscious about their actions, and their driving
decisions can involve substantial planning and anticipation (Hidas 2002, 2005). Though
there has been significant research on the effects of neighbourhood conditions on the
decisions of the driver (e.g. Gipps 1986, Hunt and Lyons 1994, Yang and Koutsopoulos
1996, Hidas and Behbahanizadeh 1999, Zhang et al. 1998, Ahmed 1999, Toledo 2002,
etc.), in most cases the models do not adequately capture the sophistication of driver
behaviour and the causal mechanism behind their observed decisions (Toledo 2007).
Specifically, the existing models represent instantaneous decision-making and assume
drivers to be myopic. These shortcomings are more evident in congested and incident
affected scenarios where the observed driving behaviour is actually the result of a
conscious planning process. These plans may evolve dynamically and an initially chosen
plan may not be executed in the end. The plans are therefore unobserved and only the
actions (e.g. manoeuvres like acceleration, lane changes, route choice, etc.) are observed.
The behavioural predictions based only on myopic considerations are therefore bound to
contain significant noise as a result of the models’ structural inability to uncover
underlying causal mechanisms. Implementation of these models in traffic micro-simulation
tools can lead to unrealistic traffic flow characteristics: underestimation of bottleneck
capacities and incorrect representation of congestion (Abdulhai et al. 1999, DYMO 1999).
This was reflected in the findings of the Next Generation Simulation (NGSIM) study on
Identification and Prioritisation of Core Algorithm Categories where congested,
oversaturated and flow breakdown scenarios have been identified by the users as weak
points of traffic micro-simulation tools (Alexiadis et al. 2004). Using these tools to
evaluate congestion management planning and policy scenarios can result in bias in the
analysis.

This article presents a new methodology that explicitly models the choice of plans and
effects of these unobserved plans in the observed decisions of the drivers. The models
therefore better capture the complexity of human decision making and represent the
driving behaviour models in a more realistic manner. The organisation of this article is as
follows: first, we present the framework of the latent plan model and the methodology for
model development. The methodology is then demonstrated using a case study that is
presented next. The summary of the findings and the directions of future research are
presented in the concluding section.

2. Methodology

2.1. Planning in driving decisions

According to the Next Generation Simulation Models (NGSIM) Core Algorithm Analysis
Report (Hranac et al. 2004), travel decisions can be classified into the following categories
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based on the time scale of application (shown in Figure 1). The pre-trip traveller decisions

are the strategic decisions taken before starting a trip and constitute the pre-trip plan of the

traveller (e.g. departure time, destination, mode, route, etc.). These may be updated

en-route based on network conditions, acquisition of new information, etc. While

executing a route from an origin to a destination, a series of tactical manoeuvres are

performed by drivers based on sub-goals generated from a variety of factors. Examples

include, maintaining a desired travel speed, making up lost time from a previous delay,

pre-positioning to get into the appropriate lane, etc. These tactical decisions motivate the

operational behaviours of travellers include decisions to control their vehicle (e.g. lane

shifting, gap acceptance for executing a lane change or for manoeuvre at an unsignalised

intersection, acceleration/deceleration, etc.). The vehicle control decisions deal with driver

decisions related to controlling the vehicle at a nanoscopic time-scale level, steering the

wheel of the vehicle or pressing the accelerator, for example. Driving behaviour models

encompass the tactical route execution and operational driving decisions.
It should be noted that only the actions associated with the operational driving

decisions and sometimes the vehicle control decisions are observed. The strategic and

tactical plans that lead to that action are generally unobserved or latent.
A general framework of the driving behaviour model is presented in Figure 2. As seen

in the figure, in the initial position, the driver makes a plan: for example, selecting a target

lane. Depending on the traffic situation and the driver characteristics, the plan can consist

of various additional levels: the choice of target gap, the choice of tactic for execution of

the lane change, choice of gaps for making a passing manoeuvre, etc. The choice of action

Tactical Route 
Execution

(e.g. pre-position for a 
turning lane)

Vehicle Control
(e.g. move steering wheel, 

hit the brake)

Operational Driving
(e.g. lane-change, 

accelerate, decelerate )

∞

ε

30 sec

5 sec

Driving 
Behavior 
Models

Operational Driving
(e.g. lane-change, 

accelerate, decelerate )

Pre-trip
(e.g. choose destination, 

time, mode, route)

Strategic En-route
(e.g. change route to 

avoid congestion)

Figure 1. Classification of traveller behavioural algorithms (adapted from Hranac et al. (2004),
unobserved decisions are shown in ovals).
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depends on the choice of plan and consists of lane choice and acceleration decisions.
The chosen action is reflected in the updated position of the driver.

An example of choice of plans of the driver is shown in Figure 3. The pre-trip and
en-route strategic plans of the driver (e.g. destination and route choice) may lead to the
tactical plan to reach a target lane to take an exit. The subsequent actions of the driver
involve looking for an acceptable gap to manoeuvre to the target lane in order to execute
the plan. In this process, the driver may also target forward or backward gaps and adjust
the acceleration to avail those gaps. In congested situations, where normally acceptable

Figure 3. Framework of choice of plan.

Position

Plan:

Action:

target lane
t = t+1

target gap
lane-changing tactic

passing

lane choice
acceleration

Figure 2. General framework of driving behaviour.
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gaps may not be available, the chosen plan can also involve selection of an alternate lane

changing tactic (e.g. courtesy or forced gap acceptance). The chosen plan is unobserved

and manifests itself through the chosen lane actions and accelerations. However, the plans

may be updated due to situational constraints and contextual changes and the observed

actions may not be the ones that were originally intended. Failure to change to the target

lane, for example, may lead to an observation of no change from the current lane.
Further, the strategic and tactical plans and actions can take place in a dynamic

environment where a driver’s goals, resulting plans and external conditions are all subject

to change. The driver may consider several alternatives to come up with a plan, but the

actions that he/she ends up executing might be different from those initially planned. This

evolution in plans could be due to several factors. First, situational constraints or

contextual changes might lead to revision of the plan. For example, an unusual level of

congestion might lead a driver to revise the planned time of travel or route. Or non-

cooperation of a driver in the target lane may lead to reevaluation of the lane changing

tactic to that lane. Second, the driver’s current plans are influenced by the past experiences

so that as the history evolves, the plan can also evolve. For example, the choice of an

action with an unfavourable outcome might lead one to abandon the plan that led to this

action in future choice situations. Third, drivers might eventually adapt to conditions in

their environment so that they might exhibit inertia in the choice of their plans and actions.

For instance, drivers may have a preference to stay in the current lane.
There can be considerable difference in aggressiveness, driving skills, intelligence and

planning ability of drivers. Drivers may also have different levels of familiarity with the

network. These driver-specific characteristics (generally unobserved) can have a significant

impact on the latent plans.

2.2. Formulation

The key features of the latent plan model are as follows:

(1) Individuals choose among distinct plans (target/tactic). Their subsequent decisions

are based on these choices. The chosen plans and intermediate choices are latent or

unobserved and only the final actions (manoeuvres) are observed.
(2) Both the choice of plan and the choice of action conditional on the plan can be

based on the theory of utility maximisation. The interdependencies and causal

relationships between the successive decisions of an individual result in serial

correlation among the observations.
(3) The observed actions of the individuals depend on their latent plans. The utility of

actions and the choice set of alternatives may differ depending on the chosen plan.
(4) The choice of the plan at a particular time may depend on previous plans. For

example, persistence and inertia effects may affect the choice whether or not to

continue to follow the original plan or to shift to an alternative one. Thus, the

choice of plans can lead to state-dependence in the decision process.
(5) The current plan can also depend on anticipated future conditions and may include

expected maximum utility (EMU) derived from the decisions involved with the

execution of the plan.
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In the following subsections, we present the basic latent plan model that is applicable

for cases without state-dependence (only serial correlation). These include situations

involving one-time decisions, as well as panel observations where the subsequent choices of

plans (conditional on individual-specific characteristics) are independent. The basic model

can be extended to explicitly capture the state-dependence between subsequent plans and

actions (which has been presented in Choudhury et al. (2010)).
The proposed framework addresses the serial correlation among the decisions of the

individual across time and choice dimensions but do not address the state-dependence

among subsequent plans. That is, conditional on individual-specific characteristics, the

successive plans of individuals are assumed to be independent. The overall model

framework is presented in Figure 4. Variables or choices in rectangles are observable, while

those in ovals are unobservable or latent.
The plan of an individual n at any instant t ðlntÞ is influenced by explanatory variables

and individual-specific characteristics. The attributes of the alternatives ðXntÞ are generally

observed but the individual-specific characteristics associated with the individual ð�nÞ are
generally unobserved or latent and capture the serial correlation among the decisions of

the same driver. For example, in the case of lane selection behaviour, attributes of the

alternatives (target lanes) like average speed, density, lead and lag vehicle characteristics,

etc., are observed and driver characteristics like aggressiveness, driving skills, planning

horizon, etc., are latent. These latent variables can be discrete or continuous.

Characteristics of the driver such as planning capability, for example, can be represented

by discrete classes of drivers (e.g. drivers who plan-ahead and drivers who do not).

Continuous latent variables include attitudes, perceptions and personality traits of the

individual (e.g. impatience, aggressiveness, planning horizon, etc.). The actions of the

individuals depend on the chosen plan as well as the observed and latent explanatory

variables. These individual specific variables remain the same for all decisions of the same

individual across time and choice dimensions (agent effect). However, it is assumed that

actions (jn) and plans (ln) of individual n (conditional on �n) are independent over time.

This assumption is relaxed in Choudhury et al. (2010) where a Hidden Markov Model

(lnt)

(jnt)

(Xnt)
(  n)υ

Explanatory
variables

Driver’s
characteristics

Plan

Action

Figure 4. Latent plan model without state-dependence.
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(HMM)-based formulation is used for capturing the effects of the past decisions in the

current plan of the driver.
The general model framework is presented in Figure 5. This framework consists of two

levels: choice of plan and choice of action conditional on the plan. The selection of the

plan (indexed by l) in the upper level drives the selection of an action (indexed by j). The

action choice sets and corresponding utilities, shown in the lower level, may vary

depending on the plan.
The trajectory of an individual includes a series of observed actions. For driving

behaviour models, this corresponds to a series of lane actions and acceleration decisions of

the driver.

Let,

Pn ltj�nð Þ probability of individual n selecting plan l at time t conditional on

individual-specific characteristics
Pn jtjlt, �nð Þ probability of individual n selecting action j at time t given plan l conditional

on individual-specific characteristics
Pn jtj�nð Þ probability of action j by individual n at time t conditional on individual-

specific characteristics
Ln the set of plans in the choice set of individual n
Tn number of consecutive observations of individual n

At time t for individual n, the probability of observing a particular action j is the sum

of probabilities that he/she is observed to execute action j given that the selected plan is l,

over all plans in the choice set of the individual.

Pn jtj�nð Þ ¼
X
l2Ln

Pn jtjlt, �nð ÞPn ltj�nð Þ ð1Þ

Assuming that actions (jn) and plans (ln) of individual n (conditional on �n) are

independent over time (relaxed in the next section), the probability of observing his/her

sequence of decisions can be expressed as follows:

Pn j1, j2, . . . , jTn
j�

� �
¼
YTn

t¼1

XLn

l¼1

Pn jtjlt, �nð ÞPn ltj�nð Þ ð2Þ

Pn(lt|un)

Pn(jt|lt,un)

Plan

Action

1

1 2 j J1 J21 2 1 12 2j j jJl JL

2 l L

Figure 5. Basic model framework.
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The unconditional choice probabilities of observing the sequence of decisions by
individual n are given by the following equation:

Pn j1, j2, . . . , jTð Þ ¼

Z
�

Pn j1, j2, . . . , jTn
j�

� �
f �ð Þd� ð3Þ

where f �ð Þ is the distribution of the individual-specific random term (e.g. aggressiveness).
It may be noted that, structurally, the latent plan models have similarities with the

Latent Class Choice Model (LCCM) where the factors ‘generating’ the heterogeneity
among individuals can be conceptualised as discrete or categorical constructs (Kamakura
and Russell 1989, Gopinath 1995). However, the class-membership models are based only
on characteristics of the individuals and not on other variables that influence their
attitude. The membership of an individual in a class is thus static and do not change over
time with change in situations. The latent plan models, on the other hand, are estimated
with panel data and the unobserved factor (the latent plan) can vary dynamically with
change in situation based on neighbourhood variables. The latent plan models thus have a
more flexible structure and can therefore be inferred as an extension of LCCM that is
applicable in a dynamic case.

2.3. Specification

The probabilities of choice of plan and action can be calculated using a utility-based choice
framework. The specifications of these utilities are discussed below.

2.3.1. Choice of plan

The choice of a plan can be based on utility maximisation and may include EMU derived
from the decisions involved with executing that plan. The utility of latent plan l for
individual n at time t can be expressed as follows:

Ulnt ¼ U Xlnt, Ilnt, �n, "lntð Þ

Ilnt ¼ E max U1 lnt, U2 lnt, . . . ,Uj lnt, . . . , UJl lnt

� �� �
ð4Þ

Xlnt attributes of plan l for individual n at time t, a subset of Xnt

Ilnt EMU from actions associated with plan l of individual n at time t
Ujlnt utility of action j under plan l to individual n at time t
�n individual-specific random effect
"lnt random utility component of plan l for individual n at time t

2.3.2. Choice of action

The observed choices/actions depend on the chosen plan. The choice set, as well as the
functional form of the utility of an action j may vary depending on the chosen plan. The
utility of action j under plan l can be expressed as follows:

Ujlnt ¼ U Xjlnt, �n, "jlnt
� �

ð5Þ
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where,
Xjint atttributes of action j and plan l at time t, a subset of Xnt

�n individual-specific random effect
"jlnt random utility component of action j and plan l at time t

The conditional probabilities of selecting plan Pn ltj�nð Þð Þ and action Pn jtjlt, �nð Þð Þ are
based on the utilities discussed above (Ulnt and Ujlnt, respectively). The specification of the
probabilities will depend on the assumptions made regarding the distribution of the
random utility components of Ulnt and Ujlnt. For example, if the random components are
independently and identically extreme value distributed, then the kernel of the choice
model will be logit. It may be noted that strong correlations between systematic and
random ("lnt and "jlnt) components of plan and action levels may lead to identification
problems. This makes the latent plan models applicable only to situations where such
strong correlations are not present.

The strategic and tactical choices comprising the latent plans can also be influenced by
the geometric and traffic attributes. The effect of latent path-plan, for example, may be
more evident in an urban arterial with closely spaced turns compared to a freeway network
where exits are far apart. Similarly, there can be higher propensity to target a distant lane if
there is a large difference in the level of service (LOS) among different lanes. Again, the
underlying plan for executing a lane change in a congested freeway can differ significantly
from the choice of plan in an uncongested situation where acceptable gaps are readily
available.

2.4. Model development

The latent plan model framework presented in the previous sections were developed using
the process shown in Figure 6, which involves using both disaggregate and aggregate data.
Disaggregate data, which are detailed vehicle trajectories at a high-time resolution are used
in the model estimation phase. In this phase the model is specified and explanatory
variables, such as speeds and relations between the subject vehicle and other vehicles, are
generated from the vehicle coordinates extracted from the trajectory data. The model
parameters are estimated using a maximum likelihood technique to match the observed
lane changes that occurred in the trajectory data. This estimation approach does not
involve the use of any traffic simulator, and hence the estimated models are simulator
independent.

In order to demonstrate the benefits that may be derived from using the modified
models, they must be validated and demonstrated within a microscopic traffic simulator
that incorporates not only the lane changing models being studied, but also other driving
behaviour models, such as acceleration models. Therefore, the estimated model needs to be
implemented within a microscopic traffic simulator. MITSIMLab (Yang and
Koutsopoulos 1996) was used in all the cases described in this article. In the validation
case studies, aggregate data, which are significantly cheaper to collect and in many cases
readily available, may be used. Part of the aggregate dataset is first used to adjust key
parameters in the lane changing model as well as parameters of other behaviour models
and to estimate the travel demand on the case study network. This aggregate calibration
problem is formulated as an optimisation problem, which seeks to minimise a function of
the deviation of the simulated traffic measurements from the observed measurements and
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of the deviation of calibrated values from their a priori estimates, if available (Ben-Akiva

et al. 2003, Toledo and Koutsopoulos 2004). The rest of the data is used for the validation

itself, which is based on comparison of measures of performances that may be calculated

from the available with corresponding values from the simulator, such as sensor speeds

and flows, the distribution of vehicles among the lanes, amount and locations of lane

changes.

3. Case study: lane choice in an urban intersection

As mentioned in the previous sections, the effects of plans in observed manoeuvres are

more prominent in certain traffic scenarios (e.g. in high level of congestion, in the presence

of closely spaced turns, work zones, incident spots, etc.). The case study presented below

demonstrates the effects of including the latent plans in the decision framework using the

lane selection behaviour in an urban intersection. In this article, we highlight the

methodological aspects of the model and the comparison results with a ‘reduced form’

model to show the improvements in the goodness-of-fit and prediction capability after

inclusion of the latent plans. More details of the model formulation, estimation and

validation results have been presented in Toledo et al. (2005), Choudhury and Ben-Akiva

(2008) and Choudhury et al. (2008).

Model estimation

Data collection

Aggregate calibration 
of simulation model

Model refinement D
is

ag
gr

eg
at

e 
da

ta
A

gg
re

ga
te

 
da

ta

Aggregate validation

Calibrated and 
validated simulation 

model

Implementation and 
verification

Figure 6. Estimation, calibration and validation process.
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3.1. Background

Arterial corridors have a set of varied driving activities that differ by lane and location.
These activities encompass trip destination activities (parking, entering transit stops, right
turns, left turns, etc.), trip origination activities (exiting a parking spot, exiting transit
stops, etc.) and complex routing behaviours (permissive left turns, pedestrian-impeded
right turns, etc.). Drivers familiar with the network may be aware of these activities and be
mindful about how these vary by lane and location. While turning at intersections, these
drivers tend to make appropriate tactical lane positioning decisions to minimise their
travel times and driving efforts. Due to situational constraints, immediate execution of the
tactical lane selection plan may not be possible. For example, at a particular instant,
conflicts with other vehicles can delay movement to the target lane. Further, changes in
circumstances may lead to changes in the tactical plan: a long queue build-up in the chosen
target lane, for example, can lead to amendment to the original target. The chosen target
lanes are thus unobserved and only the immediate choice of lanes is observed.

A lane selection model has been developed for urban intersections, which explicitly
takes into account the tactical pre-positioning of drivers approaching the arterial mainline
from side streets was developed in this regard. The familiarity and planning ability of the
drivers, that is: how far they ‘look-ahead’ or ‘plan-ahead’ affect their tactical plans was
explicitly taken into account.

3.2. Model structure

The intersection lane selection is therefore a two level decision:

. Choice of target lane (plan)

. Choice of immediate lane (action)

The choice of target lane is a tactical decision of the driver whereas the choice of
immediate lane is governed by manoeuvrability considerations. The framework of the
model is shown in Figure 7. Latent choices are shown as ovals and observed ones are
shown as rectangles.

At the first level, the driver chooses the most desirable lane as the target lane. The
target lane choice set constitutes all the available lanes the driver is eligible to move to.

1 2 3 4

1 2 3 4

Target lane
(Plan)

Immediate lane
(Action)

Figure 7. Structure of the intersection lane selection model.
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The target lane utilities are affected by a wide range of factors. These include factors
related to path-plan considerations, such as the distance to a point where the driver needs
to be in specific lanes and the number of lane changes required from the target lane to the
correct lanes. The effects of path-plan in the target lane choice can also depend on the
planning capability of the driver and his/her familiarity with the network. Drivers who are
familiar with the network and ‘plan-ahead’ are likely to pre-position themselves in the
correct lanes well-ahead of the section prior to the turn. These drivers may also be aware of
the lane-specific obstructions in downstream sections and take into account the anticipated
delays associated with staying in a lane while making their lane choices. On the other hand,
drivers who are not familiar with the network and/or do not plan-ahead are not likely to
be affected by path-plan considerations or anticipated delay beyond their immediate
sections.

Depending on the planning capability, the drivers can thus belong to either of the two
classes:

. Class 1: Myopic drivers. Drivers who consider the path-plan and anticipated delay
only in their immediate subsequent section while making the lane selections.

. Class 2: Drivers who plan-ahead. These drivers consider path-plan and antici-
pated delay beyond their immediate subsequent section while making the lane
selections.

The perspectives of the two classes of driver are presented in Figure 8(a) and (b).
Parameters associated with the target lane of the driver may be class-specific as
well, indicating significant difference in sensitivity to influencing variables among
driver classes.

Given the choice of the target lane, the driver selects the immediate lane. The
immediate lane selection depends on the choice of target lane but is also influenced by
manoeuvrability considerations. For example, a lane may be unavailable as an immediate
lane if it is already full. To make the model more flexible, the choice set for the immediate
lane is assumed to include all available lanes in the roadway irrespective of the target lane
and the current position of the driver. The structure can thus accommodate cases when the
target lane and lanes in the direction of the target lane are blocked by other vehicles and
the driver has no option but to move to a different connecting lane. This extreme situation
is illustrated in Figure 9 with a hypothetical example where the target lane of the driver is
Lane 2 (the path to which is blocked) and the driver chooses Lane 4 as the immediate lane.
The other option for the driver is to wait till the vehicles in Lane 3 move forward and
manoeuvre to Lane 2 when possible. The immediate lane choice is thus affected by
manoeuvrability considerations, the driving effort needed to reach a particular lane and is
conditional on the choice of target lane.

3.3. Data

The intersection lane choice model has been estimated from data collected from
Lankershim Boulevard in Los Angeles, California. Vehicle trajectory data was collected
in 2005 from a segment of the arterial located near the intersection with US highway 101 as
part of the FHWA’s NGSIM project. The dataset used for estimating the intersection lane
choice model includes 703 observations (1 observation per vehicle). 629 of them are
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northbound and 74 of them are southbound. Out of these vehicles, 269 (38.1%) turn to
closest receiving lanes, 435 (61.9%) later change to different lanes within the section.
The majority of the entering vehicles are observed for more than one sections (80.2%) with
more than half (55.9%) vehicles are observed for more than two sections.

?

?

?

?

?

?

?

?

(a)

(b)

Figure 8. Structure of the intersection lane selection model. (a) Perspective of myopic drivers and
(b) perspective of drivers who plan-ahead.

Lane 1

Target
lane

Immediate
lane

Lane 2

Lane 3

Lane 4

Figure 9. Example of a situation when the target lane is blocked.
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3.4. Results

The model formulation was similar to the general latent plan formulation presented in
Equations (1)–(5) but with an additional complexity of the presence of latent classes
(as supported by the data, see Choudhury and Ben-Akiva (2008) for details). All
components of the model (target lane choice, immediate lane choice, driver class
membership) were estimated jointly using a maximum likelihood estimation procedure as
described in the previous section. The estimation results are presented in Table 1.

3.4.1. Choice of target lane (plan)

The target lane choice model describes drivers’ choice of lane they would want to travel in.
The target lane choice of the driver is affected by the path-plan, the lane attributes and
driver characteristics. Path-plan variables include number of lanes a driver has to cross
(if any) in order to take a turn or exit while following the path. Lane attributes include
queue length, queue discharge rate, average speed, etc., of each lane. In this model, the
queue length and queue discharge rates are combined in a single variable anticipated delay.

Table 1. Estimation results.

Final log-likelihood �2115.8
Initial log-likelihood �2797.9
Number of model parameters 20
Variable Parameter t-Statistics

Target lane

Lane 2 constant �0.837 �3.64
Lane 3 constant 1.30 7.62
Lane 4 constant 3.25 8.16
Anticipated delay (second) �0.477 �0.56
Lanes away from turning
lane (myopic)

Coefficient – myopic drivers �0.0240 �0.63
Constant – myopic drivers 1.43 0.83
Heterogeneity coefficient – myopic drivers 1.53 0.75

Lanes away from turning
lane (with plan-ahead)

Coefficient – drivers who plan-ahead �4.08 �1.98
Constant – drivers who plan-ahead 2.05 3.01
Heterogeneity coefficient – drivers
who plan-ahead

0.466 0.74

EMU from immediate lane 0.915 7.22

Driver class

Driver population with
41 section plan-ahead (%)

18.3 2.07

Immediate lane

Lanes away from connecting
lane

Coefficient �1.01 �1.19
Constant 0.691 1.94
Heterogeneity coefficient 1.96 3.48

Target lane dummy 3.16 4.54
Lanes away from target lane Coefficient �4.42 �3.00

Constant 2.12 2.14
Heterogeneity coefficient 0.0904 0.36

Conflict dummy �1.76 �9.63
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This variable represents the delay associated with the queue in time unit and is calculated

by dividing the current queue length by the average queue discharge rate in that lane. The

variables affecting the immediate lane choice also have an indirect effect on target lane

choice. This has been captured through EMU variables.
The magnitudes of the lane-specific constants indicate that all else being equal, the

drivers prefer lanes on the right (the rightmost lane being the most preferred lane). It

should be noted that though the model has been developed with data where the receiving

section had 3 or 4 lanes, the model structure is flexible enough to be applied to other

scenarios with a different number of available lanes. For this, the lane constants in

particular need to be re-calibrated.
As described in the earlier section, a latent class formulation has been used for the

model to capture the heterogeneity in planning capability of drivers. The probability of the

driver being a myopic driver (Class 1) or a driver who plans ahead (Class 2) is calculated

along with the other model parameters. The estimated probability that the driver belongs

to Class 2 was found to be 18.3%.
The influencing variables differ depending upon the plan-ahead distance of the driver.

For example, drivers who are familiar with the network and plan ahead may consider the

anticipated delay in subsequent sections while selecting their target lanes. Therefore, an

anticipated delay value was calculated for each class of driver based on what segments they

are considering while making the choices. The functional form of the anticipated delay

variable can be expressed as follows:

eqkl
nt ¼

1

1þ expð�qklntÞ
k ¼ 1, 2

q1lnt ¼ d1lnt=r
1l
n , q2lnt ¼ q1lnt þ d2lnt=r

2l
n

ð6Þ

where

qklnt anticipated delay in lane l considering k sections ahead

dkint queue length in lane i in section k at time t

rkint average queue discharge rate of lane i in section k (vehicles s�1)

The anticipated delay has a diminishing effect on the utility of target lane and the

sensitivity to anticipated delay was found to be significantly different for the two classes of

drivers.
The path-plan of the driver has an important role in the target lane selection. The two

classes of drivers are found to have different sensitivities to path-plan considerations,

which in this case has been modelled as an interaction between the number of lanes away

from the correct lane and the aggressiveness of the driver. The functional form best fitting

the data is found to be as follows:

�1
 1 þ �1�n

e1ln
� �
ð1� �nÞ þ

�2
 2 þ �2�n

e2ln
� �

�n

� �
ð7Þ

where

�n 1 if the driver plans-ahead beyond the immediate section
e1ln lanes away from turning lane for myopic drivers
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e2ln lanes away from turning lane for drivers who plan-ahead
�i, i,�i of vehicle class i

As seen from the estimates, for both classes of drivers, utility of lanes reduce if they are
away from the lane that the driver needs to be in to follow his path. This disutility is,
however, less for aggressive drivers, since they are more prone to make aggressive lane
changes later if needed (inertia effect is dominant). The disutility was found to be larger
and more significant for drivers who plan ahead (Class 2).

The EMU term captures the maximum utility that can be derived from selecting a
particular lane as the immediate lane. It has a significant effect on the target lane choice.
The EMU can be calculated as the logsum of the immediate lanes given the target lane
(Ben-Akiva 1974, Ben-Akiva and Lerman 1985). Mathematically, this refers to the
following:

EMUln ¼ EðmaxðU1 ln,U2 ln, . . . ,Uj ln, . . . ,UJ1 ln, ÞÞ

¼ lnðexpðV1 lnÞ þ expðV2 lnÞ þ � � � þ expðVj lnÞ þ � � � þ expðVJ1 lnÞÞ ð8Þ

where

EMUln expected maximum utility derived by individual n from lane l
Ujln utility of immediate lane j for driver n given target lane l

The estimated utility of the target lane can thus be expressed as follows:

Uln ¼ �l � 0:477 ðeq1lnÞð1� �nÞ þ ðeq2lnÞð�nÞ� �
�

0:024

1:43þ 1:53�n
ðe1lnÞð1� �nÞ

�
4:08

2:05þ 0:466�n
ðe2lnÞ�n þ 0:915ðEMUlnÞ ð9Þ

where

�l constant for lane l
q�1ln anticipated delay function in lane l for myopic drivers

q�2ln anticipated delay function in lane l for drivers who plan-ahead

e1ln lanes away from correct lane for myopic drivers

e2ln lanes away from correct lane for drivers who plan-ahead (consider path-plan
beyond current section)

EMUln expected maximum utility derived by driver n from selecting lane l as target
lane

�n 1 if the driver plans ahead beyond immediate section

3.4.2. Choice of immediate lane (action)

As seen in Table 1, immediate lane choices were found to be influenced by manoeuvrability
considerations and inertia to continue to the naturally connecting lane. Inertia effects are
captured by variables like current lane inertia and number of lanes away from the
connecting lane. The inertia effect was greater for aggressive drivers. Aggressive drivers
tend to stay in their current lane as long as possible and then make aggressive changes if a
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lane change is warranted by the path-plan. Drivers were also found to have a strong
preference to reach their target lane and lanes closer to their target lanes.

Manoeuvre to a given lane may not be possible due to conflicts with neighbouring
vehicles. In the case of such obstructions or conflicts, the driver can choose an immediately
available lane, or can wait until the neighbouring vehicle moves and there are no
obstructions to manoeuvre to the intended target lane. As a result, if there are
conflicting vehicles in the direction of a lane, the driver was found to have a lower
preference for that lane.

The utility of immediate lane j is summarised in the following equation:

Ujn ¼ �
1:01

0:691þ 1:96�n
ðcjnÞ þ 3:16ðljn ¼ 0Þ �

4:42

2:12þ :0904�n
ðljnÞ � 1:76�jn ð10Þ

where

cjn lanes away from connecting lane
ljn lanes away from target lane l, l2Ln

�jn 1 if manoeuvre to lane j is obstructed by an adjacent vehicle (conflict
dummy)

3.5. Model comparison

The improvement in the goodness-of-fit of the new model was statistically compared with
a ‘reduced form’ model estimated with the same data. The reduced form model is a single
level lane choice model with similar variables but no latent target lanes (presented in
Figure 10, detailed in Choudhury and Ben-Akiva (2008)).

The models have been compared using tests for comparing non-nested models: Akaike
Information Criteria (AIC) (Akaike 1974) and adjusted rho-bar square. These statistics
discount for the larger number of parameters in the model with target lane level. The
results are presented in Table 2.

The model with explicit target lane choice has improved likelihood values compared to
the single-level model. It also has larger values both in terms of AIC and �2, which
indicates that it better fits the data, and therefore should be selected for prediction.

The new lane-changing model was implemented in the microscopic traffic simulation
model, MITSIMLab (Yang and Koutsopoulos 1996) and tested for validation by
comparing against field observations. Because of unavailability of other suitable processed
datasets, the aggregate data from the same site (Lankershim Boulevard, CA) has been used
for preliminary model validation. The Lankershim trajectory data was aggregated to

1 2 3 4

Figure 10. Reduced form model structure (with no latent plan).
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generate synthetic sensor counts and speeds that are used for validation. Exact vehicle O–

D flows were calculated from the trajectory data and so no route choice was involved.

Aggregate calibration was performed first with part of the data (8:28 am to 8:50 am) to

adjust the driving behaviour parameters of other components of MITSIMLab. Sensor

data from 8:50 am to 9:00 am in the north bound direction (not used for aggregate

calibration) was used for validation.
Comparison among the observed data and the simulated outputs from the base

MITSIMLab model and the new model are shown in Figure 11. As seen in the diagrams,

the lane distributions of the new model have a better fit to the observed data than the base

model. Particularly, in the first section (which has the highest volume of vehicles entering

from the side streets), the base model overpredicts the through lane occupancies. The new

model with target lane choice better captures the vehicle pre-positioning.

4. Conclusion

A latent plan-based modelling approach thus gives a better representation of the decision

mechanism by capturing the causal relationships between plans and actions of the driver

and results in more realistic traffic simulation. This was demonstrated by a case-study

involving lane selection in an urban intersection where the inclusion of the latent plans was

justified by comparing goodness-of-fit of estimation and aggregate validation results.

The comparison of goodness-of-fit of estimation results exhibited the improvements in

model estimates as compared to the reduced form models that do not have any latent

mechanism. The aggregate validation results demonstrated this through improvements in

the simulation capability in comparison to the state-of-the-art models that use instanta-

neous decisions of drivers based on myopic considerations.
It may be noted that the model presented in this article can be extended to explicitly

capture the state-dependence between subsequent plans and actions (which has been

presented in Choudhury et al. (2010)) as well as to account for expected utility from

future decisions (research on this direction using dynamic programming is currently

underway).
The concept of latent plan and the proposed framework has enormous potential both

in modelling driving decisions and modelling decisions in other scenarios where the

decisions of individuals involve unobserved planning. Examples include route choice

models, shopping destination choice, activity participation and travel behaviour models,

and many other choice situations involving ‘hidden’ decision layers and latent alternatives.

Table 2. Comparison of goodness-of-fit.

Statistic Reduced from (R) Latent plan (U)

Likelihood value �2120.4 �2115.8
Number of parameters (K) 19 20
Akaike information criteria (AIC) �2139.3 �2135.8
Adjusted rho-bar square (�2) 0.235 0.237
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Figure 11. Validation results: lane distributions at the beginning of the arterial mainline.
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