
Modeling Drivers' Acceleration and Lane

Changing Behavior
by

Kazi Iftekhar Ahmed

B. Sc. Eng. (Civil)

Bangladesh Univ. of Eng. and Technology (BUET), Dhaka, Bangladesh (1991)

M.S. in Transportation

Massachusetts Institute of Technology, Cambridge, MA (1996)

Submitted to the Department of Civil and Environmental Engineering

in partial ful�llment of the requirements for the degree of

Doctor of Science in
Transportation Systems and Decision Sciences

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1999

c
 Massachusetts Institute of Technology 1999. All rights reserved.

Author

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Civil and Environmental Engineering

January 8, 1999

Certi�ed by
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Moshe E. Ben-Akiva

Professor of Civil and Environmental Engineering

Thesis Supervisor

Certi�ed by

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Haris N. Koutsopoulos
Operations Research Analyst

Thesis Supervisor

Accepted by

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Andrew J. Whittle

Chairman, Departmental Committee on Graduate Studies





Modeling Drivers' Acceleration and Lane

Changing Behavior

by

Kazi Iftekhar Ahmed

Submitted to the Department of Civil and Environmental Engineering
on January 8, 1999, in partial ful�llment of the

requirements for the degree of

Doctor of Science in
Transportation Systems and Decision Sciences

Abstract
This thesis contributes to the development of microscopic tra�c performance models
which includes the acceleration and lane changing models. It enhances the existing
models and develops new ones. Another major contribution of this thesis is the

empirical work, i.e., estimating the models using statistically rigorous methods and
microscopic data collected from real tra�c.

The acceleration model de�nes two regimes of tra�c 
ow: the car{following regime
and the free{
ow regime. In the car{following regime, a driver is assumed to fol-
low his/her leader, while in the free{
ow regime, a driver is assumed to try to at-

tain his/her desired speed. A probabilistic model, that is based on a time headway
threshold, is used to determine the regime the driver belongs to. Heterogeneity across

drivers is captured through the headway threshold and reaction time distributions.

The parameters of the car{following and free{
ow acceleration models along with the
headway threshold and reaction time distributions are jointly estimated using the

maximum likelihood estimation method.
The lane changing decision process is modeled as a sequence of three steps: de-

cision to consider a lane change, choice of a target lane, and gap acceptance. Since

acceptable gaps are hard to �nd in a heavily congested tra�c, a forced merging model
that captures forced lane changing behavior and courtesy yielding is developed. A

discrete choice model framework is used to model the impact of the surrounding tra�c

environment and lane con�guration on drivers' lane changing decision process.
The models are estimated using actual tra�c data collected from Interstate 93 at

the Central Artery, located in downtown Boston, MA, USA. In addition to assessing

the model parameters from statistical and behavioral standpoints, the models are



validated using a microscopic tra�c simulator. Overall, the empirical results are

encouraging, and demonstrate the e�ectiveness of the modeling framework.
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Chapter 1

Introduction

1.1 The Problem

Tra�c congestion in and around the urban areas of the world is a major problem.

Congestion during peak hours extends for longer periods each day. Congestion ad-

versely a�ects mobility, safety, and air quality. These cause direct economic losses

due to delays and accidents, and indirect economic losses due to environmental im-

pact. In most cases, the capacity of the existing roadway systems cannot be increased

by adding additional lanes due to space, resource, or environmental constraints. Po-

tential ways to address the congestion problem are to improve the utilization of the

existing systems through better tra�c management and operations strategies, and

improve the geometric design of roads and highways.

Tra�c operations in the congested sections of roadways is very complex, since

di�erent drivers employ di�erent techniques to travel through such sections while

interacting with other drivers. To understand the occurrence of bottlenecks and to

devise solutions for it, a comprehensive analysis of vehicle to vehicle interactions is

essential. This requires the development of tra�c theories to explain driver behavior

at the microscopic level, the main elements of which are the acceleration and lane

changing dimensions.

Drivers' acceleration behavior, when they are in the car{following regime, has

been studied extensively since the 1950s. In this regime, drivers are assumed to

18



follow their leaders. However, estimation of these models using microscopic data,

for example, speed of a subject and its leader, gap length, acceleration applied by

the subject, collected from real tra�c has not received much attention. On the other

hand, researchers started paying attention to the acceleration behavior in the free{
ow

regime beginning early 1980s. In the free{
ow regime, drivers are not close to their

leaders and therefore, have the freedom to attain their desired speed. The parameters

of the general acceleration model, that captures drivers' acceleration decision in both

the car{following and free{
ow regimes, have not been estimated.

The principal focus of research in modeling drivers' lane changing behavior has

been on modeling the gap acceptance behavior at stop controlled T{intersections.

The gap acceptance phase is a part of the lane changing process. Researchers started

paying attention to the lane changing model as microscopic tra�c simulation emerged

as an important tool for studying tra�c behavior and developing and evaluating dif-

ferent tra�c control and management strategies. However, the existing lane changing

models are rule{based and do not explicitly capture variability within driver and be-

tween drivers. Furthermore, the model parameters have not been estimated formally.

In this thesis, we present a comprehensive framework for modeling drivers' accel-

eration and lane changing behavior. This includes enhancing existing models, devel-

oping new ones, providing framework for model estimation, and �nally, estimating

the models using statistically rigorous method and microscopic data collected from

real tra�c.

1.2 Motivation

Research in Intelligent Transportation Systems (ITS) is being performed to develop

tra�c management and operations strategies to deal with problems associated with

congestion. The number of strategies needed to be tested for a transportation system

may be large and �eld testing would be prohibitively expensive. For this purpose,

`microscopic tra�c simulation' is a suitable tool. An important element of a tra�c

simulator is the set of driver behavior models that is used to move vehicles in the

19



network. This includes the acceleration1 and lane changing models. Reliability of

simulation results depends heavily on these underlying driver behavior models.

Near on{ and o�{ramps or weaving sections, drivers often change to the lanes

that are connected to their destinations. These areas are potential locations for

bottleneck formation when the fraction of drivers trying to change lanes is high.

Lane changing operations are critical in selecting geometric con�guration of such

areas (AASHTO 1990). Drivers' lane changing behavior has direct in
uence on the

capacity and safety of such areas (HCM 1985). Therefore, a detailed understanding

of drivers lane changing behavior is necessary.

Tra�c engineers use the mean of the minimum acceptable gap length at intersec-

tions to estimate the capacities of and delays at intersections and pedestrian cross-

ings. Therefore, the mean has to be estimated as accurately as possible; this requires

a thorough understanding of the gap acceptance process. Gap acceptance behavior

also a�ects the design of the length of an acceleration lane which is an important

design element from capacity and safety perspectives.

Microscopic driver behavior models play a very important role in the analysis of

tra�c 
ow characteristics in the presence of ITS technologies, such as lane use sign,

variable message signs, tra�c control, and route guidance. Macroscopic speed{
ow{

density relationship assumes homogeneous speed and density for a given freeway

segment and treats capacity as an exogenous parameter. In the presence of ITS

technologies, these assumptions may not be realistic (Yang 1993). Capacity can be

in
uenced not only by drivers' acceleration pattern, but also by the number of lane

changes taking place. A better understanding of driver acceleration and lane changing

behavior is, therefore, essential to model the impact of the ITS Technologies on the

tra�c 
ow relationships.

Rear{end collision accounted for 2.2 million automobile crashes in 1990, which

was 19% of the total number of crashes in the US in that year (NSC 1992). NSC

(1992) also reported that nearly half of these crashes were due to drivers following

their leaders too closely. In such cases, drivers are not able to decelerate fast enough

1Acceleration refers to both acceleration and deceleration unless deceleration is mentioned.
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when their leaders decelerate at unexpectedly high rates. Studying safety in the

car{following situations is, therefore, very important to the design of an Automated

Highway Systems and Intelligent Cruise Control (Chen 1996). To evaluate safety in

car{following situations, a detailed understanding of drivers car{following behavior

and braking reaction time is required.

In conclusion, there is a need for improving the current understanding of drivers'

acceleration and lane changing behavior at a microscopic level.

1.3 Thesis Objectives

The main objective of this thesis is to advance the state of the art in modeling drivers'

acceleration and lane changing behavior. The models need to be estimated using real

driver data and have to be assessed from statistical and behavioral standpoints.

The acceleration model should capture drivers acceleration behavior in both the

car{following and free{
ow regimes. In the car{following regime, drivers follow their

leaders and try to match their leaders' speed, whereas, in the free{
ow regime, they

try to attain their desired speed. The headway threshold, that is used to determine

the regime a driver belongs to, should be modeled as a random variable to capture

variability between drivers. In addition, the reaction time (or the time lag of response

to stimulus) should be modeled to be sensitive to the tra�c conditions. Furthermore,

the sensitivity of di�erent factors on the car{following acceleration and deceleration

decisions may not be same, di�erent set of parameters should be allowed while esti-

mating the models.

Modeling a lane changing decision process is very complex due to its latent nature

and the number of factors a driver considers before reaching a decision. The only

observable part is a successful lane change operation. The exact time at which a driver

decides to change lanes cannot be observed except in a few specialized situations, for

example, turning left/right at an intersection. In addition, the in
uence of past lane

changes, such as time elapsed since the most recent lane change, on the current lane

changing behavior further complicates the modeling of such a process. Therefore, the
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modeling e�ort should �nd a balance between simplicity in modeling and representing

reality.

1.4 Thesis Contributions

This thesis advances the state of the art in modeling drivers' acceleration and lane

changing behavior. It enhances the existing models and develops new ones. Another

major contribution of this thesis is the empirical work, i.e., estimating the models

using statistically rigorous methods and microscopic data collected from real tra�c.

More speci�cally,

� Contribution to the modeling framework:

{ The car{following model, which captures drivers' acceleration behavior

when they are following their leader, is extended by assuming that the

stimulus is a nonlinear function of the lead relative speed and capturing

the impact of tra�c conditions ahead of the driver. These are signi�cant

improvements over the existing models that restrict the impact of the lead

relative speed (the stimulant) on the acceleration response to be linear and

do not model the impact of tra�c conditions ahead of the driver except

for the position and speed of the leader.

{ The existing models restricts the lead relative speed (the stimulant) and

other factors (such as subject speed, gap in front of the subject) that

a�ect the acceleration decision to be observed at the same time. This

corresponds to an assumption that drivers base their decisions on the tra�c

environment at the time they were stimulated into action. We relax this

assumption by allowing drivers to update their perception of the tra�c

environment during the decision making process.

{ A headway threshold distribution is introduced that allows any driver be-

havior to be captured (aggressive or conservative). The headway threshold
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de�nes whether a driver is following its leader or trying to attain its desired

speed.

{ An individual driver speci�c reaction time is introduced which is allowed

to be sensitive to the tra�c situations under consideration.

{ A probabilistic lane changing model is developed that captures drivers'

lane changing behavior under both the mandatory and discretionary lane

changing situations. This is a signi�cant improvement over the existing

deterministic rule{based lane changing models.

{ The proposed lane changing model allows for di�erent gap acceptance

model parameters for mandatory and discretionary lane changing situa-

tions. It also captures the variability within driver and between drivers in

the lane changing decision process.

{ A forced merging model is proposed that captures merging in heavily con-

gested tra�c by gap creation either through force or through courtesy

yielding.

� Contribution to model estimation:

{ A methodology to estimate instantaneous speed and acceleration (that is

required for model estimation) from discrete trajectory data (that can be

obtained from real tra�c) is developed.

{ All the components of the acceleration model are estimated jointly using

real microscopic tra�c data. The component models are the car{following

acceleration and deceleration models, the free{
ow acceleration model, and

the headway threshold and reaction time distributions. Estimation results

demonstrate the robustness of the modeling framework.

{ Separate car{following model parameters under acceleration and decelera-

tion situations are allowed in the estimation. This captures the fact that,

the sensitivity of di�erent factors on drivers' acceleration behavior may

not be same under these two situations.
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{ Separate gap acceptance models for the mandatory and discretionary lane

changing situations are estimated.

{ The proposed lane changing model and the forced merging model are es-

timated using the maximum likelihood estimation method.

1.5 Thesis Outline

In Chapter 2, a literature review of the existing acceleration and lane changing mod-

els is presented. The acceleration and the lane changing models are presented in

chapters 3 and 4 respectively. In Chapter 5, data needs of this research is presented.

First, a methodology to estimate instantaneous speed and acceleration from discrete

trajectory data is presented. Then, the data source and the data extracted from this

source to estimate di�erent driver behavior models are presented. Estimation results

of all the models described in chapters 3 and 4 are presented in Chapter 6. In Chapter

7, validation of the acceleration model and a part of the lane changing model, using

a microscopic tra�c simulator, is presented. Conclusions and directions for future

research are presented in Chapter 8.
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Chapter 2

Literature Review

In this chapter, a literature review of the acceleration and lane changing models is

presented. Findings from this review are summarized at the end of the chapter.

2.1 Acceleration Models

The models capturing drivers' acceleration behavior can be classi�ed as:

� Car{following models,

� General acceleration models.

The car{following models capture acceleration behavior in the car{following regime.

In this regime, the drivers are close to their leaders and follow their leaders (see

Figure 2-1). The general acceleration models capture acceleration behavior in both

front vehicle
or leadersubject

space headway

Figure 2-1: The subject and the front vehicle.
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the car{following and free{
ow regimes. In the free{
ow regime, drivers are not close

to their leaders and therefore, have the freedom to attain their desired speed.

Drivers' acceleration behavior, when they are in the car{following regime, has been

studied extensively since the 1950s. Estimation of these models using microscopic

data, for example, speed of a subject and its leader, gap length, acceleration applied

by the subject, has not received much attention. Simple correlation analysis was used

to estimate the models in most cases.

Researchers started paying attention to the acceleration behavior in the free{
ow

regime in the early 1980s as microscopic simulation emerged as an important tool for

studying tra�c behavior and developing and evaluating di�erent tra�c control and

management strategies. However, the parameters of a general acceleration model,

that captures drivers' acceleration behavior in both the car{following and free{
ow

regimes, have not been estimated.

Previous research on each of these categories and the estimation of the brake

reaction time is presented next.

2.1.1 Car{Following Models

The general form of the car{following models developed in the late 1950s is as follows:

responsen(t) = sensitivityn(t� �n) � stimulusn(t� �n) (2.1)

where,

t = time of observation,

�n = reaction time for driver n,

responsen(t) = acceleration applied at time t.

The reaction time, �n, includes the perception time (time from the presentation of

the stimulus until the foot starts to move) and the foot movement time. The front
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relative speed1 (see Figure 2-1) is generally considered as the stimulus and sensitivity

is a proportionality factor that may be a function of factors such as subject speed,

space headway.

Chandler et al. (1958) developed the �rst car{following model that is a simple

linear model. Mathematically, the model can be expressed as

an(t) = � �V front
n (t� �n) (2.2)

where,

an(t) = acceleration applied by driver n at time t,

� = constant,

�V front
n (t� �n) = [V front

n (t� �n)� Vn(t� �n)] : stimulus,

Vn(t� �n) = subject speed at time (t� �n),

V front
n (t� �n) = leader or front vehicle speed at time (t� �n).

A driver responds to the stimulus at time (t � �n) by applying acceleration at time

t. The same sensitivity terms are used for both the acceleration and deceleration

situations. They estimated the model using the correlation analysis method and

microscopic car{following data. The data was collected from a sample of 8 drivers

driving test vehicles in a two lane two way road in real tra�c for 20 to 30 minutes.

For each driver, the data included discrete measurements of the acceleration, speed,

space headway, and relative speed over the time of observation. For di�erent values

of � and �, correlations between the observed and the estimated accelerations were

computed. The values of � and � that yielded the highest correlation were used as

the estimates of � and � for each driver. The estimated � and � averaged over all

samples were 1.5 seconds and 0.37 second�1 respectively.

A major limitation of the above model is the assumption of a constant sensitivity

1In this thesis, relative speed with respect to another vehicle is de�ned as the speed of that vehicle
less the speed of the subject.
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for all situations. Gazis et al. (1959) address it by incorporating the space headway

(see Figure 2-1) between the two vehicles in the sensitivity term. Their model is as

follows:

an(t) =
�

�Xn(t� �n)
�V front

n (t� �n) (2.3)

where, �Xn(t � �n) denotes the space headway at time (t � �n). The model was

estimated using microscopic data collected from the car{following experiments in the

Holland Tunnel and the Lincoln Tunnel in New York and at the General Motors test

track. The parameters � and � were estimated for each driver of each data set using

correlation analysis. For each data set, the values of the parameters averaged over all

samples were reported as the estimates. Table 2.1 summarizes the estimation results.

Table 2.1: Estimation results of the model developed by Gazis et al. (1959).

Data Number � �

collection site of drivers (mph) (second)

GM Test Track 8 27.4 1.5

Holland Tunnel 10 18.3 1.4

Lincoln Tunnel 16 20.3 1.2

The mean reaction time measured at the test track varied from 1.0 to 2.2 seconds.

Edie (1961) pointed out that, the model given by Equation 2.3 su�ers from two

limitations. First, from a behavioral standpoint, the follow{the{leader theory is not

applicable at low densities. Second, the macroscopic speed{density relationship de-

rived from Equation 2.3 yields in�nite speed as the density approaches zero. De�ne,

u = speed of a stream of tra�c at density k,

c = integration constant,

kj = jam density.

Assuming that tra�c is in a steady{state and ignoring the reaction time, integrating
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both sides of Equation 2.3 yields:

Z
a dt =

Z
�

�X
�V dt

) u = c + � ln (�X)

) u = c + � ln

�
1

k

�

at k = kj; u = 0 ) c = � ln(kj)

) u = � ln

 
kj

k

!
(2.4)

In this equation, � corresponds the stream speed at maximum 
ow. This equation is

the macroscopic speed{density relationship developed by Greenberg (1959). It does

not yield free{
ow speed at zero density.

Edie addressed the above mentioned limitations by changing the sensitivity term

and the model is as follows:

an(t) = �
Vn(t� �n)

�Xn(t� �n)2
�V front

n (t� �n) (2.5)

Sensitivity is now proportional to the speed and inversely proportional to the square

of the headway. Equation 2.5 can be integrated (as was done to obtain the model

given by Equation 2.4) to obtain a model that yields free-
ow speed as the density

approaches zero. This model performed better than the model proposed by Gazis

et al. (1959) at low densities. However, the stimulus term is still a function of the

front relative speed, which is not realistic at low densities, in particular, when the

headways are high.

Instead of using the sensitivity{stimulus formulation to explain the car{following

acceleration decision, Newell (1961) suggested the following relationship between the

speed and the headway:

Vn(t) = Gn �Xn(t� �n) (2.6)
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where, Gn is a function whose form determines the speci�cation of the car{following

models that are presented above. Di�erent forms of Gn were assumed for the ac-

celeration and deceleration decisions. Although, the model had the advantage of

integrability to obtain di�erent macroscopic speed{
ow{density relationships, no at-

tempt was reported to obtain a quantitative result to validate the model.

The car{following model developed by Gazis et al. (1961), known as the General

Motors Nonlinear Model, is the most general one. The model is given by:

an(t) = �
Vn(t)

�

�Xn(t� �n)

�V front

n (t� �n) (2.7)

where, �, �, and 
 are model parameters. The sensitivity is proportional to the speed

raised to the power � and inversely proportional to the headway raised to the power


. The parameter � is a constant and the front relative speed is the stimulus. The

models developed earlier by Chandler et al. (1958)and Gazis et al. (1959) can be

derived from this model as special cases. It should be mentioned that the macroscopic


ow{speed relationship developed by Greenshields (1934) can be derived from the GM

Model by setting � = 0 and 
 = 2. No rigorous framework for estimating the model

was provided.

Bexelius (1968) suggested that instead of following only the immediate leader,

drivers in a car{following situation also follow the vehicles ahead of the leader. Math-

ematically, the model is given by:

an(t) =
NX
i=1

�i (V i
n(t� �n)� Vn(t� �n)) (2.8)

where, �i and V i
n(t� �n) are the sensitivity and speed associated with the i-th front

vehicle and N is the number of drivers. However, the model was not estimated and

validated.

May and Keller (1967) estimated the GM Model (Equation 2.7) using a macro-

scopic relationship between speed and density that was derived by Gazis et al. (1961).

In addition to using integer values of � and 
, May and Keller (1967) also used non{
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integer values and found higher correlation coe�cients for the non{integer cases. The

estimated parameters are presented in Table 2.2. Since they used a macroscopic

relationship between speed and density, reaction time could not be identi�ed.

Table 2.2: Estimation results of the GM Model by May and Keller (1967).

Estimates with Estimates with

Parameter integer � and 
 non{integer � and 


� 1.35 � 10�4 1.33 � 10�4

� 1.0 0.8


 3.0 2.8

free speed (uf), mph 48.7 50.1

jam density (kj), vpm 1 220
optimum speed, mph 29.5 29.6

optimum density (ko), vpm 60.8 61.1

maximum 
ow, vph 1795 1810

macroscopic model u = uf e
�0:5(k=ko)

2

u = uf

�
1�

�
k
kj

�1:8�5

Leutzbach (1968) proposed a psycho{physical spacing model that addresses two

limitations of the car{following models from a behavioral standpoint. First, drivers

do not follow their leaders at large spacings, and second, drivers cannot perceive

small di�erences in front relative speeds and therefore, do not react to such di�er-

ences. Leutzbach introduced the term \perceptual threshold" to de�ne a relative

speed threshold which is a function of the space headway. The threshold is smaller

at low space headways and gradually increases with space headway. A driver reacts

to the stimulus, the front relative speed, only when the stimulus exceeds the per-

ceptual threshold. At a certain large space headway, the threshold becomes in�nity,

i.e., a driver no longer follows its leader beyond that space headway. An important

�nding of his research is that the perceptual threshold for negative relative speed

is smaller than that for positive relative speed. This implies that the sensitivity of

spacing and front relative speed on drivers' acceleration and deceleration decisions

are di�erent. Leutzbach, however, did not provide any mathematical formulation of

the proposed model, nor provided any direction as to how the perceptual threshold

can be estimated.
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Recently, Ozaki (1993) estimated the GM Model (Equation 2.7) parameters. He

used regression analysis to estimate a model for drivers' reaction time and correlation

analysis to estimate parameters �; � and 
.

Ozaki listed four actions to identify reaction time. Figure 2-2 shows the de�nition

of reaction time corresponding to these actions. The actions are:

time

time
na

V∆

TAction A
T

Action C
TAction BT

Action D

Figure 2-2: De�nition of reaction time corresponding to the four actions (source:
Ozaki, 1993).

Action A start of deceleration: time elapsed since the relative speed became zero

and the subject, who was accelerating at that instant of time, started deceler-

ating;

Action B maximum deceleration: time elapsed since the relative speed reached its

minimum value (negative) and the subject applied the maximum deceleration;

Action C start of acceleration: time elapsed since the relative speed became zero and

the subject, who was decelerating at that instant of time, started accelerating;
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Action D maximum acceleration: time elapsed since the relative speed reached its

maximum value (positive) and the subject applied the maximum acceleration.

These de�nitions of reaction time are not consistent with those suggested by earlier

car{following model researchers and the Tra�c Engineering Literature (Gerlough

and Huber 1975). These researchers de�ned the reaction time as the summation of

perception and foot movement times. Depending on the deceleration capability of a

vehicle, its driver may start reacting at di�erent times. For example, a driver driving a

vehicle with powerful brakes may not decelerate, even after realizing that its leader is

slower, until the driver gets very close. This does not imply that the driver's reaction

time is larger as suggested by Ozaki. He, however, made an important observation:

tra�c conditions, such as the headway and the acceleration of the leader, in
uence

the reaction time.

To estimate the car{following model parameters, he �rst identi�ed the reaction

time using the de�nition of reaction time for di�erent actions listed above. Then, the

correlation between the observed acceleration and estimated acceleration (obtained

by using the explanatory variables lagged by the reaction time and setting the car{

following model parameters to present numbers) was calculated for di�erent values of

the parameters. The combination that yielded the maximum correlation was reported

as the estimates.

Ozaki assumed a di�erent set of parameters for the acceleration and the decelera-

tion decisions; this captures the fact that di�erent factors, such as subject speed, front

relative speed, and headway, may not have the same impact on driver's acceleration

and deceleration decisions. The parameters �; � and 
 were estimated to be 1.1, -0.2,

and 0.2 respectively for the acceleration model, and 1.1, 0.9, and 1.0 respectively for

the deceleration model.

Aycin and Benekohal (1998) developed a car{following model which estimates the

acceleration rate at any instant of time. Acceleration for the next time instant is

then computed by adding the product of the acceleration rate estimate and the time

di�erence to the current acceleration. This guarantees continuity in the acceleration

pro�le for a given driver. Equations of laws of motion are used to compute the
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acceleration rate required for a driver to attain its leader's speed while maintaining

a preferred time headway. The preferred time headway is de�ned as a headway the

driver wants to maintain under steady{state car{following conditions. For each driver

in the car{following data set that traveled at speeds within �5 ft/sec of its leader's

speed, the discrete time headways measurements over time were averaged. Then,

the average was taken as the driver's preferred time headway. The preferred time

headway values ranged from 1.1 to 1.9 seconds with a mean of 1.47 seconds. The

e�ect of reaction time is explicitly modeled. According to this model, drivers are

assumed to be in the car{following regime if the clear gap (see Figure 2-1) is less

than 250 feet. This rule ignores variability between drivers. The reaction time was

not estimated using a rigorous method. It was assumed to be 80% of the estimated

preferred time headway.

2.1.2 General Acceleration Models

The models presented above apply to the car{following regime only. When the head-

ways are large, drivers do not follow their leader, instead they try to attain their de-

sired speeds. Developing an appropriate acceleration model for the free{
ow regime

is important for microscopic simulation models.

Gipps (1981) developed the �rst general car{following model that is applicable

to both the car{following and free{
ow regimes. This model calculates a maximum

acceleration for a driver such that the speed would not exceed a desired speed, and

the clear gap would be at least a minimum safe distance. Mechanical limitations

of vehicles were captured by using the parameters maximum acceleration and most

severe deceleration. Equations of laws of motion were used in the above computations.

The parameters of the models were not estimated rigorously and the reaction time

was set arbitrarily for all drivers.

Benekohal and Treiterer (1988) developed a car{following simulation model, called

CARSIM, to simulate tra�c in both normal and stop{and{go conditions. The accel-

eration for a vehicle is calculated for �ve di�erent situations and the most binding

acceleration is used to update the vehicle's speed and position. These situations are
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� the subject (i.e., the following vehicle) is moving but has not reached its desired

speed;

� the subject has reached its desired speed;

� the subject was stopped and starts from a standstill position;

� the subject's movement is governed by the car{following algorithm in which a

space headway constraint is satis�ed; and,

� the subject is advancing according to the car{following algorithm with a non{

collision constraint.

Equations of laws of motion are used in the above computations. In addition, a com-

fortable and a maximum allowable deceleration are assumed to limit the output from

the acceleration models within a reasonable boundary. The reaction times of drivers

are randomly generated, and shorter reaction times are assigned at higher densities.

No rigorous framework for parameter estimation was presented and the reaction time

distribution parameters were adopted from Johansson and Rumer (1971) which is

presented in Section 2.1.3.

Yang and Koutsopoulos (1996) developed a general acceleration model that is used

in MITSIM, a microscopic tra�c simulator. Based on headway, a driver is assigned

to one of the three following regimes:

� the emergency regime, if the current headway is less than a lower threshold;

� the car{following regime, if the current headway is greater than the lower thresh-

old but less than an upper threshold; and �nally,

� the free{
ow regime, if the current headway is greater than the upper threshold.

In the emergency regime, a driver applies the necessary deceleration to avoid colliding

with its leader and increase headway. The GM Model (Equation 2.7) is used to deter-

mine the acceleration rate in the car{following regime. Di�erent set of parameters are

used for positive and negative relative speed cases. In the free{
ow regime, a driver
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tries to attain its desired speed by applying a maximum acceleration if the current

speed is less than the desired speed or a normal deceleration otherwise. The model

parameters were not estimated using �eld data.

Subramanian (1996) developed a general acceleration model that captures drivers'

acceleration behavior in both the car{following and free{
ow regimes. A space head-

way threshold distribution was assumed that determines which regime a driver is in

at any instant of time. In the car{following regime, drivers are assumed to follow

their leader, and in the free{
ow regime, they are assumed to try to attain their de-

sired speed. He, however, estimated only the car{following model parameters using

data that was collected in 1983 from a section of Interstate 10 Westbound near Los

Angeles (Smith 1985).

His speci�cation of the car{following model is an extension of the GM Model

(Equation 2.7) and is given by:

an(t) = �
Vn(t� �n)

�

�Xn(t� �n)

�V front

n (t� �n) + �cfn (t) (2.9)

where, �cfn (t) is the random term associated with driver n at time t. He modeled

the reaction time as a random variable to capture the variability within driver and

between drivers. Variables �cfn (t) and �n are assumed to be distributed normal and

truncated lognormal respectively.

He estimated separate models for acceleration and deceleration observations. The

estimation results are presented in Table 2.3. The estimated mean reaction time

was larger than those reported by Johansson and Rumer (1971) and Lerner et al.

(1995), and the mean reaction time estimate for the deceleration decision was higher

than that for the acceleration decision|a counter intuitive result. He also estimated

the GM Model using di�erent headway thresholds and concluded that the headway

threshold has signi�cant impact on the parameter estimates.
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Table 2.3: Estimation results of the GM Model by Subramanian (1996).

Model for Model for

acceleration deceleration

parameter estimate estimate

� 9.21 15.24

� -1.67 1.09


 -0.88 1.66

std. dev(�cf ) 0.780 0.632

mean(�), sec. 1.97 2.29

std. dev(�) 1.38 1.42

Note: acceleration in ft/sec2, speed in ft/sec, space in feet.

2.1.3 Estimation of the Brake Reaction Time

In this section, we present the studies that were conducted to obtain the brake reaction

time of drivers driving in real tra�c.

Johansson and Rumer (1971) estimated the distribution of the brake reaction time

from a sample of 321 drivers traveling in a real tra�c. The subjects were instructed

to apply the brake pedal as soon as they hear a sound. The time elapsed from the

moment the sounds were made to the moment the drivers' brake light turned on were

recorded as the brake reaction time. The brake reaction time varied from 0.4 to 2.7

seconds with a median, mean, and standard deviation of 0.89, 1.01, and 0.37 seconds

respectively and a 90 percentile value of 1.5 seconds. These numbers may be biased

downwards, since the sound, to which the drivers reacted, might have reduced the

perception time, and hence the reaction time.

Recently, Lerner et al. (1995) estimated the reaction time distribution from a

sample of 56 drivers driving in real tra�c. To estimate the brake reaction time for

unexpected situations (to mimic real driving conditions), subjects were not informed

that they were participating in a brake reaction time study. When a subject reached

the test site at 40 mph speed, a large yellow highway crash barrel was released ap-

proximately 200 ft in front of the vehicle. The barrel was chained so that it was held

within the median. The time elapsed since a barrel is released to the instant a driver
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applies brake was recorded as the driver's reaction time. The brake reaction time

varied from 0.7 to 2.5 seconds with a median, mean, and standard deviation of 1.44,

1.51, and 0.39 seconds respectively.

2.2 Lane Changing Models

In this section, a literature review of the lane changing models is presented followed

by a literature review of the gap acceptance models.

The principal focus of research in modeling drivers' lane changing behavior has

been on modeling the gap acceptance behavior at stop controlled T{intersections.

The gap acceptance phase is a part of the lane changing process.

Gipps (1986) presented a lane changing decision model to be used in a microscopic

tra�c simulator. The model was designed to cover various urban driving situations

where tra�c signals, obstructions, and the presence of heavy vehicles (for example,

bus, truck, semi{trailer) a�ect a driver's lane selection decision. Three major factors

were considered in the lane changing decision process: necessity, desirability, and

safety. Di�erent driving conditions were examined including the ones where a driver

may face con
icting goals. However, di�erent goals were prioritized deterministi-

cally, and inconsistency and non{homogeneity in driver behavior were not modeled.

The terms inconsistency implies that a driver may behave di�erently under identical

conditions at di�erent times, while the term non{homogeneity implies that di�erent

drivers behave di�erently under identical conditions. The model parameters were not

estimated formally.

CORSIM (FHWA 1998) is a microscopic tra�c simulator that uses FREESIM to

simulate freeways and NETSIM to simulate urban streets. In CORSIM, a lane change

is classi�ed as either mandatory (MLC) or discretionary (DLC). A driver performs

an MLC when the driver must leave the current lane and performs a DLC when the

driver perceives the driving conditions in the target lane to be better, but, a lane

change is not required. The necessity or desirability of changing lanes is determined

by computing a risk factor that is acceptable to a driver which is a function of a
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driver's position relative to the object that gives rise to the need for a lane change. A

default set of model parameters are provided with the 
exibility of using user provided

parameters. The gap acceptance behavior is not modeled in a systematic manner.

Minimum gap lengths for di�erent situations are listed and all drivers are assumed

to have identical gap acceptance behavior.

Yang and Koutsopoulos (1996) developed a rule{based lane changing model that

is applicable only for freeways. Their model is implemented in MITSIM. A lane

change is classi�ed as either mandatory (MLC) or discretionary (DLC). Unlike Gipps

(1986), they used a probabilistic framework to model drivers' lane change behavior

when they face con
icting goals. A driver considers a discretionary lane change only

when the speed of the leader is below a desired speed, and checks neighboring lanes

for opportunities to increase speed. Two parameters, impatience factor and speed

indi�erence factor, were used to determine whether the current speed is low enough

and the speeds of the other lanes are high enough to consider a DLC. They also

developed a gap acceptance model that captures the fact that the critical gap length

(de�ned as the minimum acceptable gap length) under an MLC situation is lower

than that under a DLC situation. They pointed out that, for a case of merging into

a tra�c parallel to the current lane, a gap is acceptable only when both the lead and

lag gaps are acceptable. However, no formal parameter estimation was done and a

framework to do so was not developed.

Recently, Ahmed et al. (1996) developed a framework for a general lane changing

model that captures lane changing behavior under both the MLC and DLC situations.

Lane change is modeled as a sequence of four steps: decision to consider a lane change,

choice of a target lane, acceptance of gaps in the target lane, and performing the

lane change maneuver. A discrete choice framework is used to model these decision

elements that allows for modeling impact of di�erent tra�c and roadway environment

on driver behavior. From a model estimation view point, the utilities capturing the

�rst and the fourth steps cannot be uniquely identi�ed in the absence of any indicator

available to the analyst di�erentiating these two steps. They estimated parameters

of the model only for a special case: merging from a freeway on{ramp. They used
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the data collected in 1983 from a site at Interstate 95 northbound near the Baltimore

Washington Parkway (Smith 1985).

In this case, it was assumed that drivers have already decided to change to the

adjacent freeway and therefore, the decision process involved acceptance of a gap

and the actual lane change maneuver. Following Yang and Koutsopoulos (1996), a

gap is considered acceptable only when both the lead and lag gaps are acceptable.

Figure 2-3 shows the de�nition of the lead and lag gaps. The lead and lag critical

lag gap lead gap

total clear gap + vehicle lengthX

X

Y

Y

lag vehicle lead vehicle

subject
front

vehicle

Figure 2-3: The subject, lead, lag, and front vehicles, and the lead and lag gaps.

gap lengths were assumed to be lognormally distributed and whether a lane change

will take place immediately, given the gap is acceptable, was modeled using a binary

logit model.

The estimated lead critical gap for driver n at time t is

Gcr;lead
n (t) = exp[2:72� 0:055 �n + �leadn (t)] (2.10)

where,

Gcr;lead
n (t) = lead critical gap (feet),

�n = driver speci�c random term that is constant for a given driver,

assumed distributed standard normal,

�leadn (t) = random term that varies across di�erent components of a gap

for a given driver, across di�erent gaps for a given individual,
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as well as across drivers, �leadn (t) � N (0; 1:612):

The estimated lag critical gap for driver n at time t is

Gcr;lag
n (t) =

exp[�9:32 + 0:1170 min(�V lag
n (t); 10) + 0:1174 max(�V lag

n (t)� 10; 0) +

1:57 �1stGapn (t) + 1:88 ln(Lrem
n (t)) + 1:90 �n + �lagn (t)] (2.11)

where,

Gcr;lag
n (t) = lag critical gap (feet),

�V lag
n (t) = lag vehicle speed { subject speed (mph),

�1stGapn (t) =

8><
>:

1 if delayn(t) = 0

0 otherwise.

delayn(t) = time elapsed since MLC conditions apply (seconds),

Lrem
n (t) = remaining distance to the point at which lane change must be

completed (feet),

�lagn (t) � N (0; 1:312):

The estimated model of changing lanes, given that both the lead and lag gaps are

acceptable, is:

Pn(change lanes at timet j gap acc:) =
1

1 + exp(1:90� 0:52 delayn(t))
(2.12)

The gap acceptance model, however, cannot be applied to a case of forced merging or

merging through courtesy yielding. In this case, gaps of acceptable lengths may not

exist due to high congestion level, and in order to merge gaps have to be created.
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2.2.1 Gap Acceptance Models

Di�erent gap acceptance models were developed in the 1960s and 1970s based on the

assumption on the distribution of the critical gap length. Herman and Weiss (1961)

assumed the critical gap to be exponentially distributed, Drew et al. (1967) assumed

a lognormal distribution, and Miller (1972) assumed a normal distribution. They,

however, did not capture the e�ect of previously rejected gaps on the critical gap.

In general, data collected for estimating gap acceptance models is panel in nature,

i.e., it contains one or more observations from each individual. Di�erent observations

from a given sample are likely to be correlated which may introduce bias in the

parameter estimates. Daganzo (1981) used a probit model formulation appropriate

for panel data to estimate the gap acceptance model parameters for drivers merging

from the minor leg of a stop controlled T{intersection to the major leg. The critical

gap for driver n at time t is assumed to have the following functional form:

Gcr
n (t) = Gn + �crn (t) (2.13)

where,

Gn = component of critical gap attributable to driver n,

�crn (t) = random term that varies across di�erent gaps for a given driver as

well as across di�erent drivers.

Gn, and �crn (t) are assumed to be mutually independent. Further, he assumed Gn �
N (G; �2G) and �crn (t) � N (0; �2� ). The individual speci�c random term, Gn, captures

the correlation between di�erent observations from driver n. The model has the


exibility to incorporate the impact of other factors on a driver's gap acceptance

behavior by varying the mean of the distribution of Gn. However, he had estimability

problems and the estimated critical gap lengths were not guaranteed to be non{

negative.

Mahmassani and She� (1981) used the data that Daganzo (1981) used and ad-
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dressed the estimability problem by ignoring panel data formulation, i.e., they treated

the data as cross{sectional data. They assumed the critical gap to be normally dis-

tributed. The mean of the critical gap was allowed to be a function of explanatory

variables, a framework that allows for incorporating the impact of di�erent factors

on a driver's gap acceptance behavior. The variable number of gaps rejected, cap-

turing the impatience factor, was found to have a signi�cant impact on drivers gap

acceptance behavior.

The Highway Capacity Manual (HCM 1985), or HCM, uses the mean critical gap

length of drivers at an intersection to estimate the delay at and the capacity of that

intersection. The HCM de�ned the critical gap for a two{way stop controlled in-

tersection as the median of all acceptable gap lengths. A major limitation of this

de�nition is that an observation of a large gap accepted by a driver provides no infor-

mation about the minimum acceptable gap length. In the revised HCM procedure,

the critical gap is de�ned as the largest observed rejected gap length. This de�nition

is again 
awed, since one very conservative driver can greatly increase the estimate.

In addition, Cassidy et al. (1995) listed other de�ciencies of this approach. First,

only a subset of the data is used and all accepted gaps shorter than the largest one is

not included in the estimation. Second, inconsistency in driver behavior (accepting

a gap smaller than a previously rejected gap) is addressed either by discarding or by

modifying the data. However, the bene�t of using the HCM de�nition of a critical

gap is ease in estimation.

Kita (1993) used a logit model to estimate the gap acceptance model for the case

of merging from a freeway on{ramp. The impact of di�erent factors on drivers' gap

acceptance behavior was modeled by using a random utility model. Although he used

panel data, he did not use an appropriate panel data formulation. In addition to the

gap length, relative speed of the subject with respect to the mainline vehicles and

the remaining distance of the acceleration lane were found to have impact on drivers'

gap acceptance behavior.

Cassidy et al. (1995) used Kita's approach to model the gap acceptance behavior

at a stop controlled T{intersection. They, too, ignored the panel data formulation
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and found that a gap acceptance function with disaggregate factors have signi�cantly

more predictive power than a function that includes only the mean gap length.

2.3 Summary

A summary of the �ndings from the literature review is presented below.

� Modeling acceleration behavior:

{ Primary attention of the research has been on modeling drivers' accelera-

tion behavior in the car{following regime.

{ The impact of stimulus (the front relative speed) on the car{following

acceleration was assumed to be linear.

{ The reaction time was modeled but not estimated rigorously in most cases.

{ Variability within driver and between drivers were not captured in most

cases.

{ The headway threshold, that determines whether a driver is in the car{

following regime or in the free{
ow regime, is modeled deterministically in

most cases.

{ A general acceleration model was proposed by Subramanian (1996). The

model captures acceleration behavior in both the car{following and free{


ow regimes. It also captures the inconsistency in driver behavior. A

probabilistic framework was used to model variability in headway threshold

and reaction time. However, only the car{following part of the model was

estimated.

� Modeling lane changing behavior:

{ Modeling drivers' gap acceptance behavior has been the primary focus of

the research in modeling drivers' lane changing behavior.
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{ A majority of the research in modeling drivers' gap acceptance behavior

used panel data. However, model formulation appropriate for panel data

was not used while estimating the parameters.

{ A model capturing drivers' lane change decision process was developed by

Ahmed et al. (1996). However, the model is not applicable to mandatory

lane changing situations in a heavily congested tra�c where gaps of ac-

ceptable lengths are hard to �nd. The parameters of the discretionary lane

changing model have not been estimated.

{ The impact of an acceleration decision, which determines drivers speed,

on the lane changing decision is modeled by using speed as an explanatory

variable in the lane changing model.

The acceleration model proposed in this thesis builds on the earlier work by Subra-

manian (1996) and extends his model. The impact of the stimulus on the car{following

acceleration is allowed to be a nonlinear function of the lead relative speed and the

sensitivity term is extended to capture the impact of tra�c conditions ahead of the

subject and its leader. In addition, all the components of the acceleration model

are estimated jointly using microscopic data collected from real tra�c. On the other

hand, the lane changing model proposed in this thesis extends the model proposed

by Ahmed et al. (1996) to capture merging behavior in heavily congested tra�c and

the model is estimated using statistically rigorous methods and real driver data.
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Chapter 3

The Acceleration Model

In this chapter, a rigorous framework for estimating the parameters of the acceleration

model is presented that builds on the previous work by Subramanian (1996) and

extends it. The proposed model consists of two components: the car{following model

and the free{
ow acceleration model. The car{following model is applied when a

driver follows its leader (i.e., the vehicle in front). The free{
ow acceleration model is

applied when a driver tries to attain its desired speed and is not following its leader.

This chapter starts with a presentation of the conceptual framework and speci-

�cation of the model. Next, the likelihood function that is necessary for estimating

the model is formulated.

3.1 Introduction

Based on a headway threshold, a driver is assumed to be in one of the two following

regimes: the car{following regime and the free{
ow regime. If the current headway

is less than the threshold, the driver is assumed to be in the car{following regime

and follow its leader (see Figure 3-1). Speed selection (and hence the acceleration

decision) is governed by the speed of the leader. Otherwise, the driver is assumed

to be in the free{
ow regime in which case speed selection is governed by its desired

speed.

The existing car{following models (for example, Gazis et al. (1961), Subramanian
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front vehicle
or leadersubject

space headway

Figure 3-1: The subject and the front vehicle.

(1996)) restrict the stimulus of the acceleration to be a linear function of the front

relative speed and do not capture the impact of tra�c conditions ahead of the driver

except the speed and position of its leader. The front relative speed is de�ned as the

speed of the leader less the subject speed. In this chapter, we use the terms front

relative speed and relative speed interchangeably.

In the car{following regime, the sensitivity of di�erent factors, such as speed,

headway, and front relative speed, on drivers' acceleration decision under acceleration

and deceleration situations may be di�erent. For example, consider two cases: one

with a positive relative speed with a certain magnitude and the other with a negative

relative speed with the same magnitude, and all other factors are identical. The

acceleration in case one is likely to be less than the deceleration (in absolute terms)

in case two due to safety concerns involved.

The model proposed in this thesis relaxes the restriction that the car{following

stimulus is a linear function of the front relative speed and captures the impact

of tra�c conditions ahead of the subject on the car{following sensitivity by using

as explanatory variable the density ahead of the subject. Separate car{following

model parameters under acceleration and deceleration situations are allowed in the

estimation.

The model proposed in this thesis, however, does not explicitly capture the impact

of lane changing decisions on the acceleration decision. For example, a driver may

accelerate or decelerate to �t into a gap in an adjacent lane. Instead, random terms

are used in all component models that capture the e�ect of unobserved factors. This

is left as a subject for further research and is discussed in Chapter 8.
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3.2 The Acceleration Model

A driver is assumed to be in the car{following regime if the headway is less than a

threshold, and in the free{
ow regime otherwise. Mathematically, the acceleration

model can be expressed as:

an(t) =

8><
>:

acfn (t) if hn(t� �n) � h�n

affn (t) otherwise
(3.1)

where,

t = time of observation,

�n = reaction time of driver n,

an(t) = acceleration at time t,

acfn (t) = car{following acceleration at time t,

affn (t) = free{
ow acceleration at time t,

hn(t� �n) = time headway1at time (t� �n),

h�n = unobserved headway threshold for driver n.

Reaction time refers to the delay in a driver's response to a stimulus, or the response

lag. It includes both the perception (time from the presentation of the stimulus

until the foot starts to move) and foot movement times. Since these two cannot be

identi�ed uniquely from the observed data, the term reaction time is used to designate

the summation of the two.

We de�ne the headway threshold, h�n, in terms of time headway as opposed to

space headway for two reasons. First, previous research (for example, Winsum and

1Time headway is de�ned as:

hn(t) =
�Xn(t)

Vn(t)
; Vn(t) > 0

where, Vn(t) and �Xn(t) denote the subject speed and the space headway (see Figure 3-1) at
time t respectively. In this research, headway is used to designate time headway unless otherwise
mentioned.
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Heino (1996), Aycin and Benekohal (1998)) indicates that drivers maintain certain

time headways independent of speed in a steady{state car{following situations. And

second, equal space headways have identical acceleration regimes (car{following versus

free{
ow) although speeds may be very di�erent, while the time headway does not

su�er from this limitation.

Speci�cation of the car{following and free{
ow acceleration models and the dis-

tributions of the headway threshold and reaction time are presented next.

3.2.1 The Car{Following Model

Since, it is hypothesized that the expected value of the acceleration distribution is

greater than zero when the relative speed is positive, the model corresponding to a

positive relative speed is called the car{following acceleration model. Similarly, the

model corresponding to a negative relative speed is called the car{following deceler-

ation model. The model can be expressed as follows:

acf;gn (t) = s[Xcf;g
n (t� ��n)] f [�Vn(t� �n)] + �cf;gn (t) (3.2)

where,

g 2 facc; decg
s[Xcf;g

n (t� ��n)] = sensitivity, a function of Xcf
n (t� ��n),

Xcf;g
n (t� ��n) = vector of explanatory variables a�ecting the car{following

acceleration sensitivity observed at time (t� ��n),

� 2 [0; 1]; a parameter for sensitivity lag,

f [�Vn(t� �n)] = stimulus, a function of relative speed, �Vn(t� �n),

�Vn(t� �n) =
�
V front
n (t� �n)� Vn(t� �n)

�
;

Vn(t� �n) = subject speed at time (t� �n),

V front
n (t� �n) = front vehicle speed at time (t� �n),
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�cf;gn (t) = random term associated with the car{following acceleration

of driver n at time t.

The acceleration (or deceleration) applied by driver n at time t is proportional

to the stimulus, a function of the front relative speed at time (t� �n). The reaction

time, �n, varies from driver to driver, and therefore, is modeled as a random variable.

The sensitivity term is the proportionality factor, a function of explanatory variables

(discussed below) observed ��n seconds earlier. The parameter for the sensitivity lag,

�, varies between 0 and 1.

The stimulus term is a function of the relative speed. Figure 3-2 (a) shows the

expected e�ect of the relative speed on drivers' acceleration decision. At low relative

(a) Effect of relative speed on
acceleration/deceleration

(b) linear impact of relative
speed

(c) nonlinear impact of relative
speed, parameter < 1

(d) nonlinear impact of relative
speed, parameter > 1

acc or
|dec|

V2V1

V

acc or
|dec|

V

acc or
|dec|

V

acc or
|dec|

V

Figure 3-2: Impact of the relative speed on drivers' acceleration decision.

speeds, drivers' acceleration response may not be signi�cant as they may not be able

to perceive a small magnitude of the relative speed. For relative speeds beyond a

certain threshold, j�V1j, drivers get a better sense of the stimulus and therefore,

acceleration increases at an increasing rate. Beyond another threshold, j�V2j, the
acceleration applied by a driver is limited by the acceleration capacity of the vehicle
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and hence, acceleration increases at a decreasing rate until it reaches the maximum

acceleration.

The e�ect of the relative speed on the car{following acceleration discussed above

can be captured by assuming a piecewise nonlinear function of the relative speed of

the following form:

f [�Vn(t� �n)] = �V 1n(t� �n)
�
g
1 +�V 2n(t� �n)

�
g
2 +�V 3n(t� �n)

�
g
3 (3.3)

where,

�V 1n(t� �n) = min(j�Vn(t� �n)j; j�V1j)
j � j = absolute value,

�V 2n(t� �n) = max(0;min(j�Vn(t� �n)j � j�V1j; j�V2j � j�V1j)
�V 3n(t� �n) = max(0; j�Vn(t� �n)j � j�V2j)

The breakpoints, j�V1j and j�V2j, should be chosen such that they are reasonable

from a behavioral standpoint. In order to replicate the impact of the relative speed

on the acceleration as shown by the curve in Figure 3-2 (a), both �
g
1 and �

g
2 should

be greater than one while �g3 should be less than one. In addition, �g1 should be less

than �
g
2.

Figure 3-2 (b) shows the linear approximation of the impact of the relative speed

on acceleration which has been used by existing models. This implies the following:

f [�Vn(t� �n)] = j�Vn(t� �n)j (3.4)

The functional form given by Equation 3.3 can be simpli�ed by allowing only one

parameter:

f [�Vn(t� �n)] = j�Vn(t� �n)j�g (3.5)

Figures 3-2 (c) and (d) show the e�ect of the relative speed on the acceleration using
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this speci�cation for �g < 1 and �g > 1 respectively. We apriori expect �g to be

less than one for both the acceleration and deceleration due to the existence of a

maximum value for acceleration and deceleration that a driver can apply in reality.

The parameter �g can be tested statistically to determine whether it is signi�cantly

di�erent from one. Note that, �g = 1 corresponds to the speci�cation given by

Equation 3.4.

The GM Model (Equation 2.7) assumed the sensitivity term to be a nonlinear

function of the subject speed at time t and the space headway at time (t � �n). It

allowed a single set of parameters for both the acceleration and deceleration decisions.

Mathematically, this is given by:

s[Xcf
n (t� ��n)] = �

Vn(t)
�

�Xn(t� �n)

(3.6)

where, �; �; and 
 are constant parameters, and � is set to 0 and 1 for speed and

space headway respectively. We extend the GM Model by allowing di�erent sets of

parameters for the car{following acceleration and deceleration sensitivities, by incor-

porating the density of tra�c as explanatory variable into the sensitivity term, and by

allowing the time at which the explanatory variables are observed to be a parameter

to be estimated:

s[Xcf;g
n (t� ��n)] = �g Vn(t� ��n)

�g

�Xn(t� ��n)

g kn(t� ��n)

�g (3.7)

where,

�g; �g; 
g; �g = constant parameters,

kn(t� ��n) = density of tra�c ahead of the subject within

its view at time (t� ��n).

The parameter � captures the fact that drivers may update their perception of the

tra�c environment during the acceleration decision making process. Restricting �

to be equal to one implies that drivers do not update their perception of the tra�c
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environment and react (accelerate/decelerate) based on the tra�c conditions at the

time they observe the stimulus. In other words, � = 1 implies that the lag for

sensitivity and stimulus are equal, while, � < 1 implies that lag for sensitivity is

smaller than that for stimulus.

There are apriori expectations regarding the signs of the various parameters. The

constant �g in the sensitivity term should be positive and negative for the acceleration

and deceleration models respectively. In the car{following regime under acceleration

situations, drivers are likely to apply a lower acceleration at high speeds compared

to low speeds and therefore, the corresponding parameter �acc should be negative.

On the other hand, under deceleration situations, drivers are likely to apply a higher

deceleration at high speeds compared to low speeds which implies that �dec should

be positive. The sign of the parameter 
acc can either be negative or positive. Under

acceleration situations, drivers may apply a higher acceleration when space headways

are larger, implying a negative headway parameter, 
acc (i.e., the space headway

should be in the numerator of the sensitivity). However, as the space headway in-

creases, drivers may tend to follow the speed of the lead vehicle less and if this is the

case, 
acc would be positive. Under deceleration situations, drivers are likely to ap-

ply smaller decelerations at larger headways, implying a positive headway parameter,


dec.

Tra�c conditions ahead of the subject and its leader are likely to change more

rapidly at high densities than at low densities. Due to this, higher uncertainty is

involved in predicting the position and speed of the leader in the near future. In

addition, high tra�c density represents lack of maneuverability compared to low

tra�c density for both the subject and its leader. As a result, drivers are expected to

be more conservative at high densities than at low densities. Hence, at high densities

the subject is likely to accelerate at a lower rate, while decelerate at a higher rate.

These imply that, �acc and �dec are expected to be negative and positive respectively.

The random term captures the e�ect of omitted variables. It is assumed to be

independent for di�erent decisions of a given driver as well as for di�erent drivers.

The correlation between di�erent acceleration decisions of a given driver is assumed
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to be captured through the reaction time and headway threshold distributions. This

implies:

�cf;gn (t) � N (0; �2�cf;g)

cov
�
�cf;gn (t); �

cf;g0

n0 (t0)
�

=

8><
>:

�2�cf;g if g = g0; t = t0; n = n0

0 otherwise
(3.8)

3.2.2 The Free{Flow Acceleration Model

When the headway is greater than the threshold, the driver has the freedom to attain

its desired speed. Hence, the acceleration applied by a driver in this regime is assumed

to have the following functional form:

affn (t) = �ff [V �

n (t� �n)� Vn(t� �n)] + �ffn (t) (3.9)

where,

�ff = constant sensitivity,

V �

n (t� �n) = desired speed of the driver,

[V �

n (t� �n)� Vn(t� �n)] = stimulus,

�ffn (t) = random term associated with the free{
ow

acceleration of driver n at time t.

The desired speed of a driver is de�ned as the speed the driver wants to maintain

after considering the speed limit of the section it is traveling, vehicle's mechanical

capability, the e�ect of surrounding tra�c, the roadway and weather conditions, and

the geometry of the roadway section. The desired speed is assumed to have the

following functional form:
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V �
n (t� �n) = XDS

n (t� �n)�
DS (3.10)

where,

XDS
n (t� �n) = vector of explanatory variables a�ecting the desired speed (DS),

�DS = constant parameters.

Replacing the speci�cation of V �
n (t � �n) in Equation 3.9, the free{
ow acceleration

model becomes

affn (t) = �ff
h
XDS

n (t� �n)�
DS � Vn(t� �n)

i
+ �ffn (t) (3.11)

In this model, the acceleration at time t is assumed to be proportional to the stimulus|

the di�erence between the driver's desired speed and current speed at time (t� �n).

The sensitivity term is assumed to be a constant.

If the desired speed is higher than the current speed, drivers are expected to

accelerate and vice versa. The magnitude of the applied acceleration (deceleration)

depends on the di�erence between the current and the desired speeds.

Important explanatory variables a�ecting the desired speed of a driver include

geometry of the roadway (curvature, grade, lane width), pavement surface quality

(roughness, presence of pot holes), weather conditions, the speed limit of the roadway

section, density of tra�c ahead of the subject, speed of the vehicles ahead of the

subject (which is also a proxy for density and maneuverability), type of the vehicle,

and characteristics of the driver. For example, in a curved road or roadway with

grades (particularly upgrade) or in a roadway with rough pavement, vehicles tend

to slow down (thus the desired speed of drivers reduce) even when there is no lead

vehicle. Similarly, drivers often set their desired speed relative to the speed limit of

the roadway section. To estimate models with these site speci�c factors, data from

di�erent sites is necessary.
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High density of tra�c ahead of a driver within the driver's view, or a lower speed

of the lead vehicle reduces desired speed, as might be expected. And �nally, heavy

vehicles (for example, bus, truck, semi{trailer etc. that have length greater than 9.14

meters or 30 ft (AASHTO 1990)) have lower acceleration and deceleration capability

and hence respond slowly to free{
ow conditions.

We further assume that, �ffn (t) is normally distributed with zero mean and a

variance (�2�ff ), i.e., �
ff
n (t) � N (0; �2�ff ), and �ffn (t) is independent of the random

terms �cf;accn (t) and �cf;decn (t) for a given driver2.

Note that, since the desired speed of a driver cannot be observed, extending the

free{
ow acceleration model to have di�erent sensitivity under acceleration and de-

celeration situations cannot be done without increasing the complexity of the current

framework.

3.2.3 The Headway Threshold Distribution

The headway threshold, h�n, is assumed to be truncated normally distributed with

truncation on both sides. This distribution is given by:

f(h�n) =

8>>><
>>>:

1
�h

�

�
h�n��h
�h

�
�

�
h�max��h

�h

�
��

�
h�
min

��h

�h

� if h�min � h�n � h�max

0 otherwise

(3.12)

where,

�h; �h = constant mean and standard deviation of the untruncated

distribution,

h�min; h
�

max = minimum and maximum value of h�n (parameters to be estimated),

�() = probability density function of a standard normal random variable,

2As mentioned above, the correlation between the car{following and the free{
ow acceleration
decisions is assumed to be captured through the reaction time and headway threshold distributions.
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�() = cumulative distribution function of a standard normal random

variable.

The advantage of using a truncated normal distribution with mean, variance, and

the truncation ends (h�min and h�max) as parameters is that the distribution is not

restricted to be skewed to a particular direction. For instance, a distribution skewed

to the left implies that, the probability of a driver being aggressive is higher than

that of being conservative, since, an aggressive driver is expected to have a shorter

headway threshold compared to a conservative driver. The above treatment of the

headway distribution is a generalization over Subramanian (1996) who used a shifted

truncated lognormal distribution that restricts the distribution to be skewed to the

left.

Using Equation 3.12, the probability that driver n, who is hn(t) behind its leader,

is in the car{following regime is given by:

Pn(car{following at time t)

= P (hn(t) � h�n)

=

8>>>>>>><
>>>>>>>:

1 if hn(t) � h�min

1�
�

�
hn(t)��h

�h

�
��

�
h�
min

��h
�h

�
�

�
h�max��h

�h

�
��

�
h�
min

��h

�h

� if h�min < hn(t) � h�max

0 otherwise

(3.13)

At very large headways, it is unlikely that a driver would be in a car{following regime.

Hence, the corresponding probability is zero for headways greater than h�max. Simi-

larly, at very low headways it is unlikely that a driver would be in a free{
ow regime

and the corresponding probability of car{following is one for headways less than h�min.

3.2.4 The Reaction Time Distribution

The reaction time is assumed to be truncated log-normally distributed (i.e., skewed

to the left) as suggested by Subramanian (1996). This implies that the probability of

57



a driver having a smaller reaction time is higher than that of having a larger reaction

time. This was also supported by Johansson and Rumer (1971) and Lerner et al.

(1995). Truncation is assumed since reaction time is �nite. The distribution is as

follows:

f(�n) =

8>>>>>><
>>>>>>:

1

�
�
ln(�max)� ��

��

�
�n��

p
2�

e
�
1

2

�
ln(�n)� ��

��

�2

if 0 < �n � �max

0 otherwise

(3.14)

where,

�n = reaction time of driver n,

�� = mean of the distribution of ln(�n),

�� = standard deviation of the distribution of ln(�n),

�max = upper bound of the distribution of �n (parameter to be estimated).

The mean, median, and variance of the above distribution are as follows:

mean = exp(�� + 0:5�2� )
�

�
ln(�max)� ��

��
� ��

�

�

�
ln(�max)� ��

��

� (3.15)

median = exp

 
�� + ���

�1

 
0:5�

 
ln(�max)� ��

��

!!!
(3.16)

variance = e2��+��
�
e�

2
� � 1

� �
�
ln(�max)� ��

��
� 2 ��

�

�

�
ln(�max)� ��

��

� (3.17)

The mean of the distribution of ln(�n), �� , is assumed to be a function of explanatory

variables:

�� = X�
n �� (3.18)
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where,

X�
n = vector of explanatory variables,

�� = model parameters.

Important factors a�ecting the reaction time include age, mental condition, vis-

ibility, weather conditions, roadway geometry, vehicle characteristics, vehicle speed,

and tra�c conditions. Older drivers are expected to have longer reaction times. Poor

visibility increases driving di�culty and drivers are expected to be more alert. This

implies a reduction in reaction time. During rain or snow drivers are expected to be

more alert compared to good weather conditions. Roadway sections with high cur-

vature and/or high grade make driving more di�cult and hence would make drivers

more alert. At high speeds drivers are expected to be more alert compared to low

speeds due to safety reason. Tra�c conditions (such as the density of tra�c and the

gap in front of the subject) may also a�ect reaction time. Drivers may be more alert

in congested tra�c compared to free 
ow tra�c due to higher uncertainty involved

in predicting future tra�c conditions.

3.3 Likelihood Function Formulation

Using Equation 3.2 and the hypothesis that a driver in the car{following regime will

accelerate if the leader is faster and vice versa, the distribution of the car{following

acceleration, conditional on �n, is given by:

f
�
acfn (t) j �n

�
= f

�
acf;accn (t) j �n

��[�Vn(t��n)]
f
�
acf;decn (t) j �n

�(1��[�Vn(t��n)])

(3.19)

where,

�[�Vn(t� �n)] =

8><
>:

1 if �Vn(t� �n) � 0

0 otherwise
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Using Equations 3.2 and 3.8, the distribution of the car{following acceleration, con-

ditional on �n, are as follows:

f
�
acf;gn (t) j �n

�
=

1

��cf;g
�

 
acf;gn (t)� s[Xcf;g

n (t� ��n)] f [�Vn(t� �n)]

��cf;g

!

(3.20)

where, g 2 facc; decg. The free{
ow acceleration distribution, conditional on �n, is

given by:

f
�
affn (t) j �n

�
=

1

��ff
�

 
affn (t)� �ff [XDS

n (t� �n)�
DS � Vn(t� �n)]

��ff

!
(3.21)

Combining Equations 3.19 and 3.21, and using Equation 3.1, the distribution of

acceleration for driver n at time t, conditional on h�n and �n, is as follows:

f (an(t) j h�n; �n) = f
�
acfn (t) j �n

��[hn(t��n)]
f
�
affn (t) j �n

�(1��[hn(t��n)])
(3.22)

where,

�[hn(t� �n)] =

8><
>:

1 if hn(t� �n) � h�n

0 otherwise

As mentioned above, the reaction time and the headway threshold capture the cor-

relation between di�erent acceleration decisions at di�erent times for a given driver.

This implies that, conditional on �n and h�n, the Tn di�erent observations of driver n

are independent. Therefore, the conditional joint density of observing an acceleration

pattern associated with driver n, (an(1); an(2); : : : ; an(Tn)), can be expressed as the

product of the conditional densities of each element of the pattern. Mathematically,

this can be expressed as follows:

f(an(1); an(2); : : : ; an(Tn) j h�n; �n) =
TnY
t=1

f(an(t) j h�n; �n) (3.23)

The unconditional distribution that constitutes the likelihood function for driver
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n is:

f(an(1); an(2); : : : ; an(Tn)) =Z �max

0

Z h�max

h�
min

f(an(1); an(2); : : : ; an(Tn) j h�; �)f(h�) f(�) dh� d� (3.24)

Finally, assuming that the acceleration observations from di�erent drivers in the sam-

ple are independent, the log{likelihood function is given by:

L =
NX
n=1

ln[f(an(1); an(2); : : : ; an(Tn))] (3.25)

Maximizing the likelihood function would provide the MLE estimate of the model

parameters.

3.4 Conclusions

In this chapter, a rigorous framework for specifying and estimating the general accel-

eration model is presented that allows for joint estimation of all component models.

The component models are the car{following acceleration and deceleration models,

the free{
ow acceleration model, and the headway threshold and reaction time dis-

tributions.

The proposed model builds on the earlier work by Subramanian (1996) and extends

it. First, separate model parameters under acceleration and deceleration situations in

the car{following regime are allowed in the likelihood function formulation. Second,

the sensitivity of the car{following acceleration is extended to capture the e�ect of

tra�c conditions ahead of the driver, in addition to the relative position and speed

of its leader. Third, it allows the time at which the explanatory variables of the car{

following acceleration sensitivity are observed to be a parameter to be estimated (as

opposed to restricting it to be the time at which the stimulus is observed). Fourth,

the stimulus of the car{following acceleration is extended by making it a nonlinear

function of the lead relative speed. And �nally, a more general headway threshold
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distribution is used that allows any driver behavior to be captured (aggressive or

conservative).
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Chapter 4

The Lane Changing Model

In this chapter, the lane changing model is presented. Lane changes are classi�ed

as either mandatory or discretionary. When a lane change is required due to, for

example, a lane drop, the operation is called a mandatory lane change (MLC). On

the other hand, when lanes are changed by a driver to improve perceived driving

conditions, the operation is called a discretionary lane change (DLC).

The proposed mandatory lane changing model extends the work by Ahmed et al.

(1996) by developing a new model for heavily congested tra�c. Under heavily con-

gested tra�c, gaps of acceptable lengths are hard to �nd. Hence, a forced merging

model is proposed which captures merging by gap creation either through courtesy

yielding of the lag vehicle in the target lane or through the subject forcing the lag

vehicle to slow down.

This chapter begins by presenting the conceptual framework of the proposed lane

changing model. The model along with the likelihood function formulation is pre-

sented next. Then, the complexities associated with modeling the impact of past lane

changing decisions on the current lane changing decision are discussed. This chap-

ter concludes by presenting the conceptual framework, the model, and the likelihood

function formulation of the forced merging model.
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4.1 Introduction

A lane change decision process is assumed to have the following three steps:

� decision to consider a lane change (either a DLC or an MLC),

� choice of a target lane, and

� acceptance of a gap in the target lane.

Modeling such a process is extremely complicated. First, the entire lane change

decision process is latent in nature. All that is observed is the execution of the

lane change decision|the �nal acceptance of a gap. Second, the time at which a lane

change decision is made cannot be observed in general1. Furthermore, once a decision

to change lanes is made, a driver may continue to search for gaps or may change its

mind|all of which are unobserved. Finally, the lane changing decision is continuous

in nature.

To simplify the modeling, time is discretized. Furthermore, drivers are assumed to

make decisions about lane changes at every discrete point in time irrespective of the

decisions made during earlier time periods. In other words, we do not explicitly model

the impact of past lane changing decisions on the current lane changing decision. The

complexities associated with capturing such behavior are discussed in Section 4.2.4.

The impact of past decisions on the current decision, however, is captured in the

proposed forced merging model. Due to their di�erent structures, the lane changing

and forced merging models are presented separately.

1Merging from an on{ramp to a freeway is a notable exception, since as soon as a driver arrives at
the merging point, the driver would recognize the necessity of performing a mandatory lane change.
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4.2 The Lane Changing Model

4.2.1 Conceptual Framework

The lane changing model structure is shown in Figure 4-1. As mentioned above, ex-

cept for the completion of the execution of the lane change, the whole decision process

is latent in nature. The latent and observable parts of the process are represented by

ovals and rectangles respectively.

driving
conditions

satisfactory

Right Lane

Gap
Reject

Gap
Accept

MLC

other
lanes

Gap
Reject

Gap
Accept

Left Lane Right Lane

Gap
Reject

Gap
Accept

MLC

Gap
Reject

Gap
Accept

Start

Left Lane

Current
Lane

Left
Lane

Right
Lane

Left
Lane

Right
Lane

Current
Lane

Current
Lane

Current
Lane

Current
Lane

driving
conditions not

satisfactory

current
lane

Current
Lane

Figure 4-1: The lane changing model structure.

The MLC branch in the top level corresponds to the case when a driver decides

to respond to the MLC condition2. Explanatory variables that a�ect such decision

include remaining distance to the point at which lane change must be completed,

the number of lanes to cross to reach a lane connected to the next link, delay (time

elapsed since the MLC conditions apply), and whether the subject vehicle is a heavy

2When a mandatory lane changing situation does not apply, the probability of responding to
MLC is set to zero.
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vehicle (bus, truck, semi{trailer etc.). Drivers are likely to respond to the MLC

situations earlier if it involves crossing several lanes. A longer delay makes a driver

more anxious and increases the likelihood of responding to the MLC situations. And

�nally, due to lower maneuverability and larger gap length requirement of heavy

vehicles as compared to their non{heavy counterparts, they have a higher likelihood

of responding to the MLC conditions.

The MLC branch corresponds to the case where either a driver does not respond

to an MLC condition, or that MLC conditions do not apply. A driver then decides

whether to perform a discretionary lane change (DLC). This comprises of two deci-

sions: whether the driving conditions are satisfactory, and if not satisfactory, whether

any other lane is better than the current lane. The term driving conditions satisfac-

tory implies that the driver is satis�ed with the driving conditions of the current lane.

Important factors a�ecting the decision whether the driving conditions are satisfac-

tory include the speed of the driver compared to its desired speed, presence of heavy

vehicles in front and behind the subject, if an adjacent on{ramp merges with the

current lane, whether the subject is tailgated etc. If the driving conditions are not

satisfactory, the driver compares the driving conditions of the current lane with those

of the adjacent lanes. Important factors a�ecting this decision include the di�erence

between the speed of tra�c in di�erent lanes and the driver's desired speed, the den-

sity of tra�c in di�erent lanes, the relative speed with respect to the lag vehicle in

the target lane, the presence of heavy vehicles in di�erent lanes ahead of the subject

etc. In addition, when a driver considers DLC although a mandatory lane change

is required but the driver is not responding to the MLC conditions, changing lanes

opposite to the direction as required by the MLC conditions may be less desirable.

If a driver decides not to perform a discretionary lane change (i.e., either the driving

conditions are satisfactory, or, although the driving conditions are not satisfactory,

the current is the lane with the best driving conditions) the driver continues in the

current lane. Otherwise, the driver selects a lane from the available alternatives and

assesses the adjacent gap in the target lane.

The lowest level of ovals in the decision tree shown in Figure 4-1 corresponds
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to the gap acceptance process. When trying to perform a DLC, factors that a�ect

drivers' gap acceptance behavior include the gap length, speed of the subject, speed

of the vehicles ahead of and behind the subject in the target lane, and the type of

the subject vehicle (heavy vehicle or not). For instance, a larger gap is required

for merging at a higher travel speed. A heavy vehicle would require a larger gap

length compared to a car due to lower maneuverability and the length of the heavy

vehicle. In addition to the above factors, the gap acceptance process under the MLC

conditions is in
uenced by factors such as remaining distance to the point at which

lane change must be completed, delay (which captures the impatience factor that

would make drivers more aggressive) etc.

Note that, delay cannot be used as an explanatory variable except for very spe-

cialized situations, for example, merging from an on{ramp. This is because the very

inception of an MLC condition is usually unobserved. The speci�cation of the com-

plete model is presented next.

4.2.2 Model Formulation

The decisions in the hierarchy shown in Figure 4-1 can be modeled using the random

utility approach (Ben-Akiva and Lerman 1985). The model formulation must explic-

itly capture the fact that, the available data for lane changing model estimation is

panel data. Model formulation appropriate for panel data is presented in Appendix

A.

The Lane Selection Model

As mentioned above, the lane selection process consists of the top four levels of the

decision hierarchy shown in Figure 4-1. The top level, whether to respond to a

mandatory lane change (MLC) condition or not (MLC), can be modeled using a

discrete choice model, for example, a binary logit model. Using the formulation of

random term appropriate for panel data (see Appendix A), the probability that driver

n at time t will respond to MLC, conditional on the individual speci�c random term,
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�n, is given by:

Pt(MLC j �n) = 1

1 + exp(�XMLC
n (t)�MLC � �MLC�n)

(4.1)

where,

XMLC
n (t) = vector of explanatory variables a�ecting decision to respond to the

MLC conditions (discussed in Section 4.2.1),

�MLC = vector of parameters,

�n = individual speci�c random term assumed to be distributed

standard normal,

�MLC = parameter of �n.

The individual speci�c random term, �n, is introduced to capture the correlation

between di�erent observations from a given driver. If the correlation is not captured

it may introduce bias in the parameter estimates. The larger the product of the

parameter �MLC and the value of individual speci�c random variable, �n, the higher

is the probability that the driver would respond to an MLC condition earlier.

If a driver decides not to respond to anMLC condition, orMLC conditions do not

apply, a discretionary lane change (DLC) may be considered. The binary decision,

whether the driving conditions are satisfactory or not, can be modeled using a binary

logit model,

Pt(DCNS j �n) = 1

1 + exp(�XDCNS
n (t)�DCNS � �DCNS�n)

(4.2)

where, superscript DCNS denotes driving conditions not satisfactory. Generally, we

expect �MLC and �DCNS to have opposite signs, or, the two corresponding utilities

should have a negative correlation (see Equation A.4). This implies that, a driver

postponing a response to an MLC condition to be an aggressive driver and hence,

may have a higher propensity to perform a discretionary lane change.
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If the driving conditions are not satisfactory, drivers are assumed to compare the

driving condition of the current lane with the better among the left and right adjacent

lanes. The utilities of perceiving the driving conditions unsatisfactory and selecting

the other lanes over the current lane are expected to be positively correlated. Since

there is an e�ort/hassle associated with changing lanes which is not explicitly cap-

tured, the utility of the adjacent two lanes are likely to be correlated. The nested logit

model (Ben-Akiva and Lerman 1985) is a natural choice to capture such phenomenon.

First, the utilities of the two adjacent lanes are compared (the `left lane' versus `right

lane' decision under the `other lanes' oval in Figure 4-1). Then, the utility of the

`other lanes' is compared to the utility of the `current lane' to decide if the current

lane is the desired lane.

The output from the lane selection model is the probability of selecting each of the

three lanes in question. If the left or right lane is chosen, a driver seeks an acceptable

gap in the target lane. The gap acceptance model is presented next.

The Gap Acceptance Model

The gap acceptance model captures drivers assessment of gaps as acceptable or un-

acceptable. Drivers are assumed to consider only the adjacent gap. An adjacent gap

is de�ned as the gap in between the lead and lag vehicles in the target lane (see

Figure 4-2). For merging into an adjacent lane, a gap is acceptable only when both

lag gap lead gap

total clear gap + vehicle lengthX

X

Y

Y

lag vehicle lead vehicle

subject
front

vehicle

Figure 4-2: The subject, lead, lag, and front vehicles, and the lead and lag gaps.

lead and lag gaps are acceptable.

69



Drivers are assumed to have minimum acceptable lead and lag gap lengths which

are termed as the lead and lag critical gaps respectively. These critical gaps vary not

only among di�erent individuals, but also for a given individual under di�erent tra�c

conditions. The critical gap for driver n at time t is assumed to have the following

functional form3:

Gcr;g
n (t) = exp(Xg

n(t)�
g + �g�n + �gn(t)) (4.3)

where,

g 2 flead; lagg;
�g = parameter of �n for g 2 flead; lagg,

�gn(t) = generic random term that varies across all three dimensions, i.e.,

g; t; and n:

The exponential form of the critical gap guarantees that the estimated critical gap will

always be non-negative. The individual speci�c random term, �n, and its parameter

capture the correlation between the lead and lag critical gaps for a driver. This

correlation, especially under MLC conditions, is expected to be positive.

A conservative driver is expected to have a larger lead/lag critical gaps compared

to its aggressive counterpart. A larger product of �g and �n, g 2 flead; lagg implies
a larger critical gap length requirement, and hence, represents a conservative driver.

The lead/lag critical gaps are expected to be positively correlated with the utility

of responding to an MLC condition and negatively correlated with the utilities of

perceiving the driving conditions as unsatisfactory and selecting the other lanes over

the current lane.

Assuming �gn(t) � N (0; �2�g), i.e., the critical gap lengths are lognormally dis-

tributed, the conditional probability of acceptance of a gap is given by:

3Adopted from Ahmed et al. (1996).
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Pt(gapAcc j �n)
= Pt(lead gap acceptablej �n) Pt(lag gap acceptablej �n)
= P(Glead

n (t) > Gcr;lead
n (t) j �n) P(Glag

n (t) > Gcr;lag
n (t) j �n)

= P(ln(Glead
n (t)) > ln(Gcr;lead

n (t)) j �n) P(ln(Glag
n (t)) > ln(Gcr;lag

n (t)) j �n)
= �

 
ln(Glead

n (t))�X lead
n (t)�lead � �lead�n

��lead

!
�

�

 
ln(Glag

n (t))�X lag
n (t)�lag � �lag�n

��lag

!
(4.4)

where, Glead
n (t) and Glag

n (t) denote the lead and lag gaps (see Figure 4-2) respectively

and � denotes the cumulative distribution function of a standard normal random

variable. In addition to �'s and �'s, ��lead and ��lag are parameters that can be iden-

ti�ed. Normalization of ��lead or ��lag is not necessary since the variables `ln(G
lead
n (t))'

and `ln(Glag
n (t))' in Equation 4.4 do not have any coe�cient.

4.2.3 Likelihood Function Formulation

Drivers are assumed to consider the entire lane change decision process (Figure 4-1)

at every discrete point in time, for example, every second. Let the sequence of lane

changes performed by driver n be denoted as follows:

[Jn(1); Jn(2); : : : ; Jn(Tn)] (4.5)

where,

J 2 fL;R;Cg
L = change to the left lane,

R = change to the right lane,

C = continue in the current lane,

Tn = number of time periods driver n is observed.
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As mentioned above, the individual speci�c random term captures the correlation

between di�erent decisions at di�erent times for a given driver. Therefore, conditional

on the individual speci�c random term, the probability of observing a pattern for a

given driver can be expressed as the product of probabilities of observing each element

of the pattern. Mathematically, this can be expressed as follows:

P(J1n; J2n; : : : ; JTnn j �n) =
TnY
t=1

P(Jtn j �n)

=
TnY
t=1

Pt(L j �n)�Ltn Pt(R j �n)�Rtn Pt(C j �n)1��Ltn��Rtn

(4.6)

where,

�Jtn =

8><
>:

1 if driver n changes to J at time t (J 2 fL;Rg)
0 otherwise.

(4.7)

The unconditional probability of observing a pattern for a given driver is given by:

P(J1n; J2n; : : : ; JTnn) =
Z 1

�1

P(J1n; J2n; : : : ; JTnn j �)f(�)d�

where, f(�) denotes the distribution of �.

Assuming that the observations from di�erent drivers in the sample are indepen-

dent, the likelihood function for all drivers is:

L =
NX
n=1

lnP(J1n; J2n; : : : ; JTnn) (4.8)

where, N denotes the number of drivers.

The probability of staying in the current lane or changing to the left or right lanes

can be formulated using the decision tree of Figure 4-1. A driver may change to the

left lane when he/she:

� responds to MLC conditions, the left lane is chosen, and the lead and lag gaps

in the left lane are acceptable; or,
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� does not respond to MLC conditions or MLC conditions do not apply, per-

ceives the driving conditions as unsatisfactory, selects the other lanes over the

current lane, selects the left lane, and the lead and lag gaps in the left lane are

acceptable.

Therefore, the probability of an observation of change to the left lane, conditional on

�n, is:

Pt(L j �n) =
[Pt(gap acceptable j left lane chosen;MLC; �n)

Pt(left lane chosen jMLC; �n) Pt(MLC j �n)] +
[Pt(gap acceptable j left lane chosen; other lanes; driving conditions not

satisfactory;MLC; �n)

Pt(left lane chosen j other lanes; driving conditions not satisfactory;
MLC; �n)

Pt(other lanes j driving conditions not satisfactory;MLC; �n)

Pt(driving conditions not satisfactory jMLC; �n) Pt(MLC j �n)]

Similarly, the conditional probability of changing to the right lane or continuing in

the current lane can be formulated.

4.2.4 Discussions

Complexities Associated with Capturing the Impact of Past Lane Chang-

ing Decisions in the Lane Changing Model

In this section, the complexities associated with modeling the impact of past lane

changing decisions on the current lane changing decision are discussed with the help of

a simple example. Consider a vehicle that is observed in a two lane roadway for three

consecutive time periods during which time it did not change lanes and mandatory

lane changing conditions do not apply. To simplify the discussion further, we combine
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the two levels, `driving conditions satisfactory or not' and `other lane' or `current lane',

of the decision tree shown in Figure 4-1 into one level, DLC versus DLC. Here, DLC

implies that the driving conditions of the current lane is not satisfactory and another

lane (the left lane) is better than the current lane. Therefore, for this driver, the lane

changing decision tree shown in Figure 4-1 reduces to the one shown in Figure 4-3

(a). Since the driver did not change lanes, he/she may be in state `DLC and gap

reject given DLC' or in state `DLC' during these three time periods (see Figure 4-3

(b)).

As shown in Figure 4-3 (b), there are 23 = 8 possible state sequences that can

explain the three observations from the driver. If the driver is observed for Tn time

periods, the number of state sequences becomes 2Tn, i.e., the number of possible state

sequences increases exponentially with the number of times the driver is observed.

Therefore, the number of state sequences to explain a particular pattern of lane

(a) decision tree at any
instant of time

(b) possible states during the
three successive time periods

possible states
(arrows show state to state transitions)

DLC & gapRej | DLC DLC

DLC & gapRej | DLC

DLC & gapRej | DLC

DLC

DLC2

no1

no

time
period

lane
change

no3Same
Lane

gap
Acc

Target
Lane

Start

DLC

gap
Rej

Same
Lane

DLC

Figure 4-3: The lane changing decision tree for a driver driving in a two lane roadway

and possible states of the driver.

changing by a driver is prohibitively large from an estimation point of view. Further

research with various modeling approaches and approximations is necessary to capture

the impact of past lane changing decisions on the current lane changing decision.
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Limitations of the Proposed MLC Model

Vehicles in heavily congested tra�c travel at low speeds, with low space headways.

In such situations, it is likely that a driver, trying to change lanes, will not �nd a gap

that is larger than the driver's minimum acceptable gap length. In order to merge,

gaps have to be created either through the lag vehicle's courtesy yielding or through

the subject forcing the lag vehicle to slow down. The mandatory lane changing model

presented above, however, assumes that drivers would ultimately �nd an acceptable

gap. A forced merging model that captures driver decisions leading to a gap creation

is proposed in the following section.

4.3 The Forced Merging Model

We assume that a driver has decided to change to the adjacent lane (see Figure 4-4).

The merging process involves the driver's decision as to whether he/she intends to

merge into the adjacent gap and perception as to whether his/her right of way is

established, and �nally moving into the target lane. An adjacent gap is de�ned as the

gap behind the lead vehicle in the target lane. Establishment of right of way means

that an understanding between the subject and the lag vehicle in the target lane has

lead
vehicle

lag
vehicle

subject

}

adjacent gap
for the subject

target
lane

Figure 4-4: De�nition of the adjacent gap.

been reached such that the lag vehicle would allow the subject to be in front of it.

The conceptual framework of the proposed model is presented next.
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4.3.1 Conceptual Framework

The tree diagram in Figure 4-5 summarizes the proposed structure of the forced

merging model. As before, the ovals correspond to the latent part of the process

that involves decisions and the rectangles correspond to the events that are directly

observable.

MLC

Same
Lane

start
forced merging

(M)

Same
 Lane

Target
 Lane

do not start
forced merging

(M)

Figure 4-5: The forced merging model structure.

At every discrete point in time, a driver is assumed to (a) evaluate the tra�c

environment in the target lane to decide whether the driver intends to merge in front

of the lag vehicle in the target lane and (b) try to communicate with the lag vehicle to

understand whether the driver's right of way is established. If a driver intends to merge

in front of the lag vehicle and right of way is established, the decision process ends

and the driver gradually moves into the target lane. We characterize this instant by

state M , where M denotes start forced merging. This process may last from less than

a second to a few seconds. This is shown by the arrow below the left `same lane' box.

If right of way is not established, the subject continues the evaluation/communication

process (i.e., remains in state M) during the next time instant.
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4.3.2 Model Formulation

Let, Sn(t) denote the state of driver n at time t. Using a binary logit model and

the random utility speci�cation appropriate for panel data (see Appendix A), the

probability of switching to state M from state M , conditional on �n, is given by:

PfSn(t) = M j Sn(t� 1) = M; �ng = 1

1 + e�X
FM
n (t)�FM��FM�n

(4.9)

where, superscript FM implies forced merging. Important explanatory variables

include:

� lead relative speed only when the lead vehicle is slower: when the lead vehicle

is slower, the subject is more likely to slow down to match its speed with the

speed of the lead vehicle �rst so as to focus exclusively on the interaction with

the lag vehicle; this reduces the probability of being in state M ;

� lag relative speed: when the lag vehicle is faster, the subject is more likely to

speed up before attempting to establish right of way and hence this reduces the

probability of being in state M ;

� remaining distance to the point at which lane change must be completed by: as

the remaining distance decreases, drivers become more concerned about merging

and hence more aggressive. As a result, the probability of being in state M also

increases;

� delay (time elapsed since the mandatory lane change conditions apply): higher

delay makes a driver more frustrated and hence more aggressive, i.e., the prob-

ability of being in state M increases with additional delays4.

� total clear gap (equal to the sum of the lead and lag gaps, see Figure 4-2): a large

clear gap makes merging relatively easier and hence increases the probability of

being in state M ;

4As explained in Section 4.2.1, delay can be used as an explanatory variable only when the
starting point is well de�ned, for example, merging from an on{ramp to the freeway.
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� indicator for heavy vehicles (for example, bus, truck, semi{trailer): due to lower

maneuverability and larger gap length requirement of heavy vehicles as com-

pared to their non{heavy counterparts, they have a higher probability of being

in state M under similar conditions.

The likelihood function formulation is presented next.

4.3.3 Likelihood Function Formulation

At any discrete point in time, a driver may be in stateM orM (see Figure 4-5). Once

a vehicle is in state M , by de�nition, the decision process ends and the remaining

process is placing the vehicle in front of the lag vehicle, and the state of the driver

cannot return to M . The time taken in placing the vehicle in front of the lag vehicle

is captured by the arrow below the left `same lane' rectangle in Figure 4-5. This

implies the following:

PfSn(t0) =M j Sn(t) =M; �ng = 1 8 t0 > t (4.10)

PfSn(t0) =M j Sn(t) =M; �ng = 0 8 t0 > t (4.11)

We also assume that the initial state of the driver is M . Di�erent cases in which

forced merging can occur are shown in Figure 4-6. Time period 1 denotes the �rst

time period considered in the forced merging model and time period 0 denotes the

preceding time period. In the �rst two cases (Figures 4-6 (a) and (b)), i.e., merging

from an on{ramp and exiting, at time period 0 it is practically impossible to start

merging. Therefore, the initial state is M . On the other hand, in the last two cases

(Figures 4-6 (c) and (d)), the driver could be in state M or M at time 0. If a driver

is already in state M , then the sequence observed for the driver does not involve any

decision and therefore, the probability of the observing the sequence is not a function

of the model parameters to be estimated. In such cases, assuming drivers' state to be

M would be reasonable only if the length of the section (measured from the diverging

point toward the upstream direction) is large enough. A reasonable way to de�ne a

section large enough is 200 meters or more. Note that, in the last two cases delay
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data collection site

Target
Lane

1

(c) exiting, 2 lane changes required
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0

upstream end of the
data collection site

Target
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00
1

M M

M M

merging
point

Figure 4-6: Initial state of the driver for the forced merging model for di�erent cases.

cannot be used as an explanatory variable since the time instant at which the driver's

state became M for the �rst time cannot be observed.

Since, �n is assumed to capture the correlation between the utilities of di�erent

states at di�erent times, conditional on �n, the probability of being in state M at

time t, given all earlier states were M , is also given by Equation 4.9. Mathematically,

PfSn(t) =M j Sn(t0) =M; t0 = 0; 1; : : : ; (t� 1); �ng = 1

1 + e�X
FM
n (t)�FM��FM�n

(4.12)

The impact of being in state M during the earlier time periods on the probability of

being in state M at time t is captured through the explanatory variable delay.

Let, Tn be the number of time periods driver n was observed in the original lane.

There are Tn possible state sequences that may lead to observing driver n in the

target lane at time (Tn + 1). These sequences are listed in Table 4.1. Sequence 1 in

Table 4.1 implies that driver n reached state M at time period 1 and it took another
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Table 4.1: Possible decision state sequences of observing a lane change by forced

merging.

Time Observed Possible state sequences

Period lane 1 2 3 : : : t : : : Tn
1 SL M M M M M

2 SL M M M M M

3 SL M M M M M
...

...
...

...
...

...
...

t� 1 SL M M M M M

t SL M M M M M
...

...
...

...
...

...
...

Tn � 1 SL M M M M M

Tn SL M M M M M

Tn + 1 TL

Note: SL = same lane, TL = target lane

(Tn� 1) seconds to execute the lane changing process. Sequence 2 corresponds to the

case where driver n was in state M at time period 1, and in state M during the time

interval 2 to Tn. Similarly, Sequence t corresponds to the case that the driver was in

state M during the time interval 1 to (t� 1), and in state M during the time interval

t to Tn. Note that, these sequences are mutually exclusive.

As mentioned above, the individual speci�c random term, �n, captures the corre-

lation between di�erent decision elements at di�erent times for a given driver. There-

fore, conditional on �n, the probability of observing a particular state sequence for a

given driver can be expressed as the product of probabilities of observing each state

of the sequence. The conditional probability of observing the tth state sequence for

driver n is,
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Pnfstate sequencet j �ng =
PfSn(Tn) = M j Sn(t0) =M; 8t0 = t; : : : ; Tn � 1;

Sn(t
00) = M; 8t00 = 0; 1; : : : ; t� 1; �ng

PfSn(Tn � 1) =M j Sn(t0) = M; 8t0 = t; : : : ; Tn � 2;

Sn(t
00) =M; 8t00 = 0; 1; : : : ; t� 1; �ng : : :

PfSn(t) = M j Sn(t0) =M; 8t0 = 0; 1; : : : ; t� 1; �ng : : :
PfSn(2) =M j Sn(1) = M;Sn(0) =M; �ng
PfSn(1) =M j Sn(0) = M; �ng (4.13)

Using Equations 4.11 and 4.12,

Pnfstate sequencet j �ng
= PfSn(t) = M j Sn(t0) =M; 8t0 = 0; 1; : : : ; t� 1; �ng : : :

PfSn(2) =M j Sn(1) = M;Sn(0) =M; �ng
PfSn(1) =M j Sn(0) = M; �ng

= PfSn(t) = M j Sn(t0) =M; 8t0 = 0; 1; : : : ; t� 1; �ng �
t�1Y
t0=1

PfSn(t0) = M j Sn(t00) =M; 8t00 = 1; : : : ; t0 � 1; �ng (4.14)

Since, an observed lane change by a driver can be explained by any one of the

mutually exclusive state sequences listed in Table 4.1, the conditional likelihood func-

tion is the sum of the probabilities of observing all the sequences. This is given by:
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Ln(�
FM ; �FM j �n)

=
TnX
t=1

Pnfstate sequencet j �ng

= Pnfstate sequence1 j �ng+ Pnfstate sequence2 j �ng+ : : :+

Pnfstate sequenceTn j �ng
= [PfSn(1) =M j Sn(0) = M; �ng] +

[PfSn(2) =M j Sn(1) = M;Sn(0) =M; �ngPfSn(1) = M j Sn(0) =M; �ng] +
: : :+ [PfSn(Tn) =M j Sn(t0) = M; 8t0 = 0; 1; : : : ; Tn � 1; �ng

Tn�1Y
t0=1

PfSn(t0) =M j Sn(t00) = M; 8t00 = 1; : : : ; t0 � 1; �ng] (4.15)

Let us now introduce variable �FMtn de�ned as:

�FMn (t) =

8>>>>><
>>>>>:

1 if the adjacent gap at time t is the same gap

driver n ultimately merged into

0 otherwise

(4.16)

Figure 4-7 illustrates the meaning of the variable �FMn (t) with the help of an example.

The subject (vehicle C) was observed for 4 time periods in the original lane (the right

lane). Only during the 3rd and 4th time periods, vehicle C was adjacent to the gap

between vehicles A and B that it ultimately merged into. Therefore, the sequence of

�FM for this driver is f0,0,1,1g. Since, the driver was not adjacent to the gap between
vehicles A and B during the �rst two time periods, communication with vehicle B

cannot be established during these time intervals. Therefore, the driver cannot be

in state M during time periods 1 and 2. This implies that, the �rst two sequences

listed in Table 4.1 do not apply to this driver. While forming the likelihood function

for this driver, the �rst two sequences must be taken out of the likelihood function

(Equation 4.15). A convenient way of incorporating this into the likelihood function

for a general case is as follows:

Ln(�
FM ; �FM j �n) =

TnX
t=1

Pnfstate sequencet j �ng � �FMn (t) (4.17)

82



time = 1
delta = 0

time = 2
delta = 0

time = 3
delta = 1

time = 5
Lane change completed

time = 4
delta = 1

subject

AB

B

AB

A

A

A

B

B

C

C

C

C

C

Figure 4-7: De�nition of �FMn (t) for the forced merging model.

The unconditional likelihood function for driver n is

Ln(�
FM ; �FM) =

Z 1

�1

 
TnX
t=1

Pnfstate sequencet j �g � �FMn (t)

!
f(�)d� (4.18)

where, f(�) denotes, as before, the probability density function of the random variable

�.

Assuming that the observations from di�erent drivers in the sample are indepen-

dent, the log{likelihood function for all observations is given by:

L(�FM ; �FM) =
NX
n=1

ln

(Z 1

�1

 
TnX
t=1

Pnfstate sequencet j �g � �FMn (t)

!
f(�)d�

)
(4.19)
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4.3.4 Discussion

As mentioned above, in order to merge in heavily congested tra�c, drivers must

create gaps either through force or through courtesy yielding. A reasonable way to

de�ne heavy tra�c congestion is level of service F de�ned by the Highway Capacity

Manual (HCM 1985). The HCM characterizes this level of service as tra�c conditions

in which a breakdown of 
ow occurs and queues form behind breakdown points. At

this level of congestion, the probability of �nding acceptable gaps is very low and in

order to merge gaps have to be created. For level of services A through E, drivers are

assumed to merge by the gap acceptance process presented in Section 4.2.2.

The boundary (level of services F versus A through E) that is used to determine

whether to apply the usual gap acceptance process or the forced merging process is

rather arbitrary. Although the boundary can also be estimated formally (e.g. like the

headway threshold in the acceleration model), the process the drivers actually follow

may be di�erent. For example, drivers �rst search for acceptable gaps and consider

forced merging only when they perceive the probability of �nding acceptable gaps to

be very low. Further research is necessary to combine the mandatory lane changing

and forced merging models into a single framework which would apply to all level of

services. We leave this as a subject for future research.

4.4 Conclusions

In this chapter, a framework for modeling drivers' lane changing behavior was devel-

oped. A signi�cant enhancement to the state of the art is the development of the

forced merging model that captures merging behavior under heavy tra�c congestion.

This model is based on the assumption that in heavily congested tra�c, gaps of ac-

ceptable lengths are rare, and therefore, for a vehicle to merge, gaps must be created

either through courtesy yielding of the lag vehicle in the target lane or through the

subject forcing the lag vehicle to slow down.
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Chapter 5

Data Requirements for Estimating

Driver Behavior Models

In this chapter, the data required to estimate the acceleration and lane changing

models and the data that was obtained from real tra�c are presented. In addition,

a methodology for estimating instantaneous speed and acceleration that are required

for model estimation from discrete trajectory data that can be obtained from the �eld

is developed.

Data required to estimate the acceleration and lane changing models include the

position, speed, acceleration, and length of a subject vehicle and the vehicles ahead of

and behind the subject in the current lane as well as in adjacent lanes. Data on gap

lengths, headways, density of tra�c, etc. can be extracted from the above mentioned

data by simple addition and subtraction operations. In addition, to capture the im-

pact of site speci�c factors, such as the speed limit of a section, geometry (curvature,

grade, and lane con�guration) and whether the roadway section is a tunnel or not,

data from di�erent sites is required.

Typically, such data is collected using photographic and video equipment (see, for

example, Smith (1985)). The raw data collected through such devices is processed to

obtain useful information such as vehicle location at discrete points in time. Instan-

taneous speed and acceleration data, that is required for estimation of the models,

have to be inferred from the trajectory data.
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This chapter begins with a description of the method that is used to estimate

instantaneous speed and acceleration from discrete trajectory data. Then the data

collection strategy and the actual processing of the data is presented.

5.1 Methodology for Estimating Instantaneous Speed

and Acceleration from Discrete Trajectory Data

As mentioned above, the data usually available includes discrete measurements of

vehicle positions over time. A continuous function describing the vehicle trajectory

can be estimated from the discrete position observations using the local regression

procedure developed by Cleveland and Devlin (1988). Once the trajectory function,

X(t), is estimated, the �rst and second derivatives of the estimated trajectory function

at time t, provide estimates of the speed and acceleration at time t respectively.

Mathematically,

V (t) =
dX(t)

dt

a(t) =
d2X(t)

dt2
(5.1)

where,

V (t) = speed at time t,

a(t) = acceleration at time t.

In general, vehicles frequently stop in congested tra�c, often for signi�cant dura-

tions. Whether a vehicle is stopped or not, cannot be ascertained from the observed

trajectory, as there are measurement errors while collecting and processing the data.

A very high order polynomial would be necessary to �t a curve to the trajectories of

such vehicles. This gives rise to computational problems as the objective function of
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such problems becomes nearly singular1. Furthermore, even a high order polynomial

may not �t the data well during the instances when a vehicle is stopped. The local

regression procedure addresses some of these problems by �tting local curves using

the observations around the time period of interest which is described in more detail

in Section 5.1.1.

Local regression can be used to estimate a wide class of functions. Three major

uses of local regression were listed by Cleveland and Devlin (1988). First, a local

regression estimate can be used as a graphical exploratory tool to study the structure

of the data. This would help in choosing an appropriate functional form that �ts

the data. Second, it can be used to validate an already estimated model that used

a parametric class of models. And �nally, local regression estimates can be used in-

stead of regular regression estimates when dealing with data that require very 
exible

functional form. The application in this research falls in the third category.

5.1.1 The Local Regression Procedure

The local regression procedure has three basic elements: weight assignment, function

speci�cation, and neighborhood or window size. A unit weight is assigned to the

trajectory observation at the time period of interest (t) and a gradually decreasing

weight is assigned to the other points, depending on their distance from the tth ob-

servation. The window size around time t determines the number of points that are

used for �tting a polynomial curve of a suitable degree.

Weight Assignment. A tricube weight function with the following functional form

is used:

w(to; t) = (1� u(to; t)
3)3 (5.2)

1For polynomials of order 10 or above, the hessian of the objective function becomes nearly
singular as the independent variables (polynomial of time) vary from tens and twenties to billions.
This also depends on the precision of the computer. Nearly singular hessian makes the estimation
process computationally intensive and time consuming as the convergence rate reduces signi�cantly.
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where,

t = time period at which speed/acceleration estimates are desired,

w(to; t) = weight for observation at time to, to 2 f1; 2; : : : ; t; : : :g,
u(to; t) = distance function for an observation at to

=
j t� to j

d
;

d(t) = distance from t to the farthest point + constant.

A small constant is added to d so that the distance function, u, is less than one for the

observation farthest from t. This guarantees a non-zero weight for that observation.

Note that, 0 � u(to; t) < 1 and 0 < w(to; t) � 1 8to.
Function speci�cation. As mentioned above, the trajectory function, X(t), is

assumed to be a polynomial of time. The parameters of a polynomial are uniquely

identi�ed if the order of the polynomial is at most one less than the number of

observations (trajectory points). A perfect �t is obtained when the order of the

polynomial is one less than the number of points.

Window Size. The window size determines the number of points used in each local

regression. For example, a window size of 7 implies that the 7 closest (in terms of

time of observation) position measurements including the measurement at the time

period of interest (t) are considered for local �tting of data. The bias (variance) of

the estimated position increases (decreases) with increasing window size (Cleveland

et al. 1988). Depending on the type of application, the window size should be selected

such that either the bias or the variance or the mean square error of the estimates

is minimized. Note that, the mean square error is the sum of the bias squared

and the variance. Since the proposed curve �t algorithm uses inequality constraints

(discussed below), a close form solution for estimating the bias (or variance) does not

exist. Instead, a sensitivity analysis can be conducted to evaluate the impact of the

window size on the quality of the results (e.g. magnitude of the position estimation

errors, the speed and acceleration pro�les etc.).
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Mathematically, the curve �t problem using the local regression can be stated as:

min

t;s2<m

[X(t; s)� T (t; s) 
t;s]0 W (t; s) [X(t; s)� T (t; s) 
t;s] (5.3)

where,

t = time period at which speed/acceleration estimates are desired,

s = window size,

X(t; s) = vector of discrete trajectory observations corresponding to time

period t and window size s,

T (t; s) = matrix of independent variables, constant; time; time2; : : : ; timem,


t;s = vector of parameters corresponding the tth time period and window

size s,

m = order of the polynomial,

W (t; s) = weight function, a diagonal matrix.

The ith diagonal element of W (t; s) corresponds to the weight assigned to the ith

trajectory observation obtained by using Equation 5.2.

However, it is very common that in the data due to measurement errors, the mea-

sured position of a vehicle at two successive time periods may be decreasing. Hence,

a curve �tted to these points may yield an unrealistic (negative) speed and/or ac-

celeration estimates. To guarantee that the speed estimates are non{negative and

acceleration estimates are within the acceleration and deceleration capacities, Equa-

tion 5.3 has to be minimized subjected to the following set of constraints over the

range of time periods considered in a particular local regression:

speed � 0

acceleration � maximum deceleration

acceleration � maximum acceleration (5.4)
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The curve �t algorithm (Equation 5.3 subjected to constraints 5.4) is repeated for

each driver for each instant of time at which position, instantaneous speed and/or

acceleration are desired. Then for each instant of time, the �tted value of the poly-

nomial is used as an estimate of position and the �rst and second derivatives of the

polynomial as the speed and acceleration respectively.

Figure 5-1 shows an example of estimating the speed and acceleration at time
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measured position at time period 8 = 91.0480 m

estimated position at time period 8 = 90.8427 m

estimated speed at time period 8 = 0.82 m/s

estimated acceleration at time period 8 = −2.03 m/s2

original position
estimated trajectory function

Figure 5-1: An example of estimation of instantaneous speed and acceleration from

discrete position measurements.

period 8 from discrete position measurements of a vehicle using the local regression

methodology. A window of size 9 was used in this exercise. Figure 5-2 shows the

weight function used in this exercise and �tted curve. The trajectory function was

�tted from the discrete position measurements around time period 8 (time periods 4

to 12). As shown Figure 5-2, a very good �t of the data was obtained except for time

periods 8 and 9. Vehicle position at time periods 8 and 9 was measured at 91.05 and

91.04 meters respectively. Since, vehicle position cannot decrease (which implies an

unrealistic negative average speed), the position measurement either at time period
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Figure 5-2: The weight function and the �tted curve for an observation at time period

8.

8 or at time period 9 must be erroneous. When the local regression procedure is

used, the speed non{negativity constraint (Equation 5.4) takes care of this problem.

Using the local regression procedure, the position at time period 8 was estimated to

be 90.84 meters. Observe that, �tting a single curve to the observations in Figure 5-1

would require a polynomial of a very high degree.

5.2 Data Collection

Data was collected using standard video equipment. The video tapes were analyzed

using VIVA, an image processing software specially designed for tra�c application

(described in Section 5.2.2).

5.2.1 Description of the Data Collection Site

Video data of tra�c 
ow was collected on Interstate 93 at the Central Artery, located

in downtown Boston (the rectangle area in Figure 5-3). The video was processed using

the VIVA software package (described in Section 5.2.2). The manual and automatic

features of VIVA were used to process congested and uncongested to semi congested
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Figure 5-3: Schematic diagram of the I{93 southbound data collection site (�gure not

drawn to scale).

tra�c respectively to obtain discrete measurements of vehicle lengths and positions

over time. The processed data was then used to obtain vehicle trajectories.

The section has a three lane mainline (lanes 1 to 3) and a weaving lane (lane 4).

The mainline lanes continue into an underground tunnel. The weaving section leads

to Exit 22 (The South Station Exit). There are two more exits further downstream

from this section. The �rst exit is 1/4 mile away (Exit 21, The Kneeland Street and

Chinatown Exit) and the second exit is 1/2 mile away (Exit 20, The Massachusetts

Turnpike and Albany Street Exit).

Trajectory and vehicle length data was extracted for vehicles only when they were

within the rectangular area shown in Figure 5-3. The length of the recorded section

varied from 150 to 200 meters as di�erent zooms were used during the �lming process

(see Table 5.1). Data was collected for 2 hours starting at 10:26 a.m. (tape 1) on
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Table 5.1: Description of the collected tra�c video.

Date Time Length of the

(hrs) Section (meters)

tape 1 8/9/95 10:26 to 12:26 200

tape 2 12/10/97 12:30 to 13:00 165

tape 3 12/10/97 13:09 to 13:39 190

tape 4 12/10/97 13:47 to 14:17 150

tape 5 12/10/97 14:25 to 14:55 180

August 9, 1995, and for 30 minutes each starting at 12:30 p.m. (tape 2), 1:09 p.m.

(tape 3), 1:47 p.m. (tape 4), and 2:25 p.m. (tape 5) on December 10, 1997. On both

days of recording, the sky was overcast with periodical sunshine.

Vehicles that traveled in the mainline lanes and made no lane changes provide sam-

ples for estimating the acceleration model. Vehicles from lanes 2 or 3, that changed to

the left adjacent lane or did not change lanes within the data collection site, provide

samples for estimating the discretionary lane change model (see discussion on page

121). Vehicles that traveled from the on{ramp and merged with the mainline provide

samples for estimating the mandatory lane change and forced merging models.

5.2.2 Video Processing Software

VIVA2 (Video Tra�c Analysis System) is an image processing software developed at

Universitat Kaiserslautern, Germany. It is capable of measuring positions of vehicles

from video images. It has both an automatic and a manual feature. The automatic

feature extracts positions of all vehicles within the video image in real time. However,

in heavily congested tra�c, due to lack of spacing between vehicles, the software

runs into di�culty in identifying front and rear bumpers of closely spaced vehicles

and hence the position estimates become unreliable. In such situations, the manual

feature can be used to identify vehicle positions (by clicking on the screen) and the

software generates the coordinates of vehicle positions. The manual process, however,

2Information about this software package may be found in the World Wide Web at the URL
http://transport.arubi.uni{kl.de/ViVAtra�c/English.
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is very time consuming. An initial testing indicated that the manual feature requires

approximately 30 person{hours to process one minute of video data.

The accuracy associated with the position measurements from the video images

depends on the sharpness of the images and the scale of the images. In the automatic

feature, VIVA uses the contrast between the image of a vehicle and that of the under-

lying pavement to identify the vehicle. In the manual process, the user identi�es the

vehicle. Therefore, a sharper image compared to a blurred image and a larger scale3

compared to a smaller scale would increase the accuracy with which the bumpers of

the vehicles can be identi�ed on which the accuracy of position measurement depends.

The position measurement error for the video that we collected was estimated to be

�1 meter.

5.2.3 Processing the Tra�c Data

Description of the Trajectory Data

The trajectory data obtained from processing the video data with VIVA included

vehicle position recorded at discrete time points. The methodology described in

Section 5.1 was used to develop vehicle trajectories and subsequently speed and ac-

celeration pro�les for each vehicle.

The �rst row of plots in Figure 5-4 shows minute by minute tra�c 
ow at the

upstream end of the data collection site, and the second and the third row of plots

show second by second density and average speed of all vehicles of the mainline (lanes

1 to 3) respectively. The �rst column of plots corresponds to tape 1 data, the second

column of plots corresponds to tape 2 data and so on.

Nine minutes of trajectory data was extracted from tape 1 using the manual

feature of VIVA as tra�c was extremely congested and at times stopped and the

software's automatic data extraction feature would not work in such tra�c conditions.

Using the automatic feature, for the other four tapes that had less congestion, 30, 30,

21, and 18 minutes of trajectory data were extracted.

3A larger scale compared to a smaller scale implies that a vehicle would appear larger.
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Figure 5-4: Flow, density, and average speed of the I{93 southbound trajectory data.

Although in the �rst 9 minutes of data, 
ow was in the order of 800 to 1300

vehicles/hr/lane (compared to a capacity of approximately 2000 vehicles/hr/lane),

due to conditions downstream of the data collection site, tra�c moved very slowly.

This may have been in part due to a high volume of tra�c trying to perform a lane

change to take the two exits a quarter mile and a half mile downstream. The density,

as shown in the 1st plot of row 2 in Figure 5-4, was always above 41 vehicles/km/lane

which corresponds to level of service F (HCM 1985). The average speed of tra�c

across the mainline lanes varied from 3 to 10 m/s (meters per second) which is also
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indicative of the heavy congestion.

Tra�c in the last four tapes varied from free 
ow to semi congested with level of

service between A and E. The last four columns of the �rst row of plots in Figure 5-4

show that the 
ow varied from 1000 to almost 2000 vehicles/hr/lane. Density, shown

in the last four plots of the second row, varied from 0 to 40 vehicles/km/lane and

never exceeded 41 vehicles/km/lane. The average speed of the mainline tra�c varied

from 15 to 33 m/s.

Estimation Results using the Local Regression Procedure

Window Size Selection

As mentioned above, depending on the type of application, the window size should

be selected such that either the bias or the variance or the mean square error of

the estimates is minimized. However, a close form solution for estimating the bias

(or variance) does not exist since the curve �t algorithm uses inequality constraints

(Equation 5.4). We, instead, conducted a sensitivity analysis to evaluate the impact

of window size on the quality of the results. For this analysis we have used odd

number of window sizes (e.g. 7, 9, 11 etc.) to make the number of observations

before and after the time period of interest equal. The minimum window selected

was 7. The reason for this choice is the following: with window size equal to 5, the

order of the polynomial cannot exceed 4. As a result, the order of the polynomial

representing the acceleration pro�le would be 2 (since the acceleration is obtained

by taking the second derivative of the trajectory function). This implies that, the

curvature of the acceleration pro�le (i.e., its second derivative) is restricted to be a

constant. Windows of size 7 and above do not su�er from such a limitation.

The curve �t procedure was repeated for a subset of vehicles using window sizes

7, 9, 11, 13, and 15. Figure 5-5 shows the histograms of the absolute values of the

position estimation error corresponding to the measured position of a driver using dif-

ferent window sizes. Although, in this case the mean of the absolute errors increased

with the window size, such phenomenon was not observed when the sensitivity anal-

ysis was performed on the trajectories of other vehicles. Considering the �1 meter
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Figure 5-5: Histograms of the absolute values of the position estimation error using

di�erent window sizes.

accuracy associated with recording vehicle trajectories, the magnitude of errors for

di�erent window sizes is within a reasonable range.

The estimated speed and acceleration pro�les of the vehicle for di�erent window

sizes are shown in Figure 5-6. Except for the �rst and last time periods, the speed and

acceleration estimates do not di�er signi�cantly. Therefore, speed and acceleration

estimates at these boundary points should not be used in estimating di�erent driver

behavior models. On the basis of these plots, any window size between 7 to 15 can be

considered acceptable. Of these sizes, 9 was chosen since it strikes the best balance

between accuracy and computational e�ort. Errors for window size greater than or

equal to 9 were very similar (especially for the case of stopped vehicles).

Examples

Figure 5-7 shows two examples of curve �tting to the whole trajectory by applying

the local regression procedure described above. In the second example (second plot

of Figure 5-7), the vehicle was stopped for a few seconds. As shown in the �gure, a
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Figure 5-6: Estimated speed and acceleration pro�les using di�erent window sizes.

very good �t of the model was obtained in both cases.

Data for Estimating the Acceleration Model

The data required for estimating the acceleration model includes acceleration, speed,

headway, and type of the subject vehicle, speed and type of its leader's vehicle, density

ahead4 of the subject, roadway curvature, grade, speed limit of the roadway section,

and pavement surface quality.

The trajectory information described above was used to estimate acceleration,

4Although the data collection section is fairly straight, a visibility distance of 100 meters ahead
of the driver was used while computing the explanatory variable density ahead. If, however, the
distance from a vehicle' current position to the downstream end of the data collection site is less
than 100 meters, the density of tra�c ahead computed while this distance was greater than 100
meters is used as the density for this case.
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Figure 5-7: Examples of curve �tting by local regression.

speed, and space headways. The tapes were also used to collect data on vehicle

length. Since the data was collected only from one site, site speci�c explanatory

variables (for example, geometric characteristics) cannot be used. Observations for

a driver were recorded from the instant the driver reached the upstream end of the

data collection site. A sample of 1647 observations from 402 drivers was used for

estimation.

An acceleration observation was recorded at a time instant such that the data

on the tra�c conditions �max seconds (the maximum reaction time) earlier can be

obtained. We adopted the maximum of the range of �max to be considered while

estimating the model equal to 4 seconds. This is because, 4 seconds is the most

conservative value suggested in the literature (see, for example, Johansson and Rumer
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(1971), Lerner et al. (1995), and Homburger and Kell (1988)). Therefore, the �rst

acceleration observation was recorded at the 5th second. Furthermore, since reaction

time cannot vary for a given driver observed over a short period of time, explanatory

variables for the reaction time model (for example, average front vehicle speed to be

used as a proxy for vehicle travel speed) were obtained by averaging the observations

recorded during the �rst �ve seconds, i.e., before the �rst acceleration observation

recorded for the driver.

Figure 5-8 shows the histograms of the acceleration, subject speed, front relative
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Figure 5-8: Histograms of the acceleration, subject speed, relative speed, time and

space headway, and density in the data used for estimating the acceleration model.

speed, time and space headways, and density of tra�c ahead of the subject of all
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vehicles in the data. The second plot of Figure 5-8 shows two regimes: regime one

represents heavily congested tra�c with speeds varying between 0 and 12 m/s and the

tra�c density varying between 40 and 102 veh/km/lane, and regime two represents

semi congested to uncongested tra�c with speeds varying between 12 and 32 m/s

and density below 40 veh/km/lane. Table 5.2 shows more statistics of the data.

Table 5.2: Statistics of the data used for estimating the acceleration model.

acce- front time space density
leration speed Vehicle headway headway ahead
(m/s/s) (m/s) speed (m/s) (sec) (m) (veh/km/lane)

maximum 7.28 27.1 32.3 15.1 152.1 102.0
minimum -5.73 1.01 0.4 0.1 0.1 0.0
mean 0.12 7.2 7.5 2.4 17.2 64.4
median 0.19 5.7 5.8 2.2 12.1 66.7
std. dev. 1.29 5.2 6.0 1.3 17.2 19.8

number of drivers = 402
number of observations = 1647
percent of acceleration observations = 56.0 %
mean and standard deviation of all acceleration observations: 1.02, 0.78
mean and standard deviation of all deceleration observations: -1.02, 0.81
percent of heavy vehicle = 19%

The speed of the subject vehicle varied from 1 to 27 m/s. The tra�c density varied

between 7 and 103 vehicles/km/lane. The time headway varied from a fraction of a

second to 15 seconds while the space headway varied from less than 5 meters to 152

meters. 54.0% of the observations were acceleration observations while the rest were

deceleration observations. 19% of the vehicles were heavy vehicles (length greater

than 9.14 meters or 30 feet). The data, therefore, represents a wide range of tra�c

conditions.

Data for Estimating the Discretionary Lane Changing Model

The data used for estimating the discretionary lane changing model consists of ob-

servations from 843 drivers. The total number of gaps observed was 4335, and the

number of discretionary lane changes was 75
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For each gap and driver, the data provides information on the lead, lag, and front

gaps, vehicle length, speed, and acceleration of the subject, front, lead and lag vehicles

(see Figure 5-9 for de�nition of di�erent vehicles and gaps), density of tra�c in the

lag gap lead gap

total clear gap + vehicle length

lag vehicle lead vehicle

subject
front

vehicle

Figure 5-9: The subject and the front, lead, and lag vehicles.

current and target lanes, and whether the driver merged into this gap.

In some cases, there was no lead vehicle within the data collection site (rectangle

area in Figure 5-3). To obtain the lead gap, the trajectory data from earlier time

periods was searched to �nd the last vehicle that crossed the downstream boundary

of the site from the target lane. Assuming that the vehicle continued in the same

lane with the same speed, the lead vehicle's position was extrapolated to the time

period in question to calculate the lead gap. Similarly, when there was no lag vehicle

in the target lane, trajectory data from later time periods was searched to �nd the

�rst vehicle that entered the upstream end of the target lane. Again, assuming that

the lag vehicle traveled with the speed of its �rst appearance during this time span,

the lag vehicle's position was extrapolated backwards to the time period in question

to calculate the lag gap.

Statistics corresponding to the gaps that the drivers merged into (i.e., the gaps

that were acceptable to the drivers) are shown in Table 5.3. The density of tra�c in

the target lane varied from 0 to 85 vehicles/km/lane. Vehicle speeds varied from 2 to

38 m/s with a mean around 18 m/s. As before, this represents a wide range of tra�c

conditions.
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Table 5.3: Statistics of the discretionary lane changing model data corresponding to

the gaps that the drivers merged into.

current target lead lag front
lead lag front lane lane veh. veh. veh.
gap gap gap density density speed speed speed speed
(m) (m) (m) (veh/km) (veh/km) (m/s) (m/s) (m/s) (m/s)

max. 192.5 232.5 166.6 84.9 75.8 28.1 37.9 25.7 37.3
min. 1.7 2.5 0.1 0.0 0.0 3.5 5.4 1.9 2.0
mean 35.1 36.1 29.5 24.8 22.3 16.9 20.1 16.8 17.4
median 22.3 26.9 16.2 18.2 16.9 18.5 22.8 19.4 19.3
std. dev. 41.8 34.5 35.0 21.4 16.1 7.0 8.1 6.5 7.9

number of drivers = 843
number of observations = 4335
number of lane change observations = 75
percent of heavy vehicle (vehicle longer than 9.14 m) = 22%

Data for Estimating the Mandatory Lane Changing Model

This data consists of observations from vehicles merging from the on{ramp to the

mainline. As mentioned in Section 4.3.4, we assumed that drivers merge by gap

acceptance when the level of service of the roadway section is between A and E and

by gap creation (i.e., forced merging) when level of service is F. Therefore, to estimate

the mandatory lane changing model, observations were recorded only when the level of

service was between A and E, i.e., density was less than 41 vehicles/km/lane. A total

of 500 observations was recorded from 202 drivers. For each driver, the observation

includes a series of gaps. The last gap observed by each driver before he/she changed

lanes, was considered acceptable, since at the next time period the driver was observed

in the target lane.

The variables of interest for each gap and driver include the lead, lag, and front

gaps, vehicle length, speed, and acceleration of the subject, front, lead and lag vehi-

cles, delay or time elapsed since the subject crossed the merging point between the

on{ramp and the freeway (section X{X in Figure 5-10), remaining distance to point at

which the lane change must be completed (section Y{Y in Figure 5-10), and density

of tra�c in the target lane.
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Figure 5-10: The subject, lead, lag, and front vehicles, and the lead and lag gaps.

Similar to the discretionary lane change data, in some cases there was no lead

and/or lag vehicle within the data collection site. The technique described in Sec-

tion 5.2.3 was applied here as well to infer the lead/lag gaps for such cases.

Statistics corresponding to the gaps that the drivers merged into (i.e., the gaps

that were acceptable to the drivers) are shown in Table 5.4. The maximum and

minimum delays in merging were 5 and 0 seconds respectively with a mean and

Table 5.4: Statistics of the mandatory lane changing model data corresponding to
the gaps that the drivers merged into.

rem. adjac. lead lag front
lead lag dis- lane veh. veh. veh.
gap gap delay tance density speed speed speed speed
(m) (m) (sec.) (m) (veh/km) (m/s) (m/s) (m/s) (m/s)

max. 302.7 188.1 5.0 179.9 33.96 25.90 35.92 29.03 30.95
min 1.2 2.1 0.0 47.6 0.00 9.09 6.52 7.49 9.07
mean 44.8 36.2 1.8 129.5 15.83 18.48 20.86 18.10 20.78
median 28.3 27.4 2.0 135.4 15.92 18.75 20.36 18.23 20.94
std. dev. 44.6 31.4 1.2 26.4 8.36 3.14 4.71 3.11 4.43

number of drivers = 202
number of observations = 500
percent of heavy vehicle (vehicle longer than 9.14 m) = 4.5%

standard deviation of 1.8 and 1.2 seconds respectively. The density of tra�c in the

target lane varied from 0 to 34 vehicles/km/lane|which is rather low and explains

why the drivers experienced lower delay in merging. Vehicle speeds varied from 7 to
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36 m/s with a mean around 20 m/s. The remaining distance to the point at which

lane change must be completed varied from 48 to 180m with a mean, median, and

standard deviation of 130, 135, and 26 meters respectively. This implies that, for

a majority of the drivers in this data, remaining distance may not have signi�cant

in
uence on the merging process.

Data for Estimating the Forced Merging Model

The data consists of observations from vehicles merging from the on{ramp to the

adjacent mainline. As mentioned in Section 4.3.4, we assumed that drivers merge by

gap creation (i.e., forced merging) when the level of service of the roadway section is

F. Therefore, observations were recorded only when the level of service was F, i.e.,

the tra�c density was more than 41 vehicles/km/lane. A total of 998 observations

was recorded from 79 drivers. Descriptive statistics of the data corresponding to the

observations for the forced merging model are presented in Table 5.5.

Table 5.5: Statistics of the data used for estimating the forced merging model.

rem. mainline target lead lag
lead lag dis- lane lane veh. veh.
gap gap delay tance density density speed speed speed
(m) (m) (sec.) (m) (veh/km) (veh/km) (m/s) (m/s) (m/s)

max. 31.8 56.9 28.0 154 72.5 75.8 15.1 12.8 11.6
min -13.2 -12.2 0.0 23 41.0 20.2 0.0 0.0 0.0
mean 4.3 7.8 9.5 103 57.9 58.8 5.1 5.2 5.0
median 3.7 3.6 8.0 102 59.0 60.7 4.8 5.1 4.8
std. dev. 6.0 11.9 6.3 27 7.9 10.1 2.8 2.5 2.6

number of drivers = 79
number of observations = 566
percent of heavy vehicle (vehicle longer than 9.14 m) = 5.1%

The variables in the data, for each gap and driver, are the lead and lag gaps,

vehicle length, speed, and acceleration of the subject, lead and lag vehicles, time

elapsed since the subject crossed the merging point between the on{ramp and the

freeway (section X{X in Figure 5-10), remaining distance to point at which the lane
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change must be completed (section Y{Y in Figure 5-10), and density of tra�c in the

mainline lanes and the target lane.

The lead gap varied from -13.25 to 32 meters with a mean of 4.3 meters. The

lag gap varied from -12 to 57 meters with a mean of 8 meters. The mean delay

experienced by the drivers was 9.5 seconds compared to 1.8 seconds observed in the

mandatory lane changing data (Table 5.4). The mainline tra�c density varied from

40 to 73 vehicles/km/lane with a mean of 58 vehicles/km/lane representing a very

congested tra�c. The average speed of vehicles was around 5 m/s.

5.3 Conclusions

In this chapter, a methodology to estimate instantaneous speed and acceleration that

are required for model estimation from trajectory data that can be obtained from

the �eld using video technology is described. The methodology is based on the local

regression procedure of Cleveland and Devlin (1988). The main advantage of this

procedure, over the conventional regression, is that it allows for estimating position,

speed, and acceleration pro�les that, otherwise, would require �tting polynomials of

a very high order. Although local regression estimates are less e�cient, the 
exibility

of the method outweighs this disadvantage.

The characteristics of the freeway trajectory data (collected in the Central Artery,

Boston) are also described. The data represents a wide range of tra�c conditions,

from very congested stop{and{go tra�c to free 
ow. The tra�c density varied from

no vehicles within the data collection site to 90 vehicles/km/lane. In addition to the

length of each vehicle that traveled in the section, the data contains position, speed,

and acceleration of every vehicle for every second. Finally, descriptive statistics of

the data used to estimate the acceleration model, the discretionary and mandatory

lane changing models, and the forced merging model are presented.

5In this case, the lead vehicle and the subject were overlapping and the lead vehicle was a heavy
vehicle.
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Chapter 6

Estimation Results

In this chapter, estimation results of the acceleration and lane changing models, using

the data described in Chapter 5, are presented. Along with the estimation results,

assessment of the parameter estimates from statistical and behavioral standpoints are

also presented.

In addition, parameter estimates of the car{following model, the headway thresh-

old and reaction time distributions, and the gap acceptance model under mandatory

lane changing situations are compared to those estimated by other researchers. No

such comparison can be made for parameters of the free{
ow acceleration model, the

discretionary lane changing model, and the forced merging model since these have

not been estimated before.

6.1 Estimation Results of the Acceleration Model

Given the complexity of the likelihood function, the estimation of the parameters was

simpli�ed by estimating the values of h�min, h
�
max, and �max non{parametrically. The

overall estimation approach was based on the following algorithm:

1. Set fh�min; h
�
max; �maxg to reasonable initial values.

2. Using the current values of fh�min; h
�
max; �maxg specify and estimate the model

using the maximum likelihood method (Equation 3.25).
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3. Estimate the parameters of the model speci�cation in step 2 for di�erent set

of values of fh�min; h
�
max; �maxg. Through this grid search procedure obtain the

best fh�min; h
�
max; �maxg, i.e., the one with the highest likelihood value.

4. Iterate between steps 2 and 3 until the same set of fh�min; h
�
max; �maxg is obtained.

The parameters h�min; h
�
max; and �max were initially set to 0, 8, and 3 seconds re-

spectively. Using these values, step two was executed. In this step, we investigated dif-

ferent model speci�cations and simultaneously varied the parameter � (Equation 3.7)

between the 0 to 1 range. The likelihood function attained its maximum at � = 0.

Step three was performed next by varying h�min, h
�
max, and �max. Table 6.1 shows

the values of the maximized likelihood function at di�erent values of h�min, h
�
max, and

Table 6.1: Estimated likelihood function for di�erent values of h�min; h
�
max; and �max.

h
�
max = 6

h
�
min = 0 h

�
min = 0:5 h

�
min = 1

�max = 3 -2255.24 -2252.17 -2257.69
�max = 3:5 -2256.00 -2257.49 -2256.25
�max = 4 -2263.95 -2266.09 -2259.95

h
�
max = 8

h
�
min = 0 h

�
min = 0:5 h

�
min = 1

�max = 3 -2254.61 -2258.63 -2257.69
�max = 3:5 -2257.50 -2256.41 -2262.38
�max = 4 -2263.47 -2274.23 -2265.05

�max. The likelihood function attained the maximum value for �max = 3 seconds,

h�min = 0:5 second, and h�max = 6 seconds. In the next iteration of step two, the same

model speci�cation was obtained as was used while executing step three. The param-

eter � was varied again between the range 0 to 1. Figure 6-1 shows the value of the

likelihood function as a function of �. As before, the likelihood function attained its

maximum value at � = 0. Since, experience with the model estimation indicated that

the likelihood function may not be globally concave, we reestimated the model using

di�erent starting values of the parameters to obtain the best possible local maxima.

We obtained the same solution for di�erent starting values of the parameters.
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Figure 6-1: The likelihood function as a function of �.

Table 6.2 summarizes the estimation results. All the parameters, with the excep-

tion of the car{following acceleration sensitivity parameters, have the expected signs.

Note that, a positive sign of the parameters of speed and headway in the car{following

acceleration or deceleration model (Equations 3.2 and 3.7) implies that the variables

are in the numerator and denominator respectively. The signs of the explanatory

variables speed and density of the car{following acceleration model are not what

we anticipated. Their t{statistics are highly signi�cant. This indicates that Boston

drivers may behave di�erently than the way we anticipated (see Section 3.2.1). The

high acceleration sensitivity at high speeds and high densities indicate that drivers are

more aggressive in this situations. This may be in part due to the drivers e�ort not

to let anyone infront of them from an adjacent lane. The positive sign of the space

headway parameter for the car{following acceleration model indicates that drivers

tend to follow the speed of the lead vehicle less as the space headway increases.

In the car{following acceleration and deceleration models, except the constants,

all the parameters have signi�cant t-statistics at the 1% level of signi�cance. The

speed parameter for the car{following deceleration model had counterintuitive sign

with a t{statistic of 0.64, and therefore, was dropped from the speci�cation. The

explanatory variable density has signi�cant t-statistic for both the acceleration and

deceleration models. Therefore, the proposed enhancement of the sensitivity term

was supported by the data for both the acceleration and deceleration models.

109



Table 6.2: Estimation results of the acceleration model.

Variable Parameter t{stat.

Car{following acceleration

constant 0.0225 1.08

speed (m/s) 0.722 4.67
space headway (m) 0.242 6.31

density (veh/km/lane) 0.682 4.20
relative speed (m/s) 0.600 7.20

ln(��cf;acc) -0.193 -2.64

Car{following deceleration
constant -0.0418 -1.20

space headway (m) 0.151 5.32
density (veh/km/lane) 0.804 4.21

relative speed (m/s) 0.682 10.71
ln(��cf;dec) -0.221 -5.44

Free{
ow acceleration

sensitivity constant 0.309 7.37
constant 3.28 6.83
front veh. speed (m/s) 0.618 10.04

heavy veh. dummy -0.670 -1.54
indicator for density � 19 (veh/km/lane) 7.60 5.51

ln(��ff ) 0.126 1.99

Headway threshold distribution, 0:5 < h� � 6
mean (sec) 3.17 13.90

��h 0.870 3.82

Reaction time distribution, 0 < � � 3
constant 0.272 7.62

ln(��� ) -1.55 -9.59

number of drivers = 402

number of observations = 1647

L(0) = -2727.75
L(c) = -2561.26

L(�̂) = -2252.17
�2 = 0.167

Note: Density � 19 veh/km/lane implies level of services A

through C (HCM 1985).
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The test statistic for the null hypothesis that the stimulus is a linear function of

the lead relative speed for the car{following acceleration model (i.e., �acc = 1) is given

by:

�̂acc � 1q
var(�̂acc)

=
0:600� 1

0:0834
= �4:79 (6.1)

Therefore, the null hypothesis can be rejected at the 1% level of signi�cance. Similar

null hypothesis for the car{following deceleration model (i.e., �dec = 1) can also be

rejected at the 1% level of signi�cance (the t-statistic is equal to �4:99). These imply
that the proposed extension of the the stimulus term to be a nonlinear function of

the lead relative speed is supported by the data.

The free{
ow acceleration model parameters with one exception have signi�cant t{

statistics at the 1% level of signi�cance. The parameter for the heavy vehicle dummy

does not have a signi�cant t{statistic. Both the headway threshold distribution pa-

rameters are statistically signi�cant at the 1% level of signi�cance. The mean and

standard deviation of the reaction time distribution are statistically signi�cant at the

1% level of signi�cance. The adjusted �t of the model1 was 0.167.

The acceleration model estimation results for the case of � = 1 is presented in

Table 6.3. � = 1 implies that the sensitivity is a function of the tra�c conditions

at the moment the driver perceives the stimulus and decides that he/she should

respond to it. Hence, the explanatory variables a�ecting the acceleration sensitivity

are observed at the time instant at which the stimulus is observed. As shown in

Figure 6-1, this model has a signi�cantly lower �t than the one in which has the

best �t. By relaxing � to be a parameter to be estimated, the likelihood function

improved by 11.2 units (for the � = 0 case) over this model (the � = 1 case). It

is interesting to note that, although the car{following acceleration and deceleration

model parameters are of di�erent orders of magnitude, the free{
ow acceleration

model and the headway threshold and reaction time distribution parameters are of

1�2 = 1�
L(�̂)�no. of parameters

L(0)
.
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Table 6.3: Estimation results of the acceleration model for � = 1.

Variable Parameter t{stat.

Car{following acceleration

constant 0.468 1.56

speed (m/s) 0.129 1.11

space headway (m) 0.194 5.44

density (veh/km/lane) 0.188 1.57

relative speed (m/s) 0.670 10.48

ln(��cf;acc) -0.253 -5.48

Car{following deceleration
constant -0.0470 -1.25

space headway (m) 0.179 5.68
density (veh/km/lane) 0.791 4.31

relative speed (m/s) 0.749 11.12

ln(��cf;dec) -0.235 -6.32

Free{
ow acceleration

sensitivity constant 0.316 8.31

constant 3.12 7.50
front veh. speed (m/s) 0.611 10.80
heavy veh. dummy -0.638 -1.57

indicator for density � 19 (veh/km/lane) 7.58 5.96
ln(��ff ) 0.170 3.59

Headway threshold distribution, 0:5 < h� � 6

mean (sec) 3.28 13.11
��h 1.08 5.00

Reaction time distribution, 0 < � � 3

constant 0.307 8.89
ln(��� ) -1.34 -13.68

number of drivers = 402

number of observations = 1647
L(0) = -2727.75

L(c) = -2561.26

L(�̂) = -2263.39

�2 = 0.163

Note: Density � 19 veh/km/lane implies level of services A

through C (HCM 1985).
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the same order of magnitude. We adopt the model presented in Table 6.2 which has

a signi�cantly higher �t.

6.1.1 Discussion

The Car{Following Models

The estimated car{following acceleration model is

acf;accn (t) = 0:0225
Vn(t)

0:722

�Xn(t)0:242
kn(t)

0:682 j�Vn(t� �n)j0:600 + �cf;accn (t) (6.2)

where,

t = current time period,

�n = reaction time for driver n,

Vn(t) = subject speed at time t (m/s),

�Xn(t) = space headway at time t (m),

kn(t) = density of tra�c ahead of the subject (veh/km/lane),

�Vn(t� �n) = front vehicle speed { subject speed (m/s),

�cf;accn (t) � N (0; 0:8252):

The estimated car{following deceleration model is

acf;decn (t) = �0:0418 1

�Xn(t)0:151
kn(t)

0:804 j�Vn(t� �n)j0:682 + �cf;decn (t) (6.3)

where, �cf;decn (t) � N (0; 0:8022).

Figure 6-2 shows the sensitivity of di�erent factors on the car{following accelera-

tion and deceleration. Acceleration increases with speed, density, and relative speed,

and decreases with space headway. On the other hand, deceleration (in absolute

term) increases with density and relative speed (in absolute term), and decreases

with headway.
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Figure 6-2: Sensitivity of di�erent factors on the car{following acceleration and de-

celeration decisions.

At low speeds the mean acceleration is lower compared to those for higher speeds.

Tra�c conditions ahead of the subject and its leader are likely to change more rapidly

at high densities than at low densities. Due to this, higher uncertainty is involved

in predicting the position and speed of the leader in the near future. As a result,

drivers are expected to be more conservative at high densities than at low densities.

Although the mean deceleration increases with density, the mean acceleration does

not decrease with density as we had expected.

The slopes of the acceleration and deceleration curves with respect to the relative

speed are decreasing. This captures the fact that, the acceleration (deceleration)

applied by a driver is limited by the acceleration (deceleration) capacity of the vehicle

and acceleration (deceleration) gradually reaches the capacity as the relative speed
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increases.

Figure 6-3 shows a comparison between the estimated car{following acceleration

and deceleration at di�erent front gaps as a function of subject speed using the models

proposed in this thesis with those obtained by Subramanian (1996)2. The acceleration
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Figure 6-3: Comparison between the car{following acceleration and deceleration es-
timated in this thesis with those obtained by Subramanian (1996).

and deceleration estimated in this thesis are generally smaller in magnitude compared

to those estimated by Subramanian. At low speeds, his acceleration and deceleration

estimates are too high. The acceleration estimated by the model proposed in this

thesis is smaller than expected, while the estimated deceleration is reasonable. This

may be due to lack of variability in the data with acceleration observations or may

be due to the in
uence of the geometric characteristics of the Boston data collection

site.

The di�erence between the two models may be due to several reasons. First,

Subramanian used data that was collected in 1983 from a section of Interstate 10

Westbound near Los Angeles, whereas, this research used data that was collected in

1995 and 1997 from a section of Interstate 93 Southbound in Boston. The di�erent

data collection years and sites may have contributed to the di�erences in the estimates.

2The parameters estimated by Subramanian (1996) are presented in Table 2.3.
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Second, the LA data collection site is a fairly straight section without any ramps,

whereas, the Boston data collection site has a weaving section adjacent to the freeway.

The geometry of the freeway and the number of lane changes taking place in the

Boston data may have an e�ect on the estimates obtained in this research. Finally,

Subramanian assumed that all the drivers in the data were car{following even at

large space headways. He further investigated the implication of this assumption and

concluded that the assumption on the headway threshold has signi�cant impact on

the car{following model estimates. The estimation results presented in this thesis do

not su�er from such a limitation.

The Free{Flow Acceleration Model

The estimated free{
ow acceleration model is

affn (t) = 0:309 [3:28 + 0:618 V front
n (t� �n)� 0:670 �heavyn

+7:60 �[kn(t� �n)]� Vn(t� �n)] + �ffn (t) (6.4)

where,

V front
n (t� �n) = front vehicle speed at time (t� �n) (m/s),

�heavyn =

8>>>>><
>>>>>:

1 if the subject vehicle is a heavy vehicle

(vehicle length � 9.14 m or 30 ft)

0 otherwise

�[kn(t� �n)] =

8><
>:

1 if kn(t� �n) � 19 veh/km/lane

0 otherwise

�ffn (t) � N (0; 1:132):

The estimated free{
ow acceleration increases with front vehicle (leader) speed.

A higher acceleration for level of services A through C captures the e�ect of higher

maneuverability at low densities compared to high densities. The impact of lower

maneuverability for the heavy vehicles compared its non{heavy counterparts is cap-
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tured by an indicator whether the subject vehicle is heavy. The standard deviation

of the free{
ow acceleration is high compared to its car{following acceleration and

deceleration counterparts.

The Headway Threshold Distribution

The headway threshold (seconds), that de�nes whether a driver is in the car{following

regime or in the free{
ow regime, is distributed as follows (see Figure 6-4):
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Figure 6-4: The headway threshold distribution and the probability of car{following
as a function of time headway.

f(h�) =

8><
>:

1

0:868
�
�
h��3:17
0:870

�
if 0:5 < h� � 6

0 otherwise
(6.5)

For a given headway, hn(t), the probability that driver n is in the car{following regime

is given by:

P(car{following at time t) =

8>>>>><
>>>>>:

1 if hn(t) � 0:5

1:00� 1

0:998
�
�
hn(t)�3:17

0:870

�
if 0:5 < hn(t) � 6

0 otherwise

(6.6)
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The 5, 50, and 95 percentile values of the headway threshold are 1.75, 3.17, and 4.60

seconds respectively. These values are reasonable.

Figure 6-5 shows the mean of the headway threshold as a function of subject
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Figure 6-5: Comparison between the estimated mean headway threshold and the 61
meters threshold suggested by Herman and Potts (1961).

speed. In the Tra�c Engineering Literature (Herman and Potts 1961)3 a threshold

of 61 meters (200 ft) is usually used to distinguish the free{
ow regime. As shown in

Figure 6-5, the 61 meters threshold is too high at low speeds while the threshold esti-

mated in this thesis is high at high speeds. The two estimates are in close agreement

in the 15 to 23 m/s speed range.

The Reaction Time Distribution

The estimated distribution of reaction time is

f(�) =

8>>>><
>>>>:

1
0:212 �

p
2�

e
�
1

2

�
ln(�)� 0:272

0.212

�2

if 0 < � � 3

0 otherwise

(6.7)

3Herman and Potts (1961) estimated this 61 meters thresholds based on an observation that, the
correlation between the observed accelerations and the accelerations estimated by the car{following
model was low when the space headways were greater than 61 meters.
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Figure 6-6 shows the probability density function and the cumulative distribution

function of the reaction time. The median, mean, and standard deviation of the
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Figure 6-6: The probability density function and the cumulative distribution function
of the reaction time.

reaction time distribution are 1.31, 1.34, and 0.31 seconds respectively.

As discussed in Section 3.2.4, we apriori expect the surrounding tra�c conditions

to a�ect the reaction time of a driver. Explanatory variables capturing tra�c con-

ditions include the density of tra�c ahead of the driver, the average front vehicle

speed (that was used as a proxy for average travel speed of the subject), whether

the subject vehicle is a heavy vehicle, and an indicator for free{
ow tra�c conditions

(density � 19 veh/km/lane). However, the t{statistics of these explanatory variables

indicated that their impact on the reaction time were not signi�cant and in some

cases the parameters had counterintuitive signs. Therefore, the model with only the

constant as an explanatory variable for the mean of the reaction time distribution

was adopted.

Finally, a comparison between the estimates of the reaction time distribution

parameters obtained in this thesis and those obtained by Johansson and Rumer (1971)

and Lerner et al. (1995) is presented in Table 6.4. The median and mean estimated in

119



Table 6.4: Comparison between the reaction time distribution parameters obtained

from di�erent sources.

source sample stimulus median mean std. dev.

size (sec) (sec) (sec)

speed

this thesis 402 di�erence 1.31 1.34 0.31

Johansson and Rumer (1971) 321 sound 0.89 1.01 0.37

unexpected

Lerner et al. (1995) 56 object 1.44 1.51 0.39

Note: Speed di�erence implies di�erence between the target speed and the

current speed.

this research are higher than those obtained by Johansson and Rumer (1971)4, while,

they are lower than those obtained by Lerner et al. (1995). The standard deviation

estimated in this research is smaller than those obtained by others.

The di�erences between the reaction time estimates from di�erent studies may be

due to the di�erences in the time period of study, data collection site, or procedures

used in di�erent studies. The acceleration and deceleration capacity of vehicles have

increased over the past 27 years which may have increased the reaction time of drivers

as better vehicle performance may have made driving more relaxing. Driving habits

at di�erent locations may have also contributed to di�erent reaction time estimates.

Finally, di�erent stimulus were used in di�erent studies. In the Johansson and Rumer

(1971) study drivers responded to sound, in the Lerner et al. (1995) study drivers

responded to visualizing a rolling drum, while in this thesis, drivers responded to the

di�erence between their target speeds (desired speeds or the leaders' speeds depending

on the headways) and the current speeds. Overall, the parameters of the reaction

time distribution estimated in this research are well within the typical range of other

studies.

In summary, the empirical work suggests that, the sensitivity term of the car{

following acceleration is a function of the subject speed, the space headway, and the

4As mentioned in Chapter 2, drivers responded to sound indicating them to press the brake pedal.
This may have reduced the perception time, and hence the reaction time.
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density, while the sensitivity term of the car{following deceleration is a function of the

space headway and the density of tra�c. Furthermore, the sensitivity term comprises

of explanatory variables observed at the time of applying acceleration/deceleration

while the stimulus term is lagged by the reaction time of the drivers. The impact of

the reaction time on the sensitivity was not supported by the data. The stimulus is a

nonlinear function of the front relative speed. The free{
ow acceleration is a function

of the subject's speed, the leader's speed, an indicator whether the subject vehicle is

a heavy vehicle, and an indicator whether the density of tra�c is low.

6.2 Estimation Results of the Lane Changing Model

The discretionary and mandatory lane change models were estimated separately due

to lack of data over a long stretch of roadway (approximately 1500 to 3000 meters

long). The data collection site, shown in Figure 6-7, used in this study has a length

of approximately 200m. If a driver in this site changes to the right lane and takes

the exit, it is unlikely that the driver is also performing a discretionary lane change.

However, if the remaining distance to the exit is 2000 meters as opposed to 200 me-

ters, the probability of performing a discretionary lane change may not be negligible.

Therefore, a model that captures discretionary lane changing decision when the driver

is in a mandatory lane change situation cannot be estimated using this data.

Estimation results of the discretionary and the mandatory lane changing mod-

els are presented �rst. Then, estimation results of the forced merging model are

presented.

6.2.1 Estimation Results of the Discretionary Lane Changing

Model

The discretionary lane changing model was estimated using observations from drivers

in the following two cases (see Figure 6-7 for de�nition of lanes 1 to 4):

� drivers that changed from lanes 2 or 3 to the left, and

121



la
ne

 1

la
ne

 2

la
ne

 3

la
ne

 4

South Station
Exit

Mass. Pike
Exit

China Town
Exit

I-93 SB

40
2 

m
(1

/4
 m

ile
)

40
2 

m
(1

/4
 m

ile
)

20
0 

m

Figure 6-7: Schematic diagram of the I{93 southbound data collection site (�gure not

drawn to scale).

� drivers that traveled in lanes 2 or 3 without changing lanes.

If drivers from lanes 1 to 3 change to the right and take the exit at the downstream end

of the data collection site, the lane changes would be mandatory. Even if they do not

take this exit, since there are two exits a quarter mile and a half mile downstream, it

is likely that drivers would be changing lanes to take these exits. Since drivers are not

observed downstream of the data collection site, the upstream lane changes towards

lane 4 cannot be categorized with certainty as discretionary lane changes. Therefore,

the choice set for the discretionary lane change subjects includes the left adjacent and

the current lanes.
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Thus, there are two observable states: change to the left lane and continue in the

current lane. The discretionary lane changing decision tree then reduces to the

decision tree shown in Figure 6-8. For this decision tree, the likelihood function given

by Equation 4.8 reduces to:

driving
conditions

satisfactory

Start

left
lane

Gap
Reject

Gap
Accept

Left
Lane

Current
Lane

Current
Lane

driving
conditions not

satisfactory

current
lane

Current
Lane

Figure 6-8: The decision tree for a driver considering a discretionary lane change with
the current and the left lanes as choice set.

L =
NX
n=1

ln

(Z 1

�1

 
TnY
t=1

Pt(L j �)�Ltn Pt(C j �)1��Ltn
!
f�(�)d�

)
(6.8)

where,

�Ltn =

8><
>:

1 if driver n changes to the left lane at time t

0 otherwise.
(6.9)

Pt(L j �n) =
Pt(gap acceptable j left lane; driving conditions not satisfactory; �n)�
Pt(left lane j driving conditions not satisfactory; �n)�
Pt(driving conditions not satisfactory j �n) (6.10)

Pt(C j �n) = 1� Pt(L j �n) (6.11)
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The expression for the gap acceptance probability is given by Equation 4.4. The

conditional probability that the left lane is chosen is given by:

Pt(left lane j driving conditions not satisfactory; �n) =
1

1 + exp(�XLL
n (t)�LL � �LL�n)

(6.12)

where, superscript `LL' denotes left lane. Finally, the conditional probability that

the driver is not satis�ed with the driving condition of the current lane is given by:

Pt(driving conditions not satisfactory j �n) =
1

1 + exp(�XDCNS
n (t)�DCNS � �DCNS�n)

(6.13)

where, superscript `DCNS' denotes driving conditions not satisfactory.

Estimation Results

Table 6.5 shows the estimation results of the discretionary lane changing model. At

convergence, the hessian of the the likelihood function did not invert since it was

nearly singular. The estimates of the standard deviation of the generic random terms

of the lead and lag critical gaps (�lead;dlc� , �lag;dlc� ) were close to zero. Nearly singular

hessian and zero estimates of the standard deviations indicate identi�cation problems

of the model. Next, we estimated a restricted version of the likelihood function in

which the serial correlation between di�erent observations from a given driver is not

modeled. In this case, the likelihood function converged with a negative de�nite

hessian at convergence (as desired) and the estimates of the standard deviation of the

generic random terms were reasonable. Further research is required to address the

identi�cation problem mentioned above and this is left as a topic for future research.

The restriction of no serial correlation implies that, �DCNS in Equation 6.13,

�LL in Equation 6.12, and �g; g 2 flead; lagg in Equation 4.3 are restricted to be

zero, and the model formulation becomes a cross{sectional one. The test statistic
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Table 6.5: Estimation results of the discretionary lane changing model.

Variable Parameter

Desired Speed Model

average speed, m/s 0.727

Utility of Driving Conditions not Satisfactory

constant 0.0343

(subject speed { desired speed), m/s -0.0757
heavy vehicle dummy -3.56

tailgate dummy 0.486

�DCNS -1.11

Utility of the Left Lane
constant -1.87
(lead veh. speed { desired speed), m/s 0.0328

(front veh. speed { desired speed), m/s -0.158
lag veh. speed { subject speed, m/s -0.0960
�LL -0.246

Lead Critical Gap

constant 0.665

min(0, lead veh. speed { subject speed), m/s -0.412
�lead 0.727

ln(�lead;dlc� ) -7.16

Lag Critical Gap

constant 1.69
min(0, lag veh. speed { subject speed), m/s 0.172

max(0, lag veh. speed { subject speed), m/s 0.177
�lag -0.653

ln(�lag;dlc� ) -15.5

number of drivers = 843

number of observations = 4335
number of discretionary lane change observations = 75

L(0) = -482.92

L(c) = -360.05

L(�̂) = -326.51

�2 = 0.282

Note: di�erent vehicles and gaps are de�ned in Figure 6-9.
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�2(L(restricted)�L(unrestricted)) is distributed �2 with degrees of freedom equal

to the number of restrictions.

The test statistic for the null hypothesis of no serial correlation, i.e.,

�DCNS = �LL = �lead = �lag = 0; (6.14)

is given by:

�2(L(restricted)� L(unrestricted)) = �2� [�330:57� (�326:51)]
= 8:12 (6.15)

The critical value of the �2 distribution with 4 degrees of freedom at the 5% level of

signi�cance is 9.49. Therefore, the null hypothesis of no serial correlation cannot be

rejected and we adopt the model with no serial correlation.

Table 6.6 shows the parameter estimates obtained by maximizing the restricted

likelihood function. The factors a�ecting a driver's decision whether the driving

conditions are satisfactory are the di�erence between the subject speed and their

desired speed, an indicator whether the subject vehicle is a heavy vehicle, and an

indicator whether the subject is tailgated. See Figure 6-9 for de�nition of di�erent

vehicles and gaps.

lag gap lead gap

total clear gap + vehicle length

lag vehicle lead vehicle

subject
front

vehicle

Figure 6-9: The subject and the front, lead, and lag vehicles.

The desired speed model is assumed to have the following functional form:

V �

n (t) = XDS
n (t)�DS (6.16)
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Table 6.6: Estimation results of the discretionary lane changing model.

Variable Parameter t{stat.

Desired Speed Model

average speed, m/s 0.768 5.37

Utility of Driving Conditions not Satisfactory
constant 0.225 0.17

(subject speed { desired speed), m/s -0.0658 -0.62

heavy vehicle dummy -3.15 -3.18
tailgate dummy 0.423 1.71

Utility of the Left Lane
constant -2.08 -2.53

(lead veh. speed { desired speed), m/s 0.0337 0.76
(front veh. speed { desired speed), m/s -0.152 -3.12
lag veh. speed { subject speed, m/s -0.0971 -1.84

Lead Critical Gap

constant 0.508 1.53

min(0, lead veh. speed { subject speed), m/s -0.420 -3.73
ln(�lead;dlc� ) -0.717 -1.45

Lag Critical Gap
constant 2.02 5.00

min(0, lag veh. speed { subject speed), m/s 0.153 1.29
max(0, lag veh. speed { subject speed), m/s 0.188 1.69

ln(�lag;dlc� ) -0.642 -1.67

number of drivers = 843

number of observations = 4335

number of discretionary lane change observations = 75

L(0) = -482.92
L(c) = -360.05

L(�̂) = -330.57

�2 = 0.282

Note: di�erent vehicles and gaps are de�ned in Figure 6-9.
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where,

XDS
n (t) = explanatory variables a�ecting the desired speed (DS),

�DS = model parameters.

Note that, a constant for the desired speed cannot be estimated since it is absorbed

into the constants of the utilities of the decisions `driving conditions not satisfactory'

and `left lane'. The explanatory variables used for the desired speed model include the

average speed of the vehicles ahead of the subject, the speed of the front vehicle, the

density of tra�c ahead of the subject, and an indicator whether the subject vehicle

is a heavy vehicle. A higher average speed of the vehicles ahead or the front vehicle

speed and a lower density of tra�c are expected to increase the desired speed of the

driver. Due to lack of maneuverability and safety concern, driver of a heavy vehicle

is expected to have lower desired speed than its non heavy counterpart. However,

except for the average speed, the t{statistics of the other explanatory variables were

insigni�cant and some of parameters had counterintuitive signs. In the �nal model

only the average speed of the vehicles ahead of the subject was used which had a

signi�cant t{statistic. To capture the e�ect of tailgating which cannot be observed

from the data, a proxy variable tailgate dummy is de�ned as follows:

�tailgaten (t) =

8>>>>><
>>>>>:

1 if gap behind the subject's rear bumper � 10 m and

tra�c level of service is A, B, or C

0 otherwise

(6.17)

where, �tailgaten (t) denotes the tailgate dummy.

A speed above the desired speed implies satisfaction with the current lane, since

in this situation a driver has the 
exibility to adjust its speed. On the other hand,

a speed below the desired speed would motivate a driver to perform a discretionary

lane change. The corresponding parameter has the desired negative sign. Although,

its t{statistic is not signi�cant, it is included in the model due to its importance

from a behavioral standpoint. Due to lack of maneuverability, heavier vehicles are
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hesitant toward changing lanes and the corresponding parameter has a signi�cant

t{statistic. Finally, when tailgated, drivers tend to seek discretionary lane change

and the corresponding parameter has the desired positive sign and its t{statistic is

signi�cant at the 10% level of signi�cance.

Factors a�ecting the decision whether the left lane is more desirable than the

current lane include the di�erence between the lead vehicle's speed and the subject's

desired speed, the di�erence between the front vehicle's speed and the subject's de-

sired speed, and the di�erence between the subject speed and the speed of the lag

vehicle. A higher lead or front vehicle's speed implies higher 
exibility for the subject

in the corresponding lanes. The lag relative speed captures the e�ect of safety concern

to perform a lane changing decision and its parameter has a signi�cant t{statistic at

the 10% level of signi�cance.

The only factor a�ecting the discretionary lead critical gap is the lead relative

speed only when the lead vehicle is slower. Its parameter is statistically signi�cant

at the 1% level of signi�cance. For the lag critical gap, the lag relative speed is

the only important factor. To capture the di�erent impact of the lag relative speed

depending on whether the lag vehicle is faster or not, a piecewise linear approximation

of the lag relative speed with a breakpoint at 0 m/s is used. The variable max(0,

lag vehicle speed - subject speed) has a signi�cant t{statistic at the 10% level of

signi�cance while the variable min(0, lag vehicle speed - subject speed) does not have

a signi�cant t{statistic. In spite this, the latter variable is included in the model due

to its importance from a behavioral standpoint. Higher sensitivity of the lag critical

gap when the lag vehicle is faster is captured by the higher parameter estimates of the

variable max(0, lag vehicle speed { subject speed) compared to the variable min(0,

lag vehicle speed { subject speed).

The adjusted �t of the model was 0.282. To test the null hypothesis that all the

parameters except the constants and standard deviations are zero, the likelihood ratio

test was used. The test statistic is given by:
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�2(L(Ĉ)� L(�̂)) = �2(�330:57� (�360:05))
= 58:96 (6.18)

The critical value of the �2 distribution with 9 degrees of freedom at the 5% level of

signi�cance is 16.92. Hence, the null hypothesis can be rejected.

The estimated probability that driver n is not satis�ed with the current lane

(driving conditions not satisfactory) at time t is given by:

Pt(driving conditions not satisfactory) =

1

1 + e[�0:225+0:0658 (Vn(t)�V �

n (t))+3:15 �
heavy
n �0:423 �

tailgate
n (t)]

(6.19)

The conditional probability of choosing the left lane over the current lane is given by:

Pt(left lane j driving conditions not satisfactory) =
1

1 + e[2:08�0:0337 (V lead
n (t)�V �

n (t))+0:152 (V
front
n (t)�V �

n (t))+0:0971 �V
lag
n (t)]

(6.20)

where, �V lag
n (t) denotes the lag vehicle speed minus the subject speed (m/s).

The estimated lead and lag critical gaps (in meters) for the discretionary lane

change case are

Glead;dlc
cr;n (t) = exp[0:508� 0:420 min(0;�V lead

n (t)) + �lead;dlcn (t)] (6.21)

Glag;dlc
cr;n (t) = exp[2:02 + 0:153 min(0;�V lag

n (t)) +

0:188 max(0;�V lag
n (t)) + �lag;dlcn (t)] (6.22)

where,

�V lead
n (t) = lead vehicle speed { subject speed (m/s),

�lead;dlcn (t) � N (0; 0:4882);
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�lag;dlcn (t) � N (0; 0:5262):

Another way of assessing the estimated parameters is to compute the probability of

acceptance of gaps that drivers merged into and hence were acceptable to them. There

were 75 such cases. These estimates should be higher than 0.5 and close to 1.0. The

estimated probability had a mean of 0.83 and a standard deviation of 0.25. Figure 6-10

shows the histogram and cumulative distribution of the estimated probabilities. For
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Figure 6-10: The estimated probability of acceptance of gaps that were acceptable
and merging were completed.

the majority of the gaps actually accepted, the estimated probability of acceptance

was close to one. On 88% of the cases, the estimated probabilities were greater than

0.5.

Finally, Figure 6-11 shows the median lead and lag critical gaps (for DLC situa-

tions) as a function of the lead and lag relative speeds. When both the lead and lag

relative speeds are zero, the median lead and lag critical gaps are 1.7 and 7.5 meters

respectively. This is intuitive since the lag gap acceptance process is more critical

than the lead gap acceptance process. The median lead critical gap decreases from

13.5 to 1.7 meters as the lead relative speed increases from -5 m/s to 0 m/s. As the
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Figure 6-11: The median lead and lag critical gaps for discretionary lane change as a

function of relative speed.

lag relative speed increases from -5 to 8 m/s, the median lag critical gap increases

from 3.5 to 49.2 meters. These numbers are realistic from a behavioral standpoint.

In summary, drivers' decision to perform a discretionary lane change is modeled as

a two step decision process. First, drivers examine their satisfaction with the driving

conditions of the current lane. Important factors a�ecting such decision include the

di�erence between the current speed and the driver's desired speed, an indicator

whether the subject vehicle is a heavy vehicle, and an indicator whether the subject

is tailgated. If the driver is not satis�ed with the the driving conditions of current

lane, he/she compares the driving conditions of the current lane with those of the

other lanes. Such a decision is in
uenced by the the speeds of the vehicles ahead in

di�erent lanes compared to the subject's desired speed and the lag relative speed.

The lead critical gap is a function of the lead relative speed only when the leader is

slower while the lag critical gap is a function of the lag relative speed. The importance

on the decision to perform a discretionary lane change of other explanatory variables,

such as the relative density of tra�c in di�erent lanes, whether the lead or the lag

vehicle is heavy, and whether the lane is adjacent to an on{ramp, was not supported

by the data.
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6.2.2 Estimation Results of the Mandatory Lane Changing

Model

The mandatory lane changing model parameters are estimated using observations

from the drivers who merged from the on{ramp (lane 4 in Figure 6-7) to the adjacent

mainline lane (lane 3). The data consists of observations from drivers when the level

of service of the roadway section was between A and E. For such drivers, the decision

tree shown in Figure 4-1 reduces to the decision tree shown in Figure 6-12.

Left Lane

MLC

Gap
Reject

Gap
Accept

Start

Current
Lane

Left
Lane

Current
Lane

MLC

Figure 6-12: The decision tree for a driver merging from an on{ramp to the adjacent
mainline lane.

In this case, the left and the current lanes are the two choices. Thus, there are

two observable states: change to the left lane and continue in the current lane. For

this decision tree, the likelihood function given by Equation 4.8 reduces to:

L =
NX
n=1

ln

(Z
1

�1

 
TnY
t=1

Pt(L j �)�Ltn Pt(C j �)1��Ltn
!
f�(�)d�

)
(6.23)

where, �Ltn is de�ned in Equation 6.9 and the conditional probability of an observation

of driver n changing to the left lane is given by:
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Pt(L j �n) = Pt(gap acceptable jMLC; �n)Pt(MLC j �n) (6.24)

The probabilities on the right hand side of Equation 6.24 are given by Equations 4.4

and 4.1 respectively. The probability of staying in the current lane is given by:

Pt(C j �n) = 1� Pt(L j �n) (6.25)

Estimation Results

The maximum likelihood estimation results of the mandatory lane changing model are

given in Table 6.7. All the parameters that capture the correlation between di�erent

Table 6.7: Estimation results of the mandatory lane changing model.

Variable Parameter t{stat.

Mandatory Lane Change Utility
constant -0.740 -1.75

�rst gap dummy -0.884 -2.36

delay (sec) 0.749 1.36
�MLC 0.685 0.65

Lead Critical Gap
constant 0.414 0.79

�lead 0.676 1.21

ln(�lead;mlc
� ) -1.07 -0.26

Lag Critical Gap
constant 0.663 0.97

min[0, lag veh. speed { subject speed] (m/s) 0.0457 0.24

max[0, lag veh. speed { subject speed] (m/s) 0.363 2.59
�lag 0.330 0.69

ln(�lag;mlc
� ) 0.0101 0.03

number of drivers = 202

number of observations = 500

L(0) = -336.16

L(c) = -334.83

L(�̂) = -288.19

�2 = 0.107
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observations from a given driver (i.e., �MLC in Equation 4.1, and �g; g 2 flead; lagg
in Equation 4.3) are statistically insigni�cant. To test the null hypothesis of no serial

correlation, i.e.,

�MLC = �lead = �lag = 0; (6.26)

a restricted version of the likelihood function with no serial correlation was estimated.

These restrictions make the model formulation a cross{sectional one. The test statistic

is

�2(L(restricted)� L(unrestricted)) = �2� [�288:45� (�288:19)]
= 0:53 (6.27)

The critical value of the �2 distribution with 3 degrees of freedom at the 5% level of

signi�cance is 7.81. Therefore, the null hypothesis of no serial correlation cannot be

rejected.

The parameters obtained by maximizing the restricted likelihood function are

shown in Table 6.8. Note that, except for the parameters that correspond to stan-

dard deviation of the random terms, the parameter estimates of the unrestricted and

restricted models are of the same order of magnitude. Factors a�ecting a driver's

decision to respond to mandatory lane change situation (MLC) are delay (time since

the driver crossed the merging point, section X{X in Figure 6-13) and the indicator

for the �rst gap (when delay is equal to zero)5. The parameters have the expected

signs and signi�cant t{statistics at the 5% level of signi�cance.

The lead critical gap was found to be insensitive to the tra�c conditions, whereas,

the lag critical gap length is sensitive only to the lag relative speed. Similar to the

discretionary lag critical gap model, a piecewise linear lag relative speed variable

was used with a breakpoint at 0 m/s was used. As expected, the parameter for the

5As explained in Section 4.2.1, delay or the �rst gap dummy cannot be de�ned for general
mandatory lane changing cases unless the time at which the driver is in MLC state is well de�ned.
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Table 6.8: Estimation results of the mandatory lane changing model.

Variable Parameter t{stat.

Mandatory Lane Change Utility

constant -0.654 -2.27

�rst gap dummy -0.874 -2.50
delay (sec) 0.577 3.85

Lead Critical Gap

constant 0.384 0.63

ln(�lead;mlc
� ) -0.152 -0.29

Lag Critical Gap
constant 0.587 0.79

min[0, lag veh. speed { subject speed] (m/s) 0.0483 0.23

max[0, lag veh. speed { subject speed] (m/s) 0.356 2.39
ln(�lag;mlc

� ) 0.0706 0.14

number of drivers = 202

number of observations = 500
L(0) = -336.16

L(c) = -334.83

L(�̂) = -288.45

�2 = 0.115

explanatory variable max(0, lag vehicle speed { subject speed) was higher than that

for min(0, lag vehicle speed { subject speed). The remaining distance did not a�ect

a driver's decision process|not an intuitive result. This may be due to the fact

that, in the data the mean and median remaining distances were 130 and 135 meters

respectively and level of service (HCM 1985) varied between A and C. As a result,

the remaining distance may not have a signi�cant impact on the merging behavior

of the sample drivers in the data. The lead and lag critical gap parameters have low

t{statistics except for the lag relative speed when the lag vehicle is faster.

The adjusted �t of the model was 0.115. A likelihood ratio test was conducted

to test the null hypothesis that all the parameters except the constants and standard

deviations are zero. The test statistic, �2(L(Ĉ) � L(�̂)), is equal to 92.76 and the

critical value with 4 degrees of freedom at the 5% level of signi�cance is 9.49. Hence,

the null hypothesis can be rejected.
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Figure 6-13: The subject, lead, lag, and front vehicles, and the lead and lag gaps.

The estimated probability that a driver would respond to an MLC situation is

Pt(MLC) =
1

1 + exp(0:654� 0:577 delayn(t) + 0:874 �1stGapn (t))
(6.28)

where,

delayn(t) = time elapsed since an MLC situation arises (sec),

�1stGapn (t) =

8><
>:

1 if delay = 0

0 otherwise.

Figure 6-14 shows the probability of responding to MLC as a function of delay. The
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Figure 6-14: The probability of responding to MLC as a function of delay.

estimated probability approaches one as delay increases beyond 10 seconds and is
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higher than expected. This may be due to lack of data with larger delay experienced

by the drivers in the data set (the median and the maximum delay experienced by

the drivers in the data were 2 and 5 seconds respectively).

The estimated lead and lag critical gaps (in meter) for mandatory lane change

situations are

Glead;mlc
cr;n (t) = exp(0:384 + �lead;mlc

n (t)) (6.29)

Glag;mlc
cr;n (t) = exp(0:587 + 0:0483 min(0;�V lag

n (t)) +

0:356 max(0;�V lag
n (t)) + �lag;mlc

n (t)) (6.30)

where, �V lag
n (t) denotes the lag relative speed (m/s), �lead;mlc

n (t) � N (0; 0:8592), and

�lag;mlc
n (t) � N (0; 1:072).

The probability of acceptance of gaps that drivers merged into and hence were

acceptable to them was calculated using the estimated parameters. On 72% of the

cases, the estimated probabilities were greater than 0.9. Figure 6-15 shows the his-

togram and cumulative distribution of the estimated probabilities. The estimated
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Figure 6-15: The estimated probability of acceptance of gaps that were acceptable

and merging were completed.
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probability had a mean of 0.93 and a standard deviation of 0.12. These results are

satisfactory.

The median value of the lag critical gap (for the mandatory lane change situation)

was calculated for di�erent values of lag relative speed, and the variation is shown in

Figure 6-16. When the subject is faster than the lag vehicle in the target lane, the

−4 −2 0 2 4 6 8
0

5

10

15

20

25

30

35

40

lag vehicle speed − subject speed, m/s

Me
dia

n L
ag

 C
riti

ca
l G

ap
 Le

ng
th,

 m

Figure 6-16: The mean lag critical gap for mandatory lane change as a function of
lag relative speed.

median lag critical gap is less than 2 meters. The median lag critical gap increases

at an exponential rate to 32 meters as the lag relative speed increases to 8 m/s. The

median lead critical gap was 1.5 meters.

Ahmed et al. (1996) estimated the median lead and lag critical gaps to be 4.7 and

15.6 meters respectively (assuming a 152 meters remaining distance and the gap is the

�rst gap observed by the driver)6. Although, this research and Ahmed et al. (1996)

used the same methodology to estimate the gap acceptance model, the di�erences in

the estimates may be due to the di�erences in the data collection years or sites. From

1983 to 1995 vehicle characteristics have improved (KBB 1998) and driving habits of

the drivers of these two areas may be di�erent which may have contributed to the

6Ahmed et al. (1996) used a data collected in 1983 from a site at Interstate 95 Northbound near
the Baltimore Washington Parkway (Smith 1985). The site is a two lane freeway with an adjacent
weaving section on the right. Density of tra�c varied from 3 veh/km/lane to 56 veh/km/lane with
a mean of 27 veh/km/lane. The median length of the lead and lag gaps corresponding to the gaps
that the drivers found acceptable and completed the merge were 21 and 25 meters respectively.
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di�erences in the critical gap length estimates.

The estimated median critical gap lengths under MLC situations are also com-

pared to their DLC counterparts as shown in Figure 6-17. As expected, the median

critical lead/lag gaps under MLC situations are smaller than their DLC counterparts.
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Figure 6-17: Comparison between the estimated critical gap lengths under DLC and
MLC situations.

6.2.3 Estimation Results of the Forced Merging Model

The forced merging model was estimated for the case of merging from an on{ramp.

Since, the forced merging model is assumed to be applicable only in heavily congested

tra�c, the data consisted of observations from drivers when the level of service of the

roadway section was F.

The estimation results are shown in Table 6.9. The parameter �FM (in Equa-

tion 4.9) that captures the correlation between di�erent observations from the same

driver, was estimated to be 0.0012, which is very small. Its t{statistic was 0.001.

This implies that, the dynamic aspect of driver behavior may be adequately cap-

tured by state dependence and that the random term of the utility speci�cation is

independent over time, even for the same driver. The estimation results presented

in Table 6.10 correspond to the parameter estimates obtained by maximizing the
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Table 6.9: Estimation results of the forced merging model.

Variable Parameter t{stat.

constant -3.16 -10.59

min(0, lead veh. speed { subject speed) (m/s) 0.313 2.66

remaining distance impact �10 2.05 5.33

total clear gap/10 (meters) 0.285 2.85

�FM 0.0012 0.001

number of drivers = 79

number of observations = 566
L(0) = -306.5

L(c) = -112.3

L(
̂) = -88.5
�2 = 0.695

likelihood function with no serial correlation.

The probability that the nth driver will switch from state M to state M at time

t is given by:

P(Sn(t) =M j Sn(t� 1) =M) =

1

1 + exp[3:16� 0:303 f(�V ld
n (t))� 2:05 f(Lrem

n (t))� 0:285 Gn(t)]
(6.31)

where,

Sn(t) = state of driver n at time t,

f(�V ld
n (t)) = min(0;�V ld

n (t));

�V ld
n (t) = lead vehicle speed { subject speed (m/s),

f(Lrem
n (t)) = remaining distance impact;

Lrem
n (t) = remaining distance to the point at which lane change must be

completed by,

Gn(t) = lead gap plus lag gap (m).
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Table 6.10: Estimation results of the forced merging model.

Variable Parameter t{stat.

constant -3.16 -10.59

min(0, lead veh. speed { subject speed) (m/s) 0.313 2.66

remaining distance impact �10 2.05 5.33

total clear gap divided by 10 (meters) 0.285 2.85

number of drivers = 79

number of observations = 566

L(0) = -306.5
L(c) = -112.3

L(
̂) = -88.5

�2 = 0.698

StateM is de�ned as the situation in which a driver intends to merge into the adjacent

gap in the adjacent lane and perceives that his/her right of way has been established

and thus starts merging.

The explanatory variable min(0, lead vehicle speed { subject speed) captures the

fact that, if the subject is interested in merging into the adjacent gap, it would slow

down to match the leader's speed to better focus on the interaction with the lag

vehicle. The variable should always be non-positive and its estimate re
ects such

behavior. The explanatory variable total clear gap has the desired positive sign.

The variable remaining distance impact, a function of the remaining distance,

is used to capture the fact that the remaining distance does not impact a driver's

merging behavior when it is greater than a certain threshold, while at small values,

drivers become more concerned and hence more aggressive. The variable remaining

distance impact for driver n at time t is assumed to have the following functional

form:

remaining distance impact = 1� 1

1 + e�
FM Lremn (t)

(6.32)

where, �FM is parameter. For di�erent values of �FM the likelihood function (Equa-

tion 4.19) was maximized and the value of �FM that corresponds to the highest
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maximum likelihood value was adopted. �FM was estimated to be -0.027.

Figure 6-18 shows how the explanatory variable remaining distance impact, the
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Figure 6-18: Remaining distance versus explanatory variable remaining distance im-
pact, the utility function, and the estimated probability of being in state M .

utility, and the estimated probability of being in state M change as a function of the

remaining distance (assuming a zero lead relative speed and a 5m clear gap). Drivers'

increasing desperation to complete the merge as remaining distance decreases is shown

in the middle plot of Figure 6-18|the utility increases at an increasing rate as a driver

approaches the end of the acceleration lane and the probability of being in state M

approaches unity. The variable remaining distance impact, as shown in the �rst plot

of Figure 6-18, increases from 0 to 5 as the remaining distance decreases from greater

than 150 to 0 meters.

All parameters have signi�cant t-statistics. The adjusted �t of the model was

0.698. In addition, a likelihood ratio test was used to test the null hypothesis that

the parameters of all the explanatory variables except the constant are zero. The

statistic, {2(L(c)� L(
̂)), is equal to 47.54. The chi{square critical value for 3 degrees
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of freedom at the 5% level of signi�cance is 7.81. Hence, the null hypothesis can be

rejected.

Note that, the variable lag relative speed was not included in the model since the

sign of the corresponding parameter was counter intuitive. The use of the explanatory

variable delay (time elapsed since crossing the merging point between the on{ramp

and the freeway) was also not supported by the data may be because the e�ect is

captured by the explanatory variable remaining distance impact. In addition, the

vehicle type (heavy vehicle or not) did not have any impact on the forced merging

behavior. This may be due to lack of observations since only 4 vehicles out of the 79

samples were heavy vehicles.

6.3 Conclusions

The estimation work presented in this chapter shows that, the sensitivity term of

the car{following acceleration is a function of the subject speed, the space headway,

and the density of tra�c, and the sensitivity term of the car{following deceleration

is a function of the space headway and the density of tra�c. The sensitivity lag

was estimated to be zero. In other words, the sensitivity is a function of tra�c

conditions observed at the time instant at which acceleration is applied. In both

cases, the stimulus is a nonlinear function of the front relative speed. Enhancements

of the car{following sensitivity and stimulus proposed in this thesis were supported

by the data. The mean of estimated free{
ow acceleration increases with front vehicle

speeds. Heavier vehicles tend to apply slower acceleration due to physical limitations.

In free{
ow tra�c conditions (i.e., density � 19 veh/km/lane or level of service A

through C), drivers are expected to apply a higher acceleration and the parameter

of the indicator for free{
ow tra�c conditions has the desired sign and a signi�cant

t{statistic.

The headway threshold distribution has a mean and standard deviation of 3.17 and

0.87 seconds respectively. The median, mean, and standard deviation of the reaction

time distribution are estimated to be 1.31, 1.34 and 0.31 seconds respectively.
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The parameters of the discretionary and mandatory lane changing models were

estimated separately due to lack of appropriate data. The estimated median lead and

lag critical gap lengths under mandatory lane changing situations were lower their

discretionary lane changing situation counterparts.

Important factors that a�ect forced merging behavior include the lead relative

speed only when the lead vehicle is slower, remaining distance to the point at which

the lane change must be completed by, and total clear gap (reduced by the subject

vehicle length).

Finally, it must be stated that the estimation results presented in this section

were obtained using data from a particular freeway segment. Due to the curvature

of the roadway upstream of the data collection site, presence of the weaving section,

and two exits downstream, the behavior of drivers, while driving in this area, may

be in
uenced by these conditions. This can be addressed by estimating the models

using data from di�erent sites with di�erent geometrical con�gurations. This will

also address the issue of applicability of the estimation results to general networks.
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Chapter 7

Model Validation Using a

Microscopic Tra�c Simulator

In this chapter, the acceleration and lane changing models are evaluated through

their use in a microscopic tra�c simulator, MITSIM1. Some basic information about

MITSIM is given in Section 7.1. Two new versions of MITSIM were created: MITSIM

with only the acceleration model replaced (MITSIM ONE), and MITSIM with both

the acceleration and lane changing models replaced (MITSIM TWO). Tra�c in a

small network in Boston was simulated using the original version of MITSIM and

MITSIM ONE and TWO. Actual tra�c counts at di�erent locations of the network

were collected during the morning peak hours. The actual counts, aggregated over

�ve minute intervals, were compared to their simulated counterparts to assess the

performance of the estimated models.

This chapter begins with a brief description of MITSIM with emphasis on the

acceleration and lane changing models implemented in the original version. The

validation methodology and the case study are presented next.

1A detailed description of MITSIM can be found in the World Wide Web at the URL
http://its.mit.edu/products/mitsim/mitsim.html, or in Yang and Koutsopoulos (1996) or Yang
(1997).
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7.1 MITSIM: a Microscopic Tra�c Simulator

MITSIM is a microscopic tra�c simulation model that represents the road network,

surveillance system, tra�c signs and signals, and the control logic in detail. Each

lane is represented with its geometric characteristics (for example, curvature, grade,

connectivity), its functional classi�cation (for example, freeway, ramp, local street,

tunnel or at{grade), speed limit, and lane use regulations. Loop detectors, lane

use signals, and variable message signs are simulated in MITSIM. The control logic

supported by MITSIM includes ramp metering, mainline metering, urban control,

etc.

In addition to the network, a time dependent origin{destination trip table and

the tra�c control and route guidance logic are input to the simulator. Vehicles travel

through the network between their origins and destinations. The simulator collects

the sensor readings, individual vehicle speci�c trajectory and trip information, and

average link and path travel times to provide measures of e�ectiveness required for

system evaluation. The sensor readings include tra�c counts, occupancies, and speeds

at a given frequency (e.g. every 5 or 10 minutes).

The travel behavior of the driver is captured by a route choice model. The route

choice model captures drivers' route selection process which is in
uenced by tra�c

information through variable message signs, highway advisory radio, on{board navi-

gation systems, etc. In the route selection process, drivers take lane use regulations

into consideration.

Two main driving behavior models are used to simulate vehicle movements in a

network:

� the acceleration model, and

� the lane changing model.

The acceleration model calculates the acceleration that drivers apply in response

to various situations and factors. The most restrictive acceleration is implemented.

The factors that trigger acceleration include:
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� car{following,

� desired speed,

� signs and signals,

� connection to appropriate downstream link,

� speed limit,

� incidents, and

� courtesy yielding.

The lane changing model captures lane selection and gap acceptance behavior. A

driver �rst checks for the necessity/desirability of changing lanes. Subsequently, the

driver selects a lane from the available choices and assesses the adjacent gap in the

target lane. Lane change takes place when the driver perceives the gap in the target

lane as acceptable.

Description of the acceleration and the lane changing models implemented in the

original version of MITSIM that are replaced in the case study with the corresponding

models estimated in this thesis are presented next.

7.1.1 The Acceleration Model

Based on time headway, a driver is categorized to be in one of the three regimes:

emergency regime: if the current headway is less than a lower threshold;

car{following regime: if the current headway is greater than the lower threshold

but less than an upper threshold; and �nally,

free{
ow regime: if the current headway is greater than the upper threshold.

The default thresholds are 0.5 and 1.36 seconds respectively. They were estimated

by using engineering judgment in combination with a sensitivity analysis of these

parameters on the simulator performance.
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In the emergency regime, drivers apply the minimum of the deceleration necessary

to avoid collisions with the leader and a \normal" deceleration. The normal decel-

eration depends on the speed of the vehicle and was adopted from ITE (1982). The

value is 2.38 m/s2 for speeds up to 6.1 m/s, 2.0 m/s2 for speeds within the range 6.1

to 12.2 m/s, and 1.5 m/s2 for speeds greater than 12.2 m/s.

The acceleration in the car{following regime is calculated using the GM Model

(Equation 2.7). Di�erent sets of parameters are allowed for positive and negative

relative speed cases. These parameters (�; �; and 
) were adopted from Subramanian

(1996) and are presented in Table 2.3.

In the free{
ow regime, a driver does not accelerate/decelerate if the current speed

is equal to its \desired" speed (Table 7.1). If the current speed is less than the desired

speed , he/she applies \maximum" acceleration (Table 7.2), otherwise, he/she applies

a normal deceleration.

Table 7.1: The cumulative distribution of speed that is added to the posted speed
limit to obtain the desired speed.

Percentile speed above the
speed limit (m/s)

5 -4.67

15 -1.73
25 -0.20
35 0.97

45 1.98
55 3.05

65 4.06

75 5.33
85 6.71

95 8.94

7.1.2 The Lane Changing Model

In MITSIM, lane changes are classi�ed as either discretionary (DLC) or mandatory

(MLC). The implementation is as follows:
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Table 7.2: Maximum acceleration (m/s2).

vehicle Speed (m/s)

class < 6.1 6.1{12.2 12.2{18.3 18.3{24.4 > 24.4

high performance car 3.05 2.41 1.71 1.22 1.22
low performance car 2.65 1.58 1.35 0.88 0.61

bus 2.13 1.52 1.22 0.46 0.30
heavy single unit truck 0.85 0.76 0.46 0.30 0.15

trailer trucks 0.49 0.44 0.27 0.14 0.12

Source: adjusted based on FHWA (1980), FHWA (1994), and Pline (1992).

1. check if a lane change is desired/required and de�ne the type of lane change,

2. select a target lane, and

3. check if the gap in the target lane is acceptable.

To capture di�erent driver behavior under DLC and MLC situations, di�erent gap

acceptance model parameters are allowed under DLC and MLC situations. The

models are presented next.

The Discretionary Lane Changing Model

As mentioned in Section 2.2, MITSIM (Yang and Koutsopoulos 1996) uses a rule{

based discretionary lane changing model. A driver considers a discretionary lane

change (DLC) only if the driver cannot accelerate more than 85% of the maximum

acceleration (Table 7.2) or if the current speed is less than an impatience factor times

the driver's desired speed (Table 7.1). The impatience factor varies from 0.8 to 1.0.

Once a driver decides to to perform a DLC, he/she selects a desired lane by

comparing the speeds of the left and right adjacent lanes with that of the current

lane. A parameter speed indi�erence factor (10%) is used to check whether the current

speed is low enough and the speeds in the adjacent lanes are high enough to consider

a lane change and start performing a gap assessment.
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The Mandatory Lane Changing Model

Drivers consider a mandatory lane change in order to:

� connect to the downstream link of their path,

� bypass a lane blockage downstream,

� avoid entering a restricted use lane, or,

� respond to lane use or variable message signs.

At each time step of the simulation, a probabilistic model is used to decide when

a driver is in MLC state. The probability is a function of the remaining distance to

the point at which lane change must be completed by (Lrem
n (t)), the number of lanes

to cross to be in the target lane (mn(t)), and the tra�c density. The probability is

given by:

Pn(MLC(t)) =

8><
>:

exp

�
(Lremn (t)�97:5)2

�2
MLC

(t)

�
if Lrem

n (t) > L0

1 otherwise.
(7.1)

where, �MLC(t) is de�ned as follows:

�MLC(t) = 402:3 (1 + 0:5 mn(t) + 1:0 kn(t)=kj) (7.2)

where, kn(t) and kj denote the tra�c density of the segment and the jam density

(130 veh/km/lane) respectively. Once a vehicle is taggedMLC, it keeps the tag until

it performs the lane change operation or moves into a downstream link. An MLC

tagged driver then searches for an acceptable gap in the target lane.

The Gap Acceptance Model

In the gap assessment phase, drivers compare the lead and lag gaps in the target lane

to the critical lead and lag gaps respectively. The speci�cations for the lead and lag

critical gaps under mandatory and discretionary lane changing situations for driver
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n at time t are:

G
cr;lead
n;DLC(t) = 0:5�max(0:914; 0:914 + 0:05 Vn(t)� 0:10 �V lead

n (t)) (7.3)

Gcr;lag
n;DLC(t) = 0:5�max(1:524; 1:524 + 0:10 Vn(t) + 0:30 �V lag

n (t)) (7.4)

where,

Gcr;lead
n;DLC(t) = lead critical gap for DLC (m),

G
cr;lag
n;DLC(t) = lag critical gap for DLC in (m),

Vn(t) = subject vehicle's speed (m/s),

�V lead
n (t) = lead veh. speed less subject speed (m/s),

�V lag
n (t) = lag veh. speed less subject speed (m/s).

At 10 m/s speed, the DLC lead critical gap increases from 0.46 to 0.96 meters

as the lead relative speed decreases from 10 m/s to -5 m/s. Similarly, the DLC lag

critical gap increases from 0.76 to 2.76 meters as the lag relative speed increases from

-5 m/s to 10 m/s. These values are rather small from a behavioral standpoint.

We expect drivers to be more aggressive under MLC situations compared to DLC

situations. To capture this, the lead/lag critical gaps under MLC situations are

assumed to decrease with decreasing remaining distance to the point at which lane

change must be completed by. The speci�cations for the MLC lead and lag critical

gaps are given by:

G
cr;lead
n;MLC(t) = max(0:914;

0:914 + [0:05 Vn(t)� 0:10 �V lead
n (t)][1� e�2:5E�5 Lremn (t)]) (7.5)

G
cr;lag
n;MLC(t) = max(1:524;

1:524 + [0:10 Vn(t) + 0:30 �V lag
n (t)][1� e�2:5E�5 Lremn (t)]) (7.6)
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where,

G
cr;lead
n;MLC(t) = lead critical gap for MLC (m),

Gcr;lag
n;MLC(t) = lag critical gap for MLC in (m).

7.2 Validation Methodology

7.2.1 Number of Replications

MITSIM is a stochastic simulation model. As a result, the output from one simulation

run may be di�erent from another. Each output represents a sample and a number

of simulations are required to get statistics with a prespeci�ed accuracy. Hence, an

important aspect of the validation methodology is the determination of the number

of replications required to obtain reliable estimates of the measures of interest.

Let, ysr be an output from the r{th run of the simulator corresponding to a �eld

observation y. Therefore, ysr is a realization of the random variable ys corresponding

to the actual observation y. An unbiased estimator of ys is the mean of the R

observations of ysr from R di�erent simulation runs. Mathematically,

ŷs =
1

R

RX
r=1

ysr (7.7)

where,

ŷs = an estimator of ys,

R = number of replications.

Assume that, the R di�erent realizations of the random variable ys are distributed

iid normal with an unknown variance2. Then, the number of replications required to

2Although, the independence assumption may be violated due to the stochastic nature of the
simulator, we still make these assumptions in order to get a closed form solution to estimate the
required number of replications.
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obtain a certain accuracy (e) at a certain level of signi�cance (�) is given by:

Rreqd =

 
s t�=2

ŷs e

!2

(7.8)

where,

s = an estimate of the standard deviation of ys,

e = allowable error,

� = desired level of signi�cance,

t�=2 = critical value of the t{distribution at a level of signi�cance �.

Generally, output from the simulation includes speeds, 
ows and other quantities

that have spatial as well as temporal dimensions. For each of these types of output

for each time{space point, the required number of replications needs to be calculated.

Then, the desired number of replications would be the most conservative value | in

other words, the maximum number of replications required by all the output elements.

7.2.2 Measures of Goodness{of{�t

In this section, di�erent measures of goodness{of{�t to compare the simulated data

with their �eld counterparts are presented (see, for example, Pindyck and Rubinfeld,

1981).

Let, ysi be a simulation estimate corresponding to a �eld observed quantity yi,

where, subscript i denotes a time{space point. For each time{space point i, the

percent error, di is given by:

di =
ysi � yi

yi
� 100 (7.9)

A positive percent error represents an overprediction whereas a negative percent error

represents an underprediction. To evaluate systemwide performance, a useful measure

is the bias or mean percent error over all the time{space points. The mean percent
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error, b, is:

b =
1

I

IX
i=1

di (7.10)

where, I is the total number of time{space points. To identify whether an overpredic-

tion or an underprediction dominates the bias, a useful measure is the mean positive

and negative percent error. The mean positive percent error, bp, is given by:

bp =
1

J

JX
j=1

dj (7.11)

where,

j = index representing the time{space point at which the percent error was

positive,

J = total number of positive percent error observations.

Similarly, the mean negative percent error is de�ned for all the observations showing

underpredictions.

To penalize larger errors at a higher rate, the root mean square error is used. The

root mean square error (RMS) is given by:

RMS =

vuut1

I

IX
i=1

(ysi � yi)
2 (7.12)

The RMS percent error is another measure that takes the scale of yi into account and

is given by:

RMS percent error =

vuut1

I

IX
i=1

 
ysi � yi

yi
� 100

!2

(7.13)

Another useful measure of �t is the Theil's inequality coe�cient (Pindyck and
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Rubinfeld 1981), de�ned as

U =

q
1

I

PI
i=1 (y

s
i � yi)

2q
1

I

PI
i=1 (y

s
i )

2
+
q

1

I

PI
i=1 (yi)

2
(7.14)

The value of U will always fall between 0 and 1. A value of U equal to 0 implies

a perfect �t. Related to the Theil's inequality coe�cient are three proportions: the

bias (UM), the variance (US), and the covariance (UC) proportions. The proportions

are given by

UM =
(ys � y)2

1

I

PI
i=1 (y

s
i � yi)

2
(7.15)

US =
(�s � �)2

1

I

PI
i=1 (y

s
i � yi)

2
(7.16)

UC =
2 (1� �) �s �

1

I

PI
i=1 (y

s
i � yi)

2
(7.17)

where, ys; y; �s; and � are the means and standard deviations of the simulated and

the original series respectively, and � denotes the correlation between the two series.

Basically, these proportions allow us to determine the contribution of the bias and

the variance in the simulation error. Note that,

UM + US + UC = 1 (7.18)

The bias proportion (UM) re
ects the systematic error. The variance proportion

(US) indicates how well the 
uctuation in the original data is replicated by the simu-

lation. Therefore, lower values (close to zero) of UM and US are desired. Finally, the

covariance proportion (UC) measures the unsystematic error. This is the remaining

error after the deviations from the average values have been accounted for and it is

of less worrisome as we desire smaller UM and US.

In addition to these statistical measures, a plot of the real and simulated quantities

over time and space may be useful in identifying any systematic under or overpredic-

tions at any particular time and/or space.
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7.3 Case Study

7.3.1 The Network

A small network in the Boston area, for which actual 
ow observations exist, was

used in the case study (see Figure 7-1). The network is a 2.7 km (1.68 miles) long

segment of the Storrow Drive in Boston. The network is a two lane freeway with two

Note: Figure not drawn to scale

section
A

section
B

section
C

400m 545m390m 770m 600m

section
D

Figure 7-1: The network used in the validation exercise.

on{ramps and two o�{ramps. Video of tra�c during the morning peak (7:30am to

9:15am) on February 10, 1998 was recorded at four locations marked sections A to D

in Figure 7-1.

The part of the network between sections A and D, that are 1.7 km apart, was

simulated. Three 30 meters long dummy links were added to the upstream of section

A to load vehicles in appropriate lanes based on the O{Ds estimated from the counts.

The simulated freeway was extended arbitrarily by 100 meters beyond section D.

Tra�c sensors were placed at all four sections in the simulated network to collect

aggregate counts and average speeds. The speed limit for the freeway was 17.9 m/s

(40 mph).

The above network was selected for the following reasons:

1. Tra�c was light at the beginning and at the end of the data collection time

and was congested in between. Therefore, initial conditions for congestion oc-
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currence could be simulated accurately,

2. The bottleneck formation originated due to conditions within the network (traf-

�c merging from the on{ramp near section C) and was not a�ected by conditions

downstream, and

3. The input 
ows for the network was not a�ected by spillbacks from the bottle-

neck, and therefore, the input 
ows represent the demand exactly.

A limitation of the network though, is that due to the geometric con�guration of

the on{ramp and the freeway merge area, the mandatory lane changing and forced

merging models could not be validated. Although few mandatory lane changes take

place between sections A and B, the number of mandatory lane changes is too small

to validate the model. Figure 7-2 shows the schematic diagram of the merging area

adjacent
vehicle

subject
front

vehicle
On-

ramp

main-
line

X

X

Y

Y

Figure 7-2: Schematic diagram of the on{ramp and Storrow Drive merging area.

between the on{ramp and Storrow Drive (downstream from section C in Figure 7-1)

where two lanes merge into one lane and no lane change takes place.

In geometric con�gurations like this, the mainline vehicles have priority over the

on{ramp vehicles. Two vehicles can overlap laterally at this location since the lane

width is more than that of a single lane (see location of the subject and the adjacent

vehicle in Figure 7-2) but less than that of two lanes. In this case, vehicles from the

two upstream lanes merge without any lane changing taking place. In addition, the

subject vehicle is not necessarily following its leader as is assumed in developing the
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car{following model, since the headway is negative. Therefore, the acceleration and

lane changing models developed in this thesis or those implemented in the original

version of MITSIM do not apply here.

In MITSIM, lanes are discrete and such geometry cannot be represented. An ad

hoc merging model (Yang and Koutsopoulos 1996) is implemented to capture the

merging phenomenon in such areas. The on{ramp vehicle checks whether there is

any vehicle from the adjacent mainline and executes the merge only if the gap is

acceptable.

7.3.2 Tra�c Data

Minute by minute tra�c counts were collected from video tapes for 1 hour 40 minutes

beginning at 7:33am. At section A, counts were collected for the left two lanes

combined and the rightmost lane (that directly feeds into the rightmost lane of the

o�{ramp 400 meters away). At section B, the mainline (the two leftmost lanes) counts

and the o�{ramp (the two rightmost lanes) counts were collected. At section C, before

the merge, the mainline counts and the on{ramp counts were collected. Finally, at

section D the mainline counts were collected.

Figure 7-3 shows the minute by minute 
ow through the left two lanes and the

rightmost lane at section A and through the on{ramp near section C. The mean


ow values at these locations were 1650, 700, and 900 veh/hr/lane respectively with

a standard deviation of 350, 300, and 250 veh/hr/lane respectively. Although, the

on{ramp volume was not high, a bottleneck formed near the on{ramp and freeway

merging area due to merging. A spillback from the bottleneck reached section B

brie
y, but never reached section A nor the upstream end of the on{ramp at section

C. Therefore, the input 
ows for the network were not a�ected by spillbacks from the

bottleneck and they represent the demand accurately.
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Figure 7-3: Flow of tra�c entering the network.

7.3.3 O{D Estimation from Tra�c Counts

A required input to the simulator is a time{dependent O{D matrix. The minute by

minute O{D matrix was estimated from the minute by minute tra�c counts at section

A, the exit counts at section B, and the on{ramp counts at section C by using an ad

hoc method. Note that, the method is developed considering the geometry and counts

of this particular network, and is not applicable to a general network. It was assumed

that, a certain percentage (p) of the tra�c from the rightmost lane at section A (the

exit only lane) takes the exit ramp near section B. Since p is unknown, di�erent sets

of O{D matrices were created by varying p from 70% to 100% to investigate the e�ect

of the assumption of p on the validation results.

The O{D matrix for a particular minute (say, the tth minute) is estimated from the
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counts of the corresponding minute by using the following equations (see Figure 7-4

(c)):

C: counts   O: origin  D: destination
p: % of rightmost lane traffic exiting

Legends

{

{

C1

C3

C2

(a) traffic counts from video tape, veh/min

{

O1

O3

(b) origin and desitination definitions

{

D4

{

D2

(c) O-D estimation

O1D2 = min(C 1 * p , C2)

O1D4 = C 1 - O 1D2

O3D2 = C 2 - O 1D2

4

21

3
O3D4 = C 3 - O 3D2

Figure 7-4: O{D estimation from tra�c counts for the case study.

O1D2(t) = min(C1(t) p; C2(t+ tt)) (7.19)

O1D4(t) = C1(t)�O1D2(t) (7.20)

O3D2(t) = C2(t + tt)� O1D2(t) (7.21)

O3D4(t) = C3(t)�O3D2(t) (7.22)
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where (see Figures 7-4 (a) and (b)),

t = time period between minutes t and (t+ 1),

tt = average travel time between sections A and B,

C1(t) = counts at the rightmost lane at section A,

C2(t) = counts at the exit ramp at section B,

C3(t) = counts at the left two lanes at section A,

O1D2(t) = number of vehicles from the rightmost lane at section A exiting

at section B,

O1D4(t) = number of vehicles from the rightmost lane at section A that continue

on the freeway,

O3D2(t) = number of vehicles from the left two lanes at section A exiting at

section B,

O3D4(t) = number of vehicles from the left two lanes at section A that continue

on the freeway.

The count C2 was advanced by tt to take into account that a vehicle counted

at section A at time to would reach section B at time (to + tt). It was assumed

that tt is the travel time between sections A and B for everyone. We conducted

a sensitivity analysis on tt to investigate its impact on the O{D estimations. The

average travel time to reach section B from section A ranged from 19 to 28 seconds

(observations from simulation). Within this range of tt, C2(t + tt) di�ered by less

than 2 vehicles/minute for 92% of the cases. Therefore, the assumption on tt does

not a�ect the O{D estimation signi�cantly. The variable tt was set to 22.4 seconds

which assumes that vehicles traveled at the speed limit.

From the rightmost lane at section A, the minimum of a certain percent p of C1

and the exit ramp count at section B (C2) is assigned to take the exit ramp at section

B (O1D2). The remaining C1 is assigned to continue on the freeway (O1D4). This will

guarantee that at least (1� p) percent of the rightmost lane drivers would perform a
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mandatory lane change to continue on the freeway.

The number of vehicles from the left two lanes exiting section B (O3D2) is esti-

mated by deducting O1D2 from the o�{ramp counts at section B (C2). The remaining

tra�c counted at the left two lanes at section A (i.e., C3 � O3D2) continues in the

freeway (O3D4). Finally, all vehicles entering the network through the on{ramp at

section C have only one destination, i.e., they travel through section D.

7.3.4 MITSIM Modi�cations

As mentioned above, two additional versions of MITSIM were created by incorpo-

rating the models developed in this thesis. In MITSIM ONE, only the acceleration

model was replaced with the one estimated in this thesis. In MITSIM TWO, both

the acceleration and lane changing models were replaced with those estimated in this

thesis. A version of MITSIM with only the lane changing model replaced with the

one estimated in this thesis was not created due to the following reason.

Early testing using the original version of MITSIM indicated that, it was not

capable of handling the demand used in this case study due to over prediction of

congestion and the resulting spillback. Vehicles were queued outside of the network

and were loaded only when spaces to load them became available. As a result, vehicles

could not be loaded on time according to their O{D and departure times. By replacing

the default lane changing model with the one developed in this thesis, the problem

still persisted. Therefore, the results from such simulation runs would not be reliable,

and MITSIM with only the lane changing model replaced was not tested.

In addition to replacing the acceleration and lane changing models with those

estimated in this thesis, the following changes to MITSIM parameters were introduced

(see Appendix B for a general approach to calibrate the simulation model parameters):

� The lower (headway) threshold of the acceleration model was set to 0.4 seconds

and the upper threshold was adopted from Equation 6.5. The lower threshold

was set after some trial and error to avoid vehicle to vehicle collisions. Compared

to the 1.36 seconds upper threshold used in the original version of MITSIM, the
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upper threshold estimated in this thesis was much higher. For example, the 5

percentile and the median upper headway thresholds were 1.75 and 3.17 seconds

respectively.

� Since the data collection site used to estimate the models in this thesis and the

network used for the validation case study have di�erent geometric con�gura-

tions, the constant of the car{following acceleration model was adjusted to make

the model predictions more realistic for the validation network. The constant of

the car{following acceleration model (�acc in Equation 6.2) was increased from

0.023 to 0.040.

7.3.5 Experimental Design

The three versions of MITSIM were used under di�erent scenarios with respect to

the O{D 
ows (values of p were set equal to 100%, 85%, and 70%). In order to

determine the number of replications required, we need estimates of the mean and

standard deviation of the measures of interest (discussed in Section 7.2.1). To get

estimates of mean and standard deviation, all three versions of the simulator were run

10 times using the three di�erent sets of O{D matrices. Then the required number of

replications for all the cases were estimated using Equation 7.8. The most conservative

estimate was 4 and in subsequent computations output from all 10 runs were used.

Tra�c counts and speeds for each scenario were aggregated over 5 minute periods.

The counts were compared to the corresponding real tra�c counts. Speeds predicted

by di�erent versions of the simulators were also compared. The statistics reported in

Section 7.2.2 were used to measure the goodness of �t of the various simulation runs.

7.3.6 Validation Results

Table 7.3 summarizes the comparison of the original MITSIM with the two revised

MITSIM versions using three di�erent set of O{D matrices (assuming that 100, 85,

and 70% of the drivers from the rightmost lane at section A took the exit at section B).

Observations corresponding to the �rst �ve minutes were not used in computations
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since vehicles were loaded into an empty network and it took approximately 2 minutes

to �ll the network.

As evident in Table 7.3, by varying the values of p, the percent of the rightmost

drivers at section A exiting at section B, the statistics did not show signi�cant vari-

ation. This may be due to low 
ow through the rightmost lane at section A and the

exit at section B. Therefore, based on the low sensitivity of the results to the value

of p, the conclusion drawn should be valid for the actual O{D 
ows as well.

For all cases, MITSIM ONE and TWO performed consistently better than the

original MITSIM version. Tra�c in the original MITSIM got jammed 15 minutes after

the beginning of simulation and continued to be jammed throughout the simulation

period. The congestion originated near the on{ramp merge. Tra�c spilled back all

the way up to section A and beyond, and a�ected vehicle loading into the network.

Whereas, in reality, the merging area near section C was congested from 8:04am

to 9:05am and the e�ect of spillback reached section B brie
y but never reached

section A. MITSIM ONE and TWO performed much better in this respect. This is

also re
ected by consistently low average speeds at sections B and C for the original

MITSIM as shown in Figures 7-5, 7-6, and 7-7.

Due to lack of speed observations from the �eld, simulated speeds could not be

compared to the �eld observations. At section B, the average speeds were around 12

to 14 m/s for MITSIM ONE and TWO compared to 5 m/s for the original MITSIM.

The speed limit of the freeway is 17.9 m/s (40 mph). Average speeds from the original

MITSIM were signi�cantly lower than expected.

The RMS Percent Error in counts for the original MITSIM was 9.08% which

reduced to 8.09% and 7.53% for MITSIM ONE and TWO respectively. The root mean

square error was 28, 24, and 22 vehicles per 5 minutes for the original MITSIM and

MITSIM ONE and TWO respectively. The Theil's inequality coe�cient was 0.050,

0.042, and 0.039 for the original MITSIM and MITSIM ONE and TWO respectively.

Note that, a smaller coe�cient implies a better �t.

The mean percent error contributed signi�cantly toward the RMS Percent Error

for the original MITSIM and is equal to -5.81% compared to -1.95% and -1.56% for
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Table 7.3: Summary statistics of the comparison of the �eld observed counts with

those obtained from di�erent versions of MITSIM using three di�erent O{D sets.

Percent vehicles from the rightmost lane taking exit = 100%
Revised Revised

Statistical Original MITSIM, MITSIM,
Measure MITSIM Acc only Acc & LC
RMS percent error (%) 9.08 8.09 7.53
RMS error (veh. per 5 min) 27.82 24.23 22.22
mean percent error (%) -5.81 -1.95 -1.56
Theil's inequality coe�cient 0.050 0.042 0.039
UM (bias proportion) 0.419 0.073 0.059
US (variance proportion) 0.063 0.005 0.011
avg. positive error(%) 4.53 6.78 5.99
no. of positive errors 12 18 20
max. positive error(%) 9.13 20.85 20.49
avg. negative error (%) -8.56 -5.98 -5.64
no. of negative errors 45 39 37
max. negative error(%) -19.97 -18.99 -16.17

Percent vehicles from the rightmost lane taking exit = 85%
Revised Revised

Statistical Original MITSIM, MITSIM,
Measure MITSIM Acc only Acc & LC
RMS percent error (%) 9.08 7.83 7.44
RMS error (veh. per 5 min) 27.76 23.44 22.02
mean percent error (%) -5.77 -2.13 -1.96
Theil's inequality coe�cient 0.049 0.041 0.038
UM (bias proportion) 0.415 0.090 0.088
US (variance proportion) 0.059 0.008 0.012
avg. positive error(%) 3.90 5.86 5.72
no. of positive errors 14 19 19
max. positive error(%) 10.24 19.46 18.74
avg. negative error (%) -8.92 -6.12 -5.81
no. of negative errors 43 38 38
max. negative error(%) -20.10 -17.28 -16.10

Percent vehicles from the rightmost lane taking exit = 70%
Revised Revised

Statistical Original MITSIM, MITSIM,
Measure MITSIM Acc only Acc & LC
RMS percent error (%) 9.17 8.13 7.71
RMS error (veh. per 5 min) 28.06 24.21 23.00
mean percent error (%) -5.83 -2.25 -2.20
Theil's inequality coe�cient 0.050 0.042 0.040
UM (bias proportion) 0.416 0.091 0.099
US (variance proportion) 0.060 0.003 0.011
avg. positive error(%) 4.41 6.85 6.65
no. of positive errors 12 17 16
max. positive error(%) 8.97 20.72 19.69
avg. negative error (%) -8.56 -6.11 -5.79
no. of negative errors 45 40 40
max. negative error(%) -20.51 -17.65 -16.41
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Figure 7-5: Comparison of average speeds obtained from di�erent versions of MITSIM

for p = 100%.

MITSIM ONE and TWO respectively. The bias proportion (UM ) for the original

MITSIM is 0.419 which is very high. The bias proportions for MITSIM ONE and

TWO were 0.073 and 0.059 respectively. The variance proportions were 0.063, 0.005,

and 0.011 for the original MITSIM and MITSIM ONE and TWO respectively.

As a result of the systematic underrepresentation of 
ow, the number of positive

errors for the original MITSIM was small and the corresponding average and max-

imum positive errors were low compared to those for the two other MITSIMs. The

mean positive percent errors were 4.53%, 6.78%, and 5.99% for the original MITSIM

and MITSIM ONE and TWO respectively. The negative mean percent error for the

original MITSIM was -8.56% compared to -5.98% and -5.64% for MITSIM ONE and
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Figure 7-6: Comparison of average speeds obtained from di�erent versions of MITSIM

for p = 85%.

TWO respectively.

Compared to MITSIM ONE and TWO, the performance of the original MITSIM

was poor at all three sections (see Figures 7-8, 7-9, and 7-10). Performances of

MITSIM ONE and TWO at section D were not as good as they were at sections B

and C. This may be due to the fact that, section D is near the simulated network

boundary where all tra�c exits the network. As a result, vehicles leave the network

at speeds higher than the real speed. Therefore, the 
uctuation in the 
ow for section

D could not be reproduced well.

Performance of the original MITSIM improved signi�cantly after the acceleration

model was replaced with the one estimated in this thesis (MITSIM ONE). Due to
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Figure 7-7: Comparison of average speeds obtained from di�erent versions of MITSIM

for p = 70%.

the high congestion level, drivers traveled with low headways most of the time. As

shown in Figure 6-3, the deceleration calculated by the deceleration model used in the

original MITSIM (adopted from (Subramanian 1996)) is too high at low headways.

This may have contributed to vehicles moving slowly in the original MITSIM, and

thereby reducing the volume of tra�c the network could handle, especially, near the

merging area.

Finally, MITSIM TWO performed better than MITSIM ONE with respect to all

the statistics except the variance proportion (US) and the bias proportion (UM) for

the p = 70% case. However, the RMS and the mean percent errors for MITSIM TWO

were smaller than its MITSIM ONE counterparts. This may be due to the fact that
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Figure 7-8: Comparison of the real tra�c counts with those obtained from di�erent
versions of MITSIM for p = 100%.

the variance and the bias proportions do not take into account the scale of the errors

(the di�erences between the simulated and the original tra�c counts) with respect to

the original counts. Therefore, MITSIM TWO demonstrates the e�ectiveness of the

discretionary lane changing model.

7.4 Conclusions

The acceleration and discretionary lane changing models were tested using a micro-

scopic tra�c simulator, MITSIM. Tra�c on a 1.83 km long segment of a freeway

with one on{ and one o�{ramps was simulated using di�erent versions of MITSIM:

the original MITSIM, MITSIM with only the acceleration model replaced with the
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Figure 7-9: Comparison of the real tra�c counts with those obtained from di�erent
versions of MITSIM for p = 85%.

model estimated in this thesis, and MITSIM with both the acceleration and the

lane changing model replaced with the corresponding models estimated in this the-

sis. Simulated counts aggregated over �ve minute intervals at di�erent locations were

compared to the corresponding �eld observations.

Performance of the original MITSIM signi�cantly improved after the acceleration

model was replaced with the one estimated in this thesis (MITSIM ONE). It improved

further when the lane changing model of the original MITSIM was replaced with the

one estimated in this thesis in addition to replacing the acceleration model (MITSIM

TWO). For a full evaluation, a wider set of experiments covering di�erent weather,

geometry, and congestion conditions is needed.
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Figure 7-10: Comparison of the real tra�c counts with those obtained from di�erent
versions of MITSIM for p = 70%.
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Chapter 8

Conclusions and Future Research

Directions

This chapter summarizes the conceptual framework and estimation results of the

proposed acceleration and lane changing models. Major contributions of this thesis

are also discussed. Finally, suggestions for future research are presented.

8.1 Summary of Research

8.1.1 The Acceleration Model

A comprehensive framework for estimating a general acceleration model is developed

that is applicable to both congested and uncongested tra�c. The model de�nes two

regimes based on a time headway threshold: the car{following regime and the free{


ow regime. At headways less than the threshold, a driver is assumed to be in the

car{following regime trying to match its leader's speed, and at headways larger than

the threshold, the driver is assumed to be in the free{
ow regime trying to attain its

desired speed.

A headway threshold distribution is assumed to capture the variability among

drivers. A reaction time distribution is also assumed which captures the e�ect of

response lag to stimulus. The mean of the reaction time distribution depends on the
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tra�c environment.

Both the car{following and free{
ow acceleration models employ the response

equal to the stimulus times the sensitivity structure. The car{following model uses

the GM Nonlinear Model as a basis and extends it. The original model was modi�ed

to include the e�ect of density in the sensitivity term and allow the stimulus to be

a nonlinear function of the front relative speed (i.e., leader speed less the subject

speed). In addition, the estimation allows for capturing the fact that, drivers may

update their perception of the tra�c environment after they recognize the stimuli for

the car{following acceleration (the lead relative speed). In the free{
ow acceleration

model, the sensitivity term is a constant and the di�erence between the desired speed

and the current speed provides the stimulus.

The parameters of all the component models were estimated jointly using the

maximum likelihood estimation method and microscopic data collected from the video

of real freeway tra�c. The network is a part of Interstate 93, the Central Artery in

Boston. The section has a three lane mainline and a weaving lane.

The estimation results show that the impact of speed, space headway, and density

of tra�c is di�erent under acceleration and deceleration situations. The sensitivity

term of the car{following acceleration is a function of the subject speed, the space

headway, and the density of tra�c, while that of the car{following deceleration is a

function of the space headway and the density of tra�c. The stimulus is a nonlinear

function of the lead relative speed. The free{
ow acceleration is a function of the

subject speed, its leader speed, an indicator whether the subject vehicle is a heavy

vehicle (i.e., vehicle length greater than 9.14 meters or 30 ft), and an indicator whether

tra�c density is low (level of services A through C).

The mean and standard deviation of the headway threshold distribution were

estimated to be 3.17 and 0.87 seconds respectively. The median, mean, and standard

deviation of the reaction time distribution were estimated to be 1.31, 1.34, and 0.31

seconds respectively.
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8.1.2 The Lane Changing Model

The lane change model is based on a decision that proceeds in the following three

steps:

� decision to consider a lane change,

� choice of a target lane, and

� acceptance of a gap in the target lane.

Modeling such a process is extremely complicated due to its latent nature. To

simplify, drivers are assumed to make decisions about lane changes at every discrete

point in time irrespective of the decisions made during earlier time periods.

The proposed gap acceptance model recognizes that for merging into an adjacent

lane, both the lead and lag gaps must be acceptable. Drivers are expected to be more

aggressive under mandatory lane changing situations compared to discretionary lane

changing situations. The proposed model captures this behavior by allowing di�erent

parameters for the gap acceptance model under the two situations. The models were

estimated using the same data as in the estimation of the acceleration model.

Drivers' decision to perform a discretionary lane change is modeled as a two steps

decision process. First, drivers examine their satisfaction with the driving conditions

of the current lane. Important factors a�ecting such decision include the di�erence

between the current speed and the driver's desired speed, an indicator whether the

subject vehicle is a heavy vehicle, and an indicator whether the subject is tailgated.

If the driver is not satis�ed with the driving conditions of the current lane, he/she

compares the driving conditions of the current lane with those of the other lanes.

Such decision is in
uenced by the the speeds of the vehicles ahead in di�erent lanes

compared to the subject's desired speed and the lag relative speed.

Factors a�ecting a driver's decision to respond to the mandatory lane change

situation (MLC) are delay (time elapsed since MLC conditions apply) and an indi-

cator for the �rst gap (when delay is equal to zero). The estimated median lead and
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lag critical gap lengths under MLC situations are lower than their DLC situations

counterparts, as expected.

A forced merging model is developed to capture drivers' lane changing behavior

in heavily congested tra�c where gaps larger than their minimum acceptable length

are hard to �nd. In such situations, it is assumed that a driver changes lanes either

through courtesy yielding the lag vehicle in the target lane or through the subject

forcing the lag vehicle to slow down. Important factors that a�ect drivers' forced

merging behavior include lead relative speed (only when the lead vehicle is slower),

remaining distance to the point at which the lane change must be completed by, and

total clear gap in excess of the subject vehicle's length.

8.1.3 Validation by Microsimulation

The acceleration and lane changing models were tested using a microscopic tra�c

simulator, MITSIM. A 1.83 km long segment of a freeway with one on{ and one

o�{ramps was simulated using di�erent versions of MITSIM: the original MITSIM,

MITSIM with only the acceleration model replaced with the one estimated in this

thesis, and MITSIM with both the acceleration and lane changing models replaced

with the corresponding models estimated in this thesis. Simulated counts at di�erent

time intervals, aggregated over �ve minutes, at di�erent locations were compared to

the corresponding �eld observed counts.

Performance of the original MITSIM signi�cantly improved after the acceleration

model was replaced with the one estimated in this thesis. It improved further when

the lane changing model of the original MITSIM was replaced with the one estimated

in this thesis in addition to replacing the acceleration model.

8.2 Contributions

This thesis contributes to the state of the art in modeling drivers' acceleration and

lane changing behavior in two major areas: enhancing existing models and proposing

new models, and estimating the models using statistically rigorous methods and real
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microscopic tra�c data. Contributions in each of these two areas are listed below.

� Contribution to the modeling framework:

{ The car{following model is extended by assuming that the stimulus is a

nonlinear function of the lead relative speed and that the sensitivity term

is also a function of the tra�c conditions ahead of the driver.

{ The existing models restricts the stimulus (the lead relative speed) and

other factors (such as subject speed, gap in front of the subject) that

a�ect the acceleration decision to be observed at the same time. This cor-

responds to an assumption that drivers base their decisions on the tra�c

environment at the time they were stimulated into action. The proposed

model relaxes this assumption by allowing drivers to update their percep-

tion of the tra�c environment during the decision making process.

{ A headway threshold distribution is introduced that allows any driver be-

havior to be captured (aggressive or conservative).

{ An individual driver speci�c reaction time is introduced which is allowed

to be sensitive to the tra�c situation under consideration.

{ A probabilistic lane changing model is developed that captures drivers'

lane changing behavior under both the mandatory and discretionary lane

changing situations. This is a signi�cant improvement over the existing

deterministic rule{based lane changing models.

{ The proposed lane changing model allows for di�erent gap acceptance

model parameters for mandatory and discretionary lane changing situa-

tions. It also captures the variability within driver and amongst drivers in

the lane changing decision process.

{ A forced merging model is proposed that captures merging in a heavily

congested tra�c by gap creation either through force or through courtesy

yielding.
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� Contribution to model estimation:

{ A methodology to estimate instantaneous speed and acceleration (that is

required for model estimation) from discrete trajectory data (that can be

obtained from real tra�c) is developed.

{ All the components of the acceleration model are estimated jointly using

real microscopic tra�c data. The component models are the car{following

acceleration and deceleration models, the free{
ow acceleration model, and

the headway threshold and reaction time distributions. Estimation results

demonstrate the robustness of the modeling framework.

{ Separate car{following model parameters under acceleration and decelera-

tion situations are allowed in the estimation. This captures the fact that,

the sensitivity of di�erent factors on drivers' acceleration behavior may

not be same under these two situations.

{ Separate gap acceptance models for the mandatory and discretionary lane

changing situations are estimated. This captures the fact that, driver are

expected to be more aggressive under mandatory lane changing situations

compared to discretionary lane changing situations.

{ The proposed models were estimated using the maximum likelihood esti-

mation method and real microscopic tra�c data.

8.3 Future Research Directions

8.3.1 Modeling

� The proposed acceleration model should be extended to capture the impact of

lane changing decisions on the acceleration decision. For example, drivers may

need to accelerate or decelerate to �t into a gap in the target lane. In such

cases, the headway and speed of the lead and lag vehicles in the target lane will

in
uence drivers' acceleration decisions.
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� The proposed lane changing model does not capture the impact of past lane

changing decisions on the current lane changing decision and various modeling

approximations should be considered.

� The forced merging model and the mandatory lane changing model should be

combined into a single framework. In reality, drivers consider forced merging

only when they perceive the probability of �nding an acceptable gap to be very

low.

� Models capturing driver behavior in a merging area where two lanes gradually

become one (see Figure 7-2 for an example) have to be developed.

8.3.2 Estimation and Validation

To enhance the ability of the models proposed in this thesis to predict drivers' ac-

celeration and lane changing behavior, the models should be estimated with richer

data that has more variability than the one used in this thesis. For example, the

car{following model proposed in this thesis predicts acceleration that is smaller than

expected which should be reestimated using richer data. In addition, from an esti-

mation point of view, a major research activity is the estimation of the models using

richer data that provide the required variability to assess the impact of various factors,

such as geometric characteristics etc. More speci�cally,

� The impact of geometric characteristics of a roadway, for example, lane width,

curvature, grade, pavement surface quality, on driver behavior was not captured

due to lack of data. The models should be estimated using data from di�erent

sites with di�erent geometric characteristics.

� The discretionary lane changing behavior, when mandatory lane changing situ-

ations apply, cannot be estimated due to lack of appropriate data. This requires

data collected over a long stretch of a roadway (1500 � 3000 meters long).

� The discretionary lane changing model was estimated using a data set in which

the choice set was the current lane and one adjacent lane. Ideally, data set with

179



two adjacent lanes in the choice set would be preferable.

� The identi�cation problem that arose while estimating the discretionary lane

changing model in which serial correlation was captured should be further in-

vestigated.

Further validation, using more extensive networks, is also required.

8.4 Conclusion

A comprehensive framework for modeling drivers' acceleration and lane changing be-

havior was developed in this thesis. Both the acceleration and lane changing models

were estimated using real microscopic tra�c data, and validated from a behavioral

standpoint as well as using microsimulation. Overall, the empirical results are en-

couraging and demonstrate the e�ectiveness of the modeling framework.
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Appendix A

Speci�cation of the Random Utility

Model Appropriate for Panel Data

Panel data contains one or more observations for each individual driver. Di�erent

observations from a given driver are likely to be correlated which may introduce bias

in the parameter estimates. To capture this correlation, the random disturbance

of the utility function used to model the decisions at various levels is assumed to

have two components: an individual speci�c random term (that does not vary for a

given individual), and a generic random term (Heckman 1981). Hence, the utility

formulation associated with a decision d within the hierarchy is given by:

Ud
n(t) = Xd

n(t)�
d + �d�n + �dn(t) (A.1)

where,

n = individual driver,

t = time instance,

Ud
n(t) = unobserved utility of responding to decision d at time t,

Xd
n(t) = vector of explanatory variables,

�d = vector of parameters,
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�n = individual speci�c random term assumed to be distributed standard

normal,

�d = parameter of �n for decision d,

�dn(t) = generic random term that varies across all three dimensions, i.e.,

d; t; and n:

These assumptions on the random terms imply:

cov(�dn(t); �
d0

n0(t
0)) =

8><
>:

�2�d if t = t0, n = n0 and d = d0

0 otherwise
(A.2)

cov(�dn; �
d0

n0(t)) = 0; 8t; n; d; n0; d0 (A.3)

cov(Ud
n(t); U

d0

n0 (t
0)) =

8>>>>>>>><
>>>>>>>>:

(�d)2 + �2�d if d = d0; n = n0 and t = t0

(�d)2 if d = d0; n = n0 and 8t 6= t0

�d�d0 if d 6= d0; n = n0 and 8t
0 otherwise

(A.4)

where, �2�d denotes the variance of �
d
n(t). Conditional on �n, di�erent discrete choice

models can be obtained by making di�erent assumptions on the distribution of �dn(t),

such as a logit or a probit model.
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Appendix B

Calibration of the Simulation

Model Parameters

Figure B-1 illustrates a systematic approach to calibrate simulation model param-

Data Collection

Disaggregate
Data

Estimation of
Individual Models

Evaluation

Validation of
Simulation Model

Evaluation

Calibrated and
Validated
Simulation

Model

Model
Refinement

Aggregate
Data

Figure B-1: Model parameter calibration approach.

eters. Data collection involves collecting both disaggregate (microscopic) and ag-
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gregate (macroscopic) data. Chapter 5 provided a detailed description of the data

required to estimate driver acceleration and lane changing behavior and the actual

disaggregate data collected from real tra�c. The disaggregate data are used to esti-

mate individual models (as is done in this thesis presented in Chapter 6). Then the

parameter estimates are evaluated both from statistical and behavioral standpoints.

This may suggest re�nement of the model structure which is followed by reestimation

of the models.

In the next phase, aggregate data is used to validate the overall performance of the

simulation model. Examples of aggregate data include speeds, counts, occupancies

at di�erent locations of a roadway aggregated over a period of time. At that point

further re�nement and calibration may take place. For example, the constant of

the models estimated using disaggregate data, collected at other locations, may be

recalibrated using aggregate data from the location where the application takes place.
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