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Abstract

Discrete choice models and, more recently, latent variable models have been widely
applied to problems in transportation, economics, geography, marketing, public policy
and psychology. The primary motivation for this work is the need for a comprehen-
sive framework for capturing heterogeneity in choice processes, and which is consistent
with existing behavioral theories, emphasizes a causal structural formulation, is math-
ematically tractable, and empirically verifiable. Specifically, the framework must be
flexible enough to capture unobserved heterogeneity stemming from:

1. decision-protocols adopted by individuals;
2. choice sets considered by individuals;
3. taste variations among the members of the population; and

4. psychological factors such as attitudes and perceptions which affect the decision-
making process.

To this end, this thesis significantly advances upon existing approaches to incorpo-
rate heterogeneity. The models developed in this thesis have been catalyzed by the
recognition of the significance of choice process heterogeneity and the potential for
incorrect forecasts if we ignore it, coupled with the advances in estimation and mod-
eling methods. Further, the availability of computational power has engendered the
development of the sophisticated models.

In this thesis, we extend the conceptual frameworks of McFadden [1986] and Ben-
Akiva and Boccara [1986] of incorporating psychometric data within choice models
to better reflect the underlying behavioral process. Specifically, we advance a rich
class of choice models which builds on the simplicity and elegance of microeconomic
theory, and incorporates the key psychological factors which endeavor to explain and
quantify seemingly irrational or inconsistent behavior.



We develop the latent class choice model (LCCM) wherein the unobserved con-
structs are discrete or categorical, and hence are characterized through latent classes.
LCCM is useful in situations wherein the analyst postulates that the factors “generat-
ing” heterogeneity can be conceptualized as discrete or categorical constructs such as
choice sets considered, decision protocols adopted, market segments, etc. As part of
the development of the LCCM, we formulate different class membership models which
assign individuals to classes. These class membership models are derived rigourously
from a behavioral theory perspective, and through a set of criterion functions which
represent unobserved attitudes, individual’s constraints and decision rules. We also
develop the latent structure choice model (LSCM) which incorporates the gamut of at-
titudinal and perceptual indicators through latent attitudes, perceptions and classes,
and discuss issues of estimation. Operationally, LSCM links latent structure models,
including latent variable models and the latent class model, with choice models.

The unique features of the developed methodology are demonstrated in three
domains. In the first problem, we apply the latent class choice model for taste het-
erogeneity in the estimation of travel choice models with distributed value of time
(VOT). The modeling approach is the use of concepts such as “cost-sensitivity” and
“time-sensitivity” to capture the degree to which individuals weigh travel cost and
travel time in the choice process. The substantial improvement in the overall fit
of the estimated models demonstrates the potential of the latent class approach for
capturing taste variations, and indicates its efficacy and practicability compared to
extant approaches of introducing interaction variables in the systematic utility func-
tions, and the random coefficients model. The models also evidenced the significance
of the unobserved variations in the VOT in the sample which persisted even after
the systematic variations due to socio-economic and demographic variables were ac-
counted for. Further, the models capture certain segments of the population having
considerably higher VOT.

In the second problem, we apply the latent class choice model for decision protocol
heterogeneity in a transportation mode choice context with data from simulated choice
experiments. The estimated models have significantly better explanatory power com-
pared to the standard probit model. Further, we observe that a significant fraction of
the sample do not adopt the utility maximizing decision protocol. We also note the
significance of the effects of the choices made by the individuals in the actual market
environment on the decision protocol adopted in the choice experiments.

In the third problem, a class of choice models incorporating attitudinal data in
choice models is formulated. The key feature of this approach is the concept of
latent attitudes, and the respondent’s responses to attitudinal questions relating to
importance of attributes of alternatives (usually referred to as importance ratings)
are manifestations of these attitudes towards the different attributes. The approach
is demonstrated in a shipper’s freight mode choice context.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

This thesis concerns itself with enhancing existing tools to model the behavior of an
individual® choosing an alternative? from a set of mutually exclusive and collectively
exhaustive alternatives. Such tools, referred to as discrete choice models, have been
of interest to researchers and practitioners for many years in a gamut of disciplines,
such as transportation, economics, marketing, geography, psychology, public policy,
and bioassay (see for example, Ben-Akiva and Lerman [1985], Train [1986], Anderson
et al. [1992] for the theory and application of such models). These models do not
attempt to predict deterministically the choice of an individual. Rather, they predict
the probability of an individual picking an alternative. Further, the emphasis is on
capturing the underlying process undertaken by the individual, hitherto referred to
as the discrete choice process or the choice process for brevity, while choosing an

alternative.

"We use the terms “individual”, “consumer” and “decision-maker” interchangeably throughout
the thesis.

2 Alternative refers to an option available to an individual in a particular decision context. In a
travel choice context, the option may be multi-dimensional characterized over time-of-day of travel,
destination, travel mode, and route.
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1.1 Motivation

To motivate the thesis objectives, we present briefly the views of two fields of research

which have eyed the choice process from seemingly disparate perspectives.

1.1.1 Microeconomic Choice Theory

Microeconomic theory concentrates on the choice process by postulating that the
individual is an “optimizing black box” (see, for example, McFadden [1973, 1986],
Manski [1973, 1977], Samuelson [1983]). Thus the underlying decision protocol as-
sumed is that the individual chooses an alternative which maximizes his/her wutility or
well-being. The attributes® of different alternatives, individual characteristics, past
experiences, ambient information and situational constraints are inputs to the black
box, while the observed choice is the output. The operationalization of the microeco-
nomic choice theory relies heavily on the individual’s preferences towards alternatives
as elicited in the actual market environment, usually referred to as revealed prefer-
ences. Further, it assumes that the individual has perfect information about available
alternatives and their attributes. But in reality, an individual has limited prior in-
formation about consumption opportunities and information processing capabilities.
The individual’s preferences to different alternatives may contain random compo-
nents mainly due to the inability of the observer/analyst to measure all the inputs
precisely. So the theory is operationalized by linking the random preference to the
choice probabilities through a parameterized statistical model. Essentially, the model
links directly the observed inputs to the observed output, and model parameters are

then estimated through statistical procedures.

1.1.2 Choice Theory in Cognitive and Behavioral Science

Cognitive and behavioral scientists focus on the substantive theoretical aspects which

guide the real-world choice process. For the last three decades, behavioral scientists

3For example, in a travel mode choice context, attributes may include travel times and travel
costs of competing travel modes.
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have been arguing that the microeconomic theory is not an accurate description of
how individuals make decisions (e.g., Edwards [1954], Simon [1955, 1956], Kahneman
and Tversky [1979], Abelson and Levy [1985]). In fact, cognitive psychologists argue
that the analyst would be unjustified in believing that he/she will ever be possible
to discover quantitative laws that apply to human behavior (Simon [1990]). In stark
contrast to the basic tenets of microeconomic theory, people’s preferences have been
shown to be inconsistent. For example, Tversky [1969] presents evidence of intransi-
tivity of preferences.

Kahneman and Snell [1990] note the vagueness of the concept of utility and ar-
gue that a distinction should be made between experience utility (satisfaction from
use of an alternative), predicted utility (anticipated or expected satisfaction from use
of an alternative) and decision utility (the weight actually given to an alternative
when choosing). Further, social psychologists contend that social motives and pres-
sures may sometimes be as important determinants of choice as individual’s egoistic
motives. Psychologists argue that the assumption of perfect information underly-
ing microeconomic theory is rarely justified. Furthermore, the boundedly rational
principle of Simon [1955] exemplifies the fact that the errors individuals generate in
acquiring and processing information before making choices are systematic. Some
economists agree with the psychologists that the microeconomic theory is incomplete
(March [1978], Thaler [1992]).

The conceptualizations of cognitive psychologists and behavioral scientists are

based on the following key features:

1. Individuals have limited information acquisition and processing capabilities

which vary;

2. Prior experiences affect the choice process as individuals generate /update per-

ceptions about alternatives and their attributes;

3. Individuals adopt different heuristic decision rules contingent on time pressure,
information availability and reliability, etc. So in contrast to the compensatory

utility maximization approach in the microeconomic choice theory, individuals
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are hypothesized to adopt non-compensatory heuristic rules.

4. The social, economic and political environment in conjunction with individual’s
characteristics condition individual’s attitudes, values and opinions, and ori-
entation towards work, leisure, consumption patterns, and activities pursued,

which in turn affect the choice process.

Unfortunately, these conceptualizations have not led to any operational choice models.
On the other hand, economists assume that the above features are captured implicitly

in the “black box”.

1.1.3 Directions to Improve Choice Models

The “choice” of the direction pursued in this thesis, given these disparate views of

choice processes, is derived from the following viewpoints:

o Confluence of ideas from disparate fields: The microeconomic and psychological
choice theories are not antithetical, but instead can and should be utilized in
conjunction with developments in psychometrics and econometrics to advance
a richer class of choice models. Specifically, this class of models builds on the
simplicity and elegance of microeconomic theory, and incorporates the key psy-
chological factors which endeavor to explain and quantify seemingly irrational

or inconsistent behavior.

e Operational approach: Keeping in mind that the bottom line objective of the
choice modeling exercise is to have a predictive model which can be utilized for
policy and operational analysis in the context of travel choice models, pricing
and product portfolio decisions in the context of brand choice models, etc., we

pursue an approach which leads to practical models.

o Statistical approach: To facilitate the testing of alternate behavioral hypotheses
and microeconomic theories during the construction of choice models we adopt
a statistical approach, thereby postulating that the observed choice behavior is

the outcome of a probabilistic data generating process.
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In recent years few researchers have acknowledged the importance of psycholog-
ical factors, and have persevered to develop conceptual frameworks which integrate
choice models, psychometric models, and a host of other marketing research meth-
ods (Koppelman and Hauser [1979], McFadden [1986], Cambridge Systematics [1986],
Ben-Akiva and Boccara [1987], Ben-Akiva et al. [1994]). It is important to note that
these conceptual frameworks and the choice models advanced in this thesis have been

catalyzed on the following counts:

e Recognition of choice process heterogeneity: Recent literature has recognized
the significance of heterogeneity, especially variations in individuals sensitiv-
ity to attributes of alternatives, in choice process, and that the choice process
is affected by individual’s attitudes toward and perceptions about alternatives
and their attributes. Further, individuals may adopt different decision-making
protocols as well as differ in the utility derived from nominally “identical” al-
ternatives. It must be noted that such variations are different from observed
variations such as inclusion of socio-economic and demographic characteristics
in traditional choice models. The heterogeneity of the choice process stemming
from such variations in individual’s characteristics are observable. On the other
hand, the focus of this thesis is on unobservable heterogeneity. It must be noted

that models ignoring heterogeneity may produce incorrect forecasts.

o Advances in estimation and modeling methods: Recent methodological advances

in estimation and computational methods include:

— Choice set formation models: It is not always appropriate to impute
the choice set deterministically from situational constraints. Probabilistic
choice set models have addressed this issue by focusing on the existence
of random constraints that imply the unavailability of certain alternatives
(Ben-Akiva [1977], Swait and Ben-Akiva [1987a], Shocker et al. [1991]).
More recent work by Boccara [1989] and Ben-Akiva and Boccara [1993]
incorporates into a single framework of choice set formation modeling the

effects of stochastic constraints and the influence of perceptions and atti-
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tudes on the choice set formation process.

— Dynamic choice models: In the literature, four major categories of in-
tertemporal formulations of the dynamic choice process exist (Heck-

man [1981]:

1. Models which assume that the multi-period choices in the individual’s
choice history are independent, and such models are as easy to estimate

as the single period choice model.

2. Models which allow the choice process at period ¢ to depend on the
choice history up to period ¢, and such models are referred to as models
with state dependence. These models are relatively easy to estimate

and one can utilize readily available software.

3. Models which allow the random components of utilities of alternatives
to be correlated over periods, and such models are referred to as models
with serial correlation. These models are relatively harder to estimate

and no stand alone software currently exists for estimation.

4. Models wherein the choice process at period ¢t depends on the choice
history up to period ¢t and the random components of utilities of alter-
natives are correlated over periods, and are referred to as models with
state dependence and serial correlation. Such models are essentially

intractable for estimation.

— Models using Revealed Preference (RP) and Stated Preference (SP) data:
In order to exploit advantages of both RP data and SP data, methods have
been developed (Ben-Akiva and Morikawa [1990a], Ben-Akiva et al. [1994])
which improve on the accuracy of parameter estimates in the RP model by
sharing some of its parameters with the SP model, while potential biases

and errors specific to SP data are explicitly considered in the SP model.

— Estimation by Simulation and Multinomial Probit Model (MNP): Recently
a class of estimation methods such as the Method of Simulated Moments

for choice models (McFadden [1989]), Method of Simulated Scores for lim-
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ited dependent variable models (Hajivassilou and McFadden [1992]) have
been developed paving the way for estimation through simulation of mod-
els which are impractical to estimate through numerical means (see also
Geweke et al. [1992], Borsch-Supan and Hajivassilou [1993]). These de-
velopments have eased the estimation difficulty of MNP. Further, models
with large choice sets where the interdependencies among alternatives are

explicitly modeled have been developed (Ben-Akiva and Bolduc [1991]).

o Availability of more refined data: New information technologies (IT) have
changed the manner in which data collection efforts are conducted by facil-
itating collection of large quantities of detailed data. For example, IT have
eased the data collection process through “electronic questionnaires,” computer
logs of informational transactions and data collected through computer gener-
ated, realistic simulated experiments, usually referred to as stated preference
data, by accelerating the decision-making environment. Modeling approaches
were usually constrained/dictated by available data. Now, large quantities of
disaggregate data are easier to collect, and are useful for the development of

more refined models and “disaggregate” forecasting procedures.

o Awailability of computational power: The availability of faster and cheaper com-
puters, in conjunction with the availability of more refined data and analysis
methods have engendered the development of both general purpose software
(such as GAUSS from Aptech Systems [1993]) and specialized software (such
as ALOGIT from Hague Consulting Group [1992] for the efficient estimation of
Nested Logit Models) to estimate models hitherto considered computationally
impractical, and thus paving the way for the development of better predictive

models.

1.1.4 The Need to Model Unobserved Heterogeneity

For a systematic study of unobserved heterogeneity, we classify unobserved hetero-

geneity into four categories:
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e Unobserved decision protocols: Most of the theoretical and empirical work in
choice analysis is centered on the “utility maximizing” principle which assumes
a rather sophisticated and cognitively demanding representation of the decision
protocol. In reality individuals may adopt a variety of other decision protocols
such as dominance rules, satisfaction rules, lexicographic rules, random choice,

etc., of varying complexity (see for example, Slovic et al. [1977], Svenson [1979]).

e Unobserved choice set: Since the choice set actually considered by individuals
can vary across the members of the population, this process must be explicitly
treated in choice modeling to estimate the parameters of the choice model con-
sistently. This theme of heterogeneity has been studied by Ben-Akiva [1977],

Swait [1984], Swait and Ben-Akiva [1987a], and Ben-Akiva and Boccara [1990]

by positing an explicit probabilistic choice set formation model.

o Unobserved taste variations: These refer to the variations of the parameters of
the choice model across the members of the population. A significant part of

this thesis is devoted to capturing such taste variations in choice models.

o Unobserved attributes: Some attributes are not directly observable in surveys,
but which may be used by decision-makers while choosing an alternative from
a choice set. Such attributes are usually individual’s perceptions of alterna-
tives and their attributes. For example, in a travel mode choice context, such

attributes include “safety”, “reliability”, “comfort”, etc.

1.2 Thesis Objectives

The primary objective for this work is to develop a general framework for modeling
choice behavior which is consistent with existing behavioral theories, emphasizes a
causal structural formulation, is mathematically tractable and empirically verifiable.

Specifically, it must be flexible enough to:

e capture unobserved heterogeneity in choice behaviors stemming from:
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1. choice sets considered by individuals;
2. taste variations across individuals;

3. attitudes and perceptions of individuals since the underlying choice process

has a significant psychological component; and

4. decision protocols adopted by individuals in arriving at the choice.

e enable conjunctive use of data from different sources and in different response
formats, including revealed preferences (RP) and stated preferences (SP), and
psychometric data such as attitudinal and perceptual data, in the efficient esti-
mation of choice models with explicit characterization of the different decision
protocols which may be adopted in the actual market environment and the SP

tasks.

1.3 Choice Modeling Framework

Before we detail the framework for incorporating the attitudinal and perceptual data,
we briefly review the relevant psychology and sociology literature, to highlight how
attitudes and perceptions may affect behavior, and to discuss issues of their mea-
surement. For a more comprehensive study of these issues, the reader is directed
to reviews by Fishbien and Ajzen [1972], Cooper and Croyle [1984], Chaiken and
Stangor [1987], Tesser and Shaffer [1990], and Olson and Zanna [1993].

An attitude is an idea charged with emotion which predisposes a class of actions

to a particular class of situations (see Rosenberg and Hovland [1960], Triandis [1971]).

Thus attitude is theorized to consist of three components:

1. A cognitive component, that is the “idea” which is generally some category used

by individuals in thinking (also referred to as “beliefs”).

2. An affective component, i.e., the emotion which charges the idea, such as “feels

good” or “feels bad”, when the individual thinks about the category.
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3. A behavioral component, which is a predisposition to action. This component

is of immense interest to us since it is postulated to be linked to overt action.

Among the three components consistency may or may not exist. For example, an in-
dividual may have a positive affect towards luxury cars. But this does not necessarily
lead to the purchase of one of the luxury cars given that the individual purchases a
car. In general, overt behavior is conditioned by budget and situational constraints,
acceptance of social norms, etc.

According to the functional theory of attitude and perception formation (see
Smith [1947], Katz and Scotland [1959], and Katz [1960]), attitudes and percep-
tions are formed to understand the world around us, to adjust in this complex world,
to protect our self-esteem, and to express our fundamental values. Further, attitudes
and perceptions summarize the individual’s complex interactions with the decision-
making environment.

Conceptually, attitudes and perceptions are inferred from what an individual says
about an object, from the way he feels about it, and from the way he behaves towards
it. It must be noted that attitudes and perceptions involve what individuals think
about, feel about, and how they would like to behave towards an object. Behavior
is not only determined by what individuals would like to do, but also by what they
should do (i.e., social norms, etc.), habits and expected consequences of the actions.

The general structure for incorporating attitudes and perceptions and multiple
data sources such as observed market behavior and stated preference data, in choice
modeling is presented in Figure 1-1. This framework builds on earlier conceptual-
izations of McFadden [1986], Ben-Akiva and Boccara [1987], and Morikawa [1989].
In the figure, ellipses represent unobservable constructs, while rectangles represent
observable variables relevant to the problem context. Attitudes and perceptions of
individuals are hypothesized to be key factors which characterize the underlying be-
havior. The socio-economic and demographic characteristics of the individual, at-
tributes of alternatives, and information available to the individual are linked to the
individual’s attitudes and perceptions through a causal mapping. Since attitudes

and perceptions are unobservable to the analyst, they are represented by latent con-
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structs. These latent attitudes and perceptions and other individual’s socio-economic
and demographic characteristics, affect the individual’s preferences toward different
alternatives.

In this framework, as in traditional random utility models, the individual’s pref-
erence is assumed to be unobservable (hence a latent variable), and the actual mar-
ket behavior and observed responses to alternate SP surveys with different response
elicitation formats (if such data is also available), are only manifestations of the un-
derlying preferences. Such observable variables which are manifestations of latent
constructs are called indicators (Everitt [1984], Bollen [1989]). The responses to at-
titudinal and perceptual questions in surveys, form the corresponding indicators of
attitudes and perceptions. Thus the observed RP and SP responses are linked to the
preferences, while the attitudinal and perceptual indicators are linked to attitudes
and perceptions.

Perceptions capture unobservable factors which affect the decision-making proto-
col. These factors are related to some problem-specific latent concepts. For example,
in a travel mode choice context, such concepts for the transit alternative may include
“safety”, “convenience”, “reliability”, “environmentally friendly”, etc. Perceptions
are also related to the individual’s “estimate” of the levels of different attributes of
an alternative based on his/her available information. These perceptions are differ-
ent from the “true” levels. Also, the individual’s decision protocol is expected to be
based on “perceived” levels of attributes and not on the “true” attributes. Perceptual
differences in attribute levels arise from informational constraints or heterogeneity in
information processing.

Responses to attitudinal questions in surveys represent or reflect individual’s sen-
sitivity to the different attributes of alternatives and “holistic” evaluations of alter-
natives. Such attitudinal data could be generic opinions or be obtained for a specific
context. For example, attitudinal data collected on the importance of the attributes
of alternatives from the perspective of the decision-maker reflects the individual’s
sensitivity to the attributes.

It is postulated that unobserved heterogeneity in the choice process may also be
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generated by unobserved factors which can be conceptualized as discrete or categorical

latent constructs. For example, the sources of heterogeneity may include:
1. Segments of the population with varying tastes;
2. Choice sets considered by the individual which may vary; and
3. Different decision protocols adopted by individuals.

It must be noted that these sources of heterogeneity are not directly observable, and
consequently are operationalized through the specification of unobservable concepts
which we refer to as latent classes. Since the latent classes are discrete or categorical
variables, a probabilistic latent class assignment process, referred to as the class mem-
bership model is postulated with the individual’s attitudes and perceptions affecting
the individual’s class membership. Specifically, in this framework the latent classes

are expected to capture latency which may be appear as:

Case 1: The latent classes as well as the number of classes are well-defined.
The latency is due to the analyst’s inability to observe the classes. For example
individuals in a particular choice situation may not consider all the determinis-
tically available alternatives. Consequently, the choice set actually considered
by an individual is not observable to the analyst and hence may be considered
latent. In this situation, the possible choice sets considered are well defined as

the power set* of the individual’s deterministically available choice set.

Case 2: The latent classes are not as well-defined and the classes are character-
ized through indicators of the latent classes which may be viewed as the latent
class attributes. For example, market segmentation approaches seek to group
consumers in terms of their sensitivities towards attributes of products. But,
the actual number of latent segments and their characterization is not known

until an “exploratory” data analysis.

“Ignoring the empty set of course.
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Indicators of latent class depend on the characterization of the latent class. For
example, consider a latent class which characterizes the latent choice set. Holistic
evaluations of different alternatives which include responses to questions such as:
“Would you consider alternative j as being available to you?” measured on a rating
scale are manifestations of the perceived availability of the alternative, and hence
form indicators of the latent class.

Now we turn our attention to the rationale for the utilization of both RP and
SP data. As enunciated in Ben-Akiva et al. [1994], RP and SP data have certain
advantages and certain disadvantages. The objective of combining multiple data
sources is to exploit the advantages of each type of data and to overcome some of
the disadvantages. Specifically RP and SP data are combined to address the validity
of SP data, and to improve the accuracy of model parameter estimates. Consider a
situation with RP and SP data are available. The key advantages of combining RP
and SP data are:

e Flfficiency: joint estimation of underlying preference from all the available data;

e DBias correction: explicit response models for SP data which include both pref-

erence parameters and bias parameters; and

e [dentification: estimation of preference parameters not identifiable from RP

data due to low variability.

The operationalization of the data combination method stems from the realization
that the SP responses may not have the same relationship to latent preferences as
revealed preferences do but clearly indicate some aspects of latent preferences. The
linkages between SP responses, revealed preferences and the latent preference can be
described by assuming different data generating processes for RP and SP data. The
RP model represents actual behavior, while SP responses are represented by a differ-
ent model. The task is then to estimate the unknown parameters in the preference
functions of both models. The key feature of the combined RP /SP estimation method
is that the preference functions have common parameters which typically represent

the trade-off among the most important attributes of alternatives.
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1.4 Thesis Contributions

The main contribution of this thesis is methodological with an emphasis on capturing
different forms of unobserved heterogeneity in choice models. The specific contribu-

tions of this thesis include:

1. We develop the latent class choice model (LCCM) wherein the latent constructs
are discrete or categorical, and hence are characterized through latent classes.
LCCM can be useful to capture unobserved heterogeneity in choice modeling
situations wherein the analyst postulates that the factors “generating” hetero-
geneity can be conceptualized as discrete or categorical constructs such as choice

sets considered, decision protocols adopted, etc.

2. As part of the development of the LCCM, we formulate different class member-
ship models which assign individuals to classes. These class membership models
are derived from a behavioral theory perspective, and through a set of crite-
rion functions. These criterion functions may represent unobserved attitudes,

individual’s constraints and decision rules.

3. We extend and refine traditional latent class models (LCM) by linking the
aforementioned class membership model (structural model) with the indicators
of latent classes (measurement model). We also elaborate on the different types
of specification of the measurement model depending on the characterization of
the latent class. Further, the framework for the latent class model, presented

herein, is analogous to the latent variable model.

4. We formulate and specify the latent structure choice model (LSCM) which in-
corporates the gamut of attitudinal and perceptual indicators through latent
attitudes, perceptions and classes, and discuss issues of estimation. Opera-
tionally, LSCM links latent structure models, including latent variable models
and the aforementioned latent class model, with choice models. Functionally,
LSCM transcribes the main ideas presented in the conceptual framework for

choice modeling illustrated in Figure 1-1, into an empirically testable statistical
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model system wherein we postulate that the observed choice behavior or stated
preferences is the outcome of a probabilistic data generating process molded by

a host of psychological factors.

5. As a special case of LSCM, we develop a class of choice models which incorpo-
rates attitudinal indicators such as individual’s importance ratings of attributes
of alternatives. The emphasis is on “generating” unobserved taste variations

from variations in attitudes.

In addition to the aforementioned methodological developments, the applications
of the modeling approaches to enhance travel demand models form a significant and

important part of this thesis. Specifically,

1. We apply the latent class choice model for taste heterogeneity in the estimation
of travel choice models with distributed value of time (VOT). We demonstrate
the efficacy and practicability of this model compared to extant approaches of
introducing interaction variables in the systematic utility functions, and random

coefficient models.

2. We apply the latent class choice model for decision protocol heterogeneity in
a transportation mode choice context with data from simulated choice experi-
ments. Since decision protocols in RP and SP settings may differ for the same
individual, we also discuss the need to combine RP and SP data, and outline
an approach to validate decision protocols exhibited in SP analysis with those
of RP data, if both RP and SP data are available. This approach builds on
previous work wherein choice models utilize both RP and SP data (Ben-Akiva

and Morikawa [1990a)).

3. We apply the class of choice models incorporating attitudinal data, in a shipper’s
freight transportation mode choice study. In principle, we extend the work of
Vieira [1992] by linking the choice model with an explicit causal model for
attitude formation, and specifying responses to attitudinal questions in surveys

as indicators of attitudes.
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In the case study on distributed VOT, the substantial improvement in the over-
all fit of the estimated models indicate the potential of the latent class approach
for capturing taste variations compared to extant approaches of introducing inter-
action variables and random coefficient models. Specifically, the models suggest the
existence of two unobserved individual’s sensitivity dimensions — cost-sensitivity and
time-sensitivity. As expected, an increase in an individual’s income level is associated
with a decrease in his/her cost sensitivity, and consequently higher VOT. Time budget
constraints arising from household and individual characteristics such as household
type, employment status, age, gender, and available free time affect individual’s time-
sensitivity. In general, an individual in a household with children has higher VOT
due to tighter time budget constraints, a part-time worker has higher VOT compared
to a full-time worker, and VOT decreases for older people, especially for individuals
51 years or older. Further, a female commuter has a lower VOT compared to a male
commuter, and as expected, an individual with lower available free time has higher
VOT.

The models also evidenced the significance of the unobserved variations in the
VOT in the sample which persisted even after the systematic variations due to socio-
economic and demographic variables were accounted for. Consequently, prediction
results from the estimated models reflect significant variations in the willingness to
pay for travel time savings. In general, compared to the fixed coefficients model
and a model wherein the implied VOT is lognormally distributed, the latent class
choice model captures certain segments of the population having considerably higher
willingness to pay. It is transparent that such variations in the VOT, if not properly
accounted for, have substantial policy implications.

In the case study on capturing decision protocols through latent classes, the es-
timated latent class choice models have significantly better explanatory power com-
pared to the standard probit model. We also note the significance of the effects of
the actual choices made by the individuals in the RP context on the decision pro-
tocol adopted in the SP tasks. More specifically, we observe that the actual choice
affects the choice process of the individual in the SP tasks through “inertial” effects
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in the systematic utility functions as well as “inertial” effects in the decision protocol
adopted.

The estimated models provide only a preliminary assessment of the potential for
capturing decision protocol heterogeneity. An empirical caveat in the estimation of
such models is that the parameter estimates tend to be “sensitive” or “non-robust”
in the sense that inclusion or exclusion of variables in the class membership model
tends to change the choice model parameters appreciably. Further empirical work is
needed to assess the differential impacts of including individual characteristics in the
class membership model and the utility function, and their substantive significance
and interpretation. In the data utilized in the case study the traveler’s characteris-
tics which potentially guide the “choice” of the decision protocol are limited. More
empirical work with other surveys is necessary before such tools can be meaningfully
adopted in practice.

In the case study on shipper’s transportation mode choice, although the the effects
of shippers attitudes such as cost-sensitivity and time-sensitivity on the choice models
appear to be significant, the improvement in the overall fit over the fixed coefficient
model is minimal. This is due in part to the limited variability of shipper’s importance
ratings of service attributes in the sample.

On the other hand, the shipper’s attitude formation model provides strategic
information to the marketing manager of a railroad. Considering the existence of
an overall shipper’s sensitivity to service attributes, we find that as the number of
employees increase the shipper’s sensitivity decreases, and firms with higher annual
sales are more sensitive. Shippers with higher acceptable delays are less sensitive,
and surprisingly, users of EDI are less sensitive as one would expect them to be more
sensitive to service attributes, especially service-quality attributes such as payment
terms and billing, responsiveness, etc. Further, shippers transporting high value
goods over longer distances are more sensitive. Annual tonnage shipped and early
acceptable delivery time do not seem to have an affect on the shipper’s sensitivity.

Considering the existence of two shipper’s sensitivity dimensions — time-sensitivity

and cost-sensitivity — we observe that shippers with larger workforce, earlier accept-
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able delivery times and higher acceptable delays are less time sensitive. Shippers with
higher acceptable delays are more cost sensitive, while shippers using EDI are less cost
sensitive. Further, shippers with high annual tonnage are less cost sensitive, while

shippers transporting high value goods over longer distances are more cost sensitive.

1.5 Outline of thesis

The remainder of this thesis is structured as follows:

e Chapter 2 reviews briefly choice models derived from the foundations of random
utility theory, followed by a discussion of latent structure models. We also review

existing methods to capture heterogeneity in choice models.

e Chapter 3 develops the latent class choice model, and formulates different class

membership models.

e In chapter 4 estimation results of a special case of the latent class choice model
to capture taste variations are presented. The case study conducted utilizes
stated preference data wherein hypothetical travel alternatives were generated
to evaluate traveler’s trade-offs between travel time and travel cost, and we

allow for taste variations to travel time and travel cost variables.

e In chapter 5 estimation results of a latent class choice model with explicit incor-
poration of the decision protocols adopted by individuals in a stated preference

setting for travel mode alternatives are presented.

e In chapter 6 we advance a rich class of choice models, which incorporates atti-
tudinal and perceptual data, and which are referred to as latent structure choice

models. We also discuss approaches for the estimation of such models.

e In chapter 7, given the emphasis of the thesis on capturing heterogeneity, we
elaborate on a class of choice models which incorporate attitudinal data. We

also present estimation results for shipper’s freight transportation mode choice
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models wherein the importance ratings of shippers of different attributes are

utilized as indicators of sensitivity to attributes.

e Chapter 8 presents conclusions from this research and suggests future research

directions.
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Chapter 2

Literature Review

2.1 Introduction

As noted in chapter 1, we pursue a statistical approach to address heterogeneity in
choice processes with an explicit characterization of psychological factors. To this

end, in this chapter we review the relevant literature in three areas:

o Random Utility Models: To put this thesis in the context of existing probabilistic

choice models, we review briefly the class of random utility models.

e Psychometric Modeling: To operationalize and quantify unobservable concepts
such as social class, public opinion, personality, intelligence, etc., psychometri-
cians have pioneered a class of models called latent structure models. We are
interested in characterizing unobservable concepts such as attitudes and percep-
tions, and consequently the review will focus only on the methodological tools

and not on the substantive issues in psychology and behavioral sciences.

o Heterogeneity in Choice Processes: This is the main theme of the thesis and
the review will cover the extant ad hoc and model-based methods of capturing
heterogeneity. Further, more recent attempts to integrate psychometric models

with choice models will be discussed.
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The remainder of this chapter is organized as follows: In section 2.2 an overview of
random utility models is presented. In section 2.3 we review latent structure models.
We categorize existing approaches to capture taste variations in choice models into:
ad hoc grouping approach and model-based approach, and outline the techniques
adopted in each in section 2.4 and section 2.5, respectively. Although this thesis
focuses on static choice modeling, for completeness of exposition we discuss meth-
ods adopted to capture heterogeneity in discrete panel data models in section 2.6.
This is followed by a review of models which address heterogeneity in choice sets in

section 2.7, and models which incorporate psychometric data in section 2.8.

2.2 Random Utility Models

Extensive discussions of the micro-economic and psychological underpinnings of ran-
dom utility models can be found in McFadden [1973], Manski [1977] and Ben-Akiva
and Lerman [1985]. The model is based on the notion that the individual derives
utility by buying or choosing an alternative, and the individual is postulated to pick
that alternative which maximizes his/her utility. Since the utilities are not known
to the analyst, they are treated as random variables. More specifically, the random
utility of an alternative can be expressed as a sum of observable and unobservable

components as:

Uin = Vin + €in, Vi€ Cy (2.1)
where
U;, = random utility of alternative ¢ for individual n;
Vin = observable (systematic) component of utility;
C, = choice set available to individual n with |C),| = J,; and

€;n = random component of utility.
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The systematic component Vj, is written as:

Vin = V(Xin: ) (2.2)

X;, = attributes of alternative ¢ and characteristics of individual n; and

[ = parameter vector.

Further under the maximum utility decision rule, the event that alternative ¢ is chosen

is linked to the random utilities as:

{i chosen} < {U;, > U;,, Vj} (2.3)

Consequently, the probability that alternative ¢ is chosen by individual n is written
as:

Pr(i chosen) = Pr(U;, > Ujp, V) (2.4)

A class of probabilistic choice models can be constructed by appropriate specifi-
cations of the joint probability density of (eip,...,€;,,). For example, if we assume
that €;, are independently and identically distributed Gumbel across alternatives and
individuals with scale parameter set to 1 and location parameter set to 0, we obtain

the choice probability in a closed form expression referred to as the Multinomial Logit

Model (MNL) with

exp(Vin)
Pr(yy, = 1| X,; 0) = ————— 2.5
JEC,
where
1 if alternative ¢ is chosen by individual n
Yin =

0 otherwise

X, ={Xn, Vi e Cy,}.

Further, if the systematic utility function V(+) is a linear function in the parameters,

maximum likelihood estimation of the model parameters (if the estimates exist) is
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easy through gradient methods due to the global concavity of the log-likelihood func-
tion (McFadden [1973]) making the linear-in-parameters MNL the most widely used
probabilistic choice model.

One of the important properties of the MNL model is termed the “independence
of irrelevant alternatives” (IIA) in that for a specific individual the ratio of choice
probabilities of any two alternatives is entirely unaffected by the systematic utilities
of any other alternative. An important manifestation of this property is that the cross
elasticities of choice probabilities of all alternatives with respect to a change in an
attribute affecting only the utility of alternative j are equal for all alternatives i # j.
This rather innocuous property leads to the popular red bus/blue bus parador wherein
the model gives counterintuitive forecasts. The fundamental cause of the paradox is
the assumption of mutually independent disturbances in the MNL model. Further,
this paradox is inherited by a much wider class of random utility models which rests
on the assumption that the disturbances are independent.

The class of non-IIA models such as the Nested Logit (NL) model and the Multi-
nomial Probit Model (MNP) attempt to address the problem of IIA. The NL model
allows for a restrictive pattern of correlation among the random components of util-
ities and has the major advantage that the choice probabilities can be expressed in
closed form. On the other hand, if (eyp,...,€;,,) is a multivariate normal random
vector, we obtain the MNP model which allows for a more general pattern of corre-
lation. But the estimation of MNP is computationally cumbersome for models with
a large set of alternatives.

It is instructive at this point to discuss the sources of the random component of
utility. Manski [1973, 1977] identifies four distinct sources of randomness. With-
out any loss of generality consider the case of linear in parameters and linear in
variables systematic utility specification and a pure idiosyncratic identically dis-
tributed random component e for each alternative (i.e., ¢; and ¢; are independent
with var(e;)=var(e;)=02). We discuss how the different sources of the random com-
ponent lead to correlation as well as heteroscedasticity among utilities of alternatives

with some illustrative examples.
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1. Unobserved Variables: Consider a situation wherein a particular variable z is
unobserved (considered purely random with var(z)=c2) and this variable ought
to have been in the systematic utility functions of alternatives ¢ and j with
corresponding parameters (3; and ;. Thus the new random components for
alternatives ¢ and j are ¢ = ¢ + §;z and €; = ¢; + (2 respectively, and are
correlated with cov(€;, €;) = B;3;02. Further, the unobserved variable induces

heteroscedasticity if 8; # 0; since var(&) = o7 + 707 and var(é;) = o7 + 5707,

2. Unobserved Taste Variations: Assume that there exists a coefficient § which
varies randomly among individuals with mean 3 and variance 0/23 and is inde-
pendent of ¢;, Vi. Let § = 3+ v where E(v) = 0 and var(v) = 03. If the
random coefficient appears in two systematic utilities with variables z; and x;,
then the new random components for alternatives ¢ and j are & = ¢; + v
and € = ¢; + va; respectively, and are correlated with cov(é;, €;) = z;x;03. As

before heteroscedasticity is induced if z; # z;.

3. Measurement Errors: Consider a variable z which appears in the systematic
utility functions of alternative ¢ and j, with associated parameters 3; and (;,
and we only observe Z which is an imperfect measurement of z. Let Z =z + v

where var(v) = 2. Then the new random components are ¢ = ¢; — v(3; and

€; = €; — v3; respectively, and are correlated with cov(é;, €;) = 3i3;02. In this
case, the more serious problem of included variable being correlated with the

random component arises because z and v are correlated.

4. Instrumental Variables: Suppose z is the variable which ought to appear in the
systematic utility function, but instead we have an imperfect instrument Z with
z = g(Z) + v. The arguments in the previous case carry through leading to

correlation among random components.

Therefore ignoring unobserved taste variations and unobserved attributes, if they
really exist, may generate random disturbances which may not satisfy the assumptions

made in the derivation of the probabilistic choice model such as the MNL model.
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Methods to address taste variations have received, as we will see in this chapter,
much attention with very many approaches and related empirical work. On the other
hand, methods to capture unobserved factors have been developed in principle but

empirical applications are rather limited.

2.3 Latent Structure Models

Certain concepts are not well defined in the behavioral and social sciences, like social
class or personality. These concepts are not directly observable, and often referred to
as latent constructs; they are hypothetical constructs conceived by an analyst with
the intention of comprehending some research area of interest, and for which there
exists no operational methods for direct measurement. Although latent constructs
are not observable, one can hypothesize that their effects on measurable variables are
observable.

Latent constructs occur in many areas; for example, in psychology intelligence and
verbal ability, in sociology, ambition and racial prejudice, and in economics, economic
expectation. In some cases, the observed variables, considered to be manifestations
of the underlying latent construct (hence are also called manifest variables or indi-
cators), will be discrete (nominal), in others continuous (interval or ratio) variables.
Statistical models with latent constructs are in general referred to as latent structure
models. Lazarsfeld and Henry [1968] categorize latent structure models based on the

discrete and continuous nature of latent constructs and manifest variables into:

1. Latent Class Model: Discrete latent construct and discrete indicators (see Mec-

Cutheon [1987] for a comprehensive treatment of latent class models).
2. Latent Profile Model: Discrete latent construct and continuous indicators.

3. Latent Trait Model: Continuous latent construct and discrete indicators. In
this vein, we can view the random utility model as a latent trait model with

continuous latent preferences and discrete choice indicator.

4. Factor Analytic Model: Continuous latent construct and continuous indicators.

43



The most well-known method for investigating the dependence of a set of manifest
variables, is factor analysis (Lawley and Maxwell [1971], Johnson and Wichern [1982]).
Initially, this technique was developed by psychologists, such as Spearman [1904]
interested in examining ideas about the organization of mental ability suggested by
a study of correlation and covariance matrices for sets of cognitive test variates.

The following description, adapted from Everitt [1984] and Bartholomew [1987],
reflects the basic ingredients of the latent structure model. Let the vector Z =
[21,...,2p] denote the observed indicators, and the vector S = [sq,...,sy] denote
the latent constructs. The number of latent constructs M is typically much smaller
than the number of indicators P.

Let fs(z|s) denote the joint probability density of Z given S. If the latent
constructs are continuous, and letting the probability density of S be denoted by
fs(s), the unconditional density of Z denoted by fz(z) is given by

f(2) = [ 5219 s(s) ds (2.6

In general terms it is the density functions, fz)s(z|s) and fs(s), that we would like to
infer from the known or assumed density of fz(z), in order to discover how the indi-
cators depend upon the latent constructs. However, it is impossible to infer f7s(z|s)
and fs(s) unless some assumption are made about their form. It is instructive to
view fz(z) as a mixture model where fzs(z|s) are the components of the mixture
and fg(s) is the mixing density (McLachlan and Basford [1988]). If S is discrete
or categorical, as in the latent profile and latent class models, the integral in equa-
tion (2.6) is replaced by a summation, and we have a finite mirture model. Else,
fz(z) is an infinite mizture model.

The crucial assumption of latent structure models is that of conditional indepen-
dence which states that given the values of the latent constructs, the indicators are

independent of one another. This is expressed as follows:
P
fz5(2ls) = 1 fzis(zils) (2.7)
i=1
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The assumption of conditional independence implies that it is the latent constructs
which produce the observed relationships amongst the indicators. The observed in-
terdependence among the indicators is due to their common dependence on the latent
constructs and that once these have been defined, the behavior of the indicators is
essentially random.

In practice, it is assumed that the functional forms of the densities f7¢(2|s) and
fs(s) are known, but dependent on a set of unknown parameters. In such a case,
the problem of inferring f;5(2[s) and fs(s) from fz(2) becomes that of estimating
the unknown parameters. Then using Bayes’ theorem one can obtain the density of
the latent constructs given indicators, denoted by fsjz(s|2), from fz5(2|s), fs(s) and
fz(2).

In the foregoing discussion, the latent structure model did not have a specific causal
representation for fs(s). Until the early 1960s, latent structure models contained only
the relationships between the latent construct and indicators. The conceptual synthe-
sis of causal models prevalent in econometrics literature and latent structure models
was proposed by sociologists such as Blalock [1963] in the 1960s and early 1970s. A
specific model with such a simultaneous representation was developed by Duncan et
al. [1968]. Essentially, causal modeling is concerned with the estimation of the pa-
rameters in a system of simultaneous equations relating dependent and independent
or explanatory variables. In the econometric literature, these two types of variables
are termed endogenous and exogenous; the former are variables determined within
the system, and their values are affected both by other variables in the system and
by variables outside the system. In contrast, exogenous variables are those measured
outside the system; they can affect the behavior of the system, but not themselves be
affected by the fluctuations in the system. The endogenous variables may affect each
other. A typical equation in the system attempts to explain one of the endogenous
variables in terms of other endogenous variables, a number of exogenous variables,
plus a disturbance term.

For ease of exposition, we categorize latent structure models based only on dis-

crete or continuous nature of the latent constructs, i.e., latent variable models if the
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construct is continuous, and latent class models if the construct is discrete.

2.3.1 Latent Variable Models

A general and comprehensive approach to synthesizing econometric-type models with
latent variables and psychometric-type measurement models has been primarily devel-
oped over the last two decades by a number of researchers including Keesling [1972],
Joreskog [1973], Wiley [1973], and Bentler [1980] (see, for example, the review in
Cambridge Systematics [1986]). Specifically, these models assume that the indicators
are continuous. Further, these models are referred to as linear latent variable models
due to the linear specification of the relationships between the observed and latent
variables'. Such a model consists essentially of two parts: a measurement model and
a structural model. The first of these specifies how the latent variables are related
to the indicators, and the second specifies the relationships among the latent vari-
ables. The structural model relates two types of latent variables — endogenous and

exogenous — through linear structural equations of the form:

n=DBn+T{+¢ (2.8)

In equation (2.8), 1, the vector of latent endogenous random variables is m x 1; &,
the vector of latent exogenous random variables, is n x 1; B is the m x m parameter
matrix? showing the influence of the latent endogenous variables on each other; I is
the m x n parameter matrix capturing the effects of £ on 1. The matrix (I — B) is
assumed to be non-singular. ( is a m x 1 disturbance vector with expected value of
zero, and uncorrelated with &.

The measurement model can be written as:

y=~»NAn+e (2.9)

!Linear latent variable model is popularly referred to as LISREL model.
2Since a latent endogenous variable does not affect itself, the diagonal elements of B are set to
zero.
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Figure 2-1: Linear Latent Variable Model: A Schematic Representation

v =AE+ 6 (2.10)

y:(px1)*and x: (¢ x 1) form the indicators of n and &, respectively. A, : (p x m)
and A, : (¢ x n) are parameter matrices that show the relation of 1 to y and ¢ to z,
respectively, and € : (p x 1) and 6 : (¢ x 1) are the errors of measurement for y and z,
respectively. The expected values of € and ¢ are zero, and ¢ and 6 are assumed to be
uncorrelated with n, ¢, ¢ and with each other. To simplify matters y, z are written as
deviations from their respective means (without any loss of generality). The latent
variable model is schematized in Figure 2-1.

Let the unknown parameters* be stacked in a vector 6. S, represents the observed
covariance matrix of the y variables, and S, the observed covariance between the y
and x variables, and S, the covariance matrix of the x variables. Then the covariance

matrix of the observed [y, ']’ is given by

Sy Sys
S=1 "7 (2.11)

Let 33(0) represent the covariance matrix of the vector [y, 2’]" implied by the model

3The notation y : (p x 1) denotes that y is a p x 1 column vector.
4Parameters include those in the matrices B, T, A,,, A, and in the distributions of ¢, ¢, € and &,
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system, i.e., as a function of the unknown parameter vector 6

5(0) = Yy (0)  Eya(0) (2.12)
2y

wy(0) T (0)

Estimation of the parameters is based on the idea of replicating the observed
covariance matrix with the implied covariance matrix. The model implies a particular
structure for the population covariance matrix for the observed variables, in the sense
that the elements are given by particular functions of the parameters of the model.
Let © be the parameter space such that § € ©. The parameter vector # is obtained
by minimizing a fitting function F(S,3(0)) over § € O satisfying the conditions
[Everitt 1984]:

1. >0
2. F=0iff S = %(0)
3. F is continuous over S and %(6)

A comprehensive treatment of the theory and estimation of latent variable models
is found in Everitt [1984] and Bollen [1989]. If the exogenous variables are assumed

to be directly observable without any measurement error, equation (2.10) reduces to
x=¢ (2.13)

Such a model system is referred to as a MIMIC (Multiple Indicators Multiple Causes)
model. In a significant generalization of latent variable models, Muthén [1984] devel-
oped models which allow for dichotomous, ordered categorical and continuous indi-
cators of latent variables®. Even in Muthén’s work the latent variables are assumed

to be continuous.

5Tt must be noted this generalization adopts the idea of the well established “threshold” crossing
models such as the probit model and the ordinal probability model of McKelvey and Zavoina [1975].
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2.3.2 Latent Class Models

Herein we turn our attention to models where the latent constructs are discrete.
We provide only an overview of the latent class model and the reader is directed
to McCutheon [1987] (see also Bartholomew [1987]) for an extensive discussion of
identification and estimation of the model parameters. Assume that there exists
S latent classes, P categorical indicators of the latent class with the pth indicator
taking on L, levels, say 1,...,L,. Let 75 denote the probability of an observation
belonging to latent class s, where s = 1,..., 5. 7, is called the latent class probability.
Conditional on the latent class s, the probability of the pth indicator taking on level
I, is denoted by mps(L,). mps(ly) is called the conditional response probability of pt™
indicator.

Under the assumption of conditional independence of the P indicators, the latent

class model, which expresses the probability of observing the indicators [l ..., lp], is
written as:
S P
> I mps(lp) s (2.14)
s=1p=1

In the above representation, latent class probabilities are unaffected by any causal
variables. We refer to such models as simple latent class models. A natural approach
to address the issue of variations in the latent class probabilities is to group obser-
vations to examine group differences due to sex, race, geographic location, time of
observation, etc. Consequently, a latent class model, referred to as a group-specific
latent class model, is specified and estimated for each group of observations (see
Clogg and Goodman [1984, 1985, 1986], Dayton and Macready [1980]). It is appar-
ent that one may impose restrictions in the latent class probabilities and conditional
response probabilities across the group-specific latent class models. To this end, two
basic classes of models include: (a) models that allow for partial homogeneity across
groups, and (b) models that allow complete heterogeneity across groups, where ho-
mogeneity or heterogeneity is with respect to the latent class probabilities and /or the
conditional response probabilities. To clarify this categorization, assume that there

exists G' groups. Let 717 denote the probability of an observation from group g belong
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to latent class s. Let mJ.(l,) denote the probability that the pth indicator of an ob-
servation from group g is in level [, given that the observation belongs to latent class
s. Then, the definition of complete homogeneity across groups would imply: 77 = 7,
and 79 (1) = mps(l,) for all g. The definition of complete heterogeneity across groups
would imply: 79 # 79 and m9.(lp) # 75s(lp), for every g and g'. Consequently, partial
homogeneity (or partial heterogeneity) refers to the case where some of the group-
specific latent class and conditional response probabilities are equal across two or
more groups.

We refer to the model which maps from the individual characteristics to the latent
class probabilities as the class membership model. Dayton and Macready [1988] al-
lowed only the latent class probabilities to depend on causal variables. Formann [1992]
proposed logistic representations both for the latent class probabilities and the con-

ditional response probabilities. Specifically,

exp(0.2,)
= (2.15)
> exp(0L,Z,)
s'=1
and
exp(V.., Zy
() = ety ) (2.16)

LP
/
121 exXp (f}/ﬁs:l;, Zn)

where 0, Vs = 1,...,5, and vpey, VI, = 1,..., Lysp=1,...,P;s = 1,...,S, form
unknown parameter vectors.

A similar approach for expressing latent class probability was independently and
naturally developed in Gopinath and Ben-Akiva [1993] in a choice modeling setting
wherein the indicators are individual’s ratings of alternatives and the latent class rep-
resented unobserved choice (hence latent) with the latent class probability expressed
by any probabilistic choice model. It must also be noted that a special latent class
model with a structural model based on the “threshold crossing” idea was developed
as part of a model to capture latent choice sets in choice models (Ben-Akiva and

Boccara [1993]), although the significance of the development as a latent class model
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was not enunciated in their work. In a similar vein, Shyr [1993] in the context of
rail fatigue analysis, adopted a probit model to express the latent class probabilities

wherein the two latent classes corresponded to two “unobserved” types of rail defects.

Tests for Number of Latent Classes

To determine S heuristics may be adopted to address an analogous problem in fi-
nite mixture models (see, for example, Titterington, Smith and Makov [1985] and
McLachlan and Basford [1988]). The standard generalized likelihood ratio statistic
to test the null-hypothesis Hy of S classes against the alternate hypothesis H; of
S + 1 classes is not asymptotically distributed chi-square since H, corresponds to a
boundary of the parameter space for Hy, so that under Hy the generalized likelihood
test statistic is not asymptotically a full rank quadratic form (Ghosh and Sen [1985],
Titterington [1990]).

Titterington et al. [1985], Anderson [1985], Yarmal-Vuarl and Ataman [1987] have
proposed various test procedures for special types of component mixtures. Aitkin et
al. [1981] and McLachlan [1987] apply Monte-Carlo test procedures to finite mixture
problems. The basic idea behind such procedures is the comparison of likelihood
ratio statistic for S + 1 versus S latent classes from the data with a distribution of
that statistic obtained from R datasets containing S classes, which are generated
by replacing the unknown parameters in the component densities by their likelihood
estimates from the original data. Such procedures are computationally cumbersome.

Another class of testing procedures are based on information criteria wherein
a penalty is imposed on the maximized log-likelihood function. Sclove [1977] and
Bozdogan and Sclove [1984] proposed the use of Akaike’s Information criterion (AIC:
Akaike [1974]) wherein the penalty equals the number of parameters estimated. To
account for sample sizes, Bozdogan [1987] proposed the Consistent Akaike Information
criterion (CAIC), while Schwartz [1987] proposed a Bayesian Information Criterion
(BIC). The last two approaches are recommended when the data entail a large number
of observations. It must be noted that, all these test procedures lack statistical

rigor and rely on the same asymptotic properties as the likelihood ratio test (see
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Sclove [1987]). Therefore, such tests are useful only in indicating the actual number

of classes present.

2.4 Ad hoc Grouping Approaches to Capture

Taste Variations

2.4.1 Individual-specific Models

Marketing researchers have popularized the idea of estimating individual-specific
choice models to address taste variations in the population following the tradition
of estimating such models in conjoint analysis. The “rationale” for using the re-
sponses from each individual to estimate an individual-specific model is highlighted

in the following quote:

“... the theoretical development of the logit model is based on utility-
maximizing behavior at the individual or household level. Therefore, ide-
ally, the parameters of the logit model should be estimated at the house-
hold level.” (Chintagunta et al. [1991])

Unfortunately, estimating individual-specific models is not an efficient procedure as it
ignores similarities in tastes which might exist across individuals. Further, the number
of responses per individual is small precluding the employment of the classical large
sample properties of consistency and efficiency of the maximum likelihood estimation
procedure. In fact, small sample biases may be accentuated by the non-linearity
of the likelihood function when compared to a linear model with the same sample
size. Further, if there is no variability in the response pattern for an individual, then

estimates do not exist for the individual-specific model.

2.4.2 A Priori Grouping by Observed Characteristics

This entails grouping data into subsets based on socio-economic and demographic

variables such as age, income, gender, etc., and estimating separate choice models for
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each subset of observations. Likelihood ratio tests can be conducted to test similar-
ities in preferences across the different subsets of observations (see chapter 7 of the
textbook by Ben-Akiva and Lerman [1985] for an extensive treatment of such tests).
The individual-specific choice models can also be viewed as a special case of grouping

by individual.

2.4.3 Clustering-based Scheme

Cluster analysis of observable covariates (see, for example, Salomon [1980] for a travel
choice situation) or latent variables (see Vieira [1992] for a shipper’s freight trans-
portation mode choice study) capture the (dis)similarity of the market segments in a
multivariate space. In the latter case, latent variables are constructed using psycho-
metric data data as indicators, and the clustering or a classification scheme is based
on the latent variables. Pursuant to clustering, choice models are estimated for each
cluster. The efficacy of the market segmentation in accounting for taste variations
is tested by comparing these models with the performance of other segmentation
schemes and with the pooled data model.

In the marketing research literature, clustering methods have been primarily uti-
lized to develop segments of customers (see, for example, Doyle and Sanders [1985]),
and to group similar/competing products (see, for example, Srivastava et al. [1981],
Moore et al. [1986]) together to better understand the market structure. For more
comprehensive reviews of application of clustering methods in marketing see Frank

and Green [1968] and Punj and Stewart [1983].

The overall main drawbacks of ad-hoc grouping approaches are:

1. The need to separate the data into different groups and conduct separate es-
timation in each of the groups usually leads to imprecise parameter estimates

due to (potential) small sample sizes in some groups.

2. Deterministic assignment of individuals into the different groups.
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3. The grouping is typically conducted independent of the choice problem being

analyzed since the grouping scheme precedes the analysis of the choice behavior.

2.5 Capturing Taste Variations through Model-based
Approach

2.5.1 Random Coefficients Models

In the multiple regression model, a number of researchers have suggested that param-
eter heterogeneity can be assumed be randomly distributed in the population (see, for
example, Hildreth and Houck [1968], Swamy [1971, 1974], Hsiao [1975]). This basic
theme has also been pursued in the context of choice models. Economists usually
assume the existence of a “representative” or “average” individual who is assumed
to have tastes equal to the average over all the individuals in the population. The
basic idea in the random coefficients model is the assumption that each individual
n has his/her own taste parameter vector 3, and which differs from the average pa-
rameter vector 3 of the “representative” individual by an unknown (hence random)
amount. Assuming a parametric distribution, f(3;©) for the taste parameter vector,

the choice model is written as:

P(yinl X ©) = [ Plyinl X 8) (5 0) dB (2.17)

where P(y;,|Xn; 8) is the choice model given 5. The application of such an approach
dates back to the work of Quandt [1968] in a binary choice situation. The Elec-
tric Power Research Institute (EPRI) implemented a form of the multinomial logit
(MNL) model that allows for the parameters to be distributed across the popula-
tion (EPRI [1977]). Such random taste variations can be naturally incorporated into
MNP model when the random taste parameter vector is distributed multivariate nor-
mal and the systematic component of the utility function is linear in the parameters

by employing the convenient convolution property of the normal distribution. Haus-
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man and Wise [1978] estimated such a random coefficients probit model to analyze
the travel mode choice decisions of commuters in Washington D.C. with the choice
set containing three alternatives: driving alone, car pooling and public transit. Pre-
diction tests of the fixed coefficient MNL model and the random coefficients MNP
model revealed substantial differences, although the explanatory power of the MNP
model is not much higher than that of the MNL model.

Fischer and Nagin [1981] present an empirical comparison of the fixed coefficients
probit model and random coefficients probit model using data from an experimental
setting. The respondents were faculty and staff in a university. Each respondent was
requested to choose between pairs of parking spot alternatives, with each alternative
being characterized by the attributes of price per year and walking distance (in min-
utes) from the parking lot to the building where the respondent worked. Individual-
specific models using responses from each respondent, and fixed coefficient model and
random coefficients model on pooled data were estimated. They conclude that af-
ter accounting for variations in individual characteristics such as income, substantial
taste variations exist and may be adequately captured through the random coefficients
model. Further, random coefficients model is shown to be robust to inappropriate
specification compared to a fixed coefficient model.

Goniil and Srinivasan [1993] estimate a sequence of random coefficients MNL mod-
els for a choice situation with three alternatives (three brands of disposable diapers).
The coefficients for price and promotion are allowed to vary randomly. They con-
clude that substantial unobserved taste variations exist and the explanatory power of
the random coefficients MNL model is better than that of a fixed coefficients model.
Further, in prediction tests the random coefficients MNL model performed better.

Some of the drawbacks of the random coefficients approach to capture unobserved

taste variations are:

e In most choice situations, the analyst has prior expectations of the sign of the co-
efficients of important variables. For example, in a travel model choice context,
the travel cost and travel time variables are expected to have negative coeffi-

cients to reflect the disutility associated with travel cost and travel time. If the
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random coefficients have unbounded support such as with the normal distribu-
tion, behaviorally implausible parameter values occur with positive probability

however small it may be.

e Limited behavioral basis exists to aid in the specification of the distribution of
the random coefficients, and the usual distributional assumptions are motivated
by computational tractability. But, the choice model is susceptible to the distri-

butional assumptions of the random coefficients (Heckman and Singer [1984]).

e Estimation of the MNL model with random coefficients is difficult as the choice
probability calculation entails the evaluation of a multidimensional integral since
a model with K random coefficients leads to a choice model which is expressed

as a K-dimensional integral.

To address the difficulty in the estimation of the random coefficients model, re-
searchers have adopted the idea of postulating a function for generating the random
coefficients, whereby the randomness in K coefficients is generated by a deeper K-
dimensional random variate where K < K. Such an approach is seen in Ben-Akiva
et al. [1993] wherein a non-negative random variable such as a log-normal random
variate is used to scale a subset of coefficients. It must be noted that this scaling does
not change the signs of the coefficients. Further, the explanatory power of the random
coefficients model is evidenced by the significant improvement in log-likelihood value
compared to the fixed coefficients model. Goniil and Srinivasan [1993] adopt a similar
idea in a multiplicative specification but pay no heed to maintaining the coefficient
signs since a normal random variable is used as a multiplicand of the coefficients.
In Appendix F we present a factor analytic representation for the generation of the

random coeflicients.

2.5.2 Choice Models with Latent Classes

In the marketing research arena, latent class models have become of late a popu-

lar tool to capture taste variations. The goal in segmenting the market, especially
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the market for consumer goods, is to group consumers into meaningful groups which
have similar needs, tendencies and capabilities, and which react in a similar manner
to specific marketing programs. The recognition that consumers differ in one or more
respects has led to a stream of research on the theory and practice of segmentation
(Frank, Massy and Wind [1972], Wind [1978]). Discriminant analysis and cluster
analysis, as noted earlier, have been popular in segmentation research depending on
whether the basis of segmentation is known in advance or is defined a posteriori. Mar-
keting researchers take the view that there are many possible bases for segmentation

including (Lehmann [1989)):
1. Grouping consumers based on similarities in a multi-dimensional variable space;
2. Grouping consumers based on similarities in the choice set considered; and

3. Grouping consumers for a particular choice problem based on the similarities in

the relationships between consumer characteristics and the product category.

Grover and Srinivasan [1987] perform simultaneously market structure and seg-
mentation by applying latent class analysis to brand switching data. But their ap-
proach does not explicitly account for the impacts of marketing mix variables such as
price, promotions, features, advertisements, etc.

Kamakura and Russell [1989] propose a latent class — more popularly referred to
as finite mixture in the statistics literature® (Titterington, Smith and Makov [1985]
and McLachlan and Basford [1988]) — multinomial logit model with parameterized
segment sizes, and each segment characterized by a vector of mean preferences and a
single price sensitivity parameter. So the central idea is the partitioning of the market
into consumer segments differing in both brand preferences and price sensitivity, and
the existence of constant prior probabilities of an individual belonging to different

consumer segments’. They apply this approach to study the competition between

6General necessary and sufficient conditions exist for the identification of finite mixture models,
while the employment of these conditions to choice models with latent classes appears to be non-
trivial.

"Rather, the prior probability of a random individual belonging to a particular consumer segment
is the population share for that consumer segment.
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national brands and private labels in one product category.

Zenor and Srivastava [1993] adopt a similar idea to identify market segments when
only macro-level time-series data, such as market shares, are available. Estimates for
segment characteristics such as size, brand preferences, and sensitivity to marketing
mix variables are obtained by applying the latent segment logit model to aggregated
panel data.

Dillon et al. [1993] adopt the ideas suggested by Dayton and Macready [1988]
for incorporating causal variables such as individual characteristics in class member-
ship model to capture individual differences in paired comparisons. They adopt an
MNL-type class membership model with the individual characteristics utilized in the
systematic functions. Similarly, Chintagunta and Gupta [1994] adopt an MNL-type
class membership model in a multinomial choice context. Swait [1993] goes one step
further where a MNL-type class membership model with latent variables such as
individual’s attitudes are utilized in the systematic functions.

The estimation of choice models with simple latent classes through the maximum
likelihood criterion is difficult as they are plagued with the existence of many maxima.
This is also due in part to the lack of a causal structure for latent class probabilities.
To address this issue, researchers start from different starting values to ensure that
the estimates are indeed the maximum likelihood estimates. In the presence of causal
variables, such as the MNL-type class membership model, the causal variables (if
relevant and properly specified) are expected to guide the algorithm to the global
maximum. It must be noted here that since the characteristics of each latent class
can be interpreted only a posteriori there is limited behavioral theory guiding in
the specification of each systematic function. Further, the MNL model when used
as a choice model is interpretable as it is derived from random utility theory, while
such an interpretation is not feasible in the class membership model. So the initial
stages of the model estimation necessitate using all the individual characteristics in

each systematic function leading to a large® number of parameters in the latent class

8If one postulates the existence of S latent segments and @ individual-specific characteristics,
the class membership model has (S — 1) x @ parameters.
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membership model.

It is instructive to view the choice model with latent classes as a special case
of the random coefficients wherein the random coefficients have a non-parametric
distribution. Specifically, choice models with a non-causal or simple class membership
model, are the non-parametric versions of the usual random coefficients models. On
the other hand, choice models with a causal class membership model, represent a
random coefficients model wherein the distribution of the coefficients depend on causal
variables. The choice models with class membership models are valuable in gaining
insights into the extent of taste variations and the potential characterizations of the

latent classes.

2.6 Heterogeneity in Discrete Panel Data Models

In marketing research, a popular method to capture inertia or brand loyalty of an in-
dividual, is the exponential smoothing model of brand loyalty used by Guadagni and
Little [1983]. Fader and Lattin [1993] develop the Nonstationary Dirichlet Multino-
mial Model (NSDM) as an approach of capturing individual’s loyalty to alternatives
in discrete panel data. More specifically, the NSDM model was conceived to develop
a new measure of alternative loyalty instead of the exponentially smoothed loyalty
variable developed in Guadagni and Little [1983]. First, intrinsic Dirichlet hetero-
geneity in choice behavior across individuals is assumed. Second, the process over
time is modeled as a renewal process wherein at each renewal the individual is as-
sumed to “forget” his/her choice history. Fader and Lattin [1993] assume that the
number of choice occasions since the last renewal for any individual is geometrically
distributed. Given these assumptions, conditional on the choice history of an indi-
vidual, one can easily calculate the expected probability of choosing each alternative.
Fader and Lattin (conveniently) propose the natural logarithm of each alternative’s
probability so calculated as a measure of loyalty, and include this new measure as an
additional variable in the systematic utility of the multinomial logit model. It must

be noted that the Dirichlet-Multinomial model is an extension of the Beta-logistic
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Model of Heckman and Willis [1977]. Such a model to capture cross-sectional hetero-
geneity is also seen in Ehrenberg [1988] and Fader [1993]. In appendix G, we present
some characterizations of dynamic choice models derived from a bayesian approach

of updating information from past choices.

2.7 Choice Models with Heterogeneity in Choice
Sets

Most of the discrete choice literature assumes that the individual’s choice set is known
deterministically to the analyst, i.e., the availability of an alternative to an individual
is treated as an observable binary variable — either an alternative is available to an an
individual or it is not. There is both theoretical evidence (Swait and Ben-Akiva [1986])
and empirical evidence (Stopher [1980]) that misspecification in the choice set leads
to choice model misspecification. Manski [1977] suggested a choice model with an

explicit probabilistic choice set formation model as:

P(i) = Y. P(Il0) Q(C) (2.18)

ceG

where
P(i) = choice probability of alternative i;

P(i|C) = choice probability of alternative ¢ given that the choice
set is C;

Q(C) = probability that C' is the choice set;
M = universal choice set with J alternatives; and
G = set of all non-empty subsets of M.
The complete specification of the choice model entails the specification of:

1. a probabilistic choice set formation model, Q(C); and
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2. a probabilistic choice model given the choice set, P(i|C).

Since the number of elements in GG, 27 —1, will be large researchers have attempted
to reduce the dimensionality of the choice set formation problem by placing a prior:
restrictions on the possible sets. For example, a latent captivity representation based
on the restriction that individuals are either captive to an alternative or free to
choose among all the alternatives, has been applied by Wermuth [1978], Gaudry

Y

and Wills [1979], Kitamura and Lam [1984] and Swait and Ben-Akiva [1987b].

Another approach is the independent availability model applied by Swait and Ben-
Akiva [1987a] which imposes no restrictions on the possible choice sets, and which
doles out probability masses to the 27 — 1 choice sets from .J independent availability
probabilities.

It is important to note that the probability model which describes the availabil-
ity of each alternative to an individual is derived from a sound behavioral theory of
random constraints. The random constraints approach is built on the theme that
individuals are expected to have varying perceptions of the degree to which an oper-
ative constraint limits their access to certain alternatives. For example, in a travel
mode choice context, the maximum acceptable walking distance to a subway stop is
likely to vary across individuals. More recent work by Ben-Akiva and Boccara [1993]
incorporates into a single framework of choice set formation modeling the effects of
stochastic constraints and the influence of attitudes and perceptions on the choice set
formation process.

In the marketing literature, choice set formation models have been gaining increas-
ing attention. The problem of choice sets considered by individuals, also referred to
as consideration sets has been studied by Roberts and Lattin [1991] and Hauser and
Wernerfelt [1990] using a compensatory process. It can be argued that it is unlikely
that an individual evaluates all the alternatives and the trade-offs among all attributes
in order to eliminate a few in the first stage, and is expected to use simplifying heuris-
tics (or a non-compensatory scheme) to restrict the choice set to a limited number of
alternatives before choosing one. The information processing costs also usually pre-

clude such a detailed evaluation. Gensch [1987] has provided empirical support to this
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argument that a non-compensatory first stage is followed by a compensatory second
stage. The elimination-by-aspects model proposed by Tversky [1972a] is an example
of a non-compensatory choice model, and Fader and McAlister [1990] have imple-
mented such an approach. See Shocker et al. [1991] for a more extensive discussion
of issues in consideration set formation.

In the area of behavioral decision research several theoretical and empirical stud-
ies (Miller [1956], Bruner [1958], Payne [1976], Wright and Barbour [1977]) support
the two stages of choice process. Also, several studies (Payne [1976], Wright and
Barbour [1977]) revealed that the individual’s choice set reduction process is based

on cutoff thresholds.

2.8 Incorporation of Psychometric Data in Choice

Models

Most of the developments both in the theory and practice of discrete choice models
have been in the context of revealed preference (RP) data. In recent years, however,
there have been attempts to shift the focus to a more behaviorally rich paradigm
of choice modeling (McFadden [1986], Ben-Akiva and Boccara [1987]). The main
features of this new paradigm are:

e Explicit treatment of the psychological factors that affect the decision-making

process; and

e Data sources other than revealed preferences data, such as stated preferences®

(SP) can be effectively utilized in model development.
Ben-Akiva and Boccara [1987] identify four types of psychological factors:

1. Attitudes, needs and beliefs;

2. Perceptions;

9We assume any preference manifested not through actual market behavior fall into the category
of stated preference data. Such data could be in different preference elicitation formats such as
rating, ranking, indicated choice, etc.
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3. Preferences; and
4. Behavioral intentions.

Behavioral intentions are usually manifested through SP data. For example, a
popular method for measuring preferences in market research studies is conjoint anal-
ysis (see, for example, Green and Wind [1975]). In conjoint analysis, respondents are
presented with descriptions of several hypothetical alternatives, each of which has
different attributes. The respondent would be asked to indicate his or her relative
preference towards each of the alternatives. The responses are used to infer the im-
plicit weights respondents may use on each of the attributes while expressing their
preferences. Random utility models have been applied to SP data to model individual
choice behavior (e.g., Louviere and Hensher [1983], and Kroes and Sheldon [1986]).
For the estimation of choice models, Morikawa et al. [1991] (see also, Morikawa [1989)])

outlined the implications of the differing characteristics of SP and RP as:
e RP data are cognitively congruent with actual behavior;

e SP method form the only means of obtaining preferences toward new products

and services; and

e Trade-offs among attributes are identifiable from SP data since the the attribute

levels can be artificially set.

A fundamental problem associated with estimation of choice models from SP
responses is the indifference of the respondent to the experimental task. Since a
hypothetical scenario does not generally affect the value of the respondent (unlike
actual market behavior), the respondent may be so uninterested and careless that he
or she might not make a rational decision. Specific examples of such biases include:
(1) prominence hypothesis wherein the respondent evaluates alternatives by consider-
ing the most important attribute, (2) strategic behavior or policy-response bias if the
hypothetical scenario does affect the respondent’s welfare, but it affects him or her in
a way different from direct exposure to the “real market” situation, and the respon-

dent believes that he or she will benefit by responding in a certain way, (3) inertia
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bias if the respondent prefers to maintain the status quo instead of changes posed in
the SP surveys, and (4) justification bias wherein the respondent may want to justify
past behavior and respond in that way even to a hypothetical scenario.

Recognizing the complementary characteristics of RP/SP data, Ben-Akiva and
Morikawa [1990a, 1990b] have proposed a significant, albeit simple, combined RP /SP
method for RP and SP data. The combined model is operationalized through the
assumption of separate data generation processes for revealed preference data and
the stated preference data with some commonalities.

Now we turn our attention to approaches to capturing psychological concepts
such as attitudes and perceptions. It must be noted that such factors are unobserved
(hence latent), and in principle one can adopt the latent structure models discussed in
section 2.3 if adequate attitudinal and perceptual indicators are available. For exam-
ple, Morikawa et al. [1990] present an intercity travel mode choice model wherein two
perceptual attributes (ride comfort and convenience) are identified, with five point
ratings ((1) very poor --- (5) very good) of modal “attributes” such as: relaxation
during the trip, reliability of the arrival time, flexibility of choosing departure time,
ease of traveling with children and/or heavy baggage, safety during the trip, and
overall rating of mode, serving as perceptual indicators. Further, the two percep-
tual factors are used as additional attributes in the choice model with associated
coefficients.

McFadden [1986] suggests in a travel mode choice example an approach to capture
individual’s attitudinal factors (such as cost consciousness) by specifying additional
variables in the systematic utility function which are interactions between the latent
attitudes (e.g., cost consciousness) and relevant attributes (e.g., travel cost).

It must be noted that the conceptualizations of McFadden [1986] and Ben-Akiva
and Boccara [1987] to incorporate psychometric data are significantly different from
earlier paradigms such as Koppelman and Hauser [1979]. Earlier works adopted
the notion that the perceptual and attitudinal indicators can be directly utilized as

predictors in choice models.
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2.9 Summary

In this chapter we reviewed the state of the art methods to capture taste variations in
choice models, and approaches to characterize psychological factors such as attitudes
and perceptions through latent structure models.

In the next chapter, we develop the latent class choice model. In principle this
model builds on the theme in the choice model with latent classes reviewed in this

chapter.
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Chapter 3

Latent Class Choice Models

3.1 Introduction

In this chapter we present some of the key methodological developments of this thesis.
We develop the latent class choice model (LCCM), wherein the latent constructs are
discrete or categorical, and hence are characterized through latent classes. LCCM can
be useful to capture unobserved heterogeneity in choice modeling situations wherein
the analyst postulates that the factors “generating” the heterogeneity can be con-
ceptualized as discrete constructs. For example, the sources of heterogeneity may

include:
1. Different decision protocols adopted by individuals;
2. Choice sets considered by the individual which may vary; and
3. Segments of the population with varying tastes.

It must be noted that these constructs are not directly observable, and consequently
are operationalized through the specification of latent classes. The emphasis of the
presentation will be on the various types of class membership models which assign
individuals to classes. These class membership models are derived through a set
of criterion functions. The criterion functions may represent unobserved attitudes,

individual’s constraints and decision rules.
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3.2 The Model

Before we present the LCCM, it is important to understand the potential forms of
latent class characterization. As seen in section 2.2 most of the often used probabilis-
tic choice models such as the MNL and MNP models assume a “utility maximizing”
decision protocol wherein the individual is postulated to pick that alternative which
maximizes his/her utility. But in reality individuals may adopt a variety of other
decision protocols such as dominance rules, satisfaction rules, lexicographic rules,
“random choice”, etc. (see for example, Slovic et al. [1977], Svenson [1979]). Fur-
ther, the decision protocol adopted by an individual is not directly observable to the
analyst. Consequently, the unobserved decision protocol can be characterized by a
D-dimensional latent class, where D equals the number of decision protocols postu-
lated by the analyst. Each individual is expected to adopt only one of the decision
protocols in a particular choice situation, and consequently belong to one of the latent
classes. Therefore, the latent class is represented by a D-dimensional binary vector
with only one of the components' taking the value 1, while all other components take

d*h decision protocol, the class

the value 0. For example, if individual n adopts the
membership of the individual is represented by T,, = [l; =0,...,ls=1,...,lp = 0],
with °2_, Iy = 1. Correspondingly, the set of latent classes denoted by M pp has D
elements.

Consider a situation wherein the individual before making a choice considers only
a subset of the alternatives available to him/her, and picks an alternative from this
subset. The choice set actually considered is unobservable to the analyst, and conse-
quently can be characterized by a latent class. In this case, the choice set considered

can be viewed as a D-dimensional binary vector wherein the ath component takes

the value 1 if alternative d is considered and 0 otherwise. Therefore, the latent class

'The component indicates whether or not a particular decision protocol is adopted.
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is denoted by a D-dimensional binary vector, T,, = [l1,...,lq, ..., lp]’, where

L - 1 if individual n considers alternative d
0 otherwise

For example, if the universal set of alternatives C' = {1,...,4}, and the choice set
available to individual n is C,, = {1, 3}, then the class membership of the individual
can be represented by T,, = [l1,...,l4] where I = [ = 0, while for d = 1,3
lg = 0 or 1 depending on whether alternative d is considered. Herein it must be noted
that since the empty choice set is neglected, the class denoted by T,, = [0,0,0,0)
should be eliminated. Consequently, the set of latent classes contains the 3 (i.e.,
22 —1) elements, {1,0,1,0}, {1,0,0,0}, and {0,0,1,0}. In general, if individual n has
J,, alternatives in his/her choice set C,, then there are 277 — 1 elements in the latent
class set Mcg.,, with Mcg., € M¢g, where Mg is the latent class set corresponding
to the universal set of alternatives (i.e., [Mcg| = 27 — 1). Note that D equals J in
this case. Further, the class membership denoted by T, = [l1,...,l4,...,Ip] is such
that Y.7_, Iy > 1 (a value of 1 indicating captivity).

Consider a situation wherein the analyst expects unobserved taste variations to
exist in the population, and that these variations can be adequately captured through
the individual’s sensitivity to different attributes. Further, assume there is a natu-
ral ordering of sensitivity to each attribute in levels? such as “low sensitivity” to
“high sensitivity”. Let K denote the dimension of the taste parameter vector in a
choice model. The taste variations in K taste parameters can be “generated” by
a set of D “deeper” sensitivity dimensions, with D < K. Specifically, each deeper
sensitivity dimension captures the ordered sensitivity levels to one or more of the
attributes. It must be noted that the basic idea in generating the variations in K
parameters through D deeper sensitivity dimensions is to capture interrelationships

among individual’s sensitivity to attributes, such as an individual having high (or

2Tt must be noted that the individual’s sensitivity to an attribute is reflected in the magnitude
of the corresponding coefficient in the utility function.
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low) sensitivity to two or more attributes®. Consequently, the latent class is repre-
sented by D-dimensional vector with ordered levels in each dimension. For example,
consider a simplistic travel mode choice situation wherein the relevant attributes in-
clude travel time, travel time reliability and travel cost. Assume that unobserved
taste variations exist with respect to all the attributes. Further, assume that the
analyst postulates that taste variations to travel time and travel time reliability can
be generated through an unobserved “time sensitivity” dimension with three levels —
high time sensitivity, medium time sensitivity, and low time sensitivity — with labels
1, 2 and 3, respectively, while taste variation to travel cost is generated through an
unobserved “cost sensitivity” dimension with two levels — high cost sensitivity and low
cost sensitivity — with labels 1 and 2, respectively. Specifically, the class membership
of an individual be denoted by T,, = [l1, ls]’ where the first dimension represents time
sensitivity and the second dimension represents cost sensitivity with [; € {1,2,3} and
l € {1,2}. Then the corresponding class-specific taste vector for the individual is

written as:

Bit 1

B = Buri

Breds
where (i, and By, are the travel time and the reliability of travel time coefficients
when time sensitivity is in level, [;, while 3., is the travel cost coefficient when cost
sensitivity is in level lo. Therefore, in this example it must be noted that K = 3
and D = 2. Further, the number of elements in the latent class set Mpy equals 6
(i.e., product of the number of levels in each dimension). The idea of generating taste
variations in K taste parameters through possibly a smaller number of sensitivity
dimensions is illustrated in the above example wherein the individual who is high
sensitive to travel time is also expected to be high sensitive to travel time reliability,

or vice versa. In general, the class membership is denoted by T,, = [l1,...,l4,...,p]

3If an individual’s sensitivity is associated with each alternative attribute then D = K. On the
other hand, postulating D < K allows capturing prior information or substantive knowledge of
the choice context through the identification of a specific structure of the generation of individual’s
sensitivity to attributes. The “interrelationships” which we allude to are analogous to the correlations
which may be imposed between the coefficients in a random coefficients choice model.
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where Iy € {1,...,Lq}, Ly is the number of sensitivity levels in dimension d, and
Moy =TI, La.

For notational simplicity the latent classes are indexed s = 1,...,.5 and the index
s is associated with a unique element in the latent class set, i.e., s & T, = [I,...,[}]
for some [I5,...,15]) € M where [; may be a binary variable or an ordered categorical
variable.

If the three different forms of unobserved heterogeneity coexist, then the latent
class can be constructed through a superposition of each of the aforementioned latent
classes. More formally, if Mpp, M¢cg, and Mpy represent the latent class sets
corresponding to decision protocols (DP), choice sets (CS), and taste variations (TV),
respectively with Spp, Scg, and Sty elements in each, then the superposed latent
class may be represented by the cartesian product M = Mpp x Mog X My, with a
total of S = SppScsSty elements. Consequently, the superposed class membership

for individual n, 7T, can be viewed as a concatenation of the corresponding class

membership vectors Tpp.n, Tesm, and Ty, ie.,

TDP;n

T, = TC Sin

TTV:n

To illustrate the superposition of different forms of latent classes consider a situa-
tion where the individual adopts one of two decision protocols — pick an alternative
randomly or pick an alternative which maximizes utility — and even if the individual
adopts a utility maximizing protocol, taste variation exists in two sensitivity levels —
high sensitivity and low sensitivity, with labels 1 and 2 respectively. Consequently,
the class membership vector for an individual who is a utility maximizer and having

high sensitivity is written as:

70



since

0
TDP;n =
1

to denote that the second decision protocol is adopted, and
TTV:n = ( 1 )

to denote that the individual has high sensitivity to the attribute. In the superposed
case the dimension of the class membership vector equals the sum of the dimensions
of the class membership vectors corresponding to decision protocol heterogeneity and
taste variations.

For notational brevity, in the following presentation we assume a generic D-

dimensional latent class membership vector, where D equals

1. the number of decision protocols if the latent class characterizes unobserved

decision protocols; or

2. the number of alternatives in the universal choice set if the latent class charac-

terizes unobserved choice set; or

3. the number of sensitivity dimensions if the latent class characterizes unobserved

taste variations; or

4. sum of the number of decision protocols, number of alternatives in the univer-
sal choice set, and number of sensitivity dimensions, or a partial sum thereof

depending on the construction of the superposed latent class.

Notation for the Latent Class Choice Model

D = dimension of the class membership vector.

T,, = D-dimensional random vector which represents class

membership, i.e., T, = [l1,...,lp] where I  is the level in dimension d.*

4Note that Ty, = [Thn = b1y, Tgn = lgy ..., Tpp = Ip]’ where Ty, denotes the ath component
of T,,. lg may be a binary variable or an ordered categorical variable.
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Yin

l*

sn

Bs

latent class set such that 7,, € M.

choice indicator of individual n taking the value 1 if alternative ¢ is chosen

and zero otherwise.
choice set available® to individual n with |C,| = J,,.

latent class index%, s = 1,...,5, where S = |[M].

1 if individual n is in latent class s

0 otherwise

choice model parameters” specific to class s.
choice set specific to class s.
decision protocol specific to class s.

attributes of alternatives and individual characteristics which affect

the choice.

attributes of alternatives and individual characteristics which affect

the class membership.

We, must therefore, postulate the underlying mechanism for class membership and

choice given the class to operationalize the model. This necessitates the formulation

of two sub-models:

1. The class membership model assigns an individual to a latent class as a func-

tion of individual characteristics and attributes of alternatives, Z,.® Since the

5This refers to the set of alternatives deterministically available.

6The index s is defined such that there is a one-to-one mapping between the latent class with
index s and the class membership T, = [l1,...,Ip], Le, (5, =1) & T, =[5,...,15].

"For simplicity we assume these parameters are fixed. In principle, we may allow random taste
parameters for each class.

8It must be noted that the causal variables entering into the class membership model depend on
the characterization of the latent class. For example, if the latent class represents unobserved choice
set, then attributes of alternatives as well as individual characteristics may affect the assignment
process. On the other hand, if the latent class characterizes taste variations, then only the individual

characteristics may affect class membership.
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analyst does not observe the class membership of an individual, a probabilistic
assignment process is used. Let the class membership model be denoted by
Qs(Zy;0), i.e., the probability of individual n being assigned to latent class s
can be written as:

where 6 is an unknown parameter vector.

2. The class-specific choice model predicts the choice behavior of an individual
in latent class s. This sub-model is assumed to be class-specific, and therefore,
depends on the choice set” (Cy), taste parameters (3;), and the decision-protocol
(Rs) associated with each class. Further, the class-specific choice model may be
deterministic or probabilistic. For example, in a travel mode choice situation,
if the individual in a particular latent class adopts the decision-protocol “Pick
the travel mode with minimum travel time”, then the choice may be
deterministic wherein the alternative with minimum travel time is chosen'®. If
the individual is a “utility maximizer” and considers the trade-offs among all the
attributes of alternatives, a random utility model may be appropriate wherein
the class-specific choice is probabilistic, and may be represented, for example,
by a multinomial logit (MNL) model or a multinomial probit (MNP) model.
The class-specific choice model expressing the choice probability of alternative

¢ for individual n who is a member of class s can be written as:

P(y”? = 1|X’n/;ﬂS7CS7RS)- (32)

9Tt must be noted that if the latent class characterizes the choice set considered, then the possible
choice sets considered by an individual depends on C,,. Consequently, the class membership model
doles out probability masses only to these possible choice sets, while the probability of considering
any choice set containing deterministically unavailable alternatives is zero.

10T the event two or more travel alternatives tie for the minimum travel time, the choice may
be probabilistic with equal probability of the individual choosing an alternative from the subset of
alternatives of the class-specific choice set with minimum travel time. In general, if the individual
“looks” at only one discrete or categorical attribute, then he/she picks an alternative from all the
alternatives which possess this attribute with equal probability.
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Using the class membership model, Q,(Z,; ), and the class-specific choice model,
P(yin = 1| X, Bs, Cs, Rs), the latent class choice model for choosing alternative i is

written as:

S
P(yin = 1‘Xna Zn; 67 ﬁ) = Z P(yin = 1|Xn7 657 057 RS) Qs(Zn; 9) (33)

s=1

Thus the log-likelihood function for a random sample of N individuals is given by:

Yin
£(6.6) =3 1og{ I |3 Pl = 1060 ) Qu(20) } Y
n=1 i€Cy Ls=1
The parameters [3,0] can be obtained by maximizing the log-likelihood function.

It must be noted that the latent class choice model is built on the assumption
that the data available to the analyst includes the choice indicator, attributes of
alternatives, and socio-economic and demographic characteristics of the individual.

Specifically, no data is available on attitudinal and perceptual indicators'!.

Given this overview of LCCM, we turn our attention to the class membership model,
Qs(Zy; 0). In the following sections we present modeling approaches for cases wherein

the underlying latent construct could be'?:

e categorical as in the case of latent class characterizing decision protocols (cate-

gorical criterion model);

e binary latent class as in the case of latent class characterizing choice set (binary

criteria model); and

e latent class with ordered levels in each dimension as in the case of latent class

"Tn this respect the term “latent class choice model” is somewhat of a misnomer since latent class
models which we review in chapter 2 and detail in chapter 6 utilize the existence of indicators of
latent classes. It must be noted that the choice itself can be construed as an indicator of both the
underlying preference and the associated latent class. We extend the ideas developed within latent
class choice models in chapter 6 wherein models incorporating attitudinal and perceptual indicators,
referred to as latent structure choice models, are formulated.

2 Although the class membership models are developed to address each of the specific forms of
heterogeneity, it will be transparent to the reader how to extend the class membership model for
the superposed forms of heterogeneity with some additional notational complexity.
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characterizing taste variations through ordered levels of individual’s sensitivity

to attributes (ordinal criteria model).

The presentation is unique in its own right due to the causal formulation of the class
membership models through a behavioral theory of unobserved criterion functions.
It must be noted that the basic elements of the theory of the binary criteria model
were embedded in the works of Swait and Ben-Akiva [1987a] and Ben-Akiva and
Boccara [1993], although the significance of their work as a special case of a class

membership model was not recognized.

3.3 Class Membership Model

First we note that since the latent classes are discrete or categorical variables, a
probabilistic latent class assignment process is desirable. As the first step in the
development of the class membership model, we postulate the existence of criterion
functions which map from the variables Z,, to a vector of latent variables. Before
we develop the different class membership models, it is important to discuss the
behavioral interpretations of the criterion functions in different situations.

Suppose the latent class characterizes the individual’s decision protocol. The deci-
sion protocol adopted by an individual can be viewed as being generated by a process
wherein the different decision protocols compete with each other. The individual
adopts the decision protocol which suits him /her the most. Consequently, each deci-
sion protocol is associated with a criterion function which captures the desirability of
the decision protocol as a function of individual’s characteristics such as time pressure,
education, etc., coupled with intrinsic features of the decision protocol.

Consider a situation wherein the latent class characterizes the choice set actually
considered by the individual. The formation of the choice set may be viewed as a pro-
cess whereby the individual identifies feasible alternatives depending on individual’s
resource constraints, knowledge about competing alternatives and their attributes,
and the individual’s ability to process information about alternatives. Individuals

are expected to have varying perceptions of the degree to which an operative con-
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straint limits their access to certain alternatives. For example, the high price of an
alternative may preclude its consideration in the individual’s choice process, and the
willingness-to-pay thresholds may vary across individuals depending on income levels.
Consequently, the choice set considered by an individual may be generated through a
set of non-compensatory (such as “satisficing”) rules or constraints. Specifically, an
alternative is considered if the set of non-compensatory rules associated with that al-
ternative are satisfied. Since the rules adopted by individuals may arise from objective
constraints as well as subjective constraints stemming from individual’s attitudes and
perceptions, and are not directly observable, they are considered random, and hence,
may be operationalized through the criterion functions satisfying a set of inequalities.

Consider a situation wherein the latent class characterizes individual’s sensitivity
to attributes of alternatives in terms of the importance he/she places on each of the
attributes. The individual’s sensitivity to an attribute may be postulated to be a
function of individual characteristics. Further, each sensitivity is unobserved, and
hence operationalized through a criterion function.

Assume that there exists K, criterion functions for each dimension d of the latent
class membership vector. If the latent class characterizes the choice set considered,
K4 represents the number of non-compensatory rules associated with alternative d;
if the latent class characterizes individual’s sensitivity to attributes K, equals 1, and

dth sensitivity to attributes; and if

the associated criterion function represents the
the latent class characterizes the decision protocol wherein each decision protocol is
associated with a single desirability concept as perceived by the individual, then Ky
equals 1.

Let Hipn, Yk =1,...,Kg;;¥Vd = 1,..., D represent the B criterion function in
dimension d. The criterion functions may be specified in terms of some function

denoted H(-) such that
Hakn = H(Zy, dakn; Oar) (3.5)

where 0 is a parameter vector and 64k, is a random component associated with the

criterion function to reflect the fact that Hg, is unobserved and hence is a random
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variable. Further, for simplicity Hg, may be separated into an additive systematic
component (non-random component) denoted by Hy., and a random component,

5dlm, i.e.,

Hiyn = Hgpn + Sain

= H(Zn;0ar) + Odrn- (3.6)

where H () is some function which maps from Z, to the systematic components.
Given the specification of the criterion functions, the problem reduces to the devel-
opment of the mapping from the criterion functions to the class membership prob-
abilities. To this end, the different associations between the criterion functions and

the latent classes may include:

1. If each dimension of the latent class is associated with a single criterion function
(iie., Kg=1, Vd=1,...,D) as in the case of the latent class characterizing
decision protocol, and a latent class is identified such that one and only one
dimension of the multi-dimensional binary vector takes the value 1, then the
total number of latent classes, S, equals D. Assuming that an individual is
assigned to a latent class based on a maximum criterion association rule, the
class membership model is analogous to a random utility choice model wherein
the criterion function of each class is similar to a random utility associated with

the class.

2. If the criterion functions Hg,, Vk =1,..., K; map into a binary variable for
every d, then the latent class is a D-dimensional binary vector and S equals 2.

dth dimension takes the

Specifically, the mapping process assumed is that the
value 1 if, and only if, every criterion function associated with that dimension
satisfies a constraint, Hgy, > 0, Vk = 1,..., K4. For example, if the latent
Jth

class represents the choice set considered, the component takes the value 1
if alternative d is considered and zero otherwise. An alternative is considered,
if and only if, the criterion functions associated with that alternative satisfy

the constraints. It must be noted that even if deterministic constraints (such
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as availability of an alternative) vary across individuals, such restrictions can
be easily incorporated into the latent class representation by characterizing the
latent class probability distribution only over possible choice sets to a particular

individual.

3. If each dimension d is associated with a criterion function (i.e., K4 = 1), and
the latent class is a D-dimensional vector with dimension d taking the value'3
la €{1,..., Ly} where L, is the number of levels in dimension d, then S equals
H(?Zl Ly. For example, in a transportation mode choice context, to capture
unobserved taste variations for travel cost and travel time, a 2-dimensional la-
tent class can be characterized along “cost-sensitivity” and “time-sensitivity”
dimensions with ordered levels such as “low-sensitivity”, “medium-sensitivity”
and “high-sensitivity” along each dimension. The basic theme in the associa-
tion of the criterion functions with the levels in each dimension, is the idea of
“threshold crossing” wherein a particular level in a dimension is triggered if the

corresponding criterion function falls between two thresholds'.

Given the above associations between the criterion functions and the latent class, it
must be emphasized that the probabilistic nature of the class membership model stems
from the random components, iy, of the criterion functions. Denote QS(Hdkn, Vk =
1,...,K4,Vd =1,...,D;7)" as the probabilistic mapping from the systematic com-

ponents of the latent criterion functions to the latent class s, such that

P(l;, = 1|Z,),
= P(T,=10,....1p]'Z) (3.7)
= P(Ty =15, Vd=1,...,D|Z,) (3.8)
= P(Tyn =15, Vd=1,...,D|Hym, YVk=1,..., Kz ¥d=1,...,D),

13These integers are mere labels to identify the ordered levels in each dimension and do not serve
any other purpose.

14For each dimension of the latent class, the assignment to a particular level is analogous to the
ordinal probability model (see McKelvey and Zavoina [1975])

I3For notational brevity we suppress parameters associated with the distribution of the random
components 6. The origins of 7 will be clearer in the discussion in section 3.3.2.
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= Qy(Hgpn, Ve=1,...  Kg¥d=1,....D;7) ¥s=1,...,5. (3.9)

It must be noted that the parameters 7 which appear in the above equation in addition
to the parameter vector 6 cited in equation (3.5) are the thresholds referred to in the
third type of class membership model (i.e., the ordinal criteria model).

Substituting Hgp, = ﬁ[(Zn; O4r) in Qs(-), the latent class probability can be de-

noted in terms of a function or model, Q(Z,;0,7), such that:
P, =1|Z,;0,7) = Qs(Zn;0,7) Vs=1,...,5. (3.10)

The problem of specification of the class membership model reduces to the construc-
tion of Qs(Zy; 0, 7). Essentially, Qs(Zy,; 0, 7), maps from the explanatory variables Z,,,
to the latent class probabilities through the systematic components of the criterion
functions, ﬁdlm. Before we proceed further, we assume for simplicity'® linear-in-

parameters functional form for the criterion functions and specify them as:
Hdkn = 9:1an,+5(1]¢77,7 Vk’: 1,...7Kd; Vd: 17...,D. (311)

It must be noted that the linear-in-parameters specification allows non-linear trans-
formations of Z,,.

As noted earlier, the construction of the class membership model, Qs(-), depends
on the associations between the criterion functions and the latent class, which in turn
depend on the specific problem context and characteristics of the latent class being
modeled. Consequently, in the following paragraphs, we elaborate on the three types

of class membership models.

16 A linear-in-parameters specification eases the computational efforts required in the model esti-
mation stage as the analytical derivatives/hessian of the likelihood function are relatively easy to
obtain for this case.
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3.3.1 Categorical Criterion Model

Here we assume that each latent class dimension d is associated with an criterion

function Hy,, where
Hdn:HZiZn—i—édn, Vd=1,...,D. (312)

Further, assuming a maximum criterion association rule, the class membership 7}, =

[l1,...,lp] is obtained as:

1 if Hin(Zn, ban; 04) = leril%}iD{Hd’n(vaéd’n;9(1’)}

Tan = (3.13)

0 otherwise

Note since the number of latent classes S equals D, we can replace [}, with [}, , and
5, =1if T, = 1 and zero otherwise. By specifying a joint probability density func-
tion for (81y,...,0pn), a class membership model can be constructed. For example,
if the random variables, 64,, Vd = 1,..., D, are independently and identically dis-
tributed Gumbel (0,1) random variables we obtain the MNL-type class membership

model, i.e.,
0,7,
P, = 1|Z,;0) = DeXp( aZn) (3.14)
E eXp(e;l/Zn>
d'=1
On the other hand, if the random vector (61,,...,0pn) is multivariate normal, we

obtain the MNP-type class membership model. It must be noted that in such an as-
signment only differences in the systematic components of criterion functions matter,
and additional restrictions are necessary to have a unique set of parameters 6 and
the parameters in the distribution of (615, ...,0ps). In the MNL-type and MNP-type
membership models, we need to fix #; = 0 for some d. Further, in the MNP-type
membership model identification restrictions must be placed in the covariance matrix

of (81n,...,0pn) (see Ben-Akiva and Bolduc [1991]).
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3.3.2 Ordinal Criteria Model

Suppose the latent classes is characterized by a multi-dimensional vector with ordered
levels along each dimension. Figure 3-1 illustrates such a latent concept which charac-
terizes the sensitivity of an individual to travel time and travel cost in a travel choice
situation, and correspondingly the two-dimensions of the latent class are: “time sen-
sitivity” and “cost sensitivity”. Three levels are postulated in the time sensitivity
dimension and two levels in the cost sensitivity dimension. An individual falls in one
of the six cells formed by the cartesian product of the levels in each dimension. The
class membership model assigns the probability of an individual being in each of these
six cells.

In general, let the latent class be represented across d = 1,...,D with class
membership vector T,, = [l1,...,1lq4,...,Ip]’. Let L4 represent the number of levels
along dimension d with the levels taking on the integer values 1,...,Ly. Let L,
denote the integer set {1,..., Ly}'". The modeling approach is to assume that each
dimension is characterized by a criterion function Hy (i.e., Kq =1 Vd).

Let the criterion functions Hy, for individual n be written as:
Hdn:%Zn—i—édn, Vd=1,...,D. (315)

We allow for the random components of H;’s, i.e., §;’s, to be correlated to capture
the unobserved interrelationships among the dimensions. For example, consider a
case wherein the random components of dimension d and d', i.e., 4, and 64, are
independent. If an unobserved (hence assumed random) variable v ought to have
been included in the systematic components of criterion functions for dimensions
d and d" with corresponding coefficients 6,4 and 6,4, the new random components
bin = Oan + Oy,qv and Sgm = 6gm + Ouav are correlated with cov(gdn7 Sd/n) = 0,40 40>
where var(v) = o2

The basic theme in the association of the criterion functions and the latent class

is the idea of “threshold crossing” wherein a particular level in a dimension is trig-

"Hence, Ig € Ly, Yd=1,...,D.
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gered if the associated criterion function falls between two thresholds. This theme is

illustrated in Figure 3-2 wherein there are three levels in dimension d and

T = 2 & {O<Hdn§7'}

3 & {7 < Hg <}

It must be noted that in the illustrative example, one of the thresholds is set to zero
to fix the location of the criterion function Hy,, which is necessary if Hy, has an
intercept. Further, two of the thresholds are set to —oo and oo which is typically the
case if we assume infinite support for 6.

More generally, the levels in each dimension of the latent class are associated with

the criterion functions as follows:

D
Tnz[h,---,ln]’@{ﬂ (TfjléHdnsn‘j)}, Vily, ..., lp) € {L1 X Ly x -~ Lp}
d=1

(3.16)
where
Tl{ifl - lower bound value (threshold) for criterion function for latent
dimension d at level I
Tli - upper bound value (threshold) for criterion function for latent

dimension d at level I
Thus, the probability of the individual being in latent class T,, = [l1,...,lp]’, is

D
obtained by associating it with the probability of the event {d(jl(rfi_l < Hy, < Tfi)}.

It follows using equation (3.15) that,

P(T, =ly,...,Ip|'|Zn;0,7) =

)—U
——
DL

T
I

(Tziq < Hap < 7'11,11)}

I
)
Y
v

(7_[{2_1 S g:jzn + 6{17‘1, S T[{i)}

Il
-

I
)—U
——
DS

m.
Il

(Tl([ii—l - H:IZR S (Sdn S T;[ii - 9:12”)}
1
(3.17)
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Figure 3-1: Latent Class with Ordered Levels: An example

f(Hdn)

Figure 3-2: Illustration of Ordinal Criteria Model
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By specifying different parametric distributions for (615, . . ., 0pn), different class mem-
bership models can be constructed.

As an illustrative example, consider a latent construct represented along two di-
mensions, with L; and Ly levels in dimensions 1 and 2, respectively. The latent class

dimension levels are associated with the criterion functions as:

L= b & {( <H.<7) N (o <Hw<1)). (3.18)

Then the probability of the individual n being in the latent class T,, = [I1, o], P(T, =

[l1,15]'| Zn; 0, 7), is written as:

P {(7_111_1 - 9;Z7? S 5177, S 7—]11 - 6/127?) /\ (7-122_1 - eéZn S 527‘1, S 7-122 - H/QZ’I?)} .

(3.19)

Since the criterion functions are latent, we need to set the scale of the criterion func-
tion for each dimension. To this end, we set the variances of the random components
to some constant, say 1. Assuming'®

Bim 1
"o osun o, | (3.20)

52n p 1

the latent class probability is given by:

1 / 2 /
Tll—HlZn 712—92Zn

P(Ty, = [, bo]'| Zn: 0,7, p) = / / For 6, (0, 0) dudo (3.21)

1 _p’ 2 _p
T -1 91Zn7'1271 05 Zn,

where fs, s,(-) is the density function of the standard bivariate normal random variate
with parameters [1,1, p|. In addition, 75 and 7§ are set to —oo, 77, and 77, to 400,
and 7/ and 77 are arbitrarily set to zero to fix the origin of the criterion functions.

The above correlation structure for the random components of the criterion func-

1B BY N =Bivariate Normal.
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tions restricts the maximum number of allowable dimensions of the latent class to
three to obtain tractable probabilities. Appendix A details a simulation procedure
for calculating the latent class probabilities for latent classes with more criterion
functions. It must be noted that if the random components are independent the class
membership model reduces to the product of ordinal probit models corresponding to
each dimension and hence is tractable even for large dimensions.

The ordinal criteria model is similar to the ordinal probability model of McKelvey
and Zavoina [1975]. In similar vein, the class membership model can be viewed as
an extension of the multivariate probit model of Ashford and Sowden [1970] which
allowed for two levels in each dimension precluding the specification of unknown
thresholds. The key distinguishing features are: (1) levels are unobserved in the class
membership model while in the ordinal probability model and the multivariate probit
model the levels are observed, and (2) class membership model generalizes the ordinal
probability model to a multivariate ordinal level dependent vector, and extends the
multivariate probit model to include more than two levels in each dimension. Hence,
this class membership model may also be called, the multivariate ordinal probability
model.

The specification of the criterion functions for each dimension requires special
mention. The utilization of the relevant variables in the systematic component of
each criterion function (i.e., specification of the fixed (zero) and the free (non-zero) ¢
parameters in each dimension) is based on prior behavioral hypotheses of the relevant
latent constructs postulated to be captured by each dimension.

It is important to note a caveat of the model. By the nature of its specification,
the systematic component of the criterion function is monotonic in the variables Z
(monotonically increasing in Z if the associated coefficient is positive and monoton-
ically decreasing otherwise). But the associated probabilities of an individual being
in the levels of a dimension are monotonic in Z only for the first and the last level
in that dimension, and not for intermediate levels. For example, consider the case
of a one-dimensional latent construct with three levels. Assume that 6, the random

component of the criterion function, is a standard normal random variable. Then
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P(l=1)=®(-H,),P(l=2)=®(r—H,) —®(—H,) and P(l=3) =1 —&(r — H,)

where ®(-) is the cumulative distribution function of 6. Then

apl=1)

—an ¢(—H,)

apl=2 -
BT (7 — Hp) + ¢(—Hn)
apl=3

T;ﬂ = ¢(T Hn)

Since ¢(-) is the normal density function, P(l = 1) is monotonically decreasing in

H,,, and P(I = 3) is monotonically increasing in H,,. On the other hand, P(I = 2) is

z

5, and monotonically decreasing in H,, for

monotonically increasing in ﬁn for Hn <
H, > %, with P(I = 2) attaining a maximum'® at H; = Z. This argument extends
to the multi-dimensional case with a symmetric joint density assumption for 6 with

infinite support.

3.3.3 Binary Criteria Model

In this case the latent classes are identified by a D-dimensional vector, with each
dimension represented by a binary variable. A set of criterion functions Hg,, Vk =
1,..., K, is associated with each dimension. The dth component takes the value 1 if,
and only if, Hy, >0, VE=1,..., K,.

Assume that the random components of criterion functions across dimensions
of the latent class are independent (i.e., assume 6q = (da1,...,04x,) and oy =
(Oarty - -y Oark d,) are independent Vd # d’). The class membership model for dimension

d 1s written as:

Ky

P(Tdn:1|Zn,9) = P (m (Hdkn20)> Vd: 17,D
k=1

YAt the maximum, (1 — H*) = ¢(—Hy,*). Noting the symmetry of ¢(-), we have 7 — H = H*,
it follows that H} = T (one can easily check the second order condition for maximum). Intuitively,
this is obvious since the maximum is obtained when the density of the criterion function is centered

on the interval [0, 7].
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K4
=P (ﬂ (0. Zn + Odien > 0)) vd=1,...,D
k=1

k=1

Ky
=P (ﬂ (Sapm > —%Z@) Vd=1,...,D (3.22)

and P(Ty, = 0|2,;0) = 1 — P(Ty, = 1|Z,;0). By specifying the joint probability

density of 04, fs,,...., Sasc, (u1,...,uk,), the above probability can be obtained as:
/ / f5d1 _____ 5de(u1,...,uKd)du1 ---duKd (323)
’U+ ’U+'
dln den
where v}, = —0.Z,, Yk =1,...,K;. We may allow for the random components

of the criterion functions associated with each dimension d to be correlated.
The probability of the individual being in latent class T,, = [l ..., lp]’, equals
P(Ty, =14, Vd=1,...,D)

=P ({ﬁ (6akn > Vi ) - Vdllla = 1} A

k=1
(ke {1, ... Ka} : (Sakn < Vi) ), ¥dlla = 0

(3.24)

By independence of the random components of criterion functions across dimensions

of the latent class, the above equation reduces to:
D
[T P(Tun = 1|Z0; 0)]" [1 — P(Tiyy = 1] 2,5 0)]" (3.25)
d=1

It must be noted that in the foregoing model, the association between the criterion
functions and the latent class is through a conjunctive rule wherein all the constraints
associated with a particular dimension must be satisfied for that dimension to take
the value 1. On the other hand, one may postulate a disjunctive rule wherein a

particular dimension of the latent class vector takes the value 1 if any of the associated
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constraints is satisfied. In this case, the probability of the individual being in latent

class T, = [l, . .., Ip] equals

P (T =14, ¥d=1,...,D)

=P ({ﬁ (6akn < V) - Vdllla = 0} A

k=1
(ke {1, K} : (barn > v, ) ), Vdlla = 1

(3.26)

with the class membership model viewed as a “mirror image” of the class membership

model for the conjunctive association rule.
3.4 Summary

In this chapter, we developed the latent class choice model (LCCM), and provided an
overview of its adoption to capture specific forms of heterogeneity in choice processes.
We also formulated different class membership models with an emphasis on their
behavioral interpretations.

In chapters 4 and 5 we focus our attention on special cases of LCCM: (1) LCCM to
capture taste variations through latent market segments, and (2) LCCM to capture
decision protocol heterogeneity. The LCCM with the latent classes characterizing

choice sets considered was reviewed in section 2.7.
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Chapter 4

Latent Class Choice Model for
Taste Heterogeneity: Case Study —
Estimation of Distributed Value of

Time

4.1 Introduction

In order to evaluate the benefits of new transportation system investment projects,
one of the key input factors in the economic analysis is the value of time (VOT)
concept. The principal aim in economic analysis is the comparison of the costs of the
project with the potential benefits, including changes in travel time, accident rates,
and operating costs, in terms of monetary units.

Individual traveler’s travel time is evaluated in the marketplace by determining
what price people will or do pay for travel time savings. Some of the factors that

affect the value of travel time are (Winfrey [1969)]):

A Individual characteristics

Age, occupation, wage earnings, whether paid during time of travel.

B Trip characteristics
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Distance, purpose (business, pleasure, etc.), frequency.

C Environmental characteristics
Time of day, day of week, season of year, land use and economic conditions, rural

or urban area, speed of travel, type and attributes of transportation system.

D Factors of value
Activity before and after trip, amount of available free time, productive time,

utilization of travel time decrease, value of leisure time.

In the remainder of this section, we outline the operational approach to the esti-
mation of VOT from travel choice models, and highlight certain aspects of empirical
VOT studies in an effort to motivate our work. Some of the earliest studies to estimate
the value of individual traveler’s travel time are those by Claffey [1961], Lisco [1967],
Haney [1967], and Thomas [1967]. More recent studies include: Cherlow [1981],
Sharp [1988], Hague Consulting Group [1990], and Widlert [1994]. The reader is
directed to Train and McFadden [1978], Bruzelius [1979], Hensher [1989], and Wa-
ters [1992] for a comprehensive treatment of the microeconomic underpinnings of the
value of time concept and for the review of related empirical work.

In the value of travel time study presented here we restrict our attention to evalua-
tion of travel times by individual travelers. In travel choice models, such as mode and
route choice models, wherein travel time and travel cost are specified as attributes
in the systematic utility functions, the corresponding estimated coefficients provide
important information about the trade-off between travel time and travel cost. Con-
sider a travel mode choice model with systematic utility function specified as a linear
in parameters and linear in attributes function of only travel time ¢t and travel cost

te. Specifically, the systematic utility function V() is written as:

V(te, tt) = Bute + Bitt (4.1)

Setting the total differential of V' (tc, tt) to zero to characterize the trade-offs between
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time and cost variables while maintaining the systematic utility constant, we have:

oV oV
= B.dtc+ Bidtt =0
dte 615
i 4.2
att 5. (42)

Therefore the implied value of time is the ratio of the travel time coefficient to the
travel cost coefficient, and is independent of the levels of attributes tc and tt. Note
that in a travel mode choice model, if the travel time and/or cost variables are mode-
specific, then the estimated values of time differ across travel modes. To capture

variations in the values of time the approaches which may be adopted include:

o Variations along levels of time and cost variables: Non-linearities in correspond-
ing variables can be introduced through power series expansion of the systematic
utility functions. Further, one can approximate the non-linearity by postulat-
ing a piece-wise linear function. Other transformations of variables such as the

Box-Cox [1964] transformation may also be adopted.

o Variations across individuals: This is typically done by introducing additional
interaction variables between individual characteristics and travel time and

travel cost variables in the systematic utility functions.

Empirical studies to evaluate the value of time have relied primarily on two types
of data: (1) revealed preference (RP) data such as travel mode, route, and loca-
tion choices, and (2) stated preference (SP) data wherein travel time and travel cost
trade-offs are elicited through individual’s preferences towards hypothetical travel
alternatives.

There is evidence in the transportation literature that the value of time varies
along observed dimensions such as individual’s income, age, trip purpose, etc. (see,
for example, Bates and Roberts [1987], Bradley and Gunn [1990]). More recent work
by Ben-Akiva et al. [1993] also incorporated the notion that the relative importance

of time and cost changes may be influenced by individual-specific tastes and circum-
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stances which cannot be observed by the analyst. Consequently, the value of time
was allowed to be distributed randomly in the population. In a recent meta-analysis
of empirical studies for estimating values of travel time, across countries and juris-
dictions, Waters [1993] finds substantial variations in values of travel time with the
estimates ranging between 30 to 50 percent of the wage rate. Further, the values of
time varied substantially across regions within a country. Given the importance of
time savings in transport project evaluation, Waters [1993] highlights the need for
better methodological approaches to assess the value of travel time savings.

In the case study presented in this chapter, the emphasis is on stated preference
analysis with the objective of obtaining monetary values of time that vary simulta-
neously along several household, personal, and situational dimensions, including the
amount of free time available and income available. In contrast to RP data, the
SP data collection effort was designed to distinguish between different types of time-
money trading behavior: (a) for different journey purposes, (b) for different income
groups, (c) for different occupation groups, (d) for different personal circumstances,
and (e) for those with different amounts of leisure time.

The remainder of the chapter is organized as follows: In section 4.2 we present
the model to capture unobserved heterogeneity in individual’s travel time and travel
cost coefficients. It must be noted that the model presented here is the latent class
choice model (LCCM) for taste heterogeneity with specific reference to the classes
characterized along cost sensitivity and time sensitivity dimensions. In section 4.3 we
discuss the data used in the the case study to assess the potential of the model, while
in section 4.4 we present estimation results. Choice models adopting existing methods
to capture taste variations including the random coefficients model are estimated and

compared to our modeling approach.

4.2 The Model

We assume that the data available to the analyst includes the choice indicator, at-

tributes of travel alternatives, and socio-economic and demographic characteristics of
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the individual. The underlying choice process is hypothesized to vary across a finite
set of groups of individuals in the population, and to be homogeneous within each
such group. Since each homogeneous group of individuals is unobserved, the groups
are characterized by latent classes.

We, must therefore, postulate the underlying mechanisms for class membership

model and the choice model conditional on latent class to operationalize the model.

4.2.1 Class Membership Model

We assume that each latent class is characterized by two criteria — travel cost-
sensitivity (C) and travel time-sensitivity (T) — with ordered levels along each di-
mension. The ordered levels are expected to reflect very high-sensitivity to very low-
sensitivity or vice versa to travel time and travel cost of travel alternatives. Let the
two-dimensional vector, T;, = [l¢, l7]’, denote the class membership for individual n.
Let Le and Ly denote the number of levels along cost-sensitivity and time-sensitivity,
respectively, with the levels taking on integer values' 1,...,L¢, and 1,..., Ly, re-
spectively. Let Lo and L7 denote the integer sets {1,..., L¢} and {1,..., Ly} such
that o € Le, and I € Lr. Hence, the set of latent classes M is the cartesian
product Lo X Lr and an individual belongs to one and only one of these latent
classes. For notational convenience the latent classes are indexed s = 1,...,S where
S = | M| = L¢Lr, and a class membership indicator ¥, which takes the value 1 if the
individual belongs to class s and zero otherwise, is defined on this index set. The in-
dex s is defined such that there is a one-to-one mapping between the latent class with
index s and class membership, i.e. (I%, = 1) & T, = [I&, 5] for some [, 5] € M.
For example, if L& = {1,2} and Ly = {1,2}, then M = {(1,1),(1,2),(2,1),(2,2)},
S =4, and the index s = 3 will indicate the latent class with membership (2,1).
The modeling approach is to assume that each of the cost sensitivity and time
sensitivity dimensions are characterized by criterion functions, Ho and Hrp, respec-

tively. The criterion function for a particular dimension represents the individual’s

!These integers are mere labels to identify the levels in each dimension and do not serve any
other purpose.
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sensitivity in that dimension. Let the criterion functions H¢,, and Hrp, for individual

n be written as:

HC’n = HICZn+6Cn

Hrn, = 0372, + 6 (4.3)

where 6 and 07 are unknown parameter vectors and 6¢, and 67, are random compo-
nents. We assume without loss of generality E(6¢)=E(6r)=0. The specification of the
criterion functions is aided by prior behavioral hypothesis as to the relevant individ-
ual characteristics affecting each dimension. For example, an individual’s sensitivity
to travel cost may be hypothesized to be affected by income, gender, etc. Similarly,
individual characteristics such as time pressures, employment status (part-time vs.
full time), household type, etc. may be postulated to affect the time sensitivity di-
mension. Further, correlation between the random components of Ho and Hr (i.e.,
d¢ and 67) may be allowed to capture the unobserved interrelationships between cost
sensitivity and time sensitivity. By adopting a “threshold crossing” approach, the
latent class levels in the cost and time dimension are associated with the underlying

criterion functions as follows:

T, = [lC, lT]/ = [(Tz(é_1 < HOn < Tz(é) /\ <7'17;_1 < Hp, < Tg)}

V[l(j, lT], € {ﬁ(* X £T} (4.4)
where
Tl(é_l - lower bound value (threshold) for cost criterion function in level /¢,
™ - upper bound value (threshold) for cost criterion function in level /¢,
71 - lower bound value (threshold) for time criterion function in level Ir,
le; - upper bound value (threshold) for time criterion function in level I7.

Assuming a parametric probability density function for (6¢y,, 61,), the probability

of individual n belonging to latent class [lc, 7] (with index s such that I = & and
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lp = 15), denoted by Q(Z,;0,7)?, equals

P(T,, = [lo, 7| Zn; 0, 7)
= P(
= P(
= P

(1€ < Hen <78) N\ (14 < Hpo < 71))
(121 <0cZy+bcn <1i) N\ (1) <03 Zn + 670 < Tz?))
(7 0 Zn < bcn < T — 00 Z)

c—1

/\ (le;—l - Q%Zn <ébrn < 7—17; - G%Zn)) (45)

Since the criterion functions are latent, it is necessary to set the scale of each criterion
function, and this is operationalized by fixing the variance of each random component
of the criterion function to some constant, say 1 for convenience. To see why this is

necessary, Q(Z,;0,7) equals

P (T 1 = 0pZn < bon < 70 = 00 Z)
N (GE = 002, < bpo < 78— 072,)) (4.6)
= P <(achg_1 — acbleZn < acdon < Oéchg —acleZn)
N (arrf | — arbZ, < ardrn < arml — aTQ’TZn)>
= P71~ 0020 < bon < 7. = 00 2)

/\ (7:17;—1 - é/TZn < bpn < ﬂ? — 9~'TZn)) (4.7)

where o and ar are arbitrary positive scalars, and any parameter 4 in equation (4.7)
is a scaled form of the corresponding parameter 7 in equation (4.5). Consequently,
the latent class probability does not change by scaling 6 and 7 parameters. Hence,
to identify the parameters it is necessary to fix the scale of each criterion function.
When 7 or 6 parameters are shared across the cost-sensitivity and time-sensitivity
dimensions, then it is necessary to fix the variance of only one of the random compo-

nents.

2For notational brevity we suppress parameters associated with the distribution of the random
components &.
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To illustrate the class membership model, assuming

bom 1
6Tn 1% 1
Q(Zn; 0, 7) reduces to
Vem YT
fsc.6r(uc, ur) duc dur (4.9)
Ven VT

where fs. s, (-) is the probability density function of the standard bivariate normal ran-

_ C ’
, Tlc - HCZ'”"

dom variate with correlation parameter p, v, = Tl(é_l — 002, Vo,

vfy, = Ty — 032y, and vy, = 7L — 07Z,. In addition, 7§ and 7y are set to —oo,

7., and 7/ to +oo, and 7 and 7{ are arbitrarily set to zero, to fix the origin of the
criterion functions. By setting 7 and 7{ to zero, we may allow for intercepts in the

systematic components of the criterion functions.

4.2.2 Class-specific Choice Model

It is hypothesized that each latent class with index s has its own parameter vector s
in the travel choice situation under consideration. The utility of travel alternative ¢ for
individual n depends on the vector of attributes of alternative ¢ and the characteristics
of the individual, X;,, and the latent class s to which the individual belongs. Using

a linear functional form for the utility functions,
Uisn = 6;in + €isn, Vi € Cn (41())

where
U;sn = utility of travel alternative ¢ for individual n in latent class s;
C, = choice set available to individual n; and

€isn = random component of utility.
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Assuming that the random component of utility is independently and identically
distributed Gumbel (0,1) the class-specific choice model is an MNL model with the

probability of individual n in latent class s choosing alternative 7 expressed as:

eXp(ﬁlxirJ
Py, =115, =1, X,) = 5 - 4.11
(v =1 )= e (411
Jjely,
where
1 if travel alternative 7 is chosen
Yin =

0 otherwise
At this time it is instructive to note the specification of 3;,. Assume for notational
simplicity that the cost and time variables are generic variables. The class-specific pa-
rameter vector is constructed by concatenating three elements: (1) a cost parameter,
Beje Vle € L, specific to latent classes with cost sensitivity dimension in level [¢;
(2) a time parameter, fr;,. Vir € L, specific to latent classes with time sensitivity
dimension in level Iy; and (3) a parameter vector 3 which is assumed be constant

across classes and captures the effects of “other” attributes. Then

Beye,
Bs = | Bru (4.12)
g

and
tcin

Xin = | ttin (4.13)

Xi
where tc;, and tt;, are the travel cost and travel time variables, and )Z'm form the
“other” attributes. For simplicity, we assumed the travel time and travel cost variables
to be the corresponding attributes, and instead the analyst may include interaction
variables between these attributes and socio-economic and demographic variables.
Further, we may allow for the travel time and travel cost sensitivity levels to affect

the coefficients of “other” attributes to capture interrelationships among individual’s

sensitivity to attributes, such as an individual having high (or low) sensitivity to two
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or more attributes. For example, if the “other” attributes can be separated into sub-

sets such that X, = (X’ X/

1yiny <> 25in

), and the analyst postulates that the individual’s
sensitivity to X, are closely related with cost-sensitivity®, while no unobserved varia-
tions in sensitivity exists with respect to X5, then the class-specific taste vector may

be written as:
Bes,

Brs
Be=1| . " (4.14)
Bue,
3
and
tcin
ttin
Xin=1 - (4.15)
Xl:in
XQ;in
A more parsimonious approach to capture interrelationships between cost-sensitivity
and sensitivity to X is to scale the parameter vector Bl such that Bllg = BC,ZSCBI-

Then
Bews.

Brs.
Beye. Br
B2

Assume that the class-specific parameter vector corresponds to equation (4.12).

652

The implied VOT for an individual in class [l¢, lr]" equals fr;,./Bci.. If the class-
specific VOT varies monotonically with the levels in a dimension*, then monotonicity
of the effects of socio-economic variables included in the criterion function associated
with each dimension on the expected value of time can be easily established. For
simplicity, consider a one-dimensional latent class with L ordered levels and charac-

terized by a criterion function with systematic component H and a standard normal

3“(Closely related” refers to relationships such as an individual with high (low) sensitivity to travel
cost may be expected to have high (low) sensitivity to attributes X1, or vice versa.

4Monotonicity of class-specific VOT with levels is ensured if the magnitudes of the travel time
and travel coefficient increase (or decrease) with the levels in each dimension.
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random component 6. Let v, VI = 1,..., L represent the value of time in level [
with 14 < vy < --- < vy,. Let P(I|H) denote the latent class probability. Assuming
the existence of threshold parameters 9 = 0 < 74 < --- < 77_9, the latent class

probabilities are written as:

P(1|H) = &(—H)

P(|H) = & —H) —®(no—H), VI=2,...,.L—1 (4.16)

P(LIH) = 1—®(r,_o— H)

where ®(-) is the cumulative distribution function of the standard normal random

variable. Since E(v)= Y5, yP(I|H),

dE(v) & dP(I|H)
Noting that
dP(lH) -
i o(—H)
dP;gH) e p(ma—H) 4 d(ma—H), V=2 L—1  (418)
B e, o h)

where ¢(-) is the standard normal density, we have

dgg) = o(—H)(va—11) +d(r — H)(vz— o) ++ -+ (12— H)(vp —vi1). (4.19)

It follows that % > 0. It must also be noted that 11 < E(v) < vy,
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4.2.3 Unconditional Choice Model

Using equations (4.9), and (4.11), the unconditional probability of individual n choos-
ing alternative i, P(y;, = 1|X,, Z,,), equals

> exp (6L Xin) ,
S; 5 exp (9.7 Qu(Zn;0,7) (4.20)
1€Cn

4.2.4 Estimation

Two important issues as to the maximum likelihood estimation of any econometric

model include:

1. FExistence of MLE: This refers to whether the model parameters lie in the in-
terior of the parameter space. Conceptually, non-existence would imply that
the structural parameter estimates tend to infinity (or negative infinity), and
correlation parameters tend to 1 or -1. The issue of existence is usually related

to data configuration.

2. Identification of model parameters: This refers to whether two or more param-
eter vectors map into the same likelihood function. Conceptually, the model is
not identified if the observed data can be generated by more than two param-
eterized data generating processes with identical model structure. The issue of
identification is not a data configuration problem per se. Rather, it is related

to the unicity of the underlying model structure.

If the models parameters exist and are identified, under certain regularity condi-
tions, the parameters can be estimated by the maximum likelihood method to obtain
consistent, asymptotically efficient and asymptotically normal estimates. The log-

likelihood function for a random sample of N individuals is given by:

Yin

N S eXp(ﬂ’Xm)
L£(3,0,7)=3S"1 s Zn: 0, 4.21
oo = S 1|5\ SRR aaon|
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At this time, we have not investigated the conditions under which MLE exists.
Assuming the existence of MLE, we do have partial results as to the unicity of a
subset of the model parameters. Specifically, it can be shown that the log-likelihood
function is concave in [3,0, 7| given that the correlation parameters associated with
0 are fized, if the class-specific choice model is an MNL model and ¢ is a multivariate
normal random vector (see appendix E for the details).

The latent class probabilities may be obtained by numerical integration or through
simulation methods. It must be noted that numerical integration to obtain the latent
class probabilities might limit the maximum number of the criterion functions to 3 or
4. However, to address classes with larger number of criterion functions, recently de-
veloped estimation methods using simulators (see Hajivassiliou and McFadden [1992],
Geweke et al. [1992], Borsch-Supan and Hajivassiliou [1993]) can be adopted. Ap-
pendix A details one such simulation procedure for approximating the latent class
probabilities.

The maximization of the likelihood function can be conducted through usual gra-
dient methods, such as Newton and quasi-newton procedures (see, for example, Luen-
berger [1984]). In appendix D we also outline the iterative Expectation-Maximization

(EM) algorithm which may also be adopted for model estimation.

4.3 Survey Data

The data used in the case study to demonstrate the latent class choice model for taste
heterogeneity was collected in The Netherlands (Hague Consulting Group [1990],
Bradley and Gunn [1991]). The method of recruitment was to approach potential
respondents at gas stations, parking facilities, and public transportation interchanges.
The sites were selected to cover areas inside and outside the Randstad area, which
includes Amsterdam, Rotterdam, and The Hague.

Travelers were asked to answer questions regarding the journey they were making
at that time and whether they would be willing to participate in a mail survey.

The follow-up SP questionnaire was retrospective, based as much as possible on the
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respondent’s journeys and activities when they were intercepted.

The questionnaire contained four sections:

1. Questions about the journey they were making when intercepted, such as their

frequency of making that type of journey, etc.

2. Pairwise choice questions offering different combinations of time and cost sav-
ings and losses against each other. The changes in travel time and cost were
described and specified to be appropriate for the respondent’s mode (car, train,
bus, or streetcar) and journey distance (SP time savings or losses are limited
to realistic ranges — up to 5, 10, 20, or 30 min — depending on actual jour-
ney duration). Each respondent provided 12 statements of preference regarding
variations in travel times and costs for their journey. One of the 12, a “check”
in which one alternative was both faster and cheaper than the other, was used

to test respondents’ understanding of the SP choice task.

3. Questions to gain insight into the amount of the respondent’s free time and
its flexibility, including the amount and rigidity of paid work hours, number of

hours spent doing unpaid work, number of hours spent traveling, etc.

4. General questions about the respondents and their households, such as the

income of the households and the number of workers, adults, children, and cars.

One of the unique aspects of the data is that it provides estimates of respondent’s
available free time from the responses to questions in section 3 of the questionnaire®.

The data is separated into three main travel purpose groups: Commuting, Busi-
ness and Other. The sample includes 485 respondents for Commuting, 469 for Busi-

ness, and 1106 for Other purposes (mainly social, recreation, shopping, and educa-

5The individual’s free time in hours per work was estimated as follows: Hours of paid work,
hours of unpaid work (including work in the household) and hours spent on travel, were subtracted
from the number of hours in a full week (168), further subtracted 8 hours per day for sleeping, and
labelled the remaining as “free time”. So a person with 35 hours/week paid work, 14 hours/week
unpaid work and 3 hours per weekday travel time would have about: (7*(24*8)-35-14-(5*3)) or 48
hours/week “free time”.
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tion). The estimation data contains 11 SP choice observations per respondent. The

variables are listed in Table 4.1,

4.4 Estimated Models

In this section we present travel choice models estimated on the Commuting dataset.
Before we discuss the estimated models in detail, we provide an overview of the

general theme in each of these models. The estimated models include:

1. Models which allow taste variations only along individual’s sensitivity to travel
cost. Specifically, two models are estimated which allow for two and three

ordered cost-sensitivity levels.

2. Models wherein taste variations are allowed along individual’s sensitivity to
travel cost and travel time. Specifically, two models are estimated with two or-
dered levels in both cost-sensitivity and time-sensitivity dimensions. In the
second model of this type, we allow for within-class heterogeneity in time-
sensitivity by introducing interaction variables between travel time and indi-

vidual characteristics in the class-specific systematic utility function.

For comparing our modeling approach with existing approaches to capture taste

variations, we estimate the following models:

1. A standard choice model with fixed coefficients such as a logit model with inter-
action variables between cost and time attributes and individual characteristics

being included in the systematic utility functions.

2. Models wherein the implied value of time (i.e., the ratio of the time coefficient to
the cost coefficient) is randomly distributed. Specifically, we assume a lognormal

distribution for the value of time and two variants of this type are presented.

6Note: Base income category is 2501-4000 Guilder/month; base age category is 21-35 years; and
base free time category is > 50 hours/week.
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|| NAME DESCRIPTION ||
ID Respondent Identification Number
CHOICE | Choice indicator = L Taster alternatwe;
2 Cheaper alternative
tey, teg Travel costs of alternative 1 and 2 in Dutch cents
tty, tto Travel times of alternative 1 and 2 in minutes
- r 1
INC15- Household income dummy= L 0-1500 .Gullder/ month
0 otherwise
INC1520 | Household income dummy = L 1501_2(.]00 Guilder /month
0 otherwise
INC2025 | Household income dummy = L 2001_25.00 Guilder/month
0 otherwise
INC4060 | Household income dummy = { L 4001_6900 Guilder/month
0 otherwise
INC6080 | Household income dummy= L 6001_8(.)00 Guilder/month
0 otherwise
INCS80+ Household income dummy L >8000 'Guﬂder/ month
0 otherwise
SOLO Household type dummy 11 perso_n/ 1 worker household
0 otherwise
DINKS Household type dummy — 1 2 persons /2 workers household
0 otherwise
1 1 or more children
KIDS Household type dummy = { 0 otherwise
‘ | 1 working part-time
PARTIME | Personal employment dummy = { 0 otherwise
. | 1 20 or younger
AGE20- | Respondent’s age dummy = { 0 otherwise
. | 1 36-50 years
AGE3650 | Respondent’s age dummy = { 0 otherwise
‘ . ] 1 >50 years
AGE50 Respondent’s age dummy = { 0 otherwise
FEMALE | Respondent’s sex dummy = { L female
0 male
FR-35 Respondent’s free time dummy = L less thz?n 35 hours/week
0 otherwise
FR-36-49 | Respondent’s free time dummy = L 36-49 hpurs/ week
0 otherwise

Table 4.1: Names and Definitions of Variables - Distributed Value of Time Study
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3. Model wherein both the cost and time coefficients are randomly distributed.

Specifically, we assume that these coefficients are distributed bivariate normal.

Since there are multiple responses per individual, the assumption of independence
among these responses may not be entirely justified. Consequently, we also present
models which attempt to capture interdependencies among multiple responses. Herein
the models are based on the theme that some unobserved individual-specific factors

may persist among the responses from the same individual. More specifically,

1. In latent class choice models, the unobserved latent class may be identical across
responses, and consequently conditional on the class the multiple responses are

assumed to be independent.

2. In latent class choice models, there may exist individual-specific error com-
ponents in the criterion functions inducing interdependencies among responses.
The specification of the criterion function is analogous to the agent-effects model

in multiple regression.

3. In the lognormally distributed value of time model, the unobserved value of time
may be identical across responses, thereby, inducing interdependencies among

responses.

4. In the random coefficients model, the random components of cost and time co-
efficients may be identical across responses, thereby, inducing interdependencies

among responses.

It must be noted that in none of the models do we adopt an agent-effects specifica-
tion for the utility function, since the utility specification has no alternative specific

constant”.

"The alternatives are generic as they are described only in terms of the cost and time attributes.
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4.4.1 Models Ignoring Interdependencies Among Responses
Model 0: Fixed Coefficients Model

This is the simplest of the estimated models. Noting that the individual and house-
hold characteristics are categorical dummy variables, the choice is modeled by a bi-
nary logit model expressed as a function of the utility difference between the two
alternatives, using both “main” effect coefficients for travel cost and travel time, and
a number of “additional” effect coefficients which apply only to certain observable
segments of the sample. For respondent n for choice pair ¢, the systematic utility is

specified as:

Wn = (tcltn - tCQtn><a0 + Z O‘kﬁkn) + (ttltn - ttQtn)(ﬁO + Z ﬁlﬁln)
k l

where

tCitn, teo, = the travel costs of alternatives 1 and 2 for choice pair t;

ttie, , tto, = the travel times of alternatives 1 and 2 for choice pair t;

g . Bo = the main effect cost and time coefficients, respectively;
ok, B = additional effect cost and time coefficients, respectively; and
&n » &m = 0/1 variables indicating individual’s membership in segments.

Membership in the k£ segments for additional cost-effects and in the [ segments for
additional time-effects is specified with regard to the respondent (e.g., age category),
the household (e.g., income category), and all additional effects are estimated simul-
taneously. Thus each respondent may belong to a segment identified by the levels in
each of the categories, keeping for each category one level as the “base”.

The estimated model is presented in Table 4.2. The standard errors calculated
from the estimated information matrix are incorrect in the presence of interdependen-
cies among responses from the same individual. Consequently, to estimate the stan-
dard errors correctly, we utilize the variance-covariance matrix for extremum estima-

tors (Amemiya [1985]), and we refer to the corrected t-statistics in conducting simple
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hypothesis tests. COST and TIME are cost difference and time difference variables®,
respectively. The income variables are used as additional cost-effect variables (&x,’s),
while all other variables are used as additional time-effect variables (&;,’s). It must
be noted that the coefficients of travel time and travel cost are positive since the
cost and time difference variables are written as attribute of alternative 1 -
corresponding attribute of alternative 2, while the estimated logit model ex-
presses the probability of choosing alternative 2.

As noted in equation (4.2), the ratio of the travel time coefficient to the travel
cost is the implied value of time. Consequently, with the coefficients that result from

the model specification, a value of time for respondent n can be calculated as

(Bo + Z]: Bi&in)
(ao + Xk: r&pn)’

VOT, = (4.22)

The signs and significance of the coefficients are interpreted regarding their effects
on the estimated value of time. From theory we expect the value of time to increase
with income levels. The coefficients of income dummies corresponding to incomes
less than 2500 Guilders per month (fl/month) are positive while the coefficients of
higher income dummies are negative. Further, there is a natural ordering of the
estimated additional cost-effect coefficients. Noting that the income dummies enter
into the denominator of equation (4.22) the value of time increases with income in
tune with theory. The estimated coefficients for income dummies corresponding to
incomes less than 2500 fl/month are insignificant, while the estimated coefficients for
income dummies corresponding to incomes greater than 4000 fl/month are significant.
Hence, the effect of income on value of time is fairly negligible for incomes less than
4000 fl/month, and it increases from thereon.

We expect individual time budgets to be influenced by individual and household

characteristics. Household types are categorized into four categories: (1) households

8Since the alternatives do not have an identifier, such as car or transit, the marginal disutilities
of travel time and travel cost are assumed to be the same for both alternatives. Consequently, the
cost and time variables are generic in the specification.
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with one or more children under working age (KIDS), (2) working adult living alone
(SOLO), (3) working adult with one or more additional workers, but with no non-
working adults or children (DINKS) and (4) “other” households. We interpret the
coefficients corresponding to the first three categories with respect to the base “other”
category. Households with children are expected to have tighter time budget con-
straints, and consequently higher values of time, and this is reflected in the positive
and significant coefficient for variable KIDS. The coefficient for DINKS is also positive
but insignificant, implying that the value of time is not significantly higher. This is
due in part to possible sharing of household chores between the household members
relaxing the time budget constraints of SOLO households. Consequently, the value of
time is the highest for SOLO households as reflected in the magnitude and the sign
of the coefficient of SOLO.

The occupation status of an individual is expected to determine his/her role in the
household, and consequently influence time constraints. The coefficient corresponding
to the PARTIME dummy is positive, thereby, reflecting the higher value of time of
part-time workers compared to full-time workers. It can be argued that part-time
workers face tighter time budget constraints, and the consequent higher value of
time, or else they would have been working full-time.

The individual’s age and gender are expected to affect the activities pursued and
time constraints. Since the coefficient of the age dummy corresponding to age less
than 21 years is positive though insignificant, it indicates that the value of time of
an individual belonging to this category is higher than the base age category (21-35
years). Further, a significant decrease in the value of time is estimated for older
people, especially for individuals 51 years or older. This may reflect the phenomenon
that older people tend to have a less busy lifestyle, and consequently less stringent
time constraints.

A female commuter has a lower value of time compared to a male commuter.
Further, the available free time seems to affect the value of time, wherein individuals

with lower available free time have higher values of time.
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Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.

Main COST 0.0064 0.0003 | 20.14 | 17.52
Effect TIME 0.0937 0.0067 | 14.05 | 12.91
INC15- 0.0016 0.0009 1.82 | 1.73

INC1520 0.0008 0.0006 1.15 | 1.10
Additional | INC2025 0.0007 0.0006 1.29 | 1.05
Cost INC4060 -0.0018 0.0003 | -5.38 | -4.74
Effects INC6080 -0.0019 0.0003 | -5.54 | -4.81
INC80+ -0.0026 0.0004 | -6.51 | -5.89

KIDS 0.0179 0.0064 2.80 | 2.52

DINKS 0.0103 0.0059 1.74 | 1.57

SOLO 0.0198 0.0073 2.73 | 2.55
PARTIME 0.0212 0.0068 3.14 | 2.83
Additional | AGE20- 0.0225 0.0114 1.98 | 1.80
Time AGE3650 -0.0100 0.0053 | -1.90 | -1.77
Effects AGE50+ -0.0192 0.0065 | -2.97 | -2.61
FEMALE -0.0180 0.0050 | -3.58 | -3.33

FR-35 0.0247 0.0086 2.89 | 2.59

FR-36-49 0.0156 0.0047 3.30 | 2.86

Table 4.2: Model 0 — Fixed Coefficients Model

deviation is 3.1 fl/hr.

Log-likelihood at zero = -3697.94
Log-likelihood at convergence = -3028.49

Number of observations = 5335
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Model 1: Two classes along cost-sensitivity dimension

The sample average of the values of time is 12.5 fl/hr, while the sample standard

In this model we allow unobserved taste variation to travel costs, and assume homo-
geneity in sensitivity to travel time. Consequently, two latent classes are postulated:
“high cost-sensitive” and “low cost-sensitive” classes. The individual’s sensitivity to
travel cost is hypothesized to be affected by socio-economic and demographic charac-

teristics. Hence, cost-sensitivity is captured by a criterion function which is specified




as:

He = 09 + 0:INC15- 4 - - - + 614FR-36-49 + 6¢

Assuming that d¢ is a standard normal random variable, and since we hypothesize
two levels in the cost-sensitivity dimension, the latent class probability is given by
a probit model. The choice model given the latent class s is represented by a logit
model with only the cost and time difference variables specified in the systematic

component of the utility function, i.e.,

V;:sn - (tcltn - tc?tn)as + (ttltn - ttQtn)ﬁv s = 1a 2a = 1a cety 11

The estimated model is presented in Table 4.3. In the choice model, the cost
coefficient specific® to class 1 is greater than the cost coefficient in class 2, and hence,
class 1 and class 2 are interpreted as the high cost-sensitive and low cost-sensitive
classes, respectively. Consequently, the value of time for an individual in class 2 is
higher than that of an individual in class 1. Specifically, the class-specific VOT’s are
5.7 fi/hr and 26 fl/hr for class 1 and class 2, respectively.

In the class membership model, a positive (negative) coefficient'® for a variable
would imply that the probability of being in class 2 is higher (lower) if the correspond-
ing dummy variable takes the value 1, compared to the base case when the variable
takes the value 0. Correspondingly, a positive (negative) coefficient for a variable im-
plies that the expected value of time of an individual belonging to the corresponding
category is higher (lower) than an individual in the base level. The estimated con-
stant (LAT-CON) in the criterion function is negative implying that an individual
in a segment wherein all the levels in the different categories are at their base levels,
has a higher probability of being in class 1. The coefficients of income dummies are
negative and with a decreasing trend for levels below the base level, and positive and

increasing with levels above the base level'!. This implies that the probability of

9For brevity we refer to the classes as class 1 and class 2, wherein class 1 and class 2 identify the
latent classes with cost-sensitivity in level 1 and level 2, respectively.

""Note that the variables are 0/1 dummy variables.

Tt must be noted that the coefficients of income dummies corresponding to incomes between
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being in class 2 increases with income, and consequently, the expected value of time
increases with increasing income. The effects of income dummies corresponding to
income less than 2500 fl/month are not significant, while the effects are significant for
incomes higher than 4000 fl/month. Hence, similar to Model 0 one can interpret that
the effect of income on expected value of time is significant only for incomes above
4000 fl/month. The sample average of the latent class probability of being in class 1
(class 2) equals 0.42 (0.52).

The coefficients of household and employment dummies are positive implying that
the expected values of time are higher for individuals in these segments compared to
the base case. As age increases the expected value of time decreases. Similarly, the
lower the available free time the higher is the expected value of time.

Compared to Model 0, we observe that the magnitudes of the cost and time coef-
ficients of Model 1 are higher reflecting the better discriminatory power of Model 1.
In terms of data fit, Model 1 does better than Model 0 by approximately 115 log-
likelihood units, even though Model 1 has only two additional parameters. The
qualitative effects of the socio-economic and demographic variables on the value of
time as observed in Model 0 are retained in Model 1'2.

It must be noted that for models allowing for unobserved taste variations, the VOT
for each individual is a random variable. Consequently, we can calculate individual-
specific means and variances of VOT. We refer to the sample average of the individual-
specific means as the “mean” VOT, the sample average of the individual-specific
variances as the “mean individual” variance of VOT, and sample variance of the
individual-specific means as the “variance of mean” VOT. The “total variance” of
VOT refers to the sum of the variance of mean VOT and the mean individual variance
of VOT.

For Model 1, the mean VOT is 17.4 fl/hr, the mean individual standard deviation

1501-2000 fl/month and 2001-2500 fl/month do not have follow the expected increasing trend, but
they are insignificant.

12 Although in Model 1, the value of time is class-specific, and the value of time we refer to is the
expected value of time, i.e., class-specific value of time weighted by the corresponding latent class
probability.
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is 9.6 fl/hr, and the standard deviation of mean VOT is 3.1 fi/hr. The total standard
deviation equals 10.1 fl/hr. The mean and total standard deviation of VOT are higher
than those of Model 0.

Model 2: Three classes along cost-sensitivity dimension

In this model we postulate three classes: “high cost-sensitive”, “medium cost-
sensitive” and “low cost-sensitive” classes. The specifications of the cost-sensitivity
criterion function and the utility function are as in Model 1. A class membership
model with one threshold parameter (7) captures the ordering of the levels as a func-
tion of socio-economic and demographic characteristics. Thus compared to Model 1,
two additional parameters are estimated: a cost coefficient for the additional class in
the choice model, and a threshold parameter in the class membership model.

The estimated model is presented in Table 4.4. The cost coefficients decrease along

13

the classes™, and consequently, the value of time increases from class 1 to class 3.

The class-specific VOT’s are 5.5 fl/hr, 22 fl/hr and 33 fl/hr for classes 1, 2, and 3
respectively.

The estimated class membership model is similar to that of Model 1. The mono-
tonicity of the effects of socio-economic variables such as income on the expected
value of time is maintained since the values of time increase monotonically along the
classes. The sample averages of the latent class probabilities of being in classes 1, 2
and 3 are 0.41, 0.40 and 0.19, respectively.

This model does not improve on Model 1 if we consider the Akaike criterion since
the increase is less than 2 units. The mean VOT is 17.9 fl/hr, the mean individual
standard deviation is 11.1 fl/hr, and the standard deviation of mean VOT is 3.9 fl/hr.
The total standard deviation equals 11.8 fl/hr.

13Tt must be noted that the coefficients of income dummies corresponding to incomes between
1501-2000 fl/month and 2001-2500 fl/month do not have follow the expected increasing trend, but
they are insignificant.
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Choice Model

Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.
COST1 0.023 0.0016 14.43 | 13.19
COST2 0.005 0.0004 | 14.32 | 11.60
TIME 0.217 0.0122 | 17.73 | 12.89

Class Membership Model

Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.
LAT-CON -0.317 0.1124 -2.82 | -2.73
INC15- -0.222 0.2265 -0.98 | -1.07
INC1520 -0.066 0.1632 | -0.40 | -0.39
INC2025 -0.158 0.1290 -1.22 | -1.21
INC4060 0.407 0.0867 4.69 | 4.63
INC6080 0.440 0.0960 4.58 | 4.49
INC80+ 0.781 0.1177 6.63 | 6.56
KIDS 0.305 0.0998 3.06 | 3.07
DINKS 0.177 0.0942 1.88 | 1.85
SOLO 0.269 0.1112 2.42 2.42
PARTIME 0.377 0.1059 3.56 | 3.43
AGE20- 0.545 0.1770 3.08 | 2.83
AGE3650 -0.109 0.0807 | -1.35 | -1.31
AGE5S0+ -0.240 0.1061 -2.26 | -2.13
FEMALE -0.319 0.0774 -4.12 | -4.05
FR-35 0.379 0.1317 2.8% | 2.81
FR-36-49 0.401 0.0732 5.49 | 5.57

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2913.18

P> =0.21

Number of observations = 5335

Table 4.3: Model 1 — Two classes along cost-sensitivity dimension

113




Choice Model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.

COST1 0.024 0.0017 | 13.92 | 12.77
COST2 0.006 0.0008 7.27 | 10.02
COST3 0.004 0.0015 2.39 | 4.60
TIME 0.220 0.0127 | 17.26 | 12.39

Class Membership Model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LAT-CON -0.268 0.1113 -2.41 | -2.42
INC15- -0.213 0.2214 -0.96 | -1.05
INC1520 -0.064 0.1595 | -0.40 | -0.40
INC2025 -0.144 0.1255 -1.14 | -1.13
INC4060 0.394 0.0832 4.74 | 4.71
INC6080 0.422 0.0919 4.59 | 4.52
INC80+ 0.737 0.1116 6.61 | 6.55
KIDS 0.291 0.0952 3.06 | 3.07
DINKS 0.172 0.0900 1.91 | 1.88
SOLO 0.252 0.1064 2.37 | 2.37
PARTIME 0.347 0.1008 3.44 | 3.34
AGE20- 0.505 0.1636 3.09 | 2.89
AGE3650 -0.087 0.0769 | -1.13 | -1.10
AGE50+ -0.233 0.1014 | -2.30 | -2.20
FEMALE -0.310 0.0738 -4.20 | -4.18
FR-35 0.372 0.1233 3.01 | 2.93
FR-36-49 0.388 0.0696 5.58 | 5.69
| r | 1211 [ 06910 | 1.75 | 4.87 |

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2911.73
P> =0.21

Number of observations = 5335

Table 4.4: Model 2 — Three classes along cost-sensitivity dimension
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Model 3a: Two classes along cost-sensitivity and two classes along time-

sensitivity dimensions

Variations in values of time could be “generated” by variations in sensitivity to both
travel time and travel cost. Consequently, in Model 3a we postulate that the latent
classes be identified across two dimensions: a cost-sensitivity dimension and a time-
sensitivity dimension. Along each dimension we postulate the existence of two levels,
leading to four classes in the population. Theory suggests that individual’s income
affects his/her sensitivity to travel cost, and time budget constraints arising from
household and individual characteristics such as age, household type, gender, available
free time, etc,. affect individual’s time-sensitivity. To this end the criterion functions
for the cost-sensitivity and time sensitivity dimensions are specified such that income
variables are used in the criterion function for the cost-sensitivity dimension and the
household type, age, gender and available free time variables are used in the time-

sensitivity criterion function, i.e.,

He = 9()70 + 9071IN015— 4+ 90161N080+ + (SC

Hy = Op0+07,KIDS + - + 07510FR-36-49 + 67,

We assume that (8¢, 67) is distributed as a standard bivariate normal with correlation
parameter p.
For an individual in latent class T,, = [I&, [5)]" where & € {1,2} and . € {1, 2},

the utility function is specified as:
%sn = (tcltn - tCQtn)alé + (ttltn - tt?tn)ﬁl;a = 17 cey 11

The estimated model is presented in Table 4.5. The cost coefficient corresponding
to level 1 in the cost-sensitivity dimension is greater than the corresponding coefficient
in level 1. This is also the case with the time coefficients. Consequently, along each
dimension, level 1 is the high-sensitive level and level 2 is the low-sensitive level.

Therefore, the value of time increases from level 1 to level 2 in the cost dimension,
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while the value of time decreases from level 1 to level 2 in the time dimension. Let
indices 1, 2, 3 and 4 refer to the classes with membership [1,1]’, [1,2]’, [2,1], and
[2,2]" respectively. The class-specific VOT’s are 6.9 fl/hr, 0.6 fl/hr, 32.9 fl/hr, and
2.7 fl/hr for classes 1, 2, 3 and 4 respectively.

In the cost dimension of the class membership model, we note that the constant
(LAT-CON1) may also be interpreted as the coefficient corresponding to the base
income category (2501-4000 fl/month). We observe an ordering of coefficients of the
income dummies implying that as income increases the probability of the individual
being in the latent class with the cost dimension in level 2 increases. Consequently, the
expected value of time increases as income increases. We also note that the coefficients
of income dummies corresponding to income less that 4000 fl/month are insignificant,
leading to the same qualitative assessment made in Model 0 and Model 1.

In the time dimension, the constant (LAT-CON2) is negative and significant,
implying that an individual in a segment with the dummy variables utilized in the
time dimension in their base levels, has a higher probability of being in level 1 in
the time dimension, and consequently higher expected value of time. The household
dummies are negative and significant implying that individuals in these segments
have higher expected values of time. The coefficients of age dummies reflect the
lower expected value of time of older people'. The available free time dummies have
the expected signs although one would have expected the coefficient of FR-35 to be
less than FR-36-49 to reflect the higher time sensitivity of an individual with lower
available free time. This may be in part due to the smaller number of observations in
the sample belonging to the segment with available free time less than 35 hours/week.

Since the cost-sensitivity and time-sensitivity dimensions are expected to move
in opposite directions, one would have expected the correlation between the random
components of the criterion functions to be negative. But the estimated p is positive,
and this may be due in part to the effects of omitted variables in the specification of

criterion functions. The sample averages of the latent class probabilities of being in

14Unlike previous models wherein the coefficient corresponding to AGE504 was significant, here
the coefficient is insignificant although it reflects similar qualitative effect on value of time.
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classes 1, 2, 3, and 4 are 0.4, 0.01, 0.47, and 0.12 respectively.

Compared to the fit of Model 1, fit of Model 3a is better suggesting the existence
of two sensitivity dimensions — cost-sensitivity and time-sensitivity — with an increase
of approximately 80 log-likelihood units for just three additional parameters (an ad-
ditional time coefficient in choice model, constant for the time-sensitivity criterion
function (LAT-CON2) and the correlation parameter p).

The mean VOT is 18.3 fl/hr, the mean individual standard deviation is 12.9 fl/hr,
and the standard deviation of mean VOT is 3.1 fl/hr. The total standard deviation
equals 13.3 fl/hr.

Model 3b: Two classes along cost-sensitivity and two classes along time-

sensitivity dimensions with heterogeneity within each class

Even though Model 3a provides a much better fit to data, the primary drawback is the
underlying assumption that there are four homogeneous groups of the population with
different values of time in each group (even though by using the class membership
model, one obtains the expected value of time to vary as a function of individual
characteristics). To overcome this drawback, individual characteristics are included
as “taste modifiers” in the choice model by interacting them with the time difference
variable. This captures the systematic heterogeneity in time-sensitivity within each
class.

As in Model 3a, we assume that income levels affect the individual’s cost-
sensitivity.  Further, we hypothesize that only available free-time affects time-
sensitivity, and hence the associated criterion function utilize only available free time
variables, while dummy variables such as age, household type, gender, etc., are in-
cluded as taste modifiers of the time coefficient in the class-specific choice model.

Correspondingly, the criterion functions are specified as:

He = 9(]70 + 9071IN015— 4+ (9(}ﬁINC80+ + (5(]

Hr = QT,O + 9T71FR—35 + HT’QFR—36—49 + o7
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Choice Model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
COST1 0.086 0.0132 6.53 | 4.562
COST2 0.018 0.0025 7.46 | 5.489
TIME1 0.988 0.1546 6.39 | 4.429
TIME2 0.081 0.0243 3.33 | 4.934
Class Membership Model
Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LAT-CON1 -0.015 0.0665 | -0.22 | -0.23
INC15- -0.132 0.2042 | -0.65 | -0.64
Cost, INC1520 -0.100 0.1236 | -0.81 | -0.81
Dimension | INC2025 -0.063 0.1025 | -0.62 | -0.58
INC4060 0.325 0.0694 4.69 | 4.63
INC6080 0.391 0.0790 4.96 | 4.87
INC80+ 0.687 0.1049 6.54 | 6.04
LAT-CON2 -0.837 0.1313 | -6.37 | -6.39
KIDS -0.469 0.1286 | -3.65 | -3.51
DINKS -0.299 0.1107 | -2.70 | -2.47
SOLO -0.272 0.1299 | -2.09 | -1.87
PARTIME -0.537 0.1573 | -3.41 | -3.40
Time AGE20- -0.581 0.2449 | -2.37 | -2.15
Dimension | AGE3650 0.227 0.1032 2.20 | 2.11
AGE50+ 0.222 0.1302 1.71 1.45
FEMALE 0.340 0.0933 3.65 | 3.68
FR-35 -0.261 0.1608 | -1.62 | -1.60
FR-36-49 -0.648 0.1153 | -5.61 | -5.23
Noise
Parameter | p 0.600 0.219 2.74 | 2.87

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2833.24

p’> = 0.23

Number of observations = 5335

Table 4.5: Model 3a — Two classes along cost-sensitivity and two classes along time-

sensitivity dimensions
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For an individual in latent class T,, = [I&, 5], where [}, € {1,2} and [5 € {1,2},

the utility function is specified as:

Vien = (tcim — team)ous, + (tim — ttom) (B, + HKIDS + - - - + JsFEMALE),

t=1,...,11

where the parameters Bl, e 7@5 represent taste modifiers.

The estimated model is presented in Table 4.6. In the choice model, the effects
of age and gender on value of time are negligible as reflected in the insignificant
coefficients of age and gender dummies. Further, the magnitudes of the cost and
base time coefficients in the two levels are higher than those of Model 3a. This may
be attributable to the inclusion of taste modifiers in the class-specific choice model
which endeavor to explain part of the random component of the class-specific utility
function. The class-specific VOT’s are 6.3 fl/hr, 1.3 fi/hr, 92.7 fl/hr, and 19.5 fi/hr
for classes 1, 2, 3 and 4 respectively.

In the class membership model, the coefficients of income dummies in the cost
dimension and the coefficients of available free time in the time dimension have the

5

expected signs'®.

classes 1, 2, 3, and 4 are 0.38, 0.1, 0.12, and 0.4 respectively.

The sample averages of the latent class probabilities of being in

The overall fit of the model improved compared to Model 3a by approximately 46
log-likelihood units although both models have the same number of parameters.

The mean VOT is 22.8 fl/hr, the mean individual standard deviation is 27.1 fl/hr,
and the standard deviation of mean VOT is 6.2 fl/hr. The total standard deviation

equals 27.8 fl/hr. This model captures significantly higher variability in VOT.

Randomly distributed value of time

Herein we present estimation results for models with one random coefficient. The

model is based on the assumption that the value of time is distributed randomly in

15Even here it must be noted that the coefficients of income dummies corresponding to incomes
between 1501-2000 fl/month and 2001-2500 fl/month do not have follow the expected increasing
trend, but they are insignificant.
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Choice Model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
COST1 0.413 0.0598 6.91 | 852
Base COST2 0.028 0.0040 7.06 | 8.38
Parameters | TIME1 4.326 0.5955 7.26 | 9.04
TIME2 0.910 0.1398 6.51 | 7.63
KIDS 0.158 0.0526 3.01 | 3.31
Taste DINKS 0.175 0.0542 3.22 | 3.59
Modifiers SOLO 0.115 0.0565 2.03 | 2.13
of Time PARTIME 0.116 0.0500 2.33 | 2.39
Coefficient | AGE20- 0.047 0.0644 0.73 | 0.78
AGE3650 -0.012 0.0334 | -0.37 | -0.35
AGE50+ 0.014 0.0550 0.26 | 0.27
FEMALE -0.057 0.0407 | -1.40 | -1.26
Class Membership Model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LAT-CON1 -0.136 0.0447 | -3.05 | -3.02
INC15- -0.283 0.1658 | -1.71 | -1.70
Cost INC1520 -0.072 0.1058 | -0.68 | -0.72
Dimension | INC2025 -0.128 0.0822 | -1.56 | -1.53
INC4060 0.245 0.0533 4.60 | 4.62
INC6080 0.304 0.0603 5.04 | 4.99
INC80+ 0.579 0.0697 8.30 | 8.35
Time LAT-CON2 0.116 0.0585 1.98 | 2.05
Dimension | FR-35 -0.294 0.1482 | -1.98 | -1.76
FR-36-49 -0.347 0.0887 | -3.91 | -3.77

Noise
Parameter | p 0.814 0.0323 | 25.19 | 24.66

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2786.85

p* = 0.24

Number of observations = 5335

Table 4.6: Model 3b — Two classes along cost-sensitivity and two classes along time-

sensitivity dimensions (with taste modifiers)
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the population after taking into account systematic population heterogeneity. The

systematic utility function (or difference) is written as:

V;‘,n - a(tcltn - tc?tn) + Dn(ttltn - ttQtn)

= a((tcim — teom) + vn(ttim — ttom))

where v, is the implied value of time for individual n. Suppose that v, is a function

of characteristics of individual n:

v =v(1+0'Z,) (4.23)
where v is the base value of time which is assumed to be lognormally distributed, i.e.,
Inv~Nw,o?), v>0 (4.24)

where
w =E(lnv) = the expected value of the natural logarithm of the base value of
time, and
02 = the variance of the natural logarithm of the base value of time.
The probability density function of v is given by:

Fv) = —2—exp H (1—‘“)] (4.25)

oA/ 2T o

It can be seen'® that v, is also lognormally distributed, i.e.,
Inv, ~N(w+In(l+ B'Zn)7 %), vp >0 (4.26)

This specification is based on the assumption that the value of time varies proportion-

ately to some linear function of the characteristics of the individual (as in Ben-Akiva et

16The lognormal distribution for v, holds only if (1 + B’Zn) > 0. But this is indeed the case with
the estimated Model 4a.
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al. 1993). Since in our case, Z,, are dummy variables, the specification reduces to the
assumption of a lognormal distribution for value of time in each of the segments
defined by the dummy variables. The estimated model, referred to as Model 4a, is
presented in Table 4.7. The coefficients of income dummies increase with income lev-
els suggesting that value of time increases as income increases'”. Further, in contrast
to the interpretation from the previous models, individuals with income less than
1500 fl/month have significantly lesser value of time compared to an individual in the
base income category. The coefficients of other dummies have qualitatively similar
effects on VOT as noted in earlier models. It must be noted that because of the
assumption of lognormally distributed value of time, the expected value of time and
its variance for an individual depend'® on the parameters w and o?.

The mean VOT is 20.3 fl/hr, the mean individual standard deviation is 21.0 fl/hr,
and the standard deviation of mean VOT is 6.2 fl/hr. The total standard deviation
equals 21.9 fl /hr.

A slight variant of the previous model is the assumption that the individual’s
value of time is distributed such that the mean of the logarithm of the value of time

depends on characteristics of individual, i.e.,
v, ~N(w+ 8Z,, 0% (4.30)

The estimated model, referred to as Model 4b, is presented in Table 4.8. The qual-
itative effects of all the individual and household characteristics on values of time

remain the same as seen in previous models. The second specification provides a

"Even here it must be noted that the coefficients of income dummies corresponding to incomes
between 1501-2000 fl/month and 2001-2500 fl/month do not have follow the expected increasing
trend, but they are insignificant.

181f
Inv~Nw, e, v>0 (4.27)
then )2
E(v) = exp(w + 7) (4.28)
and
Var(v) = exp(2w + o) (exp(0?) — 1) (4.29)
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Parameter | Estimates | Std. err. | t-stat | t-stat

COrT.

l 2 | COST | 0.035 ] 0.0055 [ 6.30 | 5.05
INC15- -0.249 0.1192 | -2.09 | -2.24

INC1520 0.081 0.1119 0.73 | 0.78

INC2025 -0.039 0.0874 | -0.45 | -0.43

INC4060 0.378 0.0960 | 3.93 | 3.13

INC6080 0.498 0.1316 3.78 | 2.72

INC80+ 1.226 0.2452 5.00 | 3.38

KIDS 0.379 0.1181 3.21 | 241

I} DINKS 0.247 0.1048 234 | 1.72
SOLO 0.246 0.1147 | 2.15 | 1.52

parameters PARTIME 0.295 0.0897 | 3.29 | 2.75
AGE20- 0.614 0.1892 3.25 | 2.81

AGE3650 -0.093 0.0730 | -1.28 | -1.15

AGE50+ -0.185 0.0747 | -2.48 | -2.02

FEMALE -0.186 0.0672 | -2.77 | -2.26

FR-35 0.465 0.1318 3.53 | 2.92

FR-36-49 0.523 0.1119 | 4.67 | 3.30

Lognormal dist. | w 2.479 0.0945 | 26.25 | 19.65
parameters o 0.992 0.0286 | 34.64 | 31.20

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2894.41

P =022

Number of observations = 5335

Table 4.7: Model 4a — Randomly distributed value of time model

slightly better fit to the data.

The mean VOT is 20.5 fl/hr, the mean individual standard deviation is 21.6 fl/hr,
and the standard deviation of mean VOT is 6.8 fl/hr. The total standard deviation

equals 22.6 fl /hr.

4.4.2 Models Allowing Interdependencies Among Responses

As noted earlier, since we have multiple responses per individual, the assumption

of independence among these multiple responses may not be entirely justified. To
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Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.
|| ! |COST | 0.040 | 0.0075 | 5.37 | 3.03 |
INC15- -0.211 0.1385 | -1.52 | -1.40

INC1520 0.033 0.0768 | 0.43 | 0.49

INC2025 -0.041 0.0670 | -0.62 | -0.54

INC4060 0.281 0.0501 5.61 | 4.09

INC6080 0.268 0.0643 | 4.17 | 2.63

INC80+ 0.580 0.0874 | 6.63 | 3.02

15} KIDS 0.230 0.0665 3.46 | 2.28
DINKS 0.120 0.0607 1.97 | 1.25

parameters | SOLO 0.081 0.0983 0.82 | 0.36
PARTIME 0.227 0.0512 | 4.45 | 4.19

AGE20- 0.353 0.0996 | 3.55 | 2.21

AGE3650 -0.110 0.0562 | -1.97 | -1.17

AGE50+ -0.222 0.0643 | -3.45 | -2.63

FEMALE -0.125 0.0499 | -2.50 | -1.44

FR-35 0.335 0.0542 6.19 | 5.42

FR-36-49 0.412 0.0661 6.23 | 2.63

lognormal | w 2.574 0.0708 | 36.33 | 24.07
parameters | o 0.999 0.0281 | 35.51 | 25.98

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2884.42
P =022

Number of observations = 5335

Table 4.8: Model 4b — Randomly distributed value of time model
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address this issue, we estimate latent class choice models which attempt to take into
account these interdependencies. The lognormally distributed value of time model is
re-estimated under the assumption that the unobserved value of time for the indi-
vidual is identical across responses for the same individual. Further, we estimate a
random coefficients model with both cost and time coefficients randomly distributed
in the population.

Model 5: Latent class choice model with interdependencies among re-

sponses: Identical latent class

In this model we assume that each individual is assumed to be in one latent class,
and consequently is expected to adopt the same class-specific choice process while
making choices in the SP experiments. Therefore, conditional on the latent class,
we assume that the responses for the same individual are independent. Then, the
probability of observing the response vector Y, = [Yin, ..., Yin, ..., Yi1a], denoted by
P(Y,|Xn, Zn; 5,0), can be written as

S 11
> {H P(Yin| Xin; ﬁs)} Qs(Zn; 0) (4.31)

s=1 \t=1

where Y;, and X}, denote the choice indicator and the attributes of alternatives for
the 1 choice pair, respectively.

The estimated model is presented in Table 4.9. The specification of the criterion
and the utility functions are the same as in Model 3b. In the choice model, the
base taste parameters are scaled down compared to those estimated in Model 3b,
but their significance increased. On the other hand, all the taste modifiers are in-
significant except for the household type dummy variable DINKS, employment status
and age dummy corresponding to 51 years and older. A possible explanation for this
phenomenon is that by “fixing” the class to be identical across responses, the dis-
criminatory power of the class membership model appears to have increased since
the corresponding coefficients seem to be scaled up. The class-specific VOT’s are
27.9 fi/hr, 4.6 fi/hr, 59.3 fl/hr, and 9.7 fl /hr for classes 1, 2, 3 and 4 respectively.

In the class membership model, in the cost dimension the income dummies have
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the expected signs and trends in their magnitudes. In the time dimension, the con-
stant term is positive and large compared to Model 3b. The sample averages of the
latent class probabilities of being in classes 1, 2, 3, and 4 are 0.12, 0.23, 0.10, and
0.55 respectively.

The fit of the model increased by 253 log-likelihood units compared to that of
Model 3b. This is a significant improvement given that the model structure, and
the number of parameters are the same as in Model 3b. But in Model 5, we have
incorporated the additional information that the latent class persists over responses
from the same individual.

The mean VOT is 15.9 fl/hr, the mean individual standard deviation is 15.6 fl/hr,
and the standard deviation of mean VOT is 3.4 fl/hr. The total standard deviation
equals 16.0 fl/hr. These statistics are significantly lower than the corresponding
statistics in Model 3b.

Model 6: Latent class choice model with interdependencies among re-

sponses: Agent-effects specification

The basic idea adopted is the agent-effects (also referred to as random-effects) model
omnipresent in multiple regression models for panel data. We consider Model 3b and
allow for interdependencies among responses. The error components in the criterion
functions are split into two components: 6 and 6. The first component is a pure
random component and is independent of the second component. The second random
component is assumed to be an individual-specific random effect, and hence persists
across all responses from the same individual, and is assumed to have a parametric
distribution. Therefore, the criterion functions for individual n across t = 1,...,11

responses are specified as:

HCtn = HIOZn + SCn + 5Ctn
HTtn = Q%Zn + STn + 6Ttn (432)
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Choice Model

l | Parameter | Estimates | Std. err. | t-stat ||
COST1 0.017 0.0012 | 14.70
Base COST2 0.008 0.0004 | 21.38
Parameters | TIME1 0.791 0.0656 12.07
TIME2 0.129 0.0093 | 13.86
KIDS 0.022 0.0100 2.25
Taste DINKS 0.016 0.0092 1.77
Modifiers SOLO 0.006 0.0115 0.49
of Time PARTIME 0.028 0.0120 2.36
Coefficient | AGE20- 0.015 0.0154 1.01
AGE3650 -0.008 0.0086 | -0.91
AGE50+ -0.030 0.0095 | -3.18
FEMALE -0.019 0.0089 | -2.08
Class Membership Model
| | Parameter | Estimates | Std. err. | t-stat ||
LAT-CONI1 0.103 0.1661 0.62
INC15- -0.689 0.6386 | -1.08
Cost INC1520 -0.256 0.4071 | -0.63
Dimension | INC2025 -0.180 0.3112 | -0.58
INC4060 0.105 0.2103 0.47
INC6080 0.460 0.2217 2.07
INC80+ 0.706 0.2758 2.56
Time LAT-CON2 0.974 0.0881 | 11.06
Dimension | FR-35 -0.386 0.2495 | -1.55
FR-36-49 -0.544 0.1422 | -3.83
Noise
Parameter | p 0.418 0.1161 3.60

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2533.87

P = 0.31

Number of observations = 485

Table 4.9: Model 5 — Two classes along cost-sensitivity and two classes along time-

sensitivity dimensions (with taste modifiers) and Identical latent class
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Hence we allow for the criterion functions across responses for the same individual to

be positively correlated. Assuming'®

bcitn 10
“ 1~ BYN o, (4.33)

6Ttn 01

we have conditional on Z, and (Sgn, STn) the class membership model, denoted by

t20

QS(Zn,ggn,STn;Q), is given by a bivariate probit®’ model. Then, by assuming a

parametric distribution for (50,7,, STn), such as:

S 2
ocm o6 pPoOCOT

~ BVYN |0,

IS 2
Orn pocor or

(4.34)

the probability of observing the response vector Y,,, P(Y,|X,, Z,; 5,0, 0c,0r,p), is

written as
11 S B B _ _ _ B
/ / 11 {2 P(Yin| Xon: B,) Qs<zn,6c,5T;e>} F(8c,bpioc. o0, p)dbe dor  (4.35)
t=1 \s=1

where f(-) is the bivariate normal density of (5cn,5Tn)- It must be noted that the
agent-effects specification for the criterion functions is equivalent to the assumption
of the constants associated with each criterion function to be randomly distributed
in the population.

The estimated model is presented in Table 4.10. In the choice model, the base
taste parameters are scaled up compared to the base parameters in Model 5, and
are similar to those in Model 3b. All the taste modifiers, except for the household
type dummy variable DINKS, are insignificant. Thus by allowing variability in the
respondent’s latent class across responses part of the random component of the class-

specific utility function appears to be captured. The class-specific VOT’s are 7 fl /hr,

19We attempted the estimation of a model wherein we allowed correlation between 8¢, and 8p¢r,.
But the estimation procedure did not converge as the correlation parameter between 8¢y, and 67y,
and the correlation parameter between é¢,, and ér,, tended towards -1 and 1.

20Tn fact since we do not allow for correlations between 8¢y, and &7y, the class membership model
is a product of probit probabilities.
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1.5 fi/hr, 79.8 fl/hr, and 16.9 fl/hr for classes 1, 2, 3 and 4 respectively.

In the class membership model, in the cost dimension the income dummies have
the expected signs and the coefficients are similar to those of Model 5, except for the
constant which changed signs. In the time dimension, the coefficients of free time
are no longer significant and the constant changed signs. The sample averages of the
latent class probabilities of being in classes 1, 2, 3, and 4 are 0.35, 0.15, 0.28, and
0.22 respectively.

The fit of the model increased by 78 log-likelihood units compared to Model 5,
and by 330 units compared to Model 3b?!. This is a significant improvement given
that only two additional parameters are estimated.

The mean VOT is 31.5 fl/hr, the mean individual standard deviation is 32.2 fl /hr,
and the standard deviation of mean VOT is 6.4 fi/hr. The total standard devia-
tion equals 33.3 fl/hr. These statistics are significantly greater than corresponding

statistics in Model 3b.

Model 7: Randomly distributed value of time model with interdependen-

cies among responses

In the lognormal VOT models presented earlier, we ignored interdependencies among
responses from the same individual. The realization of the random value of time
for an individual may persist across responses from the same individual. Thus, we
assume that conditional on the value of time v, the responses of the individual are
independent, i.e., .
P02 ) = T P X2 (4:36)
=

Hence the probability of observing the response vector Y,,, P(Y,|X,; 5,w, o), is writ-

ten as

P(Y,| X 8,0, 0) :/ﬁp(}fm\xm,u;ﬁ) F(viw,0) dv (4.37)
t=1

21Tt must be noted that the log-likelihoods of Model 3b and Model 6 are comparable only to the
extent that by restricting the variances of the individual-specific error components of Model 6 to
zero (L.e., assuming that these terms do not exist) we obtain Model 3b.
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Choice Model

Parameter | Estimates | Std. err. | t-stat ||

COST1 0.374 0.0560 6.69
Base COST2 0.033 0.0049 6.78
Parameters | TIME1 4.390 0.7270 6.04
TIME2 0.930 0.1439 6.47
KIDS 0.033 0.0348 0.94
Taste DINKS 0.075 0.0366 2.05
Modifiers SOLO 0.022 0.0350 0.64
of Time PARTIME 0.039 0.0426 0.91
Coeflicient | AGE20- -0.032 0.0773 | -0.40
AGE3650 0.011 0.0275 0.40
AGE50+ 0.018 0.0367 0.48
FEMALE -0.004 0.0266 | -0.13

Class Membership Model

l | Parameter | Estimates | Std. err. | t-stat ||

LAT-CON1 -0.257 0.1349 | -1.91
INC15- -0.369 0.5801 | -0.64
Cost, INC1520 -0.068 0.3471 | -0.20
Dimension | INC2025 -0.124 0.2766 | -0.45
INC4060 0.435 0.1787 2.43
INC6080 0.532 0.2019 2.63
INC80+ 0.983 0.2282 4.31
Time LAT-CON2 -0.443 0.1685 | -2.63
Dimension | FR-35 -0.430 0.4786 | -0.90
FR-36-49 -0.474 0.2940 | -1.61
Noise oc 1.287 0.0754 | 17.05
Parameters | or 1.573 0.2935 5.36
P 0.187 0.0745 2.51

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2455.94
p* = 0.33

Number of observations = 485

Table 4.10: Model 6 — Two classes along cost-sensitivity and two classes along time-
sensitivity dimensions (with taste modifiers) and agent-effects specification for crite-
rion functions
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where f(-) is the lognormal density with parameters w and o.

We consider the specification as in Model 4a and allow for interdependencies
among responses. The estimated model is presented in Table 4.11. In terms of model
fit, Model 7 betters Model 4a by 306 log-likelihood units??. It must be noted both
models have the same number of parameters. Compared to Model 4a, the cost co-
efficient is estimated with more precision and is scaled down. Most of the other
coefficients are also scaled down. A possible explanation is that in Model 4a the
unobserved (random) value of times which were independent across responses poten-
tially captured part of the randomness in the utility function. Thus by restricting the
random value of time to be same across responses, the parameters are scaled down.

The mean VOT is 15.9 fl/hr, the mean individual standard deviation is 14.7 fl/hr,
and the standard deviation of mean VOT is 4.5 fl/hr. The total standard deviation
equals 15.4 fi/hr. These statistics are significantly lower than the corresponding

statistics in Model 4a, while these statistics are closer to those of Model 5.

Model 8: Random coefficients model

In this model we allow the coefficient of travel cost and travel time to be distributed
randomly in the population. Except for the randomness in the coefficients, the system-
atic utility function specification is similar to the Fixed Coefficients Model (Model 0)

)

and is written as:

V;fn = (tcltn - tc?tn)(a@ + Z Oéké.nk + VC’n) + (ttltn - ttQtn)(ﬁo + Z ﬁlé-nl + VTn)
k l

where v¢, and v, are the random components of the travel cost and travel time

coefficients. Assuming

Vcem o2 ooo
|~ Byn o, | 7O PeoT (4.38)
Urn paCJT O'%

22We note with caution that these likelihoods are not strictly comparable, although in Model 7
by utilizing additional information that the individual’s unobserved value of time persists among
responses, the overall fit seems to suggest improvement.
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Choice Model

0 | Parameter | Estimates | Std. err. | t-stat ||

| o | COST | 0.010 | 0.0004 | 26.36 |
INC15- -0.586 0.1609 | -3.64
INC1520 -0.324 0.1298 | -2.50
INC2025 -0.234 0.1526 | -1.54
INC4060 0.199 0.1071 1.86
INC6080 0.431 0.1401 3.07
INC80+ 0.528 0.1612 | 3.28
KIDS 0.315 0.1248 | 2.53
I} DINKS 0.276 0.1225 | 2.26
SOLO 0.357 0.1637 | 2.18
parameters PARTIME 0.385 0.1060 3.64
AGE20- 0.364 0.2230 1.63
AGE3650 -0.331 0.0891 | -3.71
AGE50+ -0.220 0.1052 | -2.09
FEMALE -0.311 0.1086 | -2.86
FR-35 0.564 0.2442 | 2.31
FR-36-49 0.370 0.1192 | 3.10
Lognormal dist. | w 2.552 0.1101 | 23.18
parameters o 0.881 0.0408 | 21.56

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2587.58
p? = 0.29

Number of observations = 485

Table 4.11: Model 7 — Randomly distributed value of time model with interdepen-
dencies among responses
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P(Y,| Xn; o, B,0¢, 07, p) is given by:

11
//HP(Y;‘,n‘XthC;VT;aaﬁ> f(ve,vrioc, or, p) dve dvrp (4.39)
t=1

The estimated model is presented in Table 4.12. The estimated standard deviations
of cost and time coefficients are significantly different from zero reflecting presence of
unobserved taste variations along cost and time sensitivity dimensions. The correla-
tion between the random coefficients is insignificant. Further, compared to the fixed
coefficients model, the base coefficients for cost and time are higher in magnitude.

As expected by allowing for taste variations in cost coefficient in addition to
random taste variations in time coefficient?® as in Model 7, Model 8 betters Model 7
by 21 log-likelihood units.

In this model, the value of time is the ratio of two normal random variates. Con-
sequently, the mean value of time is calculated based on a second order Taylor series
expansion, while the variance of the value of time is based on a first order Taylor

series expansion about the respective means (see Appendix H). If Y = X; /X5, with

E(X;) = p;, var(X;) = o2 for i = 1,2, and cov(Xy, X») = 019,

M1 012 NIU%
P

K2 3 Ha

07 201 | pios
13 13 I

sy
=
2

The mean VOT is 18.0 fi/hr, the mean individual standard deviation is 10.4 fl/hr,
and the standard deviation of mean VOT is 3.1 fl/hr. The total standard deviation
equals 10.8 fl/hr.

4.4.3 Summary of Estimated models and Values of Time

Since the models cannot be specified as “nested” special cases of others, the classical

likelihood ratio tests cannot be applied. While the log-likelihood values from the

ZRather, variations in the ratio of time to cost coefficient.
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| Parameter | Estimates | Std. err. | t-stat ||
COST 0.0130 0.0009 13.98
INC15- -0.0005 0.0035 -0.13
Cost INC1520 0.0007 0.0021 0.35
INC2025 0.0002 0.0017 0.13
Effects INC4060 -0.0026 0.0011 -2.38
INC6080 -0.0035 0.0012 -2.84
INC80+ -0.0065 0.0014 | -4.70
KIDS 0.0379 0.0167 2.27
TIME 0.1735 0.0161 10.79
DINKS 0.0262 0.0154 1.70
SOLO 0.0302 0.0181 1.67
PARTIME 0.0277 0.0174 1.59
Time AGE20- 0.0227 0.0287 0.79
AGE3650 -0.0336 0.0132 -2.54
Effects AGE50+ -0.0444 0.0172 -2.58
FEMALE -0.0337 0.0128 -2.62
FR-35 0.0078 0.0216 0.36
FR-36-49 0.0277 0.0129 2.15
Parameters | o¢ 0.0074 0.0006 | 12.08
of Random | o7 0.0609 0.0083 7.37
Coeff. P 0.0561 0.1626 0.35

Number of observations = 485

Log-likelihood of naive model = -3697.94
Log-likelihood at convergence = -2566.44

Table 4.12: Model 8 — Random coefficients model
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different models give some indication of how closely the models fit the data, no easy
distribution theory exists or can be developed to choose from among the different
models. One exception, is the Hausman’s test for misspecification?*. We can conduct
this test for comparing Model 3b and Model 5, where the estimates in Model 3b are
consistent and inefficient, while the estimates in Model 5 are consistent and efficient
under the null hypothesis of no misspecification. Since the test statistic is 49.23,
and the critical value at 5% significance for 23 degrees of freedom is 35.17, we reject
Model 5.

In similar vein, we can compare Model 4a and Model 7. Since the test statistic is
34.22, and the critical value at 5% significance for 19 degrees of freedom is 30.14, we
reject Model 7.

In Table 4.13, we summarize the log-likelihood, the number of estimated parame-
ters, the Akaike Information Criterion (AIC), and p? for each of the estimated models.
Among models which ignore interdependencies among responses, looking at AIC’s,
Model 3b with four latent classes and taste modifiers is the best estimated model,
followed by Model 3a, Model 4b, Model 4a, Model 1, Model 2, and Model 0. Surpris-
ingly even the best randomly distributed value of time model is worse than the worse
four-latent class model (Model 4a) by 47 log-likelihood units, although it does better
than the two-latent class model (Model 1) by 20 log-likelihood units.

Among models which attempt to capture interdependencies among responses, the
four latent class model with taste modifiers and agent-effects specification for the
criterion functions seems to fit the data the best. Further, by allowing both the time
and cost coefficients to be randomly distributed led to improvement in fit vis-a-vis
the lognormal value of time wherein only the ratio of the time coefficient to the cost
coefficient was randomly distributed. In general, capturing taste variations using
the latent class concept is effective in this case study as evidenced in the significant

improvement in fit.

24Under the null hypothesis of no misspecification in an asymptotically efficient estimator, a
Y2 statistic is constructed as a function of asymptotically efficient parameter estimates, consistent
(but inefficient) parameter estimates, and the difference of their respective covariance matrices (see
Hausman [1978]).
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Model Model Log-lik. | # of par. | Akaike 0’
type
Model 0 | -3028.49 18 -3046.49 | 0.18
Model 1 | -2913.18 20 -2933.18 | 0.21
No interdep. Model 2 | -2911.73 22 -2933.73 | 0.21
Model 3a | -2833.24 23 -2856.24 | 0.23
among responses | Model 3b | -2786.85 23 -2809.85 | 0.24
Model 4a | -2894.41 19 -2913.41 | 0.22
Model 4b | -2884.42 19 -2903.42 | 0.22
With interdep. Model 5 | -2533.87 23 -2556.87 | 0.31
Model 6 | -2455.94 25 -2480.94 | 0.33
among responses | Model 7 | -2587.58 19 -2606.58 | 0.29
Model 8 | -2566.44 21 -2587.44 | 0.30

Table 4.13: Comparison of auxiliary statistics of estimated models

Now we turn our attention to the estimated values of time and their variability
as implied by the different models. In Figures 4-1, 4-2, and 4-3 the histograms
of the mean value of time are plotted for the different models. In Table 4.14 the
sample mean, the average standard deviation?®, the standard deviation in the sample
of the mean value of time, and the total standard deviation of the value of time in
the sample are presented. The sample statistics change quite considerably for the
different models.

Among models which ignore interdependencies among responses Model 3b pro-
vides the largest mean value of time and total standard deviation. The lognormal
model (Model 4b) provides higher variance for the mean of VOT, while the latent
class choice model captures significantly higher individual level variability. Among
models capturing interdependencies among responses the four latent class model with
taste modifiers and agent-effects specification for the criterion functions exhibits the
largest mean and total variance in VOT. Surprisingly, the four-latent class model

with taste modifiers and identical latent class among responses provides much lower

%58ince we allow for each individual to have distributed VOT the average individual standard
deviation is calculated as the square root of the sample average of the individual variances of VOT.
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Figure 4-1: Histograms of Mean Values of Time: Model 0, Model 1 and Model 2
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Model Model vOoT
type Mean Std. dev
fl/hr | Mean Indivi. | of Mean | Total

Model 0 12.5 - 3.1 3.1
Model 1 174 9.6 3.1 10.1

No interdep. Model 2 17.9 11.1 3.9 11.8
Model 3a | 18.3 12.9 3.1 13.3

among responses | Model 3b | 22.8 27.1 6.2 27.8
Model 4a | 20.3 21.0 6.2 21.9
Model 4b | 20.5 21.6 6.8 22.6
Model 5 15.9 15.6 3.4 16.0

With interdep. Model 6 31.5 32.7 6.4 33.3

among responses | Model 7 15.6 14.7 4.5 15.4
Model 8 18.0 10.4 3.1 10.8

Table 4.14: Estimated Values of Times from the sample

mean and variance of VOT compared to the similar model with no interdependencies
among responses. This theme is manifested in the lognormal value of time model
with interdependencies among responses as it provides lower mean and variance of
VOT compared to the similar model with no interdependencies among responses. A
partial explanation for this reduction in mean and variance of the values of times is
that in the models with interdependencies we “restrict” the unobserved “factors” to
be same across responses for the same individual, thereby leading to lower variability
of VOT. From the table one can conclude that VOT depends significantly on the
modeling approaches adopted.

Now we turn our attention to the comparison of the prediction results when the
estimated models are applied. We assume that the individual is provided two travel
alternatives with the travel times differing by 30 minutes. Figures 4-4, 4-5, 4-6, and
4-7 depict the average (over the sample) probability of choosing the faster alternative
as the cost difference increases from 0 to 20 fl/hr.

As seen in Figure 4-4, the decline in the probability of paying for 30 minutes
savings is much faster for Model 0 than those of Model 1 and Model 2. Further,

for the curves of Model 1 and Model 2 there appears to be a sharper decline around
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7 fl/hr. This price approximately coincides with the value of time of one of the classes.
Thus at prices below this willingness to pay threshold, individuals in this class accept
the faster alternative, and when price goes beyond this threshold, the individuals in
the class reject the faster alternative, and prefer instead the cheaper alternative.

A similar trend is noticed in Figure 4-5 with the curves for Model 3a and Model 3b
indicating segments in the population with higher willingness to pay for travel time
savings. Consider, for example, the curve corresponding to Model 3b. The curve
declines steeply around prices of 6 fl/hr and 20 fl/hr, and it must be noted that these
points correspond to the values of times of two classes.

In Figure 4-6, the curves of Model 4a and Model 4b closely follow each other, and
this similarity is also manifested in the VOT statistics and the overall goodness-of-fit.

In Figure 4-7, we graph the curves for the models incorporating interdependencies
among multiple responses. Even here we notice the curves corresponding to latent
class choice models to decrease at a steeper rate near prices corresponding to the
values of time of classes, while the curves for the random coefficients model and the
lognormal model are much smoother. The curve for Model 6 indicates much higher
willingess to pay for a substantial fraction of the population, unlike all other models.
In this regard, this model must be viewed with caution, and the unusual results may
indicate some form of misspecification or identification problem, although the model,

in general, appears to fit data the best.

4.5 Summary

The latent class choice model to capture taste variations was applied in a case study
to evaluate the value of time in the transportation context. The estimated models
suggest the efficacy and practicability of the modeling approach compared to extant
approaches of introducing interaction variables and random coefficient models.

At this stage, the research has demonstrated the potential of our modeling ap-
proach. Further, from a practical and computational standpoint, the models were

estimated without much difficulty in a 486-machine in a matter of 5-6 hours.
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An (empirical) caveat of the LCCM must be noted. We attempted the estimation
of LCCM’s with two criterion functions, with two levels in one sensitivity dimension,
and more than two levels along the other sensitivity dimension. The estimation proce-
dure did not converge as the correlation parameter increased to 1. As noted earlier we
are yet to develop general necessary and sufficient conditions for the identification of
all model parameters. We conjecture that this non-convergence may be due to model
identification problem, or “empirical identification” problem wherein we are attempt-
ing to capture latent classes which the data does not support. We also conjecture that
incorporating indicators of latent class such as importance ratings of attributes may
“lend character” to the latent classes since indicators may be viewed as attributes of

latent classes, and thus provide adequate information for the empirical identification

of the LCCM.
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Chapter 5

Latent Class Choice Model for
Decision Protocol Heterogeneity:
Case Study — Application to
Stated Preference Data

5.1 Introduction

In this chapter we focus our attention on capturing the different decision protocols
adopted by individuals while making choices in the actual market environment (re-
ferred to as revealed preferences [RP]), and while indicating preferences in hypothet-
ical preference tasks (referred to as stated preferences [SP]).

The chapter is organized as follows: In section 5.2 we provide evidence from the
literature as to the significance of variations in decision protocols, and discuss possible
causes for such variations in general (i.e., both in RP and SP settings). In section 5.3
we highlight the factors leading to decision protocol variations which are specific to
hypothetical preference tasks. In this section, we also briefly review the RP and
SP data combination technique which addresses some of the biases inherent in SP

data vis-a-vis RP data. Since the analyst is unable to observe the decision protocol
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adopted by an individual, it may be characterized through a latent class, and to this
end in section 5.4 we outline the latent class choice model for explicitly capturing
unobserved decision protocols. Since decision protocols in RP and SP settings may
differ for the same individual, we also discuss the need to combine RP and SP data,
and outline an approach to validate decision protocols exhibited in SP analysis with
those of RP data, if both RP and SP data are available. In section 5.5 we discuss
the SP data used in the case study to assess the potential of the latent class choice
model for decision protocol heterogeneity, while in section 5.6 we present estimation
results. It must be noted that though the case study is in the context of simulated
choice experiments the approach for capturing decision protocol heterogeneity is fairly
general and may be adopted to RP data, and more judiciously to combine RP and

SP data.

5.2 Decision Protocols

We are interested in a descriptive model that postulates how individuals behave and
respond to changes in policies, prices and features of products and services, etc. It
is well documented in the behavioral decision research literature that the perceptual,
emotional and cognitive processes which ultimately lead to the choice of an individual
differ considerably among individuals and across choice contexts (see, for example,
reviews in Rapoport and Wallsten [1972], Einhorn and Hogarth [1981], Payne et
al. [1992]).

To motivate the latent class choice model for decision protocol heterogeneity, we
briefly review relevant literature highlighting the need to capture decision protocols,
and its significance in different choice contexts. We focus our attention on the differ-
ent decision protocols presumably adopted by individuals both in the actual market
setting and the simulated market setting. This is followed by an elaboration of the
causes for this heterogeneity.

Most of the theoretical and empirical work in choice analysis is centered on the

“utility maximizing” principle which assumes a rather sophisticated and cognitively
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demanding representation of the decision protocol. It assumes that the model predicts
choice regardless of the number of alternatives to be compared and the number of
attributes of each alternative to be examined. It must be noted that the utility
model is also often referred to as the algebraic model or the information integration
model in the psychology literature (Anderson [1974a, 1974b], von Winterfeldt and
Fischer [1975], Shanteau [1977]). In reality, individuals may adopt a variety of other
decision protocols such as dominance rules, satisfaction rules, lexicographic rules,
random choice, etc., of varying complexity (see, for example, Slovic et al. [1977],
Svenson [1979)]).

Decision protocol variations have been observed in the studies of the cognitive
processes leading up to a decision, referred to as process tracing® studies. The aim of
the process tracing study is to reveal the train of thought leading to the final decision,
with the focus on what content or information is processed, and how it is processed.
Data is collected during or after the decision process such as eye movements of the
individual or information requests which represent the information search pattern,
and think-aloud or verbal reports.

First, the order in which an individual seeks and evaluates the information of the
choice problem may be related to the cognitive process leading to the final decision.
Eye movement recordings and records of the information explicitly demanded by
the individual indicate the information search pattern. Consequently, variations in
these search patterns have been linked to protocol variations (see, for example, Russo
and Rosen [1975], Just and Carpenter [1976], Payne [1976]). For example, complete
information searches may be associated more with a compensatory decision rule, while
incomplete searches eliminate compensatory decision rules.

Second, verbal protocols? reflect on how the information is processed (see, for ex-
ample, Newell and Simon [1972], Russo and Rosen [1975], Nisbett and Wilson [1977]).

Consequently, differences in the verbal protocol reports indicate decision protocol

1See Svenson [1979] for a more detailed discussion of process tracing techniques.
2Verbal protocols may be retrospective pertaining to the individual’s interpretation of the decision
protocol adopted, or may be simultaneous pertaining to data collected during the choice process.
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variations.
Now we turn our attention to the possible causes for variations in decision proto-

cols.

Information Effects

Economic theory concentrates on the individual decision-making process of what
goods and how much of each good to consume or purchase, assuming perfect in-
formation about the availability of goods and their attributes. But in reality, an
individual has limited prior information about consumption opportunities. Sven-
son [1979] argues that situations where information about the attribute is missing as
a result of imperfect discrimination or of unreliability of available information may
encourage the adoption of rules depending on minimum differences on the attribute.
Specifically, differences between attribute levels across alternatives may be perceived
only when they are greater than some attribute-specific thresholds (see, for example,

the lexicographic semiorder rule of Tversky [1969]).

Deviations from Rational Behavior and the Notion of Bounded Rationality

The common assumption of utility maximizing decision protocol may not be appro-
priate since it assumes a rather sophisticated cost/benefit analysis paradigm, and
that all individuals are rational. Simon [1955] argues that all behavior cannot be
explained in this cost/benefit paradigm. Specifically, Simon [1955, 1957] (see also
March and Simon [1958], and March [1978]) argues that individuals may exhibit ra-
tionality, but only within the constraints of the individual’s perceptions of the choice
context, and his/her limited information processing capabilities and ignorance of the
“optimal” rules (if any). Simon [1956] suggests that individuals attempt to com-
pensate for these limited information processing abilities by constructing a simplified
representation of the choice context and behaving rationally within the constraints

of such a representation (often referred to as the notion of bounded rationality).
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Cognitive Representation of the Choice Problem

Individuals’ limited information processing capabilities lead to simplification in the
cognitive representation of the alternatives through techniques such as “chunking”
wherein the individual interprets a complex array of attributes of alternatives by
“recoding” information into larger chunks (Miller [1956], Simon [1960]). Bruner et
al. [1962] refer to the same phenomenon as “cognitive categorization”. Specifically,
Park [1978] suggests that for each attribute, an individual is assumed to set up cog-
nitive categories. These categories further takes on three different forms, depending
upon how the individual codes the attributes including: (a) negative, neutral and
positive affects on the categories of the attribute (e.g., price attribute may be coded
into least preferred, neutral and most preferred categories depending on the price
falling between certain thresholds), (b) neutral and positive affects on the categories
of the attribute (e.g., price attribute may be categorized into neutral (most preferred)
depending on whether the price is higher (lower) than a reservation price), and (c) in-
different to the attribute.

Svenson [1979] argues that the representation system and the sequence of rules
applied may be continuously influencing each other. For example, it may be assumed
that the individual changes the degree of complexity of the representation system to

meet the requirements of a decision rule he/she wants to apply.

Multiple Goals or Criteria

The concept of optimality is defined with a single criterion or goal. However, judg-
ments and choices are usually based on multiple goals or criteria. When such goals
conflict there can be no optimal solution in the sense of a single criterion case (Shep-
ard [1964]). Einhorn and Hogarth [1981] argue that even if the trade-offs or compro-
mises between the goals are clearly defined, the single goal situation is transformed
into a multiple goal case when the judgments and choices are considered over time,
since conflicts between short-run and long-run strategies can exist even with a single

well-defined criterion.
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Time and Budget Effects

Decision protocols may vary across individual’s time and budget constraints while
searching for information regarding available alternatives in the actual market en-
vironment. Shugan [1980] argues that cost/benefit analysis must be expanded to
include “the cost of thinking”.

Montgomery and Svenson [1976] suggest that different decision rules may require
different amounts of cognitive effort, so that different types of rules may be ordered on
an effort continuum. Individuals who want to minimize the amount of cognitive effort
expended may apply simpler rules before trying more complex ones. For example,
if the simpler rules do not lead to a unique choice, then more complex rules may be

applied.

Importance and Familiarity with the Choice Context

It must be noted that the same individual may adopt different decision protocols
depending on the choice context. For example, when an individual is faced with
a choice in a new situation, the more complex decision rules may be adopted. On
the other hand, if similar choice situations have been faced earlier then simplifying
strategies or heuristics may be used (Tversky and Kahneman [1974]). Heuristics may
be developed from the individual’s own experiences with similar choice situations.
Hogarth [1974] argues that the choice problem may be solved on the basis of its
similarity to one of a number of classes of decision situations, and each class has its
own standard solution.

Further, the importance of the choice context affects the decision protocol adopted.
For example, one may adopt a more complex decision protocol in the purchase of a

car or house, while a simpler strategy may be adopted in the purchase of cereal.

Complexity of Choice Problem

Decision protocols may also depend on the complexity of the the choice problem

where complexity is defined in terms of the product of number of alternatives and
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the number of attributes characterizing each alternative. Svenson [1979] in a meta-
analysis of process tracing studies observes that the percent of information searched
by an individual decreases with both increase in alternatives and attributes, while

the rate of decrease is higher with attributes.

Even if all the individuals adopt the same decision protocol such as the “utility
maximizing” principle, variations may exist in how individuals weigh the different
attributes. This theme is adequately demonstrated in the case study presented in
chapter 4. In similar vein, non-compensatory models such as the satisficing model
which is built on attribute-specific criteria, and the lexicographic model which is built
on ranking of attribute importance, may have these criteria and rankings individual-
specific. It must be also noted that the same individual may adopt different decision

protocols in the actual market environment and the simulated market environment.

5.3 Decision Protocol Variations Specific to SP Tasks
and Modeling Approaches

Individual’s actual preferences towards consumption bundles can be inferred only
from observed market behavior. Consequently, most applications of discrete choice
models have used as the basis of analysis RP data. However, in recent years, SP
techniques, wherein preference data is collected by presenting hypothetical scenar-
ios to the respondents and requesting for their preferences, have been increasingly
used. In the following paragraphs we discuss the usefulness and the growing need
for SP techniques, highlight the causes for variations of decision protocols in such
data, and present empirical evidence. Such evidence motivates the heightened need
to adequately address decision protocol variations in order to apply judiciously the
results from SP analysis.

The analysis of SP data originated in the seminal work of Luce and Tukey [1964],
wherein stated preferences and the associated analysis techniques were referred to as

“conjoint measurement” and “conjoint analysis”, respectively. Such techniques have
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been popular among market researchers since the 1970’s (see, for example, Green
and Rao [1971], Green and Srinivasan [1978], and Cattin and Wittink [1982], Lou-
viere [1988al).

In marketing research, SP techniques are particularly useful to assess the demand
for new products and services. If the consumer has no access to new options, or
the option is yet to be implemented since it is in the concept phase of development,
then consumers may be presented with hypothetical scenarios, and asked to furnish
choices/preferences. The levels of the attributes of the options, and the ambient
decision-making environment of the consumer may be varied judiciously to appear
plausible, relate to the consumer’s experiences with similar products and ensure com-
petitive trade-off. The consumer could be asked, for example, to choose among op-
tions (referred to as a choice experiment), or indicate preferences through ranking or
ratings of the options presented. Further, data reflecting the cognitive processes of
consumers such as how consumers learn about new products and services through
information search can be collected in a simulated environment.

Although SP techniques have been used in marketing for a long time, there have
been very few reports of their applications in travel demand analysis in the 1970’s. In-
stead, applications of discrete choice models in travel demand analysis have primarily
utilized revealed preferences (see, for example, Ben-Akiva and Lerman [1985]). This
is due in part to the need for a travel demand model to provide forecasts which
must be consistent with actual behavior. However, in the 1980’s there has been an
increasing interest in the adoption of such techniques to analyze travel behavior, lead-
ing to a special issue of the Journal of Transport and Economics and Policy on SP
methods in transportation research (see Bates [1988], Bradley [1988], Fowkes and
Wardman [1988], Hensher et al. [1988], Kroes and Sheldon [1988], Louviere [1988b],
and Wardman [1988]). More recent applications of SP techniques in travel demand
analysis include: Fowkes [1991], Bates and Terzis [1992], Copley et al. [1993], and
Bradley and Daly [1993].

In recent years, with the new developments in transportation and information

technologies and their interactions, transportation researchers have recognized the
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importance and the heightened need for SP techniques, and have increasingly used or
proposed the adoption of such techniques to assess the transportation impacts of such
new concepts (see, for example, Bernardino et al. [1993], Mahmassani et al. [1993],
Sullivan et al. [1993], Ben-Akiva and Gopinath [1993]).

For the estimation of preference models, Ben-Akiva et al. [1991] outlined the

implications of the differing characteristics of RP and SP as:

e RP data are cognitively congruent with actual behavior;

e SP techniques form the only means of obtaining preferences towards new prod-

ucts and services; and

e Trade-offs among attributes are identifiable from SP data since the attribute lev-
els can be artificially set, the range of attribute levels extended, multicollinearity

among attributes reduced, and attributes are free of measurement errors.

In the first two decades of applications of SP techniques, the econometric tools
adopted were the same as those used for RP data, although researchers have recog-
nized the issue of validity of SP responses. In the following paragraphs we highlight

the important determinants of decision protocol variations specific to SP tasks.

Presentation Effects

The presentation format affects information search and evaluation patterns. For
example, Bettman and Kakkar [1977] presented subjects with information about 11
alternatives, each characterized by 13 attributes (a) in matrix form with an attributes
x alternatives design, (b) in an alternative centered form where each alternative was
described in a booklet, and (c) in an attribute centered form in which information
about each attribute was given in a booklet. The results showed that when the
information was given in a alternative or an attribute centered way, the subjects
adapted to the way of presentation by processing information in an intraalternative

and an intraattribute manner, respectively?.

3If the individual uses alternatives as reference points and investigates all the attributes for one
alternative before going to the next alternative, the processing is intraalternative. On the other hand,
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Context Effects

Tversky and Kahneman [1986] present evidence wherein descriptions of the choice
problem which are normatively equivalent lead to different responses. Prospect the-
ory (Kahneman and Tversky [1979], Thaler [1985]) has endeavored to explain such
framing effects as the result of how the individual codes the outcomes of the choice
problem based on some reference point or expectation level.

Further, SP studies assume that preferences are defined over alternatives and their
attributes. But in order to reduce the complexity of the SP task for respondents, the
number of attributes describing an alternative is usually restricted vis-a-vis the set
of attributes which may be considered in the actual market setting. Consequently,
the respondent may take into consideration some attributes not specified in the ex-
periments by imputing them from his/her perceptions. This effect may be significant
if the alternatives presented are “branded” (i.e., has an associated name) leading to

erroneous conclusions regarding the trade-offs between the specified attributes.

Response Elicitation Effects

Decision protocol may be affected by the elicitation format in SP tasks such as rank-
ing, rating, choice, etc. Consequently, SP responses may depend on how the questions
are posed. Different response modes can lead to differential weighting of attributes
and different preference assessments. If respondents are asked to value a product or
service through an open bid question such as “How much are you willing to pay?”,
they will offer different values from the ones obtained if they are asked questions
which give some starting values or ranges such as “Would you be willing to pay $X77,
and “Would you be willing to pay at least $Y?”. Such artificially framed SP tasks,
such as trade-off exercises, and open bids tend to detract from the validity of sur-
vey responses. Tversky et al. [1988] citing differences in responses to choice versus

matching tasks suggest the notion of strategy compatibility between the nature of

if the individual anchors on attributes and investigates the levels of attributes across alternatives
before going to the next attribute, the processing is intraattribute (see Svenson [1979]).
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the elicitation mode, such as ordinal or cardinal, and the decision process employed

by the individual.

Attention and Comprehension of the Preference Tasks

Since a hypothetical scenario does not generally affect the welfare of the respondent
(unlike actual market behavior), the respondent may be uninterested in the SP survey,
and consequently be careless in the response as he/she might not make a rational
decision.

Decision protocols for SP data may differ from those in actual market environment
since situational constraints which affect the actual choice process may be ignored in
the SP experiments. Further, lack of realism in the SP scenarios in creating the
intended decision-making environment, and apathy and laziness on the part of the

respondent while responding to SP surveys, may lead to differing decision protocols.

Other Biases

Specific examples of other forms of biases in SP responses include: (1) prominence
hypothesis wherein the respondent evaluates alternatives by considering the most
important attribute, (2) strategic behavior or policy-response bias if the hypothetical
scenario does affect the respondent’s welfare, but it affects him or her in a way different

4

from direct exposure to the “real market” situation, and the respondent believes that
he or she will benefit by responding in a certain way, (3) inertia bias if the respondent
prefers to maintain the status quo instead of changes posed in the SP surveys, and
(4) justification bias wherein the respondent may want to justify past behavior and

respond in that way even to a hypothetical scenario.

Given the overview of the causes for differing decision protocols in SP tasks, we high-
light its significance in the following paragraphs. The issue of validity of SP tasks
has long been recognized in gambling problems. For example, Slovic et al. [1965]
found that imaginary incentives led subjects to employ simpler decision protocols

than did real payoffs. Slovic [1969] provided evidence that when choices are hypo-
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thetical, subjects maximized gain and discounted losses, but when the choices had
real consequences subjects were considerably more cautious.

A recent example illustrating the issue of presentation and elicitation effects on
SP responses is the work of McFadden and Leonard [1993] who conducted tests of
stability of willingness to pay for saving wilderness areas from lumbering obtained
using the SP approach. They compared results from alternative SP experiments
that varied in response formats, question phrasing and information provided to the
respondent. They found great sensitivity of the preference model to the SP elicitation
format, information provided and question phrasing.

Another example, in the context of preferences towards hypothetical travel al-
ternatives, is the work of Widlert [1994] wherein the objective was to examine how
different aspects of the design of the SP experiment influence the estimated prefer-
ence models. Specifically, the study assessed the differences between rating, ranking
and pairwise choices, the importance of adapting the levels of the attributes to the
respondent’s own experiences, the effects of different number of alternatives, and a
comparison between absolute and relative attribute levels. In the study, 25 differ-
ent types of interviews were conducted on long distance trains in Sweden with the
respondents requested to evaluate different train alternatives. Significant differences
in the values of times calculated from the travel time and travel cost coefficients of
preference models estimated on different SP data sets were observed. Widlert argued

that such variations in values of times are mostly attributable to:

1. Respondents tend to simplify the SP task as an exploratory analysis of the
data revealed that lexicographic answers based on one attribute accounted for
a significant fraction of the responses. Specifically, the lexicographic rule was
adopted the most when the respondent was asked to rank the alternatives, and
the least when the respondent was asked to rate the alternatives or make a

pairwise choice.

2. Values of times differ considerably depending on whether or not the SP tasks

were adapted to be realistic to the respondent’s own situation.
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In the analysis of ranking data, Ben-Akiva et al. [1991] raised concerns about the
reliability and stability of responses among the preference ranks. Also the effect of
actual choice used as a reference for ranking hypothetical alternatives was significant.

To address some of the biases inherent in SP tasks, a significant, albeit simple,
methodological framework for estimation of preference model from RP and SP data
was developed in the late 1980’s which explicitly recognizes the complementary char-
acteristics of RP/SP data. Ben-Akiva and Morikawa [1990a, 1990b] proposed the
combined RP/SP method for RP and SP data, the key features of which include:

e FEfficiency: joint estimation of underlying preference from all the available data;

e Bias correction: explicit response models for SP data which include both pref-

erence parameters and bias parameters; and

e [dentification: estimation of preference parameters not identifiable from RP

data due to low variability.

It must be noted that in the RP/SP data combination method of Ben-Akiva
and Morikawa an underlying “utility maximizing” decision protocol is assumed for
the RP and SP data generating processes. Given the potential significance of the
variations in decision protocols, in the next section we endeavor to capture explicitly

such unobserved variations.

5.4 The Model

Although the individual has a wide array of decision protocols at his/her disposal
while making a choice, the actual decision protocol adopted in a particular situation
in unobserved. The range of decision protocols which may be used poses questions
as to how one decides to “choose” (Beach and Mitchell [1978], Wallsten [1980]). The
decision protocol adopted can be viewed as being generated by a process wherein
the different decision protocols compete with each other. The individual adopts the
decision protocol which suits him/her the most. Einhorn and Hogarth [1980] con-

ceptualize the individual’s evaluation of the decision protocol as a multidimensional
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object containing attributes such as speed of execution, demands on memory (e.g.,
storage and retrieval), computational effort, chance of making errors, etc.
Consequently, each decision protocol may be associated with an unobservable con-
cept characterizing “desirability” of the decision protocol as a function of individual
characteristics such as time pressure, education, etc., coupled with intrinsic features

of the decision protocol.

Notation

Yin = choice indicator taking the value 1 if alternative ¢ is chosen by individual n

and zero otherwise.
s = latent class index, s =1,...,5.
R, = decision protocol specific to class s.
C, = choice set available* to individual n with |C,| = J,.

X,, = attributes of alternatives and individual characteristics which affect

the class-specific choice model.

Z, = attributes of alternatives and individual characteristics which affect

the class membership.

Assume that each individual adopts one of a set of S decision protocols while
making a choice. Since the decision protocols are unobserved, we assume that there
are S latent classes with each latent class s characterized by its own decision protocol.
A class membership model Q (Z,;0) assigns an individual to a latent class, and
the class-specific choice model P(y;, = 1|X,,, Rs; 3), predicts the choice behavior of
an individual with decision protocol R;. The class-specific choice model may be
deterministic or probabilistic depending on the class-specific decision protocol and

the problem context. The latent class choice model expressing the probability of the

4This refers to the set of alternatives deterministically available.
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individual choosing alternative ¢ is written as:

S
P(ym - 1|Xna Zn;ﬂa 6) = Z P(ym - 1|Xn7 Rs;ﬂ) Qs(Zn; 9) (51)

s=1

The assignment of individuals to the latent classes may be captured through a
class membership model such as the categorical criterion model as discussed in sec-
tion 3.2, with individual characteristics and alternative attributes Z,, affecting class
membership. For example, consider a choice situation with two classes: (1) Class I:
utility maximizers who choose from the full deterministically available choice set,
and (2) Class 2: utility maximizers who choose from a choice set generated through
a non-compensatory screening process. The probability of an individual being in each
of the two classes may be affected by characteristics such as number of alternatives
available, education, sex, income, etc. Consequently, the choice model in the first
class can be operationalized by an MNL model, while the choice model for the second

class is a choice model with latent choice sets.

Validation of SP Decision Protocols

Even if the preference model estimated on SP data suggests the existence of more
than one decision protocol, the question remains as to whether such heterogeneity
may exist in the actual market environment. If RP data is not available, then it is
left to the analyst’s judgment as to how the SP model can be utilized in providing
forecasts and other model applications. Specifically, if the analyst believes that a
particular decision protocol identified in the SP tasks will not be exhibited in the
actual market setting, then the decision protocol may be conveniently ignored in
model application. For example, a decision protocol wherein the individual picks the
alternative actually chosen in the market environment ignoring alternatives’ attribute
levels, may be eliminated in model application®. Else, if the analyst can assume that

the psychological “laws” governing the SP data generating process and the choice

5Tt must be noted that even in this example, one may argue for the case of significant habit
persistence or inertia effects.
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process which could be adopted by individuals in the actual market are identical,
then the latent class choice model estimated on SP data should be applied as is.

If RP data is also available, then we can combine it with SP data to assess the
stability of decision protocols in both data sets, and more importantly, validate SP
decision protocols. To this end, we outline an approach conceptually similar to the
combined RP/SP estimation technique, but methodologically a significant departure
from the previous approach as we allow for the decision protocols to vary across data
sets.

The typical steps in the approach include:

1. RP Model: Estimate the latent class choice model with different decision pro-
tocols using the RP data.

2. SP Model: Estimate the latent class choice model with different decision pro-
tocols using the SP data.

3. Comparison of models: Herein the utility functions and the criterion functions
for each model are “qualitatively” compared to check if the decision protocols

are identical in the RP and SP data®.

4. Combined Model: Depending on the similarity of coefficients of the utility func-
tions, or the coefficients of the criterion functions, or both, subsets of the coeffi-
cients may be shared across RP and SP models. For example, consider a choice
situation wherein the analyst postulates that the individual adopts one of two
decision protocols with one being utility maximization. Consequently, the class
membership model may be represented by a threshold crossing model with a
single criterion function. The utility of alternative ¢ in the RP context and the
SP tasks for individual n who is a utility maximizer may be specified as:

UE = NI XIS 52

in;l i

6Tt must be noted that standard likelihood ratio tests can be conducted to check for equality
of the full set or subset of coefficients across the RP and SP models by estimating restricted and
unrestricted models. But these statistical tests may be conducted in the next step.

162



Uy = B'Xgei+7 Xioks+ € (5.3)

where ¢t = 1,...,t, denotes the ¢th gp response for individual n. In a similar

manner, the criterion functions are specified as:

HEP = e'Z,fgf + H’Z,fjg’ + 61P (5.4)

HP = 0730 + 7750 + 65 (5.5)

In the above equations, 3, a, v, 0, k, and 7 are unknown parameter vectors to be
estimated, and the superscripts RP and SP denote the corresponding variables from
the RP and SP data, respectively. Bias factors in SP tasks are represented in the
utility function through the variables X, .3 with associated parameter vector v, and in
the criterion function through the variables Z,.3 with associated parameter vector 7.
[ is a parameter vector shared by the RP and SP utility functions implying that the
trade-offs among attributes in Xj;,.; are the same in both the actual market setting
and SP tasks. Similarly, 6 is a parameter vector shared by the RP and SP criterion
functions implying that the effects of Z,.; on the criterion function generating the
decision protocols are identical in both the actual market setting and SP tasks.

It is instructive at this point to outline the variables which may be included in
ity Zno and Zy,.3. Z,.1 may include socio-economic and demographic characteristics
of the individual such as income, gender, employment status, education, etc. Further,

it is possible that ZF" and ZjF Vt are the same set of variables. Z,;; may include:

1. Dummy variable(s) associated with the criterion specific constant(s) to reflect
differences in intrinsic desirability of the decision protocols in the RP context;

and
2. Information and situational factors which are specific to the RP context.
Similarly, Z,.3 may include:

1. Dummy variable(s) associated with the criterion specific constant(s) to reflect
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differences in intrinsic desirability of the decision protocols in the SP tasks’;
2. Actual RP choice dummies; and

3. Actual SP choice dummies since the choices made in a sequence of SP tasks

may affect the decision protocol adopted in the next task®.

If RP and multiple SP responses are available from the same respondent, then
these bits of information may not be statistically independent since unobserved
individual-specific factors may be affecting both RP and SP tasks. Consequently,
correlations between RP and SP responses, and between SP responses for the same

individual may be captured through a variety of ways including:

1. Correlations between the error components of the utility functions of RP and
SP model (i.e., €®F and 7 are correlated). Further, if there are multiple SP
responses for the same respondent we can allow for correlations between €7

across these responses. Such correlations may be generated through an error-

component structure, i.e.,

Y (5.6)

m

65‘,5 = C’ITI + gm + Vztn (57)

where CGin, &in, l/fzp , and VZm are assumed to be mutually independent, and
independent across the alternative index i (i.e., (;, and (j, are independent

for i # j, and so on)?. Before we turn our attention to the correlation struc-

"Note that the intrinsic desirability of a decision protocol may be different across RP context and
SP tasks.

8In principle, we may allow for the decision protocol adopted at the tt‘h SP task to depend on
the decision protocols adopted in earlier tasks to capture “state dependence”. This approach is
tractable only if we do not allow correlations in 671 across t.

9Further, if there are multiple observations ¢ = 1,...,%, of actual choices in RP as in discrete
panel data, we may allow for correlations between RP choices due to individual-specific effects which
are present, only in RP choices. Consequently, the error-component structure may be written as:

P = (G + RP+V§5 (5.8)

SP SP
Citn Cin + Vztn

164



ture induced by the error components, the rationale for the error-component
structure needs to be outlined. As in any random utility function specification

RP

vEP and v3f

£ o, form the random components of the utilities of alternatives. The

individual-specific effects are categorized into:

a) Individual-specific unobserved intrinsic preference towards alternative ¢ in
p p
general, i.e., assumed to be exhibited both in RP and SP contexts, and is

captured by (.

(b) Individual-specific unobserved intrinsic preference towards alternative i ex-

hibited only in SP responses, and is captured by &;,.

Specifically, (;, captures the correlation between the RP choice and the SP re-
sponses and part of the correlation between SP responses, while &;, captures
the remaining correlation between the SP responses'®. To see this note that
cov(eil e5l) = o2, cov(el enh) = o2 + o2 for t # t' where of =var((),
and aézvar(ff, ). If the choice problem has J alternatives, the error-component
structure may be allowed only for J — 1 alternatives, i.e., for the J — 1 al-
ternative specific constants (see Appendix E wherein we discuss this issue in

the context of agent-effects models in discrete panel data, and raise the ques-

tion of which alternative to set as the base alternative''). Ignoring decision

protocol effects for the time being, if one assumes that v*¥ and ;P are in-

dependently and identically distributed Gumbel (0,1) random variables, then
conditional on ¢, = [Cin, ..., Cs-1:m) and &, = [Ein, ..., &y 1], the probability
of observing [V,BF Y 5P] where Y,'¥ is the choice indicator for RP data, and

VP = (VP Y5P, .. Y;SF] is the response vector for ¢, SP responses, may be

10An alternative error-component structure is to assume:

RP _ ,RP
€in = Vip (510)
SP RP SP
Citn, = Aiyin +&in + Vitn (511
: RP  SPY _ ) 52 SP SPY _ \2,2 2 / 2 _ RP
In this case cov(ell, est) = )\iauﬁp, cov(en €50 ) = A; 7, ke TOg, for t # ¢’ where auﬁpfvar(ym ),

and o =var(¢;).
"The base alternative refers to the alternative with the alternative specific constant set to 0.
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written as:

PO YSPIXEP, X57) = [ [ POEPIXER QOP(YSPIXET, C,€) F(Q)g(8) dC de

(5.12)
where conditional on ((, &), P(Y,E”|X P () is the MNL choice probability for
the RP choice, while P(Y,°P|X5F ( ¢) is a product of MNL choice!? probabili-
ties for the ¢, SP responses, and f(-) and ¢(-) are the density functions of ¢ and
&, respectively. Numerical approaches to the estimation of the above model is
limited to a small number of alternatives since it entails a 2(.J — 1)-dimensional
integration. Consequently, simulation approaches may be adopted wherein the
likelihood is approximated by an “average” probability for the RP choice and
SP responses, with the average taken over simulation draws from f(¢) and g(&).
It must also noted that if the analyst expects the reliability in SP tasks to differ
from RP data, then the variances of /*" and v;;” may be allowed to differ, i.e.,

itn

var(vP) = p? var(vil). This is reflected in the scaling of the taste parameters
in the SP model vis-a-vis the RP model, and this scale parameter i can also be

estimated.

2. Similar to the correlations between the error components in the utility functions,

we may allow for correlations in the criterion functions of RP and SP model

(i.e., 6%F and 6°F are correlated).

A special case emerges if the decision protocols in the RP context and SP tasks
are identical. Then the RP and SP class-specific choice models can be speci-
fied conditional on the latent class, thereby the interdependencies between RP
choice and SP responses, and between SP responses are induced by their depen-

dence on the latent class. In our example, this is equivalent to the assumption

12We assumed for simplicity choice-based SP tasks such that
tn
PTG O = [T PRl IXEl ¢ (5.13)
t=1

where Y5 is the #t1 9P response for individual n.
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that the criterion function
Hn = QIZml + H,Zn;g + 57-,, (514)

is the same for both RP choice and all the SP responses. Consequently, the

probability of observing [Y,*7 Y 57] is written as:

2
P(Ynﬁpﬁ Yn$P|X5P’ erp’ Zn) = Z P(}/nRPa K??P|X5Pa X?fpa RS) QS(ZTH 9)

s=1
(5.15)
where Qs(Z,;0) is the class membership model. For example, if 6, ~ N(0,1),

it is represented by a probit model.

3. In the most general case, we may allow for error-component structures for utility

functions and criterion functions.

5.5 Survey Data

The survey was conducted during 1987 for the Netherlands Railways to assess factors
which influence the choice between rail and car for intercity travel. Data was col-
lected in the city of Nijmegen located in the eastern side of the Netherlands near the
border with Germany. This city has typical rail connections with the major cities in
the western metropolitan area called the Randstad which contains Amsterdam, Rot-
terdam, and The Hague. Trips from Nijmegen to the Randstad takes approximately

two hours by both rail and car. The sample consisted of residents of Nijmegen who:

e made a trip in the previous three months to Amsterdam, Rotterdam or The

Hague;

e did not user a yearly rail pass, or other types of pass which would eliminate the

marginal cost of a rail trip;

e had the possibility of using a car, namely, possessed a driver’s license and had

a car available in the household; and

167



e had the possibility of using rail, namely, did not have any very heavy baggage,

were not handicapped, and did not need to visit multiple destinations.

Qualifying residents of Nijmegen were identified in a random telephone survey and
requested to participate in a home interview. 235 interviews were conducted out of
the 365 people who were reached by telephone and who satisfied the above criteria.

The home survey consisted of three parts:

1. the characteristics of an intercity trip to the Randstad made within the previous

three months (RP data);
2. SP experiments of choice between two different rail alternatives; and

3. SP experiments of choice between rail and car.

We use Rail/Car SP data in this empirical analysis. The experiment was framed
in the context of the actual trip observed in the RP data and used the full-profile
pairwise comparison method. The respondent was shown a pair of hypothetical rail
and car alternatives at a time, each of which was described by the following attributes:
travel cost, travel time, and number of transfers (only for rail). Then, the respondent
was asked which mode would be chosen for the particular intercity trip reported in the
RP data in terms of a five point rating scale: (1) definitely choose car; (2) probably
choose car; (3) not sure; (4) probably choose rail; and (5) definitely choose rail.
Each respondent was presented with several such pairs of rail and car alternatives.
The order of presentation of the alternatives to the respondent was randomized to
minimize the potential response bias stemming from fixed presentation format.

The data available for our analysis included the ratings elicited in SP surveys
transformed into binary choices, i.e, categories (1) and (2) into car choice and cate-

gories (4) and (5) into rail choice. The variables are listed in Table 5.1.

5.6 Estimation Results

In this section we present travel mode choice models estimated on the SP data. Choice

models incorporating decision protocols are compared with a standard travel mode
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NAME DESCRIPTION
|| | |

PREFER Stated Preference choice indicator = (1) 22;1
IVTT In-vehicle travel time in hour (Rail-Car)
OVTT Access and egress time in hour (Rail-Car)
COST Travel cost in Guilders (Rail-Car)
TRANS Number of transfers for Rail

1 work trip

WORKDUM | Trip purpose dummy = 0 otherwise

1 female

FEMDUM Sex dummy = { 0 otherwise

1 Rail
0 otherwise

ACTCHOICE | Actual travel mode choice dummy = {

Table 5.1: Names and Definition of Variables - Decision Protocol Study

choice model such as a probit model.
Since there are multiple responses per individual, the assumption of independence
among these multiple responses may not be entirely justified. Consequently, the

estimated models are categorized into:
1. Models which ignore potential interdependencies among responses; and

2. Models which attempt to capture these interdependencies.

5.6.1 Models Ignoring Interdependencies Among Responses
Model 0: Binary Probit Model

This is the simplest of the estimated models. The choice is modeled by a binary
probit model expressed as a function of the utility difference between the Rail and
Car alternative. There may be biases in the respondent’s stated preferences due to
the mode actually used in the intercity trip elicited in the revealed preference data,
reflecting inertia effects, justification of actual choice, or omitted attributes that are

not captured by the attributes specified in the hypothetical travel mode pairs. This

169



bias is expected to be captured through a dummy variable which indicates the actual

choice (ACTCHOICE). The utility function is specified as'?:

U = B+ BIVTT + Bs0VTT + B,COST + BsTRANS +
BsWORKDUM + 3:FEMDUM + BsACTCHOICE + ¢

where € ~ AN(0,1). The estimated probit model is presented in Table 5.2. The
standard errors are calculated from the estimated information matrix. Further, to
estimate the standard errors correctly as multiple responses from the same individual
are likely to be correlated, we utilize the variance-covariance matrix for extremum
estimators (Amemiya [1985]), and consequently we refer to the corrected t-statistics
in conducting simple hypothesis tests. The alternative specific constant corresponding
to Rail (RAILDUM) is negative and significant, while the actual mode choice dummy
has a large positive and very significant coefficient. Consequently, rail users exhibit
an intrinsic preference for rail, while car users exhibit an intrinsic preference for car.
Further, coefficients of in-vehicle travel time, and out-of-vehicle travel times have the
expected signs, although the out-of-vehicle time coefficient is insignificant. The value
of in-vehicle time is 27.3 Guilders/hour, while the value of out-of-vehicle time is 20.5
Guilders/hour. The coefficients of trip purpose and gender dummies are insignificant.
Further, the number of transfers on the rail alternative apparently has no effect on

the mode choice process as the corresponding coefficient is insignificant.

Model 1: “Pick Car” and “Chooser”

As a first step in the estimation of a latent class choice model incorporating decision
protocols, we postulate the existence of three classes associated with three decision
protocols: (1) utility maximizers (choosers) who consider both the rail and the car
alternative and presumably analyze the trade-offs among attributes; (2) individuals

who always pick the car alternative (yea-sayers); and (3) individuals who always pick

133, represents the intrinsic preference for rail relative to car. Note that the alternative attributes
such as travel times and travel costs are in difference form, i.e., attribute of rail profile - attribute
of car profile.
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Parameter Estimates | Std. err. | t-stat | t-stat

COIT.
RAILDUM -0.926 0.116 -7.98 | -7.80
IVTT -0.273 0.096 -2.85 | -3.00
OVTT -0.205 0.171 -1.20 | -1.29
COST -0.010 0.002 -4.47 | -4.49
TRANS -0.011 0.063 -0.17 | -0.17
WORKDUM -0.111 0.112 -1.00 | -1.00
FEMDUM -0.063 0.083 -0.76 | -0.76
ACTCHOICE 1.650 0.102 16.23 | 16.32

Log-likelihood at zero = -1047.34
Log-likelihood at convergence = -655.93
p? = 0.37

Number of observations = 1511

Table 5.2: Model 0: Binary Probit Model

the rail alternative (nay-sayers)'. Consequently, we postulate the existence of a
latent class characterized by three ordered levels with the yea-sayers and nay-sayers
pitched at the extreme levels and the choosers wedged in between. The criterion

function for the class membership model is specified as:

H = H+6
= 0o+ 0, WORKDUM + 0,FEMDUM + 03ACTCHOICE + §

Assuming 6 ~ N(0, 1) the class membership model is represented by an ordinal probit
model with an additional threshold parameter.
Conditional on the latent class, the class-specific choice model is either a determin-

istic or probabilistic choice model depending on the class membership. The yea-sayers

141t must be noted that in principle, this modeling approach is identical to the choice model with
latent captivity. The only distinguishing features are: (1) applications of the captivity model are
usually based on RP data while herein we utilize SP data, and (2) we allow for the influences or
biases stemming from actual choices, and hence the interpretation is more meaningful as a decision
protocol than that of captivity.
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and the nay-sayers, choose car or rail with probability 1, while the choice model for
the choosers is represented by a probit model.

The estimation of such a model was attempted. The estimation routine did not
converge with the threshold parameter increasing to infinity leading to the conclusion
that the probability of individuals being nay-sayers becomes negligible as it decreases
with each iteration of the estimation procedure. Consequently, a model with two
latent classes — yea-sayers and choosers — was estimated with the class membership
captured by a probit model, i.e., P(chooser) = ®(H) and P(yea-sayer) = 1 — ®(H).

The estimated model is presented in Table 5.3. In the utility function which
is specified as in Model 0, the estimated rail constant is negative and significant,
while the coefficient for actual choice is positive and significant. The travel cost
and travel time coefficients have the expected signs. Further, compared to Model 0,
these coefficients are scaled up indicating greater sensitivity of the choice model to
the corresponding attributes. A possible explanation is that by taking into account
decision protocols we are capturing part of the random component of the utility
function, which would not have been explained otherwise. For the choosers, the value
of in-vehicle time is 22.2 Guilders/hour, while the value of out-of-vehicle time is 18.1
Guilders/hour. The coefficients for trip purpose and gender dummies, and the number
of transfers are insignificant.

In the criterion function, as expected the actual mode choice dummy has a positive
and significant coefficient indicating that the probability of an individual being a
chooser is higher if the actual choice made in the intercity trip was rail. This suggests
that the decision protocol adopted by an individual while responding to SP surveys
may be affected by actual market behavior. Consequently, the decision protocol
adopted in the RP context potentially differs from the decision protocol adopted in
the SP context. Further, by specifying a criterion function which includes the actual
choice dummy, the magnitude of the coefficient of the corresponding dummy in the
utility function is smaller compared to that of Model 0 as some of the “inertia” effects
is captured through the criterion function. Although the coefficients of trip purpose

and gender dummies are similar in magnitude to the actual choice coefficient, they
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Parameter Estimates | Std. err. | t-stat | t-stat

COIT.

RAILDUM -0.524 0.314 -1.68 | -2.17

IVTT -0.334 0.131 -2.55 | -2.77

Utility | OVTT -0.271 0.211 -1.29 | -1.32
COST -0.015 0.004 -3.45 | -2.75

function | TRANS 0.009 0.082 0.11 | 0.11
WORKDUM 0.751 0.730 1.03 | 0.57
FEMDUM 0.334 0.252 1.33 | 1.07
ACTCHOICE 1.234 0.288 4.28 | 3.38

0o 0.377 0.583 0.65 | 0.84
Criterion | WORKDUM -1.204 0.503 -2.40 | -1.80
function | FEMDUM -0.761 0.351 -2.17 | -1.44
ACTCHOICE 1.632 0.338 4.83 | 3.07

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -651.24
p> = 0.37

Number of observations = 1511

Table 5.3: Model 1: “Pick Car” and “Chooser”

are not estimated with precision. Further, given that the constant in the criterion
function is insignificant, we conclude that a car user is equally likely to be a yea-sayer
or a chooser. The sample average of the latent class probability of belonging to the
class “Pick Car” (“Chooser”) equals 0.38 (0.62). Thus, a significant fraction of the
sample belongs to the yea-sayer class.

The log-likelihood of the model is -651.24, which betters that of Model 0 by

approximately 5 units given that we have 4 additional parameters.

Model 2: “Pick Actual Mode” and “Chooser”

In this model we assume that an individual may adopt one of two decision protocols,
and hence, belong to one of the latent classes: (1) actual mode adopters who pick the
actual mode in SP experiments without considering the trade-offs among attributes,

and (2) choosers. Individuals who adopt the first protocol are either “captive” to the
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actual mode, or are uninterested in the SP tasks, and consequently indicate apathy
and laziness, or attempt to “justify” the actual mode choice while responding to SP
tasks. The utility function for choosers is specified as in Model 0, while the criterion
function is the same as in Model 1.

The estimated model is presented in Table 5.4. In the utility function, the rail
constant is positive but insignificant. The coefficient of actual choice is insignificant.
Thus, as expected by taking into account “inertia” at the decision protocol level, this
effect is negligible at the choice level. The travel cost and travel time coefficients
have the expected signs. In most empirical work in the context of travel mode choice
models, the ratio of the out-of-vehicle time coefficient to the in-vehicle time coefficient
is greater than 1, indicating greater marginal disutility of out-of-vehicle travel time
relative to in-vehicle travel time. This relationship is reflected in this model. For the
choosers, the value of in-vehicle time is 37.7 Guilders/hour, while the value of out-
of-vehicle time is 47.0 Guilders/hour. Thus the values of time are higher than those
of Model 1. It appears that the actual mode adopters on average have lower values
of times. The coefficients for trip purpose and gender dummies, and the number of
transfers are insignificant.

In the criterion function, the coefficient of work dummy is insignificant, while the
coefficient of gender dummy is negative and significant. Thus, women are more likely
to pick the actual mode in SP experiments compared to men. The coefficient of actual
choice is positive indicating that rail users are more likely to be choosers than are car
users. In other words, car users are more likely to pick the car alternative reflecting
inertia effects. The sample average of the latent class probability of belonging to the
class “Pick actual mode” (“Chooser”) equals 0.71 (0.29).

The log-likelihood of the model is -653.25, which marginally improves on Model 0

by 3 units, and is worse compared to Model 1 by 2 units.
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Parameter Estimates | Std. err. | t-stat | t-stat

COIT.

RAILDUM 1.552 1.020 1.52 | 0.88

IVTT -0.943 0.470 -2.00 | -1.25

Utility | OVTT -1.176 0.853 -1.38 | -0.84
COST -0.025 0.008 -3.25 | -3.05

function | TRANS 0.285 0.255 1.12 | 0.67
WORKDUM -0.300 0.352 -0.85 | -0.79
FEMDUM 0.200 0.268 0.75 | 0.65
ACTCHOICE -1.227 0.976 -1.26 | -0.73

0o -0.919 0.178 -5.16 | -3.17
Criterion | WORKDUM -0.167 0.149 -1.12 | -1.04
function | FEMDUM -0.221 0.099 -2.23 | -2.23
ACTCHOICE 1.185 0.187 6.32 | 4.89

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -653.25

5% = 0.37

Number of observations = 1511

Table 5.4: Model 2: “Pick Actual Mode” and “Chooser”
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5.6.2 Models Allowing Interdependencies Among Responses
Model 3: Model 0 with Serial Correlation

In this model, we adopt an agent-effects specification for the utility function. The

utility function is similar to Model 0, i.e.,

Un = b1+ B2dVTTin + B30VTTin + 2COSTin + 55T RAN Si, +
BsWORK DU My, + 3:F EM DU My, + fsACTCHOIC Eyy, + €1 +

¢th response for individual n who is presented with ¢,, profiles (i.e.,

where ¢t denotes the
te{l,...,ta}), € is the individual-specific random component which persists across
responses from the same individual, and €, is a pure random component. Assuming
ém ~ N(0,1), conditional on €,, the choice model is a probit model. Noting that
conditional on €, the multiple responses for the same individual are independent, the

probability of observing the response vector Y, = [Yipn, ..., Y n], P(Ya|Xn; 8, 0), is

written as

/{h P | Xtn, ﬂ)} f(&0)dé (5.16)

t=1
where Y}, and X, denote the choice indicator and the attributes of alternatives for
the t'® choice pair, respectively, and f(-) is the density function of the normal random
variable with mean zero and variance o2.

The estimated model is presented in Table 5.5. As in Model 0, the coefficients of
number of transfers, gender and trip purpose are insignificant, while the coefficient
of actual choice is significant. The value of in-vehicle time is 20.1 Guilders/hour,
while the value of out-of-vehicle time is 10.5 Guilders/hour. The significant standard
deviation of the agent-effect error component indicates substantial correlation among

responses.

The log-likelihood of the model is -632.88, which improves on Model 0 by 23 units.
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|| Parameter | Estimates | Std. err. | t-stat ||

RAILDUM -1.004 0.264 -3.80
IVTT -0.523 0.196 -2.67
OVTT -0.274 0.373 -0.73
COST -0.026 0.005 -5.02
TRANS -0.042 0.145 -0.29
WORKDUM -0.345 0.260 -1.33
FEMDUM -0.120 0.189 -0.63
ACTCHOICE 2.267 0.252 9.00
o 1.084 0.111 9.78

Log-likelihood at zero = -1047.34
Log-likelihood at convergence = -632.88
p* = 0.39

Number of observations = 226

Table 5.5: Model 3: Binary Probit Model with Serial Correlation

Model 4: “Pick Car” and “Chooser” with interdependencies among re-

sponses: Identical decision protocol

As seen in Model 1 and Model 2, the improvement in the overall model fit by incor-
porating variations in decision protocols is apparently limited. Recognizing that the
individual may adopt the same decision for all the SP tasks, we estimate a model
which captures such interdependencies among responses.

Herein the decision protocols are specified as in Model 1: “Pick car” and
“Chooser”. Assuming that conditional on class membership the responses are in-
dependent, P(Y,|X,, Z,;3,0) is written as

tn

t=1

where R, denotes the decision protocol for an individual in class s = 1,2, and Z,
form the causal variables affecting class membership (i.e., variables in H,,).
The utility function for choosers and the criterion function are same as in Model 1.

Table 5.6 presents the estimation results. In the utility function the rail constant is
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negative and significant, while the coefficient for actual choice is positive and signifi-
cant. Compared to Model 1, the coefficient of in-vehicle travel time is scaled higher.
For the choosers, the value of in-vehicle time is 48.9 Guilders/hour, while the value of
out-of-vehicle time is 9.3 Guilders/hour. Hence compared to Model 1, the value of in-
vehicle time for choosers increased considerably, while the value of out-of-vehicle time
decreased. The coefficients for trip purpose and gender dummies, and the number of
transfers are insignificant.

In the criterion function, as expected the actual choice dummy has a positive
and significant coefficient. The coefficients of trip purpose and gender dummies are
smaller in magnitude compared to those of Model 1, and insignificant too. Further,
in contrast to Model 1, the constant is insignificant. This coupled with the positive
coefficient for actual choice suggests that a car user is more likely to be a yea-sayer,
while a rail user is more likely to be a chooser. The sample average of the latent
class probability of belonging to the class “Pick car” (“Chooser”) equals 0.35 (0.65).
Thus, we notice a marginal decrease in the average probability of belonging to the
class ‘Pick car” compared to Model 1. This is expected since in this model, for an
individual to belong to the class “Pick car”, he/she must pick the alternative in all
the responses.

The log-likelihood of the model is -602.49, which improves on that of Model 1 by

49 units with no additional parameter.

Model 5: “Pick Car” and “Chooser” with interdependencies among re-

sponses: Agent-effects specification

Herein we allow the decision protocols to vary across the responses. But we capture
interdependencies among the responses since the protocols are expected to be simi-
lar. Specifically, interdependencies is operationalized through an agent-effects spec-
ification for the criterion function, i.e., decomposing the random component of the
criterion function into two components — a component which is independent across

individuals and responses, and another component which is individual-specific and
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|| | Parameter | Estimates | Std. err. | t-stat ||

RAILDUM -0.473 0.148 -3.20
IVTT -0.489 0.126 -3.86
Utility | OVTT -0.093 0.228 -0.41
COST -0.010 0.003 -3.37
function | TRANS 0.053 0.079 0.67
WORKDUM 0.014 0.132 0.11
FEMDUM 0.082 0.111 0.74
ACTCHOICE 1.259 0.129 9.76
0o 0.178 0.168 1.06
Criterion | WORKDUM -0.204 0.320 -0.64
function | FEMDUM -0.367 0.222 -1.66
ACTCHOICE 1.565 0.275 5.69

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -602.49
p? = 0.41

Number of observations = 226

Table 5.6: Model 4: “Pick Car” and “Chooser” with interdependencies among re-
sponses: Identical decision protocol
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hence persists across responses'®. We allow for the individual-specific component to
vary randomly in the population with a parameterized distribution. Consequently,

the criterion function for the class membership model is written as:

th = ]Z[tn + 5tn + Sn

= 0y+ 0 WORKDUM + 0,FEMDUM + 05ACTCHOICE + 64, + by,

Conditional on Sn, and assuming &, ~ N (0,1) the class membership model is given
by a probit model, i.e., P(chooser) = ®(H + 6,) and P(yea-sayer) = 1 — ®(H + &,,).
Then, by assuming b ~ N (0,0%) the probability of observing the response vector
Yo = Yin, oo, Yinls PVl X, Zni 3,6, 0), equals

/ U {i P(Yin| Xin: Be) Qs(Zn, 6 9)} f(6;0)dé (5.18)

where Y;,, X, and Z, are as defined earlier, and f(+) is the density function of the
normal random variable with mean zero and variance o?.

Table 5.7 presents the estimation results. In the utility function the rail constant is
positive though insignificant, while the coefficient for actual choice is positive and sig-
nificant. Compared to Model 1 and Model 4, these coefficients are scaled even higher
indicating greater sensitivity of the choice model to the corresponding attributes. For
the choosers, the value of in-vehicle time is 18.4 Guilders/hour, while the value of
out-of-vehicle time is 14.3 Guilders/hour. Hence compared to Model 1 and Model 4,
the estimated values of times for choosers decreased.

In the criterion function, as expected the actual choice dummy has a positive
and significant coefficient. The estimated coefficients of trip purpose and gender
dummies are smaller in magnitude compared to those of Model 1, and insignificant

too. Further, in contrast to Model 1 and Model 3 the constant in the criterion

15In principle, we can allow agent-effects specification for the criterion function utility. We at-
tempted such an approach in this model and in a model which discussed later. On both occasions,
either the estimation procedure did not converge with some of the parameters tending to infinity or
converged to a point at which the curvature of the log-likelihood function did not exist depending
on the starting values.
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|| | Parameter | Estimates | Std. err. | t-stat ||

RAILDUM 1.310 0.993 1.32
IVTT -0.664 0.305 -2.18
Utility | OVTT -0.516 0.586 -0.88
COST -0.036 0.014 -2.56
function | TRANS 6x10* 0.233 3x1073
WORKDUM -0.276 0.521 -0.53
FEMDUM -0.429 0.581 -0.74
ACTCHOICE 1.672 0.422 3.96
0o -1.246 0.296 -4.22
Criterion | WORKDUM -0.050 0.437 -0.12
function | FEMDUM 0.011 0.408 0.03
ACTCHOICE 1.905 0.362 5.26
o 1.309 0.233 5.62

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -571.10
p> = 0.44

Number of observations = 226

Table 5.7: Model 5: “Pick Car” and “Chooser” with interdependencies among re-
sponses: Agent-effects specification

function is negative and significant. Further, the standard deviation of the individual-
specific error component in the criterion function is significant. Given that this error
component may be interpreted as a “random” coefficient for the intercept in the
criterion function, we notice that once we take into account this randomness, the
mean of the intercept is significant. The sample average of the latent class probability
of belonging to the class “Pick car” (“Chooser”) equals 0.63 (0.37).

The log-likelihood of the model is -571.24, which improves on that of Model 1 by
80 units, while that of Model 3 by 31 units.

181



Model 6: “Pick Actual Mode” and “Chooser” with interdependencies

among responses: Identical decision protocol

Herein the decision protocols are specified as in Model 2: “Pick actual mode” and
“Chooser”. Further, as in Model 4, we assume that the individual adopts the same
decision protocol while responding to all the SP tasks.

Table 5.8 presents the estimation results. In the utility function the rail constant
is negative and significant, while the coefficient for actual mode choice dummy is
positive and significant. Further, compared to Model 2, the coefficients are scaled
down. For the choosers, the value of in-vehicle time is 51.6 Guilders/hour, while the
value of out-of-vehicle time is 50.2 Guilders/hour. Hence compared to Model 2, values
of time increased considerably. The coefficients for trip purpose and gender dummies,
and the number of transfers are insignificant. Unlike Model 2, the coefficient of actual
choice is positive indicating inertia effect in the utility function. This is expected since
in this model, for an individual to possibly belong to the class “Pick Actual Mode”,
he/she must pick the actual mode in all the responses. Consequently, the effect of
actual choice appears to be present both at the decision protocol level and the choice
level.

In the criterion function, the estimated coefficients of trip purpose and gender
dummies insignificant. Further, in contrast to Model 2, the constant is insignificant.
Consequently, an individual tends to have a higher probability of being a chooser. This
is manifested in the sample average of the latent class probability of belonging to the
class “Pick actual mode” (“Chooser”) which equals 0.38 (0.62), with the decrease in
the share of the class “Pick actual mode” compared to that of Model 2.

The log-likelihood of the model is -606.81, which improves on that of Model 2 by

48 units with no additional parameter.
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|| | Parameter | Estimates | Std. err. | t-stat ||

RAILDUM -0.414 0.149 -2.77
IVTT -0.310 0.130 -2.39
Utility | OVTT -0.301 0.237 -1.27
COST -0.006 0.003 -2.10
function | TRANS 0.048 0.091 0.49
WORKDUM 0.037 0.140 0.27
FEMDUM 0.037 0.113 0.33
ACTCHOICE 0.753 0.142 5.30
0o 0.111 0.155 0.72
Criterion | WORKDUM -0.008 0.230 -0.04
function | FEMDUM -0.290 0.203 -1.43
ACTCHOICE 1.088 0.228 4.77

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -606.81
p? = 0.41

Number of observations = 226

Table 5.8: Model 6: “Pick Actual Mode” and “Chooser” with interdependencies
among responses: Identical decision protocol
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Model 7: “Pick Actual Mode” and “Chooser” with interdependencies

among responses: Agent-effects specification

Herein the decision protocols are specified as in Model 2. Further, as in Model 5, we
allow the same individual to vary the decision protocols across responses.

Table 5.9 presents the estimation results for the model with agent-effects spec-
ification for the criterion function. In the utility function all the coefficients are
insignificant except for the coefficient of travel cost and actual choice. Surprisingly,
the coefficient of actual choice has a counter-intuitive sign. For the choosers, the
value of in-vehicle time is 16.6 Guilders/hour, while the value of out-of-vehicle time
is 33.5 Guilders/hour. Hence compared to Model 2, the value of in-vehicle time de-
creased. In the criterion function, only the constant and coefficient of actual choice
are significant.

The log-likelihood of the model is -574.54, which improves on that of Model 2 by
84 units given that we have only 1 additional parameter. Although the model fits
better than Model 6, the counter-intuitive sign for the actual choice coefficient in the
utility function suggests that the model may be misspecified. Therefore, we reject

this model.

5.6.3 Summary of Estimated Models

In Table 5.10, we summarize the log-likelihood value, the number of estimated param-
eters, the Akaike Information Criterion (AIC), 52, and the estimated values of time!®
(VOT) for each of the estimated models. In general, the models which incorporate
interdependencies through a agent-effects specification fit the data the best. On the
other hand, models which assume same decision protocol across responses tend to
fit the data better than the binary probit (Model 0), and models which ignore these

interdependencies (Model 1 and Model 2), and have more significant coefficients of

important attributes such as travel time and travel cost.

16Comparison of values of time across models with different structures or decision protocols is not
entirely appropriate since the value of time refers to the particular class of choosers.
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|| | Parameter | Estimates | Std. err. | t-stat ||

RAILDUM 1.399 0.768 1.82
IVTT -0.565 0.549 -1.03
Utility OVTT -1.140 1.086 -1.05
COST -0.034 0.012 -2.84
function | TRANS 0.579 0.403 1.44
WORKDUM -0.452 0.674 -0.67
FEMDUM -0.107 0.469 -0.23
ACTCHOICE -1.755 0.646 -2.72
b “1.225 0213 | -5.75
Criterion | WORKDUM -0.119 0.306 -0.39
FEMDUM 20299 0.231 | -1.29
function | ACTCHOICE 1.384 0.311 4.46
o 1.196 0.154 7.79

Log-likelihood of naive model = -1047.34
Log-likelihood at convergence = -574.54
p> = 0.44

Number of observations = 226

Table 5.9: Model 7: “Pick Actual Mode” and “Chooser” with interdependencies
among responses: Agent-effects specification
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We can conduct the Hausman’s specification test for comparing Model 1 and
Model 4, where the estimates in Model 1 are consistent and inefficient, while the
estimates in Model 4 are consistent and efficient under the null hypothesis of no mis-
specification. Since the test statistic is 1.92, and the critical value at 5% significance
for 12 degrees of freedom is 21.03, we accept Model 4.

In similar vein, we can compare Model 2 and Model 6. Since the test statistic is
41.17, and the critical value at 5% significance for 12 degrees of freedom is 21.03, we
can reject Model 6.

It must be noted that the models presented here provide only a preliminary as-
sessment of the potential for capturing decision protocol heterogeneity. In the data
the traveler’s characteristics which are postulated to guide the “choice” of the deci-
sion protocol are limited to gender and trip purpose, and consequently the criterion
function does not capture the effects of the gamut of individual time and budget
constraints, household constraints, etc. Further empirical work with other surveys
and in problem domains is necessary before such tools can be meaningfully adopted
in practice.

An empirical caveat in the estimation of such models must be noted. The pa-
rameter estimates tend to be “sensitive” or “non-robust” in the sense that inclusion
or exclusion of variables in the criterion function tends to change the choice model
parameters appreciably. Further empirical work is needed to assess the differential
impacts of including individual characteristics in the criterion function and the utility

function, and their substantive significance and interpretation.

5.7 Summary

In this chapter, we highlighted the need to capture variations in decision protocols,
provided empirical evidence to substantiate their significance, and discussed possible
determinants of such variations.

We outlined the latent class choice model for decision protocol heterogeneity.

Since decision protocols in RP and SP settings may differ for the same individual, we
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Model | Model Log-lik. | # of | Akaike | p? | VOT (Guilder/hr)
type par. in-veh. | out-of-veh.

No MODELO | -655.93 8 -663.93 | 0.37 | 27.3 20.5
interdep. | MODEL1 | -651.24 12 1-663.24 | 0.37 | 22.2 18.1
responses | MODEL2 | -653.25 | 12 | -665.25 | 0.37 | 37.7 47.0
MODEL3 | -632.8% | 9 | -641.88 [ 0.39] 20.1 10.5

With | MODEL4 | -602.49 | 12 | -61449 | 0.41 | 489 93

interdep. | MODELS | -571.10 | 13 | -584.10 | 0.44 | 13.4 14.3
responses | MODELG6 | -606.81 | 12 | -618.81 | 0.41 | 51.6 50.2
MODELT | -574.54 | 13 | -586.54 | 0.44 | 16.6 33.5

Table 5.10: Comparison of auxiliary statistics of estimated models: Decision Protocol
Study

discussed the need to combine RP and SP data, and outlined an approach to validate
the decision protocols exhibited in SP analysis. We applied the model to assess its

potential in the context of simulated travel mode choice experiments.
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Chapter 6

Latent Structure Choice Models

6.1 Introduction

In chapter 3 we developed the latent class choice model (LCCM) wherein the latent
constructs are discrete or categorical. Unlike the latent structure model reviewed in
section 2.3, wherein the latent constructs are manifested through a set of indicators,
we did not specify explicit indicators for the classes in LCCM. Rather, only the choice
indicator was utilized as an indirect indicator of the latent class.

To incorporate indicators of latent classes, in section 6.2 we elaborate on different
specifications of the measurement model, which maps from the classes to the indi-
cators, depending on the characterization of the latent class. In section 6.3 we link
the measurement model with the class membership model developed in chapter 3 to
obtain the latent class model (LCM). As reviewed in section 2.3, the traditional la-
tent class model primarily links discrete latent constructs and discrete indicators. In
this chapter, LCM encompasses cases wherein the indicators may be discrete and/or
continuous. Specifically, the LCM maps from a set of explanatory variables to a set
of indicators through intermediate constructs represented by latent classes. Subse-
quently, in section 6.4 we extend the LCCM to include latent class indicators.

It is instructive as this point to motivate the need for utilizing responses to atti-
tudinal and perceptual questions as indicators of latent constructs such as attitudes,

perceptions and latent classes. The reasons are primarily two-fold:
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1. Identification: To characterize latent variables such as attitudes and percep-
tions it is imperative that we have attitudinal and perceptual indicators for the
identification of the model parameters. It must be noted that the indicators
are necessary only in the model estimation stage and not in model applications,

and this notion will be apparent later in this chapter.

An important issue in addition to the theoretical issue of model identification is
that of empirical identification. The information content from only the choice
indicator may not be sufficient to empirically identify the latent constructs such
as choice set considered, taste variations, etc. To this end, the information from
the indicators are conjectured to aid in resolving such empirical identification

problems, if any.

2. Efficiency: We note that indicators contain important information about the

latent constructs, and we highlight this theme with two examples.

Consider a situation wherein the latent class characterizes the choice set con-
sidered and the indicators correspond to responses to alternative availability
questions gathered on a Likert-type rating scale, say 1-5 where 1 represents the
unavailability of the alternative while 5 represents its availability. Note that such
questions should be restricted to the non-chosen alternatives since the chosen
alternative is available. Thus, in principle, we can infer that an alternative with
a higher availability rating is more likely to be considered than an alternative
with a lower availability rating. Further, in the absence of any response biases,
an individual with a higher availability rating for an alternative is more likely to
consider it than another individual with a lower availability rating for the same
alternative. Consequently, such ratings enhance the information content avail-
able to the analyst, thus making them legitimate candidates for the indicators

of the latent class.

Consider a situation wherein the latent class characterizes individual’s sensi-
tivity to attributes. There is clearly no doubt that the importance ratings of

attributes contain information regarding the sensitivity to attributes, since we
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can infer that an individual with higher importance rating for an attribute is
more sensitive to that attribute than an individual with lower importance rat-
ing.

Consequently, noting that the indicators of latent constructs have information
content, in addition to the choice indicator, we can (potentially) gain efficiency

in model estimation.

In section 6.5 we develop the latent structure choice model (LSCM) which in-
corporates the gamut of attitudinal, perceptual and class indicators through latent
attitudes, perceptions and classes, and discuss issues of estimation. Operationally,
the LSCM links latent structure models, including latent variable models and the

latent class model, with choice models.

6.2 Latent Class Indicators: Measurement Model

Notation for the Latent Class Model

D = dimension of the class membership vector.

T, = D-dimensional random vector which denotes class membership of

individual n, i.e., T,, = [l1,...,lp] where l; is the level in dimension d.*

s = latent class index with s = 1,...,.5, where .S number of latent classes.

1 if individual n is in latent class s

Iz, =

sn . 2
0 otherwise

A, = P x 1 vector of indicators of the latent class.
To keep the measurement models in perspective, we provide illustrative examples

with special attention given to the latent class characterizations considered in chap-

ter 3 (i.e., taste variations, choice set and decision protocols) and the indicators in

114 may be a binary variable or an ordered categorical variable.
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each example. We also outline two additional examples of latent class and associated
indicators. Noting that the latent class characterizes a multi-dimensional construct,

we categorize the latent class indicators into:

1. Class-specific indicators: Herein all the indicators are associated with each
latent class as such, with the distribution of the indicators specified conditional
on the latent class. This is the case when the latent class is categorical such as

decision protocol.

2. Dimension-specific indicators: Herein one or more indicators are associated
with the dimensions of the latent class vector. Further, the distribution of
these dimension-specific indicators is specified conditional on the level of the

corresponding dimension.

Naturally, one may allow for some indicators to be associated with a subset of the
dimensions (similar to the class-specific case), while the others may be dimension-

specific. The above categorization will be transparent in the following examples.

1. Latent Choice Set Ezample: Consider a situation where the latent class rep-
resents the choice set considered. The indicators of the latent choice set may

include responses to questions such as:

Would you consider alternative j as being available to you?

t 1 1 } }
definitely 1 2 3 4 5 definitely
unavailable available

Specifically, this alternative availability rating is an indicator of the per-
ceived (unobserved) availability of the alternative, and thus the indicators are

dimension-specific.
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2. Taste Variations Ezxample®: Consider a situation wherein a respondent rates the
importance of attributes of alternatives. These importance ratings may be pos-
tulated to be indicators of the individual’s sensitivity to attributes. Further,
interrelationships among the individual’s sensitivity to attributes may exist,
and consequently, the individual’s sensitivity to attributes may be generated
by a smaller set of sensitivity dimensions. For example, consider a shipper’s
freight transportation mode choice situation, and the shipper’s importance rat-
ings on the following service attributes: transit time, transit time reliability,
rate, payment terms and billing, loss and damage, usability of equipment, and
responsiveness, are available. We may postulate that there exists three shipper’s
attitude dimensions — time-sensitivity, cost-sensitivity, and service-quality sen-
sitivity — with two levels in time-sensitivity and service-quality dimensions, and
three levels in the cost-sensitivity dimension. Further, the importance ratings
of transit time, and reliability of transit time may be utilized as indicators of
time-sensitivity, those of rate, payment terms and billing, and loss and damage
as indicators of cost sensitivity, and those of usability of equipment, responsive-
ness, and level of effort required to deal with the carrier as indicators of service
quality sensitivity. In this case, the indicators are dimension-specific, with a set

of indicators associated with each dimension of the latent class.

3. Decision Protocols: In the case of latent class characterizing the decision pro-
tocol adopted, the class indicators are less obvious. As reviewed in section 5.2,
studies in behavioral decision research (see, for example, Nisbett and Wil-
son [1977]) note that differences in verbal protocol reports may reflect variations
in decision protocols. Consequently, these reports may be utilized as indicators
if the reports can be appropriately and reliably “coded” on some measurement
scale to capture the degree of prozimity of a particular individual’s verbal report
to each of the decision protocols. Svenson [1974] and Thorngate and Maki [1977]

report high interjudge agreement for trained coders. It must be noted though

3This example is taken from the work of the Vieira [1992], and is studied in more detail in
chapter 7.
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that such verbal reports are not collected in transportation surveys. In this
case, the indicators may be class-specific, since the “proximity” ratings may be

utilized as indicators of the categorical latent class.

Another potential indicator in the context of stated preference experiments is
the time taken to respond to SP tasks. This indicators is intuitively appealing
since an individual who takes more time to respond is more likely to adopt a
more cognitively demanding decision protocol compared to an individual who

takes less time.

Two additional examples of latent class and the associated indicators include:

1. Latent Choice Example: In stated preference experiments the respondent may
be provided with a scenario wherein the attributes of the alternatives are set
at different levels, and may be asked to rate each alternative on a Likert-type
scale to provide preferences toward the different alternatives. A simpler pref-
erence gathering scheme, referred to as pairwise rating task, is to provide each
respondent with two alternatives at a time and request a preference rating to
gather the relative preferential information between the two alternatives. In
such experiments the choice is unobserved, and hence may be characterized
by a latent class. The ratings are postulated to be indicators of the latent
choice (see Gopinath and Ben-Akiva [1993]). In this case, the indicators are

class-specific.

2. Latent Lifestyle Example: In travel demand modeling, the concept of lifestyle
is hypothesized to capture long term decisions of individuals and households
which guide their preferred pattern of mobility, activity and travel choices,
and is expected to be a key “higher” level factor substituting for traditional
social class and economic status variables (Salomon [1980], Salomon and Ben-
Akiva [1983]). Since the lifestyle concept is unobserved, it may be captured
through latent classes. The indicators may include responses to questions about

themes such as:
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(a) orientation towards work, leisure and activities pursued;

(b) attitudes towards family formation, interactions between male and female

heads of the family, etc.;
(c) (dis)like of tele-options which may substitute travel;
(d) importance of the attributes of travel and no travel related choices;
(e) environmental concerns, philosophical proclivities, etc.; and
(f) political affinities and attitudes.

Given an overview of the possible types of class indicators, we turn our attention to

the measurement model specifications.

6.2.1 Class-specific Measurement Model

Let a,,, Vp=1,..., P, denote the pth indicator for individual n, where P is the num-
ber of indicators. Let A, = [ain,...,apy] and gps(apm; ¢ps) denote the conditional
density of indicator a, given latent class equals s with parameters ¢,s. Assuming that
the indicators given the latent class are independent which is an assumption usually
referred to as conditional independence (see section 2.3), the conditional density func-

tion of the indicators is written as

P
g(An”:n = 1; ¢s) - H gps(apm gbps)- (61)
p=1
where ¢5 = [¢1s,...,¢ps]. It can be observed that if each indicator’s conditional

density gps(apn; dps) comes from the exponential family, such as a normal density, the
complexity of the conditional density of the indicators reduces significantly.

We illustrate the measurement model for the latent choice example in Figure 6-1
for the case of pairwise stated preference rating task. Intuitively, if the individual
would choose alternative i () then, the analyst would expect a lower (higher) indi-
vidual’s rating on the 1-9 point scale. Consequently, if the alternative that would

be chosen is i (j), then the parametric distribution of the rating is given by the one
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Conditional distribution Conditional distribution of

of Rating given choice=i Rating given choice =j
Definitely <@ Definitely
choosei choosej
t t t t t t t t }
1 2 3 4 5 6 7 8 9
Rating Scale

Figure 6-1: Illustration of Measurement Model for Latent Choice Example

illustrated on the left (right) side of Figure 6-1. If one assumes that the ratings are or-
dered categorical variables, then the conditional distributions of the ratings should be
represented by probability mass functions. It must be noted that such a probability

mass function may be represented through an ordinal probability model.

6.2.2 Dimension-specific Measurement Model

Let A% = [af,,...,a%,,]" denote the P; indicators for dimension d of the latent class.
Let gpdl(a]‘fn;%dl), Vp = 1,..., P;, denote the conditional distribution of indicator
agn given that the level of the latent class along dimension d, i.e., Ty,, equals [ with
le€{l,..., Ly} where Ly is the number of levels in dimension d. Assuming that these

indicators are independent given Ty, = [, the conditional density function of A? is

written as
Py
9(AN | Tin = 1 ¢ar) = 1 gpar(an; Spar)- (6.2)
p=1
where ¢4 = 141, - - -, ¢p,ar). Further, assuming that the indicators A? are indepen-

dent across dimensions given the levels in each dimension, the conditional density of
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7

A, = [All, ..., APV is given as:

D Py

g(An‘Tn = [llv SRR ZD]/; ¢1l17 ) ¢DZD) = H H gpdld<agn; ¢pdld>' (63>

This measurement model specification may be utilized if the analyst identifies specific
indicators associated with each of the latent dimensions*. In most situations, at least
at the stage of confirmatory analysis, the analyst has sufficient information from
exploratory data analysis to “lend” character to each latent dimension through its
“attributes” which are the indicators associated with that latent dimension. As noted
earlier, some of the indicators may be discrete or ordered categorical with a conditional
probability mass function.

To highlight this specification of the measurement model, we go back to our taste
variations example schematized in Figure 6-2. The distributions of the indicators of
cost-sensitivity are specified given the cost-sensitivity level. Similarly, the distribu-
tions of the indicators of time and service-quality sensitivity are specified given their
corresponding levels.

Assuming that the indicators are continuous we can represent the above specifi-
cations of the measurement model as linear measurement models as in the LISREL
model system, with some additional notation. Consider the measurement model
wherein the indicators are class-specific, i.e., they are specified conditional on /%, = 1.
Denote the S-dimensional binary vector L} = [I5, = 0,...,0%, = 1,...,lsn = 0]
with only one of the components (here the sth component) taking the value 1°. The

measurement model is written as:

Ap = AL + (6.4)

41f an indicator apy 18 postulated to reflect several dimensions, say d and d’, then the conditional
deunsity of a,, may be specified given the corresponding levels lg and {g . In this vein, the specification
is analogous to the class-specific measurement model though we restrict our attention to a subset of
the dimensions, which may referred to as a sub-class.

®Note that L = T),, and the additional notation L is to parallel the one for the dimension-
specific measurement model.
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Conditional distribution of indicators Conditional distribution of indicators
given cost sens. level = LOW given cost sens. level = HIGH

Conditional distribution of indicators
given cost sens. level = MEDIUM

LOW MEDIUM HIGH

Cost Sensitivity

Conditional distribution of indicators Conditional distribution of indicators
given time (service-quality) sens. level = LOW given time (service-quality) sens. level = HIGH

AL

HIGH

Time (Service-quality) Sensitivity

Figure 6-2: Illustration of Measurement Model for the Taste Variations Example
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where A is a P x S parameter matrix, and ¢, is a P x 1 random vector. Unlike the
measurement model in the LISREL model wherein an element of each column of A
is set to 1, no such scaling restrictions are necessary. This specification allows for
“shifts” in the conditional distributions of the indicators, with the st column of A
corresponding to the conditional means of the indicators given that latent class equals
s. Herein, we assume that the conditional variances are invariant across classes. The
assumption of conditional independence is equivalent to the assumption of indepen-
dence of the components of ¢,.

In a similar manner, we may construct the dimension-specific measurement model.
As a first step, we restrict our attention to the measurement model for the P, indi-
cators of dimension d. Let L}, denote the Lj-dimensional binary vector wherein the
lfih component takes the value 1 if the latent class level in dimension d equals [; and

0 otherwise. Thus the measurement model for the P, indicators may be written as:
AL = NJL + ean (6.5)

where A is a Py X L, parameter matrix. As before the l(tjh column of Ay corresponds
to the conditional means of the P; indicators given the the latent class in dimension

d is in level [;. The complete measurement model may be written in a compact form

as:
where
A711 €1n LTn
A, = , €= , and L) (6.7)
AnD €Dn L*Dn
and
Ay O 0
0 Ay -~ 0
A= . (6.8)
0 O Ap

Even here the conditional variances are assumed be invariant across the levels in each
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dimension, and the assumption of conditional independence refers to independence of

the components of ¢,.

6.3 Latent Class Model

In the traditional latent variable model we assume that the latent constructs are
continuous. But this assumption may be inappropriate in many applications, partic-
ularly in the social and the behavioral sciences, wherein the latent constructs such as
intelligence, character, personality, etc. are more meaningful as discrete or categorical
concepts. The latent class model, which is analogous to the latent variable model, is
appropriate for such situations.

The LCM presented here maps from a set of explanatory variables to a set of
indicators through intermediate constructs represented by latent classes. We extend
and refine traditional LCM by linking the class membership model with the indicators
of latent classes.

Figure 6-3 outlines the framework for the latent class model. Z,, denotes the () x 1
vector of explanatory variables which affect the class membership of individual n.%
The latent classes are assumed to be mutually exclusive and collectively exhaustive.
The indicators, A,, are assumed to be manifestations of the latent class. These
indicators may be discrete or continuous’.

A class membership model, denoted by Q4(Z,;6) where 0 is a parameter vector,
captures the mapping from Z, to the latent class, while the measurement model

captures the mapping from the latent class to A,,. The measurement model specifies

the distribution of the indicators given the latent class, and is denoted by g(A,|l%, =

6For case of exposition, we assume a multiple indicator multiple causes analogue of the LCM
such that the explanatory variables are perfectly measured. After the complete presentation of the
LCM, it may be transparent to the reader how to extend the LCM for cases wherein the explanatory
variables may be latent (i.e., latent ezogenous variables in the terminology of latent variable models
as discussed in section 2.3.1, page 46). Such extensions are presented within the development of
LSCM.

"In this vein, the latent class model as presented in this chapter encompasses the latent profile
model with causal class membership functions.
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Figure 6-3: Latent Class Model: Multiple Indicator Multiple Causes
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1; ¢5) where ¢ is a class-specific parameter vector.® Combining the class membership
model and the measurement model, the latent class model f(A,|Z,;0, ) is written

as:
S

F(An]Z03;0,0) = > 9(An|ls, = 15 05) Qs(Zn3 0). (6.9)

s=1

where ¢ = [¢1, ..., ¢s].

In a similar vein, if the measurement model is dimension-specific, f(A,|Z,;0,¢)

is written as:
Iq Lp D Py J
f(An‘Zn; (97 ¢> = Z to Z {H H gpdld(apn; (bpdld)} ’
=1 Ip=1 | ld=1p=1

P(T, = [h,...,1p]|Zn; 0) (6.10)

As seen in chapter 3, the class membership model, Qs(Z,;#), maps from Z, to
the latent class probabilities through a set of criterion functions. The specification of
(Q)s(+) depends on the specific problem context and characteristics of the latent class
being modeled. Consequently, depending on the latent class characterization and the

associated class membership model, we define three latent class models:
1. Categorical Criterion Latent Class Model;
2. Binary Criteria Latent Class Model; and

3. Ordinal Criteria Latent Class Model.

6.4 Latent Class Choice Model with Indicators

Figure 6-4 outlines the framework for the latent class choice model with class indi-
cators. The components of the framework are self-explanatory. The model includes

two sub-models: (1) latent class model, and (2) class-specific choice model.

8In principle, to capture response biases in the elicitation of the class indicators across gender,
education, etc., we may specify the measurement model as g(A4,|l%, = 1, Z,; ¢s) where Z,, include
the corresponding socio-economic and demographic variables.
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The latent class model consists of the class membership model, Q,(Z,;0), and
the measurement model for the class indicators, g(A,|l%, = 1; ¢s). The class-specific
choice model predicts the choice behavior of an individual in latent class s, and thus
depends on the choice set, (Cj), taste parameters (5;), and the decision-protocol
(Rs) associated with each class. The class-specific choice model expressing the choice
probability of alternative ¢ for individual n who is a member of class s can be written
as:

P(yin = 1|Xu; Bs, Cs, Rs). (6.11)

Assuming that the class-specific choice model is independent of the conditional dis-

tribution of the class indicators, the probability of observing [yn, A,| is written as:

S
P(ym7 An|Xna Zn; 9, ﬂa Qb) = Z P(ym|Xna ﬁsa Csa Rs) g(An”:n = 17 Cbs) QS(Zru 9)

- (6.12)

6.5 Latent Structure Choice Model

In the latent class choice model with indicators, we postulated that the unobserved
heterogeneity is adequately captured through discrete or categorical constructs. We
extend this model, to include heterogeneity stemming from individual’s attitudes and
perceptions, and thus incorporate the associated attitudinal and perceptual indica-
tors. To this end, we advance a fairly general and comprehensive representation of
the choice process.

The model formulated in this section is expected to transcribe the main ideas
presented in the conceptual framework for choice modeling which is illustrated in
Figure 1-1, into an empirically verifiable statistical model system wherein we postulate
that the observed or stated choice behavior is the outcome of a probabilistic data
generating process molded by a host of psychological factors.

Before we dive into the details of the model, it is instructive to view the model as
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Figure 6-4: Latent Class Choice Model with Indicators
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one subscribing to the following intuitive notions®:

e Perceptions attempt to “explain” part of the “unobserved” or random com-
ponents of the alternative utility functions better through individual-specific

unobserved components; and

e Attitudes attempt to “explain” unobserved individual heterogeneity, such as
taste variations, choice set heterogeneity, decision protocol heterogeneity, etc,

better.

The guiding philosophy in its development is that the incorporation of individual’s
attitudes and perceptions leads to a more behaviorally realistic representation of the
decision-making process, and consequently to “better” predictive models. Further,
the objective is to develop an operational modeling approach which is sufficiently
general to warrant its adoption in diverse choice modeling contexts. To this end, the
presentation of the modeling approach is rather abstract with illustrative examples

to fathom underlying cryptic concepts.

Notation for the Latent Structure Choice Model

s = latent class index, with s = 1,...,.5, where S equals the number of

latent classes.
C, = choice set available!? to individual n, where |C,| = J,.
Bs = choice model parameters'! specific to class s.

C, = choice set specific!? to latent class s with |C| = Js.

Tt must be noted that perceptions may affect, in addition to alternative utilities, other stages of
the choice process such as choice set formation, “choice” of adoption of decision protocol, etc. This
issue will be highlighted in the illustrative example.

10T his refers to the set of alternatives deterministically available.

MFor simplicity we assume these parameters are fixed. In principle, one can allow random taste
parameters for each class.

12For notational simplicity, we assume that the choice set is class-specific, though some of the
subsets of the universal choice set may not be available to individuals due to availability restrictions.
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R, = decision protocol specific to latent class s.
D = dimension of the class membership vector.

T,, = D-dimensional random vector which denotes the class

membership, i.e., T, = [l1,...,lp] where l; is the level in dimension d."3

Hapn = kth criterion function for latent class dimension d = 1,...,D,
Vk=1,..., K4, where K  is the number of criterion functions for

dimension d.

1 if individual n is in latent class s

sn .
0 otherwise

Z, = @z x 1 vector of observable characteristics of individuals.
Z% = Mz x 1 vector of latent characteristics of individuals.
Azn = Pz x 1 vector of indicators of the latent vector Z.
As., = Ps x 1 vector of indicators of latent class for individual n.

U;sn = utility of alternative ¢ to individual n in latent class s.

1 if alternative 7 is chosen by individual n
Yin =
0 otherwise

Xin = Qx X 1 vector of observable attributes of alternatives and characteristics

of individual for alternative ¢ € C,,.

X*

n

= My x 1 vector of latent attributes of alternatives and characteristics

of individual for alternative ¢ € C,,.
Ax., = Px x 1 vector of indicators of the latent vector X.

W,, = Qw x 1 vector of observed explanatory variables'* affecting the latent

* *
vectors Z», X .

3Note that Ty, = [T = l1, ..., Tun = la, ..., Tpn = [p] where Ty, denotes the ath component
of T,,. lg may be a binary or an ordered categorical variable.
14These variables may include both individual characteristics and attributes of alternatives.
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The modeling framework is schematized in Figure 6-5. In the figure, rectangles
represent observable set of variables (explanatory variables as well as indicators of un-
observed constructs), while ellipses represent unobserved constructs. The key features

are:

1. Incorporation of latent variables such as attitudes and perceptions; and

2. Incorporation of discrete or categorical latent constructs such as choice sets,

decision protocols, and taste variations through latent classes.

To this end, we encompass latent variable models and latent class models under the
umbrella of latent structure models. Further, since we develop a choice model with
explicit links to latent structure models purportedly to enrich the choice model, we
refer to the choice model as the latent structure choice model.

The primary focus of our interest is in modeling the underlying process govern-
ing the individual’s choices and preferences indicated'® by w;,. The choice process is
hypothesized to vary systematically across a finite set of “unobserved” groups, and
to be homogeneous within each such group'®. Since each homogeneous group is un-
observed, the groups are characterized by latent classes which are mutually exclusive
and collectively exhaustive (i.e., an individual is a member of at most one class and
at least one class). It must be emphasized that the homogeneity of the classes is with
respect to the unobserved constructs such as tastes, decision protocol, and choice set,
and not with regard to explanatory variables.

The observable individual characteristics, Z,, and the individual’s attitudes, Z,
are postulated to explain or affect the individual’s class membership indicated by

Iz,. The latent classes manifest themselves through observable indicators Ag.,'". The

15Tt must be noted that w;,, the indicator of the underlying preference, may include the choice
indicator in a revealed preference context, and stated preferences such as alternative ratings and
rankings and stated choice in hypothetical choice experiments.

161 principle we can also allow for unobserved heterogeneity within each group, to capture
individual-specific preference biases and idiosyncratic taste variations which may not be captured
through unobserved heterogeneity in tastes, decision protocol, and choice set considered, especially,
in the presence of multiple responses per individual such as in discrete panel data and stated pref-
erence tasks.

1"Note that the indicators, which are typically responses to attitudinal questions, may also depend
directly on characteristics of individual to capture response biases.
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individual’s attitudes Z are postulated to be formed through an attitude formation
process represented by a mapping from observable explanatory variables, W,, (which
may include both individual characteristics and attributes of alternatives). Further,
these attitudes are manifested through the observable attitudinal indicators Ay.,.

The utility of alternative ¢ for individual n, Us,, depends on the observable at-
tributes of alternatives and individual characteristics, X;,, the intangible or percep-
tual attributes, X,
ically, X}

in

and the latent class s to which the individual belongs. Specif-
includes attributes of alternative ¢ as “perceived” by the individual, and
hence, affect the choice process, but are not directly observable to the analyst. X7,
are formed through a perception formation process which is represented by a mapping
from W, to the perceptual indicators Ax.,. The perception formation process cap-
tures the notion that the same objective reality, as represented by the decision-making
environment, may be perceived differently by individuals depending on how the in-
dividual processes the information, and consequently are purportedly incorporated
through individual’s socio-economic and demographic characteristics.

It must be noted that Z* may represent attitudes and/or perceptions. For exam-
ple, if the latent class characterizes the choice actually considered by an individual
in a particular choice situation, then Z} may include perceptions of the attributes of
alternatives in terms of “cognitive” categories or thresholds which may be utilized in
a non-compensatory choice set formation process. On the other hand, if the latent
class characterizes taste heterogeneity, then Z* denotes attitudes such as individual’s
sensitivity to attributes of alternatives. For simplicity of exposition, we assume that
7 represents attitudes.

Before we proceed with the formulation and specification of the LSCM, it is use-
ful to crystallize, at the very outset, the aforementioned concepts through a shipper’s
freight mode choice example. Herein X, includes observable service attributes such as
transit time, rate, etc. X, includes the shipper’s perceptions about intangible service
attributes such as “service-quality”, “reliability”, which may affect the choice process,
but are not directly observable. Shipper’s form perceptions about carriers and their

attributes depending on past experiences, communications of carriers, along with the
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objective service-related attributes. Further, perceptions are formed in conjunction
with the shipper’s service requirements such as delivery schedule, shipment size, spe-
cial needs and customizations, etc. Hence, it must be emphasized that shippers with
different characteristics and requirements may perceive identical unobservable service
attributes of carriers differently. Consequently, W,, may include shipper’s character-
istics as well as “engineering” or objective attributes of the different carriers.

Perceptions are manifested through satisfaction ratings of service attributes'® such
as equipment (e.g., equipment availability, condition of equipment), consistency (e.g.,
consistency of pick up and delivery, transit time reliability), convenience (e.g., ship-
ment tracing, responsiveness to inquiries), integrity (e.g., accuracy of billing, respon-
siveness to claims), and flexibility (e.g., rerouting, rescheduling, handling of emer-
gency shipments, special pickup and delivery schedules), and which form Ay.,. These
satisfaction ratings may be collected on a Likert-type scale in surveys of shippers.

Z may characterize shipper’s attitudes or sensitivity to attributes such as time-
sensitivity, cost-sensitivity, service-quality sensitivity, etc. Attitudes are formed by
past experiences, shipper’s needs and requirements, and shipper’s characteristics
which may include earliest acceptable delivery time, annual sales, maximum accept-
able delay, electronic data interchange (EDI) usage, annual tonnage shipped, average
length of haul, value of shipments, etc. The indicators of attitudes, Ay.,, may in-
clude shipper’s importance ratings of service attributes, including intrinsic preferences
towards different carriers. These importance ratings may be also be collected on a
Likert-type scale.

The latent class, [%,, may characterize the carriers actually considered by the ship-
per for a particular shipment. There may also exist a carrier which is the shipper’s
core carrier. The indicators, Ag.,, of the latent class may include responses to ques-
tions such as: Would you consider carrier j as being available to you?. The latent class
may also characterize groups of shippers with similar response patterns to changes in
service attributes (i.e., market segments) wherein the importance ratings of service

attributes are used as latent class indicators.

18See the study by La Londe and Cooper [1989] for more details.
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The preference indicator y;, may include shipper’s shipment shares across com-
peting carriers in particular corridors or origin-destination markets, and/or ratings,
rankings and stated choices of transportation alternatives in hypothetical situations

settings.

Going back to the formulation of the LSCM, we postulate the following relation-
ships among the observable and latent variables/classes of interest. The structural
equations relate the explanatory variables to the latent variables/classes, while the
measurement equations relate the latent variables/classes to the observed indicators.
Specifically, the model system used in the implementation of the schema as illustrated

in Figure 6-5 includes:

1. Structural Model consisting of the relationships between the relevant problem
characteristics such as attributes of alternatives, individual’s socio-economic
and demographic characteristics, and the individual’s attitudes, perceptions

and class membership, and the underlying preferences towards alternatives.

2. Measurement Model consisting of the relationships between the underlying pref-
erences and the revealed preferences & the stated preferences in surveys with
different response formats which capture the response biases and protocol ef-
fects; the mapping from the latent attitudes, perceptions and classes to the

corresponding attitudinal, perceptual and class indicators.

Given the overview of the LSCM, we outline the specification of the structural
and measurement models of LSCM. The specification of LSCM boils down to the

specification of the relationships (the “arrows”) in Figure 6-5.

Structural Model

Let fi(-) denote the mapping from W, to Z* with associated parameter vector I' !9

Similarly, f2(+) denotes the mapping from W, to X;; with associated parameter vector

"In the notation for the structural and measurement equations and the following discussion
we denote only the “structural” or “systematic” parameters and deliberately suppress parameters
associated with “random” components.
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['x. The utilities U;s, for individual n in latent class s are specified as functions U(+) of
observable attributes X;, and unobservable attributes X, with taste parameters 320,
Since we assume that attitudes, perceptions, and utilities are continuous variables,
the mappings fi(+), f2(-) and U(-) are real functions.

The specification of the probabilistic mapping from 7, and Z to [%, is through
the specification of criterion functions® Hgy,, Yk = 1,..., K4, ¥d = 1,...,D, and
consequently, through a class membership model. Depending on the latent class
characterization, a class membership model denoted by Q.(-) with parameters 6 is

postulated. The generic specification of the structural model can be written as:

Zy = [(WaiTy) (6.13)
Hdkn = H(ZmZ:;;gdk), Vk’ = 1, . .,Kd, Vd = 1, e 7D (614)
P(l* =1) = Qu(Hagm, Vk=1,..., Ky, ¥d=1,...,D)

= Qu(Zn,25:0), ¥s=1,....S (6.15)
X, = fo(WyTx) (6.16)
Uisn - U(vaXz*nvﬂS)a Z S 087 VS = ]-7 sy S (617)

Measurement Model

The measurement equations are specified in a similar vein. The function ¢;(-) with
parameters Az maps from the latent vector Z* to the associated indicators Agz.,.
Similarly, the function g3(-) with parameters Ax maps from the latent vector X7
to the associated indicators Ay.,. The indicators of the latent classes are specified
as functions go(+) of [%, with parameters ¢;. The class-specific choice model is the
probabilistic mapping from the class-specific utility functions to choice, and is given
by a function g4(-) which maps the class-specific utility functions to the choice i given

the associated class-specific decision protocol and choice set. The generic specification

20The effects of latent concepts such as decision protocol and choice sets considered are subsumed
in the choice model conditional on these latent concepts, and hence not explicitly denoted in the
utility functions.

2y, Ve =1,...,Kg, Vd=1,...,D are the corresponding systematic components.
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of the measurement model can be written as:

Az = gi(Zy; A7) (6.18)
P(Agnlls, =1) = go(ds), Vs=1,....8 (6.19)
Axyn = 93X Ax) (6.20)

Pym =15, =1) = ¢(Ujsn, Vi € Cs;Ry), i€ Cn; Vs=1,...,5 (6.21)

It must be noted that the functions ¢;(-) and gs(-) depend on how the indicators
Az, and Ax., are measured. Consequently, we may adopt functions mapping from
continuous variables into continuous or ordered categorical variables. For simplicity
of exposition we assume Ay, and Ay, are continuous variables. In appendix C
we present a measurement model wherein the indicators are ordered categorical. The
function go(-) depends on the characterization of the latent class, and correspondingly
we may adopt the measurement model specification as discussed in section 6.2. The
mapping ¢4(-) is either deterministic or probabilistic depending on the class-specific
choice set and decision protocol.

For simplicity, we did not allow the functions ¢;(-), g2(-) and g3(-) to include indi-
vidual characteristics or any other variable determined within the model system such
as the choice indicator. In principle, such parameterizations can be allowed to capture
systematic response biases when the individual is providing perceptual, attitudinal
or class indicators. For example, if the individual is responding to the question pur-
ported to elicit the perceived availability of an alternative, then the response may be
affected by the individual’s desirability of the alternative (see Ben-Akiva and Boc-
cara [1993]). To illustrate another example of this issue, consider a situation wherein
the individual is requested to provide an overall measure of satisfaction with an al-
ternative. This indicator may be tainted depending on whether the alternative was

chosen in a recent choice situation.
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6.5.1 Model Formulation & Specification

In this section, we formulate and specify the structural and measurement equations

in more detail. The sequence followed for the presentation is:
1. Latent Variable Sub-model,;
2. Latent Class Sub-model; and

3. Discrete Choice Sub-model.

Latent Variable Sub-model

Herein we specify the the relationships among the latent variables Z} and X, the
corresponding indicators Az, and Ax.,, and the explanatory variables W,. The
mappings from the exogenous variables to the latent variables form the structural
equations, while the mappings from the latent variables to the indicators form the

measurement equations.

Structural equations for latent vector Z* and X*:
Assuming linear in parameters functional forms for the structural equations of Z*

and X*, we have

75 = By Z + T W, + (2 (6.22)
X? = By X+ TxW, + (x (6.23)

The matrices Bz and By allow for the latent variables to affect each other to capture
structural dependencies among the components of the latent vector Z* and X*. The
matrices (I — Bz) and (I — By) are assumed to be non-singular. The matrices I'y
and 'y capture the effects of W,, on the latent vectors. (5 and (x are disturbance
vectors with E((z) = 0, E({x) = 0, and which are uncorrelated with W,,. We assume,

without any loss of generality, W, to be in deviation form.

Measurement equations for latent vector Z* and X*:
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Assuming linear in parameters functional forms for the measurement equations
for Z* and X*, we have

AZ:n == AZZ;‘ + €z (624)
AX;n == A)(X: + €x (625)

where Ay and Ax are coefficient matrices that capture the relationship from 7 to
Az, and from X to Ax., respectively, and €, and ex are the errors of measure-
ment for Az, and Ax.,, respectively. The errors of measurement are assumed to be
uncorrelated with ¢z, (x, Z,, X, and with each other. The expected values of €z
and ey are zero. To simplify matters, Az.,, Ax., are written as deviations from their

respective means.

Latent Class Sub-model

In section 6.3, a latent class model analogous to the latent variable model was pre-
sented. In the LSCM, the latent class model forms a sub-model. The process of as-
signment of an individual to a latent class is governed by a class membership model.
As before, we postulate the existence of criterion functions which map from 7, and

Z* to a vector of latent variables Hyp, Vk =1,..., Ky;Vd =1,...,D.

Structural equation for criterion functions:

Assuming a linear functional for the criterion functions, Hg, can be specified as:

Hy., = dian + 9’2*de; + Odkn, Vek=1,.... Kz¥Vd=1,...,D (626)

where 0.4, and 6.4, are unknown parameters to be estimated and 64, is a random

error Component .

Structural equation for latent class: class membership model:

The class membership model, Q(Z,, Z;;6), maps from Z, and Z to the latent
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class probabilities through the criterion functions, Hg,, i.e.,

P(lY, =120, Z5:0) = Qu(Hpym, Vk=1,...,Kz,¥d=1,...,D)
= Q.(Z,,250), Vs=1,...,8 (6.27)

The specification of the function Qs(-) depends on the specific problem context,
and the latent class characterization. Following along the lines of the class member-
ship models developed in section 3.3, three types of membership models are briefly

presented.

Categorical Criterion Model

Herein each latent class s is associated with a criterion function Hg,, and a cri-
terion maximizing rule associates a latent class with the criterion functions. The
indicator function for the latent class s is written as:

1 if Hop(Zn, 255 05) = _max S{Hsln(Zn7 Z%:04)}

lon = ve'=l,, (6.28)
0 otherwise

Then by assuming different parametric distributions for (81y, ..., 0sn), different class

membership models such as the MNL-type and MNP-type models can be constructed.

Ordinal Criteria Model

Suppose the latent class can be characterized by ordered levels along each of the
D dimensions of the class. The modeling approach is to assume that each dimension
d is captured by a criterion function Hy. Let L, represent the levels along dimension
d.

The membership model is formulated under the assumption that Z, and Z; af-
fect the level of latent dimension d through a “threshold crossing” model wherein a
particular level is triggered if the corresponding criterion function falls between two

thresholds. Let the criterion function Hy,,Vd = 1,..., D for individual n be written
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as:

Hop =042, +0..32" + b4, VYd=1,...,D (6.29)

Further, correlations among the random components of Hy's (i.e., d4's) are allowed
to capture the unobserved interrelationships among the dimensions. Thus, the prob-
ability of individual n being in latent class T, = [l1,...,[lp]" (with index s such that

(i, =1 eT,=[3....015]<l;=1Yd), denoted by Qs(Z,, Z*,0), equals:

o)
P

(71(271 < Han < Tzi))

(71(2—1 < HédZn + 9;*(12:;, + ban < Tzi))

I
o
<<
Do iDsiDs

I

)—U
YOS
I

(10 = 0o — 0y Z < San < 71y — 0y Z, — 9;*d22)> (6.30)
1

where 7% are the threshold parameters for dimension d. By specifying different para-
metric distributions for (61, ..., 0py), different class membership models can be con-
structed.

Binary Criteria Model

In this case the latent class is identified by an D-dimensional vector, with each
dimension represented by a binary variable. The d™ dimension takes the value 1
if, and only if, Hy, > 0, Vk = 1,..., K;. Assume that the random components of
criterion functions across dimensions of the latent class are independent (i.e., if 5 =
(014, - -, 0K 4a) and O = [014r, ..., 0k, @], then 6q and 64 are independent Vd # d’).
The probability of the individual being in latent class T,, = [I1,...,[lp]" equals

= P(Tjp=1l4, ¥d=1,...,D)

— P ({ A (8akn > Vi) , Vellla = 1} A

k=1

{(Hk e{l,...,Kq}: (5d,m < v;kn)) Vd|lg = o})

(6.31)
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where v, = —0. 5 Zn — O 2, Vh=1,... K,.

By the assumption of independence of random components of criterion functions
across latent dimensions the above equation reduces to:
D
Qs(Zn, Z3:0) = T [P(Tun = 1|20, Z5: 00" [1 = P(Tu = 1|20, Z3360))' " (6.32)

d=1

Measurement equation for latent class:
The measurement equation for the class indicators, A, can be expressed as dis-

cussed in section 6.2.

Discrete Choice Sub-model

Structural equation for latent preferences:
The structural equation for the utilities of alternatives is expressed as a linear
in parameters function of the observable attributes of alternatives and individual’s

characteristics, Xj,, and the perceptual attributes X7, given the latent class s.
Uisn = BogXin + Boe X5 + Vien, Vi€ CgVs=1,...,8 (6.33)

The utility specification is meaningful only for those latent classes wherein the class-

specific decision protocol is utility maximization.

Measurement equation for latent preferences:
We assume for simplicity that the indicator of the preferences of alternatives is
the choice indicator??. If in a particular latent class, say s, an alternative is hypoth-

esized to be chosen according to a random utility maximizing protocol®® then the

22Indicators such as stated preference rankings and ratings can be suitably incorporated.

23Tt must be noted that if the latent class characterizes the decision protocol then the protocol
would vary across the latent classes. It may include “deterministic” protocols such as “always pick
alternative 77 (if the individual in that class is captive to i), “pick the alternative with minimum
cost or price”, etc.
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measurement equation for the underlying utilities is written as:

1 1f Uisn(Xma X:n, ﬁs) = maX{U'sn<X'na X;'kna ﬁs)}
Yinl (I = 1) = S (6.34)
0 otherwise

If it is hypothesized that each latent class s has its own parameter vector (3, in
the choice situation under consideration, and v;g,’s are independently and identically
distributed Gumbel (0,1) across alternatives and individuals, we obtain a class-specific
MNL model, where the probability of individual n in latent class s choosing alternative

1 is expressed as:

eXp( ;inn + ﬁ;*st*n>

jEZ:C’ eXp( ;szn + ﬁ;*sz*n>

As it is well known, by suitable assumptions for the distributions of v;s,, we obtain

the MNP and Nested Logit models.

Distributional Assumptions

As noted in the latent class sub-model, a class of parameterized distributions may be
adopted for the random components of the criterion functions, to construct different
types of class membership models. In the latent variable sub-models we may allow
for the random components of the structural equations of Z and X to be correlated
(i.e, Cz and (x are correlated). All other error vectors appearing across the structural
and measurement equations in the latent variable sub-models are assumed to be
independent. But correlations may be allowed within the components of the same
error vector. Further, in the latent variable sub-models, we assume all the error
vectors to have continuous supports.

Distributional assumptions in each of the sub-models must ensure that each of
the sub-models are identified. It must be noted that for the class-specific discrete

choice sub-model necessary and sufficient conditions are available, while for the latent
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variable models sufficient conditions for identification must be checked?*. For the
latent class sub-model general necessary and sufficient conditions do not exist at this
time. For this sub-model, necessary scaling restrictions on the criterion functions to
reflect the fact that the criterion functions are latent should be imposed. We allow
for arbitrary specifications of the measurement model of the latent class sub-model

depending on how the data on class indicators is collected.

The Choice Model: Primary model of interest

The primary model of interest is the choice model conditional on X,,, Z, and W,,.
If fxwz(X* Z*|Wy: Bx, Bz, I'x, ') represents the joint density of (X*, Z*) condi-
tional on W,,, the choice model is written as, P(yin, = 1|Zn, Xpn, Wa; 0, 3)

S
= [ 3Pl = Uty X X1 B, Cos ) Qu(Zas Z330)
x=7x 5=1

fxr 2 (X", Z* W Bx, Bz, Ux, Tz)dX"dZ"  (6.36)

6.5.2 Model Estimation

Now we turn our attention to the derivation of the sample likelihood function.
The probability of observing the response vector, [Y,, Ax.n, Azn, Asn], where
Y, = [Yin,---,Ys,n], conditional on the explanatory variables, [X,,Z,, W,], i.e.,

P(an AX;TM AZ;n7 AS;n|X’n,7 Zna an 97 67 ¢7 BXa BZ7 FX7 FZa AX7 AZ)7 equals

/P(Yn/7AXm’7AZ?”7AS§”|X*7Z*ﬂXnaanWn;HaﬂagbaAXaAZ) :
X* 2+
fx z2+(X*, 27 |Wy; Bx, Bz, Ux,Tz) dX* dZ*
= /P(anAS;n|X*,Z*,Xn,7Zn,7Wn,;9,ﬂ,¢) gX(AX|X*,AX) .
X*Z*

QZ(AZ|Z*; AZ) fX*,Z*(X*a Z*|Wn; BX7 BZ7 FX7 FZ) dxX*dz”

24See Bollen [1989] for an extensive discussion of identification issues in latent variable models,
though it must be noted that no general necessary and sufficient conditions for identification exist.
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where gx(-) and gz(-) denote the conditional distributions of the indicators of X* and
Z*, respectively. The second equation follows from the distributional assumptions
since conditional on Z* and X*, [V, As.n|, Az, and Ax., are independent.

For notational simplicity define:

P(Y,|l:, =1, X" X,,; Bs, Cs, Rs) = P(Y,|l%,, X7) (6.37)
P(Asnlly, = 1;¢5) = P(Asull,) (6.38)

P, = 1|12%, Zp:0) = P(I%,|27) (6.39)

fxro (X", Z*|\Wy; Bx, Bz, U'x,I'z) = f(X*,Z7) (6.40)
gx (Ax| X" Ax) = g(Ax[X7) (6.41)
92(Az|Z% A7) = g(Az|Z7) (6.42)

Then the likelihood function reduces to:

//{iP(Ynll;‘n,X*)P(Agm\l;"n)P(z;‘n|Z*)} (AxIX7) g(AgZ") -

X, Z9)dX" dZ*

S
- Z{X//P(Ynlli‘mX*)P(As;nllin)P(l;‘nlZ*) g(Ax|X*) g(Az|Z*) -
s=1 (Ju s
f(X*,Z*)dX*dz*}

= {P(As;nu:n) [ [ PO, X7 P(,1Z7) g(Ax|X)

s=1 X*7*

9(Az|Z%) f(X*, 27)dX* dZ*} (6.43)

As seen in equation (6.43) the likelihood function is a complex multi-dimensional
integral. The dimensionality of the integral equals the number of hypothesized atti-
tudes and perceptions (i.e., My + My). If the random vectors (x and ( are assumed

to be independent, then the latent vectors X* and Z* are independent conditional on
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the explanatory variables, and equation (6.43) reduces to:

i{w&nu qum, g(Ax|X) <X*>dx*]-

L PL|Z7) g(Az|Z7) f(Z7)dZ”

} (6.44)

Thus, the dimensionality of the integral decreases alleviating the difficulties in calcu-
lating the likelihood function (to a certain extent).

The problem then reduces to the specification of the density functions of X* and Z*.
If

1. Bz and By matrices are zeros (the structural equations of the latent variable

sub-models reduce to seemingly unrelated system of equations); or

2. Bz and Bx matrices are lower triangular and the components of (x and ( are
independent, i.e., the variance-covariance matrices of (x and (; are diagonal

(recursive structural system)

then, the probability density functions are sufficiently identified and can be used
without any difficulty in a maximum likelihood estimation procedure under the as-
sumption of multivariate normal distribution for (5 and (x. Else, the usual identifi-
cation problems associated with the estimation of simultaneous equations apply (see
Greene [1990]).

An alternate estimation procedure is to estimate the two latent variable sub-
models corresponding to equations (6.22) and (6.24), and equations (6.23) and (6.25),

respectively. The likelihoods for these latent variable sub-models are:

f(Azn|Wa; B2, Tz, Ay) = /gZ(AZ;n\Z*;AZ) f7(Z|\Wh; Bz, 1'z) dZ* (6.45)

VA

and
F(Axan|Wai Bx, T'x, Ax) = / 9x(Axn X5 Ax) fx-(X*[Wi: Bx,Tx)dX*  (6.46)
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Using these estimated models, the latent variables are fitted®® to obtain X* and
Z* and used in a conditional maximum likelihood estimation to estimate the latent
class choice model with class indicators, i.e., maximizing sample log-likelihood corre-

sponding to the observation likelihood function:

S
S P(Yallz,, X*) P(Agalls,) P(15,127) (6.47)
s=1

It must be noted that introducing the fitted values, X* and Z *, in the conditional
likelihood function implies some degree of inconsistency (let alone efficiency) in es-
timating the parameters of the conditional likelihood function. More formally, the
sampling distribution of X*and Z*, Fy. 7. must be used in the conditional likelihood

function. Then, the conditional likelihood to be maximized can be written as:

/ / Z P(Y, I, 0) P(Agalll,) P(5,|w) dF (v,w) (6.48)

*Z*

To alleviate the computational difficulty in obtaining the conditional likelihood func-
tion, a simulation approach can be adopted to obtain an estimate of the likelihood
function. Since after the estimation of the latent variable sub-models the sampling
distribution F is known, R draws from F (i.e., [p™,w®™], for » = 1,...  R) can be
used to approximate the conditional likelihood function, i.e.,

1 R

Lr(®©) =5 {Z P (Y|, 0") P(Asalls,) P(l;fnlw(’"))} (6.49)

,,,

Under the usual regularity conditions of the integrand in equation (6.48),

Jim Lr(©) = L(O). (6.50)
If
Op = argmax Lz(O) (6.51)

258ee Appendix I for methods for the extraction of latent variables.
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then the consistency and asymptotic normality of O is ensured for sufficiently large
R under some technical conditions (see Pakes and Pollard [1989]). The estimated

standard errors of ©p are still inconsistent due to simulation error.

Likelihood function for a Specific Case:
Assuming that the choice process generating Y,,, given that the individual is in
latent class s and the explanatory variables X,, and X, and the class membership

are governed by multinomial logit models, then

exp( ;ser + ﬂ;*st*n)

Plyin = 1|15, = 1, X*, X,: Bs) = 6.52
<y ‘ 6> > eXp( ;szn +ﬁ;*sz*n> ( )
Jj€Cs
0 Z,+0. 7"
QS(Z*,Zn,Q) _ SeXP( z8 + 2*s n) ] (653)
> oexp(0LyZy + 0.0 27)
s'=1

Further, assuming the Ps indicators of the latent classes are independent conditional

on the latent class, the likelihood function is written as:

B Yin
S Ps / / *
* eXp( xinn + 6$*5Xin)
g S(AS: n|lsn =10 S> // 7 "
SZ::l (H : ! : X* 7 H Z eXp( wszn + /6;*5Xjn)

=1 ieC,
p 1€Cs | jec

exp(0.,Z, + 0..,727)

z*s“n

5
S oexp(0yZy + 0. 7Z7)

s'=1

9x(Ax| X Ax) 92(Az|Z7 A7) -

.]C)(*7Z9ﬁ()(*7 Z>'<|VV777 B)(, BZ7FX7rz) dX* dZ*

(6.54)
Once the model parameters are estimated, the analyst may be interested in obtain-
ing the class sizes in the population. We need to extract or estimate the latent class

probabilities, and to this end, we present different approaches for their extraction in

Appendix J.
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6.6 Summary

In this chapter, we extended the latent class choice model to incorporate class indi-
cators wherein we viewed the class indicators as “attributes” of the latent class. We
also advanced a general class of choice models called the latent structure choice model
which incorporates attitudinal, perceptual and class indicators.

In chapter 7 we focus our attention on incorporating attitudes characterized
through attitudinal indicators, and present various ways to capture taste variations
stemming from variations in attitudes. We also present a case study in a shipper’s

freight mode choice situation.
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Chapter 7

Incorporating Attitudinal Data in
Choice Models: Case Study —
Application to Shipper’s Freight
Mode Choice Context

7.1 Introduction

The new competitive environment in the marketplace, increasing complexity of the
logistics process, and innovations in the production and inventory control technologies
have catalyzed the interest in shippers to view transportation as an important link in
the supply chain. Consequently, shippers demand from the carriers (or suppliers of
transportation services) specialized transportation service to meet these challenges.
From the perspective of the carrier, its ability to design tailored services and to meet
the changing needs of the shippers is all the more important as it faces increasing
competition from other carriers. Further, transportation deregulation has changed
the way business is conducted between shippers and carriers. The terms and condi-
tions in a freight transportation contract include in addition to transportation rate

(or price), detailed standards of the service to be provided and associated penalties
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in case of default of the contractual commitments (see for example, La Londe and
Cooper [1989]).

In principle, the carrier with the ability to predict accurately the demand effects
of changes in service levels can develop sound service design and marketing strategies
to enhance its revenues at the expense of other carriers who lack this ability. In
this regard, carriers can utilize a freight demand model, which is sensitive to service
attributes, to analyze the effects of changes in service levels on the service demanded
by shippers. Specifically, the demand model should represent the behavior of shippers
at the disaggregate level to enable the identification of service design and marketing
strategies.

In the remainder of this section, we highlight the developments in freight demand
models in an effort to motivate our work!. The reader is directed to Vieira [1992] (see
also Winston [1983] and Zlatopper and Austrian [1989]) for a more comprehensive
literature review. Early freight demand studies used aggregate data on mode shares
and characteristics of transportation modes.

The developments in discrete choice analysis in the 70’s changed the focus to disag-
gregate freight demand models which utilize information from individual shipments.
As in any discrete choice modeling exercise, it has been argued that disaggregate
freight demand models provide more precise elasticity measures. Vieira [1992] cate-

gorizes disaggregate models into:

1. Models with ad hoc behavioral specifications: Herein the emphasis is on the
freight mode choice decision, with the behavior of shippers derived from a
random utility model (see Allen [1977], Daughety and Inaba [1979] and Win-
ston [1981]).

2. Models with logistic cost specification: Herein the mode choice decision is linked
to other decisions the firm has to make while coordinating production and distri-
bution decisions. Baumol and Vinod [1970] analyzed freight demand as derived

from the total logistic costs function of the firm by explicitly including the in-

IThis review section relies heavily on the work of Vieira [1992].
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ventory carrying costs and safety-stock needs. Chiang et al. [1981] extended
the total logistic costs specification to include shipment size being simultane-
ously determined in the mode choice process. McFadden et al. [1985] proposed

a discrete-continuous model to address the same problem.

More recent work by Vieira [1992] extends the traditional logistic cost minimiza-
tion model to include shipper’s perceptions of service and other intangible attributes.
Vieira [1992] recognizes that shippers have different needs, and presents evidence
that their responses towards changes in service quality differ considerably. Further,
therein the emphasis is on the estimation of freight demand models from both revealed
preference and stated preference data using the ideas developed in Morikawa [1989].

Given the focus of this case study on incorporating attitudinal data in freight de-
mand models, it is instructive to note how such data has been utilized in the freight
demand context. Several researchers interviewed shippers from different industries
and tried to identify the importance ranking of factors affecting mode choice. Seiden-
fus [1985], who reviewed some such studies in Europe, observed that the importance
of transportation rate reduced from first/second place in studies in 1959 and 1972,
to fourth/sixth place in studies in 1983. While factors such as speed and reliability
maintained their importance over time, a significant increase in importance of cus-
tomer service and security was observed. The suggested trend was a shift in focus
from price to quality of service. The emphasis was on the qualitative assessment of
the shippers’ attitudes and not on the construction of quantitative demand models
which utilize such attitudinal data.

Shippers are diverse and demand specialized service to meet their transportation
needs. Though trade-offs between service levels are different for each shipper, it is
hypothesized that groups of shippers may have similar response behavior to changes
in service levels. Consequently, segmenting the market of shippers is a valuable input
in the carrier’s effort to provide differentiated service. Specifically, the carriers can
use market segmentation to tailor their service design strategies to meet the needs
of certain segments, and transform untapped opportunities in others to enhance rev-

enues/profits. The managerial rationale underlying market segmentation is the iden-
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tification of groups of shippers who have similar needs and preference structures.

Traditionally, the bases of market segmentation are attributes of the goods or
commodity being transported, such as density and value, and shipper’s characteris-
tics such as annual sales and volume of shipments. Specifically, the focus of attention
is on the observable dimensions of shippers to aid in the identification of the market
segments, measure the “size” of each market segment, and to be of strategic and
operational value for service design and marketing. But the segments based on com-
modity and shipper’s characteristics ignored the underlying process which governed
the mode choice, and how shippers value different service attributes differently.

To this end, market segmentation studies have tried to use attitudinal indicators to
identify the important factors/causes for differences in shippers’ transportation mode
choice process. Specifically two approaches have been used in market segmentation

which utilize attitudinal indicators which include:

1. An approach which recognizes that differences in the shipper’s attitudes towards
service quality are the underlying motivation for defining market segments. The
concept is operationalized through a clustering algorithm which builds “clus-
ters” or segments of shippers having similar attitudinal indicators. Once seg-
ments are identified, the average attitudinal indicators in each segment aid in
the interpretation and development of a service design and marketing strategy
for that segment. An ad hoc comparison with the average characteristics of ship-
pers in each segment is usually proposed as a means of identifying the segment
in which a new shipper belongs, since attitudinal indicators are not available
for the new shipper. A classification model, such as a discrete choice model
potentially may also be used to represent the relationship between shipper’s

characteristics and segment assignment?.

McGinnis [1978] used 32 attitudinal questions regarding mode choice in a sur-

vey of transportation managers of major U.S. firms. Subsequent to market

2The classification model built in this manner has a contradiction of sorts, and to illustrate we
relate it to the latent class model. Consider that the clusters are characterized by latent classes
and one adopts a latent class model. Specifically, let g(A|s) denote the conditional distribution
of attitudinal indicators given the latent class s, and P(s|Z) denote the probability of a shipper
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segmentation, service design strategies for each market segment were also dis-
cussed. Collision [1984] conducted a similar study specific to marine services,
while Cooper and Rose [1986] studied the benefits of market segmentation to a

particular carrier.

2. Realizing the importance of the link between observable characteristics that
are strongly related to attitudes, in the industrial marketing literature, several
approaches have been to suggested to improve the definition of market segments
(see, for example, Wind and Cardozo [1974], Bonoma and Shapiro [1978]). The
theme adopted is a macro-segmentation stage based on product’s and firm’s
characteristics, followed by micro-segmentation stage based on the attitudinal
indicators. Even here the segmentation is ad hoc without a behavioral link

between observable characteristics and attitudinal indicators.

belonging to latent class s given shipper’s characteristics Z. Then f(A|Z) is written as:

S

F(A1Z) =) g(Als) P(s]2) (7.1)

s=1

If one ignores the effects of Z, we have the equivalent assumption of constant prior probability 7
of a shipper being in class s, and we obtain:

S

F(A) =" g(Als) m, (7.2)

s=1

If in reality there is a causal assignment process as in equation (7.1) and the analyst instead uses
equation (7.2), then the model parameters in the conditional distribution will be biased. The bias
is expected to disappear if the sampling protocol is such that Z is randomly sampled from its
population distribution h(Z). This is because:

f(A) / (A\Z) h(Z)dz

9(Als) P(s|Z) W(Z)dZ

I
—
M

S

- Zg(A|s)/P(s\Z) WZ)dz

s=1 7

S
= > g(Als) 7, (7.3)

s=1

since s = [P(s|2) h(Z)dZ.
z
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More recently, Vieira [1992] has taken the view that information such as ship-
per’s importance ratings of service attributes are manifestations of the shipper’s
sensitivity to attributes or latent attitudes. Shipper’s characteristics are used
to determine latent attitudes. The identification of market segments based on
similarity in attitudes is suggested to provide the basis for differentiating the
service offered to shippers. Specifically, market segmentation is operational-
ized by applying a clustering algorithm which builds clusters having similar
attitudes. In this case, the classification model is derived implicitly from the

clustering process.

Before we turn to the approach taken in this study, the above two approaches deserve
critical assessment. We note that market segmentation is expected to be identified
with reference to similarity in the preference structure and associated response to
changes in service levels, and consequently, a freight mode choice model should play
an integral part in the segmentation approach. But both approaches do not explicitly
recognize this simple goal. Further, it is important to appreciate the notion that
observed variations in attitudinal indicators for all the indicators may not necessarily
be reflected in variations in preference structure since variations in attitudinal indi-
cators may be due to response or measurement errors. Consequently, the focus of
attention must be on the subset of the attitudinal indicators which are relevant. The
second approach partially recognizes this notion by prescribing a causal representa-
tion for the generation of the attitudinal indicators through the existence of attitudes,
and allowing for measurement errors in attitudinal indicators. In this approach, the
operationalization of market segmentation entails the estimation of separate choice
models in each cluster®. One might be tempted to proceed with the viewpoint that, if
a causal representation is indeed important, then clustering using the causal variables

such as shipper’s characteristics would suffice. The pitfalls in this viewpoint are:

1. A priori there may not exist a behavioral /psychological theory to suggest which

3Vieira [1992] does not follow up the clustering procedure with separate estimation using ob-
servations in each cluster due to small sample sizes in each cluster, but instead estimates a single
freight mode choice model, and proceeds on to interpret prediction tests in each of the clusters.
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of the causal variables may be utilized in the clustering algorithm. Consequently,
all the potential variables are used in the clustering algorithm, while in reality,

only a subset of causal variables may be relevant.

2. Most clustering algorithms weigh equally variations among the causal variables.
There may exist some causal variables, which are relevant from the perspective
of market segmentation, but their variability may be limited in the sample, while
shipper’s preference structure may be sensitive to these variables, i.e., small
changes in these variables may lead to substantial differences in the preference

structure.

3. At an operational level, it must be noted the basic idea behind the clustering
algorithm is the (dis)similarity in a multivariate space using a “distance-based”
metric. This is intuitively acceptable if the causal variables are metrically scal-

able, while for categorical causal variables the use of a distance-based metric is

debatable.

In this study, in principle we extend the work of Vieira [1992] by linking the
choice model with an explicit causal model for attitude formation, and by specifying
responses to attitudinal questions in surveys as indicators of attitudes. Methodolog-
ically, the work is a significant departure from previous work as we develop models
wherein the freight transportation choice model forms an important sub-model. Fur-
ther, we allow for the market segments to be characterized either on “continuous”
scale of attitudes or “discretized” versions with finite groups of segments.

The remainder of this chapter is organized as follows: In section 7.2 we outline the
modeling framework and develop the class of models for incorporating attitudinal data
with particular reference to the shipper’s freight mode choice context. In section 7.3
we discuss the data set utilized in our case study. In section 7.4 we present estimation

results and elaborate on the substantive findings of the study.
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7.2 A Class of Models for Capturing Attitudinal
Indicators

In the latent structure choice model, we endeavored to incorporate a gamut of psy-
chological factors such as attitudes, perceptions and other latent categorical concepts.
In this section we restrict our attention to modeling approaches wherein only attitu-
dinal data is utilized. Consequently, the models can be construed as special cases of
the latent structure choice model. The key feature of these approaches is the use of
shipper’s attitudes or sensitivity to the service attributes, and which are manifested
through attitudinal indicators such as shipper’s importance ratings of the different at-
tributes (including alternative-specific intrinsic preferences). Operationally, shipper’s
attitudes affect the taste parameters of the choice model rather judiciously.

The modeling framework in presented Figure 7-1. The framework assumes that
7+

n?

a M x 1 vector of shipper’s attitudes towards freight service attributes, is not
observable and hence latent. Shipper’s attitudes are determined by Z,,, a () X 1 vector
of shipper’s characteristics, which may include variables such as: number of employ-
ees, density of shipments, earliest acceptable delivery time, annual sales, maximum
acceptable delay, electronic data interchange (EDI) usage, annual tonnage shipped,
average length of haul and average price. The shipper’s importance ratings on the
following freight service attributes: transit time, reliability, rate, payment terms and
billing, loss and damage, usability of equipment, and responsiveness — form the P x 1
vector of attitudinal indicators A,,. The mapping from the shipper’s characteristics to
the indicators is postulated to capture the attitude formation process, and is referred
to as the attitude formation sub-model.

The figure also illustrates a choice sub-model, which maps from the attributes of
alternatives and shipper’s characteristics, X,,, to the utility of alternative 7, denoted
Uin, and from the utilities to the choice indicator, y;,, as in any random utility model.
The choice indicator may include shipper’s shipment shares across competing carriers
in particular corridors or origin-destination markets, and/or ratings, rankings and

stated modal choices in hypothetical scenarios.
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The important link between the attitude formation sub-model and the choice
sub-model is provided through the mapping from the latent attitudes to the utilities
through the taste parameters. Specifically, the shipper’s attitudes are expected to
affect the choice process through the sensitivities of shippers to freight service at-
tributes, and consequently through the taste parameters of the freight mode choice
model.

Assuming that the importance ratings are metrically scalable the sub-model re-
lating the shipper’s characteristics to the latent attitudes, and the latent attitudes
to attitudinal indicators may be represented by a linear latent variable sub-model*.
The attitude formation sub-model consists of: (1) structural sub-model which deter-
mines the shipper’s attitudes, and (2) measurement sub-model which determines the

indicators given attitudes. The structural sub-model is written as’:

Zy=VZy+Cn (7.5)

where I' is a M x @ parameter matrix and ¢, is a M x 1 random vector®. Further,

we specify the measurement sub-model as:

where A is a P x M parameter matrix, and &, is a P x 1 random vector. Assume
without loss of generality that the vectors A, and Z, are written as deviations from
their respective means. In appendix C, the measurement model for Z is presented
which recognizes the ordered categorical nature of indicators.

It must be noted that different relationships between the shipper’s characteristics

4Specifically, we formulate a MIMIC model since we assume that the shipper’s characteristics are
perfectly measured.

5The structural sub-model may also be specified to capture structural relationships among the
latent attitudes, i.e,

75 = BZT Zy + Cn (7.4)

where B is M x M parameter matrix.
5The number of attitudes postulated is usually much smaller than the number of shipper’s char-
acteristics, i.e., M < Q.
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and the indicators can be represented by appropriate specification of the non-zero
parameters in I' and A. In particular, the analyst after characterizing the latent atti-
tudes which are relevant in differentiating shipper’s behavior, identifies the indicators
that potentially “reflect” each latent attitude, and the relevant shipper’s character-
istics which may determine each latent attitude. For example, if the latent attitude
characterizes shipper’s cost sensitivity then the attitudinal indicators may include
importance ratings of transportation rate, loss & damage, payment terms and billing,
etc. Further, the shipper’s characteristics which determine the latent attitude may
include annual sales, annual tonnage, value of the commodity shipped, etc.

Given the specification of the attitude formation sub-model, we need to “link” it to
the choice sub-model to reflect the effects of attitudes on the underlying preferences.
Herein we postulate that the variations in the shipper’s sensitivity to K freight service
attributes can be “generated” through the M latent attitudes with M < K.

To highlight the main arguments for this postulate, consider a situation wherein
the importance rating for each attribute forms the attitudinal indicator of an as-
sociated attribute sensitivity. Consequently, we have K attitudinal indicators and
K attribute sensitivities. If the importance ratings are measured on a Likert-type
scale with L levels, then we may assume that the indicators are ordered categorical
variables. If the kth indicator, Ag,, takes the level I, € {1,..., L}, the measure-
ment model which links the associated sensitivity Zj, with the indicator, is based
on a “threshold crossing” idea as in the ordinal probability model of McKelvey and

Zavoina [1975], i.e.,

1 if 9 =—-c0< Z;, <U¥
2 if I < Zp, < 0%

A =1 3 if 95 < Zp, <0k (7.7)

L if 9% < Zp <oo=0%

where [9%,...,9% ] form a set of estimable threshold parameters. Let Y, denote the
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Figure 7-1: Framework for Incorporating Attitudinal Data in Freight Demand Model
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choice indicator vector. If A, = [l1,...,lk|’, note that
P(Y,, AnlZn, X)) = /P(Yn|Xn7 Z*) P(ALZ%) f(ZF| Zy) dZ* (7.8)

where P(Y,,|X,,, Z*) is the choice model conditional on Z*, f(Z*|Z,) is the density
function of Z*, and P(A,|Z*) is an indicator function taking the value 1 if Z* falls

between two K-dimensional threshold vectors 9+ = [9] _;,..., 9 ] and 9~ =
[9],,...,9}.]', and zero otherwise. Hence, P(Y,, A,|Z,, X,,) can be written as:
/ P(Y,| Xy, Z) f(27|2,)dZ* (7.9)
9T <z <9~

First, it is difficult to estimate the model since the likelihood function entails a K-
dimensional integral. Second, the number of parameters estimated may be quite
large (i.e., each attribute sensitivity Z;, is associated with a parameter vector I'y,”

the parameters of the distribution® of ¢, and the threshold parameters 1).°

Ty is the kth row of I,
8The usual scaling restrictions apply to the distribution of ¢.
If we allow structural relationships among the sensitivities to attributes, the structural sub-model
is specified as:
7t =BZ} +TZy + ¢, (7.10)

where B is a K X K parameter matrix. The estimation of such a model may be conducted in four
stages. In the first stage, we estimate the reduced form model of equation (7.10), i.e.,

75 =TZ, + Ca (7.11)

where 11 = (I — B)™'T, and ¢, = (I — B)™'(¢,. The reduced form model is estimated consistently,
equation by equation as in the ordinal probability model, by maximizing the marginal likelihood of

the &t indicator with respect to I1; where Il is the kth tow of 1. Tn the second stage, the estimated
reduced form equation is used to fit the sensitivities, Z;7 which are utilized in equation (7.10) to
estimate the structural parameters B and I' consistently by maximizing the marginal likelihood of
cach indicator with respect to By and 'y, where By and 'y are the kth rows of B and I, respectively.
In the third stage, we estimate the reduced form covariance (i.e., ¥ = (I — B)"'S[(I — B)"!]
where ¥ is the correlation matrix of ¢). Taking two indicators at a time, say Ag, and Ag,, the
covariance term, ggg/, is consistently estimated by maximizing the bivariate marginal likelihood,
P(Akn = lg, Agrp, = lk/|Zn;f[k,f[k/), with respect to dgp. In the fourth and final stage, the choice
model parameters are estimated by maximizing the conditional likelihood

/Hnwhf)wgwm (7.12)

where F(f* | Z,,) is the sampling distribution of Z*. The conditional likelihood may be approximated
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The shipper’s sensitivity to two or more attributes may be interrelated, i.e., a
shipper may have high (or low) sensitivity to two or more attributes. For example, a
shipper with high sensitivity to transit time may also be expected to be highly sen-
sitive to travel time reliability, or vice versa. Thus, postulating M latent attitudes,
where M < K, allows the analyst to capture prior information or substantive knowl-
edge of the choice context through the identification of a specific structure for the
formation of shipper’s sensitivity to attributes. Further, if the analyst assumes that
the importance ratings are continuous, from the standpoint of model identification
and estimation we need two or more indicators for each latent attitude. Consequently,
the indicators which are specified to reflect a particular latent attitude include a sub-
set of importance ratings of attributes.

In the remainder of this section, we present three approaches to link the attitude

formation sub-model and the choice sub-model including:
e Random Coeflicients Model with Latent Attitudes;
e Scaled Coefficient Choice Model; and
e Latent Class Choice Model for Taste Heterogeneity with Attitudinal Indicators.

We focus on attitudinal data collected as responses to the following types of questions:

How important is attribute k to you?

unimportant 1 2 3 4 5 important

by Monte Carlo integration. This estimation procedure is derived from the approach proposed by
Mallar [1977] for the estimation of simultaneous probability models. Similar estimation procedures
may be developed following along the lines of other procedures for estimating simultaneous proba-
bility models (see Amemiya [1978], Lee [1981], and Sobel and Arminger [1992]).
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In the traditional random coefficients model reviewed in section 2.5.1 the key idea
adopted was that each shipper’s parameter vector differs from the population mean by
some “unobserved” amount. In our first approach, we extend the random coefficients
framework to incorporate latent attitudes.

In the second approach, we postulate that the scale of the taste parameters de-
pends on the latent attitudes. The basic idea of this approach is that the latent
attitudes reflect sensitivity to different alternatives, and can be adequately incorpo-
rated as scale effects on shipper’s taste parameters.

In the third approach, we hypothesize, as in the latent class choice model, that
the underlying choice process varies systematically across a finite set of groups of
shippers in the population, and to be homogeneous within each such group. Since
each homogeneous group of shippers is unobserved, the groups are characterized by
latent classes. The only exception being that we utilize the latent attitudes in the
criterion functions of the class membership model.

Given this overview of the three approaches, we develop the three models in more

detail.

7.2.1 Random Coefficients Model with Latent Attitudes

The utility of alternative ¢ for shipper n depends on the observed vector of attributes
of alternative 7 and shipper’s characteristics, X;,. Using a linear functional form for

the utility functions,

Uin = ﬂ;Xm + €in, Vi € Cn (713)

where 3, is a K x 1 taste parameter vector specific to shipper n. The shipper-specific

parameter vector is written as:

Bn=Bo+0OZ; + vy (7.14)

where 3y is a K x 1 base parameter vector, © is a K x M parameter matrix which

captures the “additive” effects of attitudes on taste parameters, and v, represents

238



the K x 1 vector shipper-specific idiosyncratic taste variations which even the latent
attitudes fail to explain.

As the first step in the construction of the sample likelihood we are interested in
obtaining the probability P(Y,, A,|Z,, Xn; B0, ©,T, A)'°. Assuming that the random

vectors €, v, ¢, and & are independent, this probability equals

[ [ PORIZ" v, X3 50, ©) F(A|Z%50) F(Z71 70 T) g(v) A2 dv (7.15)
Zv
where f(A,|Z*;A) is the distribution of the indicators given attitudes, f(Z*|Z,;T)
is the distribution of attitudes given Z,, and g(v) is the probability density of
v. The problem reduces to the specification of the choice sub-model denoted by
P(Y,|Z*, v, Xp; Bo, ©). Assuming that the €;,’s are independently and identically dis-
tributed Gumbel (0,1) across alternatives and shippers, this probability is expressed

as.
exp((Bo + OZ* + 1) Xy,
Y. exp((fo+OZ* +v)X;)

JjECh

P(yzn = 1|Z*7V7 Xn;ﬁOa@) =

(7.16)

We can test whether the effects of attitudes on the taste parameters are significant
by testing Hy : © = 0. Note that when © = 0 we have the traditional random coef-
ficients model. The observation likelihood function involves a (K + M )-dimensional
integral making the estimation non-trivial. By judiciously specifying the formation
and manifestation of attitudes, and the effects of attitudes on the taste parameters
(i.e., the fixed and free parameters of ©), it may be reasonable to assume that the
idiosyncratic taste variations are negligible!'. Thus, when v = 0, the probability of

an observation equals

[ POGAIZ", X3 50,0) F(An|Z75A) (272, T) 2" (7.17)

10For notational convenience only the structural parameters are explicitly denoted, while the
parameters associated with the random components are implicitly assumed.

Note that some degree of randomness in taste parameters is introduced due to the random
component of Z*.
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After estimation of the model parameters, the choice model of interest is obtained as:

P(YalZa, Xoi o, ©,T) = [ PVl 2%, X0i 60,0) f(ZZ0s 1) AZ"  (7.18)
Z*

7.2.2 Scaled Coefficient Choice Model

Herein the utility of alternative ¢ for shipper n depends on Xj,, and is specified as:
Uin = 0, Xin + €, Vi€ C, (7.19)

where (3, is a parameter vector specific to shipper n. This parameter vector is written

as:

Bn = M,f (7.20)

where M, is a positive and diagonal scaling matrix and (3 is the base parameter vector,

ie.,
iy, O -+ 0 -+ 0 - 0
0 i 0 0 0
0 0 -+ fm -+ 0 - 0
Mn: .
0 0 -+ 0 - pupn -+ 0
0 0 -+ 0 - 0 - pupn

Assume that the parameter vector (3 is constructed by concatenating D sub-

vectors, where D < K. Then ( is written as:

B
g=|: (7.21)
Bp

where (3; is the K; x 1 parameter vector corresponding to the d'B sub-vector with

Zfl):l K, = K. It is instructive to understand the rationale for this construction. We
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argued earlier that the taste variations to two or more attributes may be interrelated,
i.e., a shipper may have high (or low) sensitivity to two or more attributes. If each
latent attitude is associated with a unique subset of the attributes, and consequently
we assume that the latent attitude affects only the corresponding taste parameters,
then the D sub-vectors correspond to the taste parameters of each subset. In this case,
D equals M, the number of latent attitudes. In addition to the situation considered
in the previous case, if a taste parameter is affected by two or more latent attitudes,
then D is greater than M since a scale factor specific to the particular parameter
must be specified.

dth sub-vector by the scale factor jig4,. Since

The matrix M,,, essentially scales the
we desire the scalars j4,’s to be positive as well as reflect the effects of attitudes, they

are parameterized as:
pan = exp(ay,Z¥) Yd=1,...,D. (7.22)

The basic idea in the scaling approach is the incorporation of monotonic relation-
ships between the parameters and the attitudes paying heed to the desirable feature
that the signs of base parameters and the scaled parameters are identical. The sig-
nificance of the effects of attitudes on the taste parameters can be checked by testing
Hy:ay=0Vd.

The attitude formation sub-model representing the interrelationships between
Z*, Z, and A, is specified as in equations (7.5) and (7.6). Assuming that the
random vectors (, &, and e are independent, the probability of an observation,

P(Yy, An|Zy, X0; B, 0, T, A), equals

[ POLIZ*, X1 8,0) F(AWZ75A) F(27| 20 T) 42" (7.23)

The problem reduces to the specification of the choice sub-model, P(Y,|Z2*, X,,; 5, a).

Assuming that the €;,’s are independently and identically distributed Gumbel (0,1)
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across alternatives and shippers, this probability is expressed as:

exp((Mn3) Xin)
> exp((MnB)' Xjn)

jeChn

P(yin = 1|Z*aXn;ﬂaa) =

(7.24)

We may also allow idiosyncratic taste variations as in the random coefficients

model, and this may be operationalized along two approaches:

1. Additive specification of randomness wherein the shipper-specific parameter vec-

tor is written as:

Bn = M0+ vy, (7.25)

where v, is K x 1 random vector which represents the idiosyncratic taste varia-
tions. As in the random coefficients model, the shipper-specific parameters may

take on behaviorally implausible values if v, has unbounded support.

2. Multiplicative specification of randomness wherein the scale factors are param-

eterized as:

tdn = exp(ayZy + vq) (7.26)

dth

where v, is a random component associated with the component of the taste

parameter vector. Note that the multiplicative specification is more parsimo-
nious, and unlike the additive specification, maintains the signs of the parame-

ters even if 14 has unbounded support.

7.2.3 Latent Class Choice Model for Taste Heterogeneity
with Attitudinal Indicators

Herein the utility of alternative ¢ for shipper n depends on X, and the latent class s

to which the shipper belongs. Using a linear functional form for the utility functions,

Uisn = 6;Xm + €isn, Vi € Cn (727>

242



where s is parameter vector specific to class s, with s = 1,...,5. As in the latent
class choice model, we postulate the class membership model and class-specific choice
sub-model to operationalize the model. The attitude formation sub-model is specified
as in equations (7.5) and (7.6).

The latent class is characterized by a D-dimensional binary vector. Let [}, indicate
the class membership of shipper n taking the value 1 if shipper belongs to class s and
zero otherwise. We assume the existence of criterion functions, Hg,’s, which are
specified as:

Hyp =0,7" + 64, Yd=1,...,D (7.28)

By assuming a parametric distribution for ¢ and adopting a “threshold crossing”
approach (i.e., d*™™ dimension of the latent class takes the value 1 if, and only if,
Hgn, > 0) for mapping from the criterion functions to the D-dimensional binary
vector, T,, = [ly,...,lp|’, the class membership model denoted by P(lf, = 1|Z*;0)
equals

P ((ban > —042;,¥d|lg = 1) \(ban < —0,2;,¥d]lq = 0)) (7.29)

Assuming that ¢, &, 6, and e are independent, the probability of an observation,
P(Yy, AnlZ,, X0; 5,0, ), equals

S
S P(Yalit, = 1. X, 6:) { [P, = 11256) f(AlZ50) £(Z°12,T) dz*} (7.30)
J

s=1

7.3 Survey Data

In 1988!2, a major US railroad as part of an effort to determine the effects of changes
in service quality on market share and revenues retained a marketing research firm
(henceforth called ABC) to survey shippers and to determine their sensitivities to
service and price. ABC’s approach was based on service quality elasticities derived
from conjoint experiments on several dimensions of service. The elasticities estimated

then, reflected what shippers say they would do, and not on choices actually made.

2The discussion of the data is from a Vieira [1992] and must be referred to for more details.
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The primary focus of the ABC study was to determine the demand elasticities of
service attributes in the transport of five commodities: paper, aluminum, pet food,
plastics and tires.

Decision makers from companies manufacturing the selected commodities were
screened for participation. Besides having the responsibility to select the mode or
carrier in different shipments, the decision maker should ship at least $1 Million of
that commodity annually. Given 348 shippers meeting this criteria and agreeing to
participate, the actual response rate was around 50% (166). Of these 166 respondents,
complete data was available for 146 respondents.

The questionnaires were administered via mail due to the geographical dispersion
of the selected shippers. As described in the following paragraphs, revealed and stated

preferences were collected together with perceptions of mode service.

Revealed Preference Data

Revealed preference data describes the shipper’s current practices regarding mode
choice situations. For each shipper, information was collected for two major corridors
used in outbound shipments of the selected commodities. These corridors were defined
by shippers in terms of the origin and destination region, as well as the percentage of
their annual tonnage shipped in that corridor.

Five modes were included in the questionnaire: truck only, single carrier rail,
multiple carrier rail, intermodal (with at least one transshipment between truck and
rail) and piggyback. In terms of service attributes, the shipper reported the typical
rate per ton and “dock-to-dock” transit time by truck and rail in each corridor.
Finally, questions about characteristics of shippers, or firms they represent, were also
included in the survey. On one hand, information detailing the shipper’s service
requirements included acceptable early and late delivery times. On the other hand,
annual sales, number of employees and the decision maker’s experience in the position

provided the demographics of shippers surveyed.

Stated Preference Data

Stated preference data elicited shippers’ behavior in hypothetical transportation
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scenarios. Shippers were presented with two offerings in terms of transportation
service features, and asked to rate their preference relative to the left or the right
profile on a 9-point Likert type scale. In this scale, one or nine meant strong preference
of one or the other profile, and five meant indifference between the offerings. The
scenarios did not refer to any particular corridor and, in fact shippers were asked to
think in general about their outbound shipments.

The transportation offerings or profiles in each scenario were described by the
same attributes, but at different levels. In the ABC’s study, each scenario used only
two or three service attributes at a time to describe the profile, with the underlying
assumption that the missing attributes were at the same level in both offerings.

Further, shipper’s attitudes towards the different freight service attributes are
manifested through corresponding “importance ratings” on a 5-point Likert-type
scale.

Figure 7-2 presents an example of such a trade-off question. Each shipper answered
forty trade-off questions, thinking about their outbound shipments of the selected
commodity. The attributes and levels in each offering were chosen for each shipper
based on his/her current perceptions of mode services to keep the realism of the
question, while trying to better elicit the trade-offs among service attributes.

In this case study we focus our attention on the stated preference data and the
use of importance ratings, and consequently the variables relevant for our analysis

are described in Table 7.1 in detail.

Table 7.2 presents a descriptive summary of the importance ratings of shippers in
the survey. On average transit time reliability is considered as the most important
service dimension. As seen in the frequency distribution of ratings for each service
dimension, shippers may tend to overstate their importance ratings, appearing that all
service attributes are very important to all shippers. This seemingly makes the process
of market segmentation based on differences in attitudinal indicators inappropriate.
We take the view that the exact location of the scale of the importance ratings is
inconsequential. We pose the conceptual question whether it is possible to explain

a component of the observed variations in importance ratings through the shipper’s
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Which service offering would you prefer?

10% lower than average rate
I pay now

80%  of shipments arrive
when I want them to

10%

90%

higher than average rate
I pay now

of shipments arrive
when I want them to

1 2 3 4
Strongly
Prefer
Left

Source: ABC Study

7 8 9
Strongly
Prefer
Right

Figure 7-2: Example of Trade-off Question
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latent attitudes, and consequently through variations in shipper’s characteristics. If
so, the latent attitudes are postulated to play an important part in how shippers

weigh the different freight service attributes in the freight mode choice process.

7.4 Estimation Results

In this section we present different shipper’s preference models estimated on the stated
preference data. Given our intention to assess the extent of taste variations in the
shipper’s freight choice process through shipper’s attitudes, we assume for simplicity
a linear specification vis-a-vis a logistic cost specification of the systematic utility
function as seen in Vieira [1992]. Further, the estimated models for incorporating

importance ratings are categorized into:
1. Models with a single latent attitude: Owerall Attribute Sensitivity.
2. Models with two latent attitudes: Time Sensitivity and Cost Sensitivity.

Further, in the estimated models we do not allow for any idiosyncratic taste varia-
tions, and thus restrict our attention to taste variations stemming from differences in

shippers’ attitudes.

7.4.1 Model 0: Ordinal Probit Model

This is the simplest of the estimated models. Since the preference ratings are mea-
sured on a 9-point Likert type scale, we estimate an ordinal probit model with sym-
metric thresholds. The symmetry restriction was imposed to reflect the nature of the
response scale since there is no reason to assume that strongly preferring one trans-
portation offering is different from strongly preferring the other one since the order

of presentation of the alternatives is arbitrary. Thus we estimate only four thresholds
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[ Variable Type | NAME | DESCRIPTION [

PREFER | Preference indicator (1-9)

LRTT Transit time (days)®

Profile related | LRCTT Consistency of transit time”
LRRATE | Freight rate ($/ton)°

Variables LRPTB Payment terms & billing?

LRLOD Loss and damage®

LRUEQ Usability of equipment!

LRRSP Responsiveness®

NEMP Number of employees (10?)
DENSITY | Average density of shipments (10? ton/m?)
EARLYD | Earliest acceptable delivery time (day)
Shipper’s SALES Annual sales (10° Million $)

LATED Maximum acceptable delay (day)
Characteristics | EDI Shipper uses EDI

TONNES | Annual tonnage shipped (10° ton)
AVHAUL | Average length of haul (10° miles)
ADAVPR | Average price of shipment ($/ton)
RTIME Transit time

RCTIME | Consistency of transit time
Importance | RRATE Freight rate

RPTB Payment terms and billing
Ratings RLOD Loss and damage
(1-5) RUEQ Usability of equipment
RRSP Responsiveness
RLOE Level of effort

*Transit time varies from 50% faster to 50% slower than average dock to dock
time at present.

bConsistency is defined as the fraction of shipments which arrive when the
shipper wants to, and this fraction varies between 0.4 and 0.95.

“Rate varies from 50% higher to 50% lower than average present rates.

4Loss and damage is defined as % of shipment value lost or damaged, and it
varies from 0.1% to 3%.

¢Usability of equipment is defined as the fraction of time sufficient quantity of
acceptable equipment is provided, and it varies from 0.5 to 0.99.

fPayment terms and billings is defined as the fraction of time payment terms
and billings are satisfactory, and it varies from 0.25 to 1.0.

£Responsiveness is defined as the fraction of time the carrier satisfactorily
responds to inquiries, and it varies from 0.25 to 1.0.

Table 7.1: Names and Definition of Variables — Freight Demand Study
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Service Frequency Distribution
Essential Not
Import.
Attribute Average 1 2 3 4 5
Transit Time 1.48 88 A7 10 1 -
Reliability 1.28 110 32 3 1 -
Rate 1.53 84 49 11 1 1
Payment Terms
& Billing 1.64 70 61 13 1 1
Loss and Damage 1.33 102 40 4 - -
Usability of
Equipment 1.42 100 36 6 3 1
Responsiveness 1.42 88 54 4 - -
Level of Effort 1.58 76 58 10 1 1

l=essential; 2=very important; 3=somewhat important; 4=not very important;
S5=not important at all.

Table 7.2: Importance Ratings for Different Service Dimensions

249



parameters. The utility function is specified as'?:

U = BLRIT+ B,LRCTT + B3 LRRATE + 3,LRPTB + 35 LRLOD +
Be LRUEQ + B LRRSP + ¢

where'* ¢ ~ A(0,1). The association between the utility function, the threshold
parameters and the ordinal response is illustrated in Figure 7-3. Specifically, the

response probabilities are given by:

Ply=1) = ®(—rs— FX)

Ply=2) = ®(—k3—0X)— P(—r4— FX)

Ply=9) = 1—®(ky—F'X)

where X is the attribute vector (or rather the attribute difference vector) and &(-)
is the cumulative distribution function of standard normal variate. Whenever an
attribute was not included in a given scenario, it was assumed that it was at the
same level in both offerings.

The estimated model is presented in Table 7.3. All the coefficients are significant.
The standard errors are calculated from the estimated information matrix. Further,
to estimate the standard errors correctly as multiple responses from the same shipper
are likely to be correlated, we utilize the variance-covariance matrix for extremum
estimators (Amemiya [1985]), and consequently we refer to the corrected t-statistics in
conducting simple hypothesis tests. As expected the transit time and transportation

rate coefficients are positive. The consistency of transit time, which is measured as

I3 All the variables are in difference form, i.e., attribute level of left profile - attribute level of right
profile.
“Pixing the variance of € is necessary to set the scale of the utility function.
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Choice Model

Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.

LRTT 0.072 0.006 11.79 | 11.60

LRCTT -3.642 0.210 | -17.35|-16.98

Service LRRATE 0.021 0.001 18.22 | 19.08
LRPTB -0.388 0.035 -11.13 | -11.55

Attributes | LRLOD 0.228 0.011 20.83 | 21.23
LRUEQ -1.280 0.074 | -17.38 | -18.11

LRRSP -0.337 0.038 -8.98 | -10.06

K1 0.249 0.007 35.11 | 35.18

Threshold | ks 0.530 0.010 54.41 | 54.07
Parameters | k3 0.850 0.012 70.97 | 69.69
K4 1.286 0.015 84.71 | 82.55

Log-likelihood at zero= -12831.79
Log-likelihood at convergence= -12234.16
p* = 0.046

Number of observations = 5840

Table 7.3: Model 0: Ordinal Probit Model

the fraction of shipments arriving in time, has a large negative coefficient reflecting

15 The significance of coefficients of

a strong preference for reliable freight service
loss and damage, usability of equipment and responsiveness reflect the importance of
non-traditional of service-quality in the choice process. Further, it must be noted that
the service-quality attributes in order of decreasing importance in terms of shipper’s
sensitivity are: consistency of transit time, usability of equipment, payment terms

and billing and responsiveness.'6

7.4.2 Single Attitude Models

Herein we assume the existence of a single latent attitude which represents an “over-

all attribute sensitivity” to service attributes. The path diagram for the attitude

15This is in comparison to other attributes such as payment terms and billing, usability of equip-
ment, and responsiveness which have the same “units” as fractions.
16Sce footnote 15.
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),

Figure 7-3: Illustration of Utility Function and Symmetric Threshold Parameters

formation sub-model is represented in Figure 7-4. Shipper’s characteristics such as
number of employees, density of shipments, earliest acceptable delivery time, annual
sales, maximum acceptable delay, EDI usage, annual tonnage shipped, average length
of haul and average price are postulated to determine the shipper’s attitude. All the
importance ratings are utilized as indicators of the latent attitude, and we assume
that they are continuous. Assuming that the shipper’s characteristics and impor-
tance ratings are written as deviations from their respective means, the structural

and measurement sub-models of the attitude formation sub-model are specified as:

Structural Sub-model

7Z* = Y NEMP +~DENSITY +~v3EARLY D + v SALES + s LATED +

v6EDI + 7 TONNES + v AVHAUL + 4 ADAV PR + ¢

Measurement Sub-model

RTIME = Z*+§&

RCTIME = XZ*+&
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RRATE = M\Z° + &
RPTB = MZ'+6&
RLOD = M\Z*+6&
RUEQ = XZ*+&
RRSP = MZ*+&
RLOE = MZ*+&

The scale'” of the latent attitude is set to that of the importance rating for transit
time. Further, we assume that the random components of the measurement model
are independent.

We also assume that (, € and € are independent. The distributions of ¢ and & are
specified as:

¢ ~N(0,0?) (7.32)

and

gp NN(O’ O-fgp) vp: 1a"'78' (733)

In the three models presented in this section, the above latent variable model forms
a sub-model. Consequently, as a first step in the maximum likelihood estimation of
these models, we estimated the one latent attitude model (ignoring the choice sub-
model) and used the estimated parameters as starting values for the corresponding
parameters of the latent variable sub-model of the complete model system which
consists of the attitude formation sub-model and the choice sub-model given the
latent attitude'®. In each of the subsequent models, we outline the specification of
the choice model with special attention to the judicious manner in which the overall

attribute sensitivity induces heterogeneity in taste parameters.

17Since the latent variable is unobserved it does not have a definite scale. Hence it is necessary to
fix one parameter in the column of the A matrix in the measurement model to unity. This defines
the unit of measurement of the latent variable to be the same as the corresponding indicator.

18Fstimation results for the one latent attitude sub-model are presented in Appendix B. It must
be noted that this MIMIC model was estimated using MLE under the assumption of multivariate
normal vector [4, Z] using the LINCS program, instead of the conditional likelihood f(A|Z).
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Model 1-1: Choice Model with Interaction Variables between Attributes
and Attitude

In this model the utility function of the choice sub-model is specified as in Model 0,

ie.,

U = BLRTT + B LRCTT + B3 LRRATE + B,LRPTB + B;LRLOD +
BsLRUEQ + B:LRRSP + ¢

But instead of fixed taste parameters, we capture the effects of the latent attitude
on the taste parameters through additive effects on a set of “base taste parameters”.
Specifically, we have 8, = Bor+arZ*, Vk =1,...,7 where §y is the base parameter
for attribute £ and «ay captures the effect of the latent attitude, and hence referred
to as “taste modifiers”.

The estimated choice sub-model and the structural sub-model of the attitude
formation sub-model are presented in Table 7.4. The choice model parameters in
Model 0 and the estimated base parameters in Model 1-1 are quite similar. Except
for the taste modifiers associated with consistency of transit time, payment terms &
billing and usability of equipment, all others are insignificant. Noting the monotonic
relationship between the latent attitude and the importance ratings, an increase in
the latent attitude is reflected through a decrease in the magnitude of the taste
parameters'®. Consequently, the signs of the estimated taste modifiers are expected
to be opposite to the signs of the base parameters®®. This is indeed the case for all
the taste modifiers (including the insignificant ones).

Now we turn our attention to the attitude formation process as represented by

the structural sub-model. In general, since all the variables in the structural model

9Note that the importance ratings range from essential to unimportant, and consequently higher
values of latent attitude are associated with lower sensitivity to attributes.

20By utilizing the “fitted” latent attitude from the structural sub-model, the signs of the taste
parameters were behaviorally acceptable in the sample. Note that the latent attitude has unbounded
support as ¢ is assumed be a normal random variable, and this naturally implies that the taste
parameters will take on behaviorally implausible values. Restricting the randomness of ¢ to within
3 standard deviations, the occurrence of such parameter values in the sample appear negligible.
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are positive, a positive coefficient for a specific characteristic implies that the latent
attitude increases with an increase in the corresponding variable, and hence the sen-
sitivity to attributes decreases. As the number of employees increase the shipper’s
sensitivity to freight service attributes decreases. This may be due in part to shippers
with larger workforce have distributed production and warehousing facilities leading
to lesser sensitivity to freight service attributes. On the other hand, the negative coef-
ficient for annual sales indicates that firms with higher annual sales are more sensitive.
Shippers with higher acceptable delays are less sensitive and this notion is reflected
in the associated positive coefficient. Surprisingly, users of EDI are less sensitive as
one would expect them to be more sensitive to freight service attributes, especially
service-quality attributes such as payment terms and billing, responsiveness, etc. The
negative coefficients for average length of haul and average price of shipment indicate
that shippers transporting high value goods over longer distances are more sensitive.
Annual tonnage shipped and early acceptable delivery time do not seem to have an
affect on the shipper’s sensitivity. The fit of the structural model as measured by the
squared multiple correlation®! is 0.08. Although this measure may not suggest good
fit, the model does have the unique capability of providing useful insights as to how
shipper’s characteristics relate to shipper’s sensitivity to freight service attributes.

The estimated measurement sub-model is presented in Table 7.5. All the param-
eters in A are significant implying that the latent attitude does explain part of the
observed variations in the attitudinal indicators.

The log-likelihood of the complete model, which includes the observed prefer-
ence response and the attitudinal indicators, is -54227.15. Using the structural sub-

model and the choice sub-model, the log-likelihood of the choice model component?2

2L A useful measure of fit of the individual equations of the model system is a measure similar to
the R? in linear regression. This measure is called the squared multiple correlation (SMC), and is
defined for each equation in the latent variable sub- model, whether it is a structural equation or a
measurement equation, as follows:
error variance

SMC =1- (7.34)

variance of variable on LHS of equation

22T must be noted that the main objective of the whole exercise of incorporating attitudinal data
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Squared multiple correlation = 0.08

Table 7.4: Model 1-1: Model with Interaction Variables between Attribute and Atti-

tude

Choice Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LRTT 0.072 0.006 11.78 | 10.38
LRCTT -3.705 0.213 -17.41 | -16.14
Base LRRATE 0.021 0.001 18.28 | 18.34
LRPTB -0.388 0.035 -11.10 | -11.89
Parameters | LRLOD 0.229 0.011 20.91 | 18.76
LRUEQ -1.289 0.074 |-17.42 | -16.49
LRRSP -0.340 0.038 -9.05 | -10.56
LRTT -0.018 0.017 -1.06 | -0.71
LRCTT 1.164 0.541 2.15 2.74
Taste LRRATE 0.003 0.003 0.89 0.34
LRPTB 0.195 0.095 2.05 2.35
Modifiers LRLOD -0.039 0.029 -1.32 | -1.11
LRUEQ 0.650 0.197 3.31 2.94
LRRSP 0.077 0.101 0.76 0.56
K1 0.249 0.007 35.11 | 34.97
Threshold | ko 0.531 0.010 54.40 | 52.89
Parameters | k3 0.852 0.012 70.93 | 68.21
Ky 1.289 0.015 84.64 | 83.24
Structural Sub-model
Parameter | Estimates | Std. err. | t-stat | t-stat
corr
NEMP 0.012 0.002 6.23 5.92
DENSITY -0.055 0.031 -1.76 | -1.56
Structural | EARLYD 0.005 0.008 0.64 0.79
SALES -0.046 0.004 |-12.44 | -12.93
Parameters | LATED 0.064 0.009 7.34 6.12
EDI1 0.113 0.014 8.36 7.91
TONNES | -9x10=° | 6x10=* | -0.14 | -0.19
AVHAUL -0.087 0.015 -5.91 | -5.72
ADAVPR -0.023 0.006 -3.89 | -3.41
Noise
Parameter | o 0.407 0.009 44.16 | 42.90
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is -12230.11. Compared to Model 0, this model improves on the choice model compo-
nent only marginally. On the other hand, the model provides valuable insight into the
varying sensitivities of shippers to freight service attributes which may be of strategic
importance. Further, a more parsimonious model can be estimated by eliminating
insignificant taste modifiers.

It must be noted that one of the drawbacks of the modeling approach is that
since Z* is a random variable with unbounded support, the taste parameters with
non-zero taste modifiers may take on behaviorally implausible values with positive

probabilities.

Model 1-2: Latent Class Choice Model with Attitudinal Indicators

We postulate the existence of two groups of shippers with differing sensitivities to
service attributes. The assignment of a shipper to the latent classes is governed by a

threshold crossing model with a criterion function specified as?:

H=07"+6 (7.35)

where?* § ~ N(0,1). Then the probability of the shipper being in class 1 is given by
O(—07%).

The estimated choice sub-model and the structural sub-model of the attitude
formation sub-model are presented in Table 7.6. The choice model parameters in
Model 0 are sandwiched between corresponding parameters in the two classes, and
all the parameters are significant and have expected signs. The magnitudes of the
taste parameters in class 1 are greater than the corresponding parameters in class 2,
and hence class 1 is interpreted as the high sensitive segment and class 2 as the low
sensitive segment. Further, the class-specific parameters of consistency of transit time

and usability of equipment show qualitative differences across the two classes?®. A

is to have a “better” choice model, and from which stems our need to check the improvement, if
any, of the preference model.

23 A constant in the criterion function is not specified since Z* is in deviation form.

2Fixing the variance of § is necessary to set the scale of the criterion function.

%51n fact, t-tests comparing the equality of two corresponding parameters at a time across classes
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Measurement Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat | SMC
COIT.
A1 1.000 —a - — 0.41
Ao 0.639 0.020 32.39 | 31.24 | 0.25
A3 0.538 0.029 18.74 | 18.91 | 0.10
Structural Ay 0.885 0.031 2897 | 27.38 | 0.26
A5 0.708 0.023 30.20 | 30.56 | 0.32
Parameters A6 0.748 0.030 25.07 | 24.22 | 0.19
A7 0.582 0.023 25.14 | 25.61 | 0.20
g 0.933 0.032 29.59 | 28.12 | 0.30
O¢, 0.501 0.006 77.35 | 76.22
O¢, 0.460 0.005 91.79 | 89.91
Noise O¢y 0.687 0.007 103.16 | 102.43
o¢, 0.626 0.007 92.99 | 92.87 —
Parameters o 0.432 0.005 87.85 | 86.76
O¢s 0.657 0.007 98.66 | 97.89
O¢, 0.489 0.005 96.84 | 96.23
O¢q 0.591 0.007 89.56 | 89.41

*Fixed parameter.

Complete Log-likelihood at convergence = -54227.15
Log-likelihood of choice model at zero= -12831.79
Log-likelihood at choice model at convergence= -12230.11
p° = 0.045

Number of observations = 5840

Table 7.5: Model 1-1: Model with Interaction Variables between Attribute and Atti-
tude (cont’d)
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similar pattern of the significance of the effects of latent attitude on the same set of
parameters was observed in Model 1-1.

In the structural sub-model, the estimated coefficients are similar to those in
Model 1-1 with one exception. In Model 1-2 we have a significant and positive coef-
ficient for annual tonnage indicating that high volume shippers are less sensitive to
freight service attributes. At this time, it is instructive to note an important caveat
of our modeling approach which explicitly links the choice model with the attitude
formation model. The (mis)specification of the choice sub-model will affect®® the es-
timated attitude formation sub-model since the preference response can be construed
as another “indicator” of latent attitude. Further, compared to Model 1-1, the fit of
the structural sub-model is marginally better.

In Table 7.7 the estimated criterion function and the measurement sub-model
are presented. The coefficient 6 is significant and positive indicating the presence of
effect of latent attitude in the class membership model®”. Since larger values of latent
attitude (and lower attribute sensitivities) are associated with higher importance
ratings, and class 1 is the high sensitive class compared to class 2, # is expected to
be positive. The estimated measurement sub-model is similar to that of Model 1-1.

The log-likelihood of the complete model, which includes the observed preference
response and the attitudinal indicators, is -54187.14, which betters Model 1-1 by
40 units with the addition of only 1 parameter. Using the structural sub-model,
the estimated criterion function, and the choice sub-model the log-likelihood of the
choice model component is -12219.06 which betters that of Model 1-1 by 11 units
with an additional parameter. It must be noted this model addresses the drawback
of the previous approach as the taste parameters are fixed within each class, and thus

behaviorally implausible values are unlikely.

at 5% significance revealed that class-specific parameters of consistency of transit time, payment
terms & billing, and usability of equipment are different across classes, while all other parameters
are the same.

260f course, the reverse argument also holds as the (mis)specification of the attitude formation
sub-model affects choice sub-model.

2Tt must be noted that when 6 = 0, we have two classes with every shipper having equal proba-
bility of being in each class.
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Choice Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat

COIT.

LRTT 0.095 0.018 5.23 | 5.14

LRCTT -5.236 0.715 -7.33 | -6.78

High LRRATE 0.020 0.002 8.73 | 7.89
Sensitive LRPTB -0.538 0.088 -6.12 | -6.34
Segment LRLOD 0.272 0.029 9.32 | 891
LRUEQ -1.756 0.181 -9.71 | -9.67

LRRSP -0.432 0.080 -5.39 | -5.23

LRTT 0.050 0.017 2.95 | 2.34

LRCTT -2.448 0.472 -5.19 | -5.93

Low LRRATE 0.021 0.002 9.12 | 888
Sensitive LRPTB -0.246 0.083 -2.97 | -2.36
Segment LRLOD 0.191 0.026 7.34 | 7.11
LRUEQ -0.847 0.155 -5.47 | -5.32

LRRSP -0.257 0.077 -3.34 | -3.83

K1 0.251 0.007 34.61 | 32.31

Threshold | ko 0.534 0.010 52.61 | 50.89
Parameters | k3 0.857 0.013 67.06 | 66.27
K4 1.298 0.017 78.03 | 77.56

Structural Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat

COLT.

NEMP 0.010 0.001 7.36 | 7.12

DENSITY -0.041 0.028 -1.47 | -1.11

EARLYD -0.004 0.006 -0.69 | -0.52

Structural | SALES -0.030 0.004 -7.35 | -7.98
LATED 0.056 0.007 7.95 | 7.35

Parameters | EDI 0.099 0.012 8.58 | 7.91
TONNES 0.001 4x107* | 2.84 | 3.02

AVHAUL -0.085 0.013 -6.41 | -6.07

ADAVPR -0.039 0.005 -8.29 | -7.71

Noise

Parameter | o, 0.340 0.006 53.38 | 52.79

Squared multiple correlation of structural equation= 0.09

Table 7.6: Model 1-2: Latent Class Choice Model with Attitudinal Indicators

261



Criterion Function

|| Parameter | Estimates | Std. err. | t-stat | t-stat corr. ||
I | 2280 | 1103 [ 207 ] 223 |

Measurement Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat | SMC
COIT.
A1 1.000 = - — 0.33
Ao 0.721 0.023 32.03 | 31.29 | 0.23
A3 0.642 0.032 20.01 | 19.78 | 0.10
Structural Ay 1.063 0.034 30.83 | 2942 | 0.27
A5 0.875 0.027 32.80 | 32.93 | 0.35
Parameters A6 0.918 0.035 26.12 | 26.31 | 0.20
A7 0.713 0.025 28.30 | 26.97 | 0.21
Ag 1.147 0.034 33.54 | 33.13 | 0.33
O¢, 0.535 0.005 104.66 | 102.21
O¢, 0.468 0.005 96.79 | 96.71
Noise o 0.686 0.007 103.66 | 102.48
o¢, 0.623 0.007 92.49 | 91.64 —
Parameters O¢s 0.423 0.005 82.13 | 81.02
O¢s 0.652 0.007 94.70 | 95.11
O¢, 0.485 0.005 95.97 | 96.77
Oeq 0.581 0.007 87.51 | 86.89

*Fixed parameter.

Complete Log-likelihood at convergence = -54187.14
Log-likelihood of choice model at zero= -12831.79
Log-likelihood at choice model at convergence= -12219.06
p? = 0.046

Number of observations = 5840

Table 7.7: Model 1-2: Latent Class Choice Model with Attitudinal Indicators (cont’d)
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Model 1-3: Scaled Coefficient Choice Model

As before the utility function of the choice sub-model is specified as:

U = BLRTT + G LRCTT + B3LRRATE + 3.LRPTB + BsLRLOD +
BsLRUEQ + 3:LRRSP + ¢

where B, = Borp, VE =1,...,7, with By the base parameter for attribute & and
the scale factor is given by p = exp(aZ*). The main advantage of this approach is
the relative parsimony of specification?®, and since the latent attitude is a generic
sensitivity variable, the scaling approach is behaviorally sensible.

The estimated sub-choice model and the structural sub-model of the attitude for-
mation sub-model are presented in Table 7.8. The base taste parameters are very
similar to those in Model 0 and Model 1-1. The coefficient of the scale factor is
insignificant indicating measurable effect of the latent attitude on the taste parame-
ters. In tune with our expectations this coefficient is negative with higher values of the
latent attitude reflecting lower sensitivity and consequently, the scale factor should
scale down the base taste parameters. The estimated structural sub-model is very
similar to that in Model 1-1 with the same fit. Further, the estimated measurement
sub-model presented in Table 7.9 is similar to those of Model 1-1 and Model 1-2.

The log-likelihood of the complete model, which includes the observed preference
response and the attitudinal indicators, is -54269.08, which is worse compared to
Model 1-1 and Model 1-2. Using the structural sub-model and the choice sub-model,
the log-likelihood of the choice model component is -12231.06 which betters that of
Model 0 by 3 units with 1 additional parameter.

Given the relative parsimony of the scaling approach we proceed to estimate the

two attitude model using the scaling approach.

28Note that in principle, the coefficient o may be specific for each attribute, but the analyst can
judiciously group attributes such that the latent attitude affects the shipper’s sensitivity to each
group in a similar manner.
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Choice Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LRTT 0.072 0.006 11.83 | 11.21
LRCTT -3.678 0.211 -17.44 | -16.89
Base LRRATE 0.021 0.001 17.93 | 17.12
LRPTB -0.390 0.035 -11.27 | -10.79
Parameters | LRLOD 0.227 0.011 20.73 | 19.83
LRUEQ -1.292 0.073 -17.60 | -17.59
LRRSP -0.338 0.037 -9.08 | -9.45
Scale « -0.236 0.092 -2.57 | -2.32
Effect
K1 0.249 0.007 35.11 | 34.98
Threshold | ks 0.531 0.010 54.40 | 52.01
Parameters | k3 0.852 0.012 70.93 | 70.89
Ky 1.289 0.015 84.64 | 82.49
Structural Sub-model
Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
NEMP 0.012 0.002 6.18 5.91
DENSITY -0.033 0.031 -1.08 | -1.23
EARLYD 0.013 0.008 1.64 1.15
Structural | SALES -0.045 0.004 |-12.23 | -11.57
LATED 0.058 0.009 6.80 6.23
Parameters | EDI1 0.106 0.013 7.94 8.47
TONNES 7x107° 7x107* | 0.11 0.21
AVHAUL -0.087 0.014 -6.06 | -6.91
ADAVPR -0.023 0.006 -4.06 | -3.82
Noise
Parameter | o 0.409 0.009 43.60 | 42.44

Squared multiple correlation of structural equation= 0.08

Table 7.8: Model 1-3: Scaled Coefficient Choice Model (one attitude)
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Measurement Sub-model

Parameter | Estimates | Std. err. | t-stat | t-stat | SMC
COIT.
A1 1.000 —a - — 0.40
Ao 0.632 0.020 31.53 | 31.78 | 0.24
A3 0.554 0.029 18.94 | 19.33 | 0.10
Structural A4 0.905 0.031 29.02 | 27.56 | 0.27
As 0.725 0.024 30.34 | 29.77 | 0.33
Parameters A6 0.758 0.030 25.10 | 24.66 | 0.19
A7 0.595 0.024 25.24 | 24.13 | 0.20
g 0.947 0.032 29.52 | 30.11 | 0.31
O¢, 0.506 0.006 7890 | 77.32
O¢, 0.464 0.005 93.27 | 92.81
Noise O¢, 0.686 0.007 | 102.88 | 101.74
O¢, 0.624 0.007 92.25 | 91.57 —
Parameters o 0.430 0.005 87.31 | 86.23
O¢q 0.657 0.007 98.73 | 97.67
O¢, 0.488 0.005 96.49 | 95.93
O¢q 0.591 0.007 89.46 | 89.33

“Fixed parameter.

Complete Log-likelihood at convergence = -54269.08
Log-likelihood of choice model at zero = -12831.79
Log-likelihood at choice model at convergence = -12231.90
p° = 0.046

Number of observations = 5840

Table 7.9: Model 1-3: Scaled Coefficient Choice Model (one attitude contd)
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7.4.3 Model with Two Attitudes: Time sensitivity and Cost
sensitivity

In this model we postulate the existence of two latent attitudes — time sensitivity and
cost sensitivity — which capture heterogeneity of the shippers to service attributes. In
the specification of the attitude formation sub-model, it is necessary to hypothesize
which importance ratings indicate each latent attitude, and which observed shipper’s
characteristics determine them. The path diagram for the attitude formation sub-
model is represented in Figure 7-5.

In the measurement sub-model, the importance ratings for transit time, reliabil-
ity and rate are specified as indicators of time sensitivity. The indicators of cost
sensitivity are importance ratings for rate, payment terms and billing, and loss and
damage. In the structural model, the specification of the fixed and free parameters
is based on a combination of prior hypothesis and a sequence of statistical tests of
all the potential factors in each dimension. Mathematically, the final specification of

structural sub-model is specified as:

7% = A NEMP + v DENSITY + 43 EARLY D + vraSALES +
"}/Tg,LATED + ’}/TﬁED[ + CT

Z& = ~ye1lLATED + veo EDI + vcsTONNES + yca AVHAU L +

YosADAV PR + (¢
where
€T -~ BVN 0 O-ET pCT,CCUCTUCC (7 36)
G P¢r6e9¢r0¢e U?c

Further, the measurement sub-model is specified as:

RTIME = Z + &1
ROTIME = MyZ;+ &

RRATE = /\31Z;~ + )\3225 + 63
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RPTB = Ze+ &

RLOD = )\52Z5 + 65

where we assume that &, Vp are independently distributed, and &, ~ N (0, agp). The
scale of time sensitivity is set to that of the importance rating of transit time, while
the scale of cost sensitivity is set to that of the importance rating of payment terms
and billing.

As before the utility generating the preference response is given by:

U = B.LRTT + BLRCTT + B3 LRRATE + B.LRPTB + BsLRLOD +
BsLRUEQ + 3-LRRSP + ¢

We postulate that the taste parameters of time-related service attributes such as
transit time and consistency of transit time will be affected by the shipper’s time
sensitivity. Similarly, the taste parameters of cost-related service attributes such as
rate, payment terms and billing, and loss & damage are postulated to be affected by
shipper’s cost sensitivity. Consequently, the taste parameters are scaled by positive

scalars which are parameterized functions of the latent attitude, and are written as:

B = Boapr
fo = DBospr
Bs = DPospc
Ba = Poapc
Bs = Postic
Bs = Dog

Br = Por

with pur = exp(arZ;) and ue = exp(acZE). It must be noted that in our specifi-

cation we assume that the taste parameters corresponding to usability of equipment
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and responsiveness are constant?.

Assuming that (, £ and € are independent, we adopt the maximum likelihood
criterion in the estimation of the model parameters. As a first step only the attitude
formation sub-model was estimated (see Appendix B) and the estimated parameters
were used as starting values in the full information maximum likelihood estimation
procedure. The estimated choice sub-model and the structural sub-model of the
attitude formation sub-model is presented in Model 7.10. The base parameters of the
choice model are very similar to those of Model 0, Model 1-1 and Model 1-3. The
coefficients associated with the scaling parameters are significant and negative. This is
in tune with our expectations since higher values of the latent attitudes are associated
with lower sensitivities, and consequently the corresponding taste parameters are
scaled down.

The structural sub-model represents the causal formulation for the determination
of time sensitivity and cost sensitivity. In the time sensitivity dimension, the positive
coefficient for number of employees indicate that shippers with larger workforce are
less time sensitive. Shippers with earlier acceptable delivery times are less time sen-
sitive. In contrast, it must be noted when only one latent attitude — overall attribute
sensitivity — was postulated the effect of earliest acceptable delivery time variable on
sensitivity was insignificant. As expected shippers with higher acceptable delays are
less time sensitive. Thus, we can conclude that shippers with wider acceptable time
windows are expected to be less time sensitive. Shippers using EDI are less time
sensitive. The fit of the time sensitivity equation is 0.05.

Turning to the cost sensitivity dimension, the negative coefficient for maximum
acceptable delivery time implies that shippers with higher acceptable delays are more
cost sensitive. Shippers using EDI are less cost sensitive. Further, shippers with

high annual tonnage are less cost sensitive. It must be noted that in the single

2In principle, a third latent attitude such as service-quality sensitivity can be postulated with
the importance ratings of loss and damage, usability of equipment, responsiveness and level of
effort utilized as relevant indicators of service-quality. Consequently, the service quality sensitivity
can be postulated to affect the taste parameters of loss and damage, usability of equipment and
responsiveness. Such an exercise was not conducted due to the computational complexity since
calculation of the likelihood function entails three-dimensional integration.
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attitude models (except for Model 1-2), the effect of annual tonnage on sensitivity was
negligible. Further, the negative coefficients for average length of haul and average
price of shipment indicate that shippers transporting high value goods over long
distances are more cost sensitive. The fit of the cost sensitivity equation is 0.10.

The estimated measurement sub-model is presented in Table 7.11. In the mea-
surement equation of importance rating for transportation rate, the coefficient of
time sensitivity is negative implying that the importance rating decreases as the la-
tent attitude increases, i.e., the shipper with low time sensitivity tends to consider
transportation rate more important. Noting the “inverse” relationship between ship-
per’s preference towards transportation rate and transit time, this relationship is in
tune with our expectations. Further, the fits of the measurement equations improved
quite considerably indicating that the observed variations in the importance ratings
is better explained through a two latent attitude model compared to the one latent
attitude model.

The log-likelihood of the complete model®’, which includes the preference response
and the attitudinal indicators is -37245.89. Using the structural sub-model of the
attitude formation sub-model, and the choice sub-model, the log-likelihood of the
choice model component is -12222.13 which betters that of Model 0 by 12 units with

two additional parameters.

7.4.4 Summary of Estimated Models

Table 7.12 presents the summary of the estimated models. Looking at the complete
log-likelihood, among the one latent attitude models, the latent class choice model
fits the data the best, followed by the model with the interactions between attributes
and latent attitude, and the scaled coefficient choice model. Comparing the choice
model component of the one latent attitude models, the latent class choice model
fits the best, although the improvement in model fit compared to the ordinal probit

model is not considerable.

30Tt must be noted this complete log-likelihood is not comparable to the log-likelihoods of Model 1-
1, Model 1-2, and Model 1-3, since in Model 2 only a subset of the attitudinal indicators are utilized.
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Choice Sub-model

Table 7.10: Model 2: Scaled Coefficient Choice Model with Time Sensitivity and Cost

Sensitivity

Parameter | Estimates | Std. err. | t-stat | t-stat
COIT.
LRTT 0.071 0.006 11.75 | 11.61
LRCTT -3.634 0.215 | -16.89 | -15.77
Base LRRATE 0.021 0.001 18.13 | 19.11
LRPTB -0.391 0.035 |-11.311]-11.71
Parameters | LRLOD 0.228 0.011 20.69 | 20.98
LRUEQ -1.288 0.074 | -17.48 | -17.11
LRRSP -0.340 0.038 -9.07 | -9.75
Scale or -0.371 0.127 -2.91 | -2.38
Effect oc -0.224 0.086 -2.61 | -2.45
K1 0.249 0.007 35.11 | 34.91
Threshold | ks 0.531 0.010 54.39 | 53.67
Parameters | k3 0.852 0.012 70.92 | 70.14
Ky 1.289 0.015 84.60 | 82.87
Structural Sub-model
Parameter | Estimate | t-stat | t-stat | SMC
COIT.
NEMP 0.011 4.88 4.44
Time DENSITY 0.045 1.22 1.14
Sensitivity | EARLYD 0.042 4.67 4.73 | 0.05
Dimension | SALES -0.050 | -11.67 | -10.87
LATED 0.069 6.28 6.11
EDI 0.053 3.10 2.98
LATED -0.083 -8.11 | -8.34
Cost EDI 0.136 7.87 7.23
Sensitivity | TONNES 0.006 7.00 6.83 | 0.10
Dimension | AVHAUL -0.217 | -12.34 | -11.89
ADAVPR -0.049 -6.97 | -7.03
Noise O¢r 0.531 40.83 | 39.11
Parameters | o¢,. 0.500 45.09 | 44.68 -
Perco 0.670 42.58 | 41.33
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Measurement Sub-model

Indicator Time sens. Cost sens. o | SMC
estimate | t-stat | t-stat | estimate | t-stat | t-stat
COIT. COIT.

RTIME 1.000 —a — — — 0.38 | 0.66

RCTIME | 0.646 26.67 | 25.37 - - - 0.41 | 041
RRATE -0.219 | -7.00 | -6.84 0.811 21.68 | 20.37 | 0.63 | 0.24
RPTB - - - 1.000 — - 0.51 | 0.51
RLOD - - - 0.556 27.80 | 26.33 | 0.44 | 0.30

*Fixed parameters or not estimated.

Complete Log-likelihood at convergence = -37245.89
Log-likelihood of choice model at zero= -12831.79
Log-likelihood at choice model at convergence= -12222.13
p? = 0.046

Number of observations = 5840

Table 7.11: Model 2: Scaled Coefficient Choice Model with Time Sensitivity and Cost
Sensitivity (cont’d)
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Model Complete Choice Component
Log-lik. | # of | Log-like. Akaike | # of | p?

par. par.
Ordinal Probit -12234.15 | 11 | -12234.15 | -12245.15 | 11 | 0.046
Interactions -54227.15 | 43 | -12230.11 | -12248.11 | 18 | 0.045
between attrib.
and 1 latent att.
Latent class -54187.14 | 44 | -12219.06 | -12238.06 | 19 | 0.046
with 1 latent att.
Scaled coeff. -54269.08 | 37 | -12231.90 | -12243.90 | 12 | 0.046
with 1 latent att.
Scaled coeff. -37245.89 | 35 | -12222.90 | -12235.90 | 13 | 0.046
with 2 latent att.

Table 7.12: Summary of Estimated Models

The parsimonious scaled coefficient choice model with two latent attitude model
has the best fit in terms of the Akaike criterion among all the models. Although the
improvements in fit with the use of the sophisticated and computationally demand-
ing modeling approaches appear negligible, the latent attitude formation model may

provide considerable strategic information to the marketing manager of a railroad.

7.5 Summary

In this chapter we presented a class of choice models for incorporating attitudinal data,
and capturing heterogeneity in choice processes stemming from attitudinal variations.
The key feature of the methodology is the representation of the attitude formation
process, and its explicit link to the choice process. This class of models must be

viewed as a special case of the latent structure choice model. We also applied the

class of choice models in a shipper’s freight mode choice context.
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Chapter 8

Conclusions and Future Research

In this chapter we summarize the key conclusions from the thesis and suggest avenues
for future research. In future research directions, we highlight the theoretical open
problems, and emphasize applications and possible extensions of the tools developed

in this thesis.

8.1 Summary and Conclusions

We developed the latent class choice model (LCCM), wherein the latent classes char-
acterize sources of heterogeneity such as segments of the population with varying
tastes, choice set considered, and decision protocol adopted. We formulated three
types of class membership models (categorical criterion model, binary criteria model
and ordinal criteria model) with special references to the aforementioned types of
heterogeneity. Further, for the latent class choice model for taste heterogeneity, we
emphasized a parsimonious specification for the “generation” of unobserved varia-
tions in tastes to attributes of alternatives through a smaller number of sensitivity
dimensions, and provided illustrative examples.

We applied the latent class choice model for taste heterogeneity in the estimation
of travel choice models with distributed value of time. We demonstrated the efficacy
of the model compared to extant approaches of introducing interaction variables in

the utility functions, and random coefficient models. The case study evidenced the
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significance of the unobserved variations in value of time in the sample which persisted
even after the systematic variations due to socio-economic and demographic variables
were accounted for. Specifically, the application of the estimated models revealed the
existence of considerably higher values of times for certain segments of the population,
and presence of heterogeneity along travel time and travel cost sensitivity dimensions.

We applied the latent class choice model for decision protocol heterogeneity in a
transportation mode choice context with data from simulated choice experiments. It
must be noted that in principle, the idea of allowing for decision protocol variations
through a model-based approach is a significant departure from traditional random
utility models. Since decision protocols in revealed preference (RP) and stated pref-
erence (SP) settings may differ for the same individual, we also discussed the need
to combine RP and SP data, and outlined an approach to validate decision protocols
exhibited in SP analysis with those of RP data, if both RP and SP data are available.
This approach is built on previous work wherein choice models utilize both RP and
SP data (see Ben-Akiva and Morikawa [1990a]).

It must be noted that we did not specify explicit indicators for the classes in
LCCM. In chapter 6, as a first step in the incorporation of indicators of latent classes
which may be viewed as attributes which characterize the class, we elaborated on the
different types of specification of the measurement model depending on the charac-
terization of the latent class. These measurement models are linked to the different
class membership models to obtain a more refined latent class model. Subsequently,
the latent class model is integrated with the choice model to form the LCCM with
indicators. We also developed the latent structure choice model (LSCM) which incor-
porates the gamut of attitudinal and perceptual indicators through latent attitudes,
perceptions and classes, and discussed estimation of the model system parameters.

As a special case of LSCM, we elaborated on a class of choice models which incor-
porates attitudinal indicators such as individual’s importance ratings of attributes of
alternatives in the choice process. The emphasis was on “generating” unobserved taste
variations from variations in individual attitudes. We applied such models in a ship-

per’s freight mode choice study. In principle, we extended the work of Vieira [1992]
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by linking the choice model with an explicit causal model for attitude formation,
and specifying responses to attitudinal questions in surveys as indicators of attitudes.
Specifically, the shipper’s importance ratings of service attributes were utilized as the
attitudinal indicators. Although, the effects of the shipper’s attitudes on the sensitiv-
ity to service attributes were statistically significant, the overall improvement in the
fit of the choice model is limited. Given the considerable computational burden in
the estimation of such models vis-a-vis standard choice models such as multinomial
logit model, the results are apparently disappointing. This is partly attributable to

negligible variations in the importance ratings of attributes of alternatives.

8.2 Future Research Directions

This thesis has endeavored to advance discrete choice modeling techniques with an
emphasis on the incorporation of the psychological factors affecting the underlying
choice process. We also note that the empirical case studies have only surfaced the
potential for the modeling approaches, and further work is needed to assess their
ramifications and to transcribe the methodological developments from an academic
setting to practical applications. In this regard, we foresee future research to be

conducted along two directions:
1. Theoretical Developments; and

2. Empirical Applications.

8.2.1 Theoretical Developments: Existence and Identifica-

tion Issues

As noted in chapter 3, we have not yet derived the conditions for the existence of
the estimates of model parameters in LCCM. Further, even under the assumption of
existence, we have only partially addressed the issue of model identification. Specif-
ically, no general necessary and sufficient conditions currently exist for the existence

and unicity of model parameters.
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The above issues are not adequately addressed for LSCM too. It must be noted
that sufficient conditions for the identification of the LSCM sans latent classes (i.e.,
LSCM incorporating only attitudes and perceptions “measured” on a continuous
scale) can be obtained. In this case, we note that the sufficient conditions for the
attitude formation and perception formation sub-models exist since they correspond
to those of the linear latent variable model. Further, necessary and sufficient con-
ditions of the identification of the choice sub-model are well known. It follows that
if the component sub-models are sufficiently identified, the complete model is also
sufficiently identified.

If the LSCM incorporates psychological factors such as continuous attitudes and
perceptions as well as categorical or discrete concepts characterized as latent classes,
then no general necessary and sufficient identification conditions exist. Further, even
sufficient conditions do not exist since we have not developed, unlike the latent vari-
able model, sufficient conditions for the latent class sub-model.

More theoretical research is needed to address these important open problems

related to the existence and identification of model parameters.

8.2.2 Modeling Enhancements and Empirical Applications
Lifestyle Concept in Travel Demand Models

The concept of lifestyle is hypothesized to capture long term decisions of individuals
and households which guide their preferred pattern of mobility, activity and travel
choices, and is expected to be a key “higher” level factor substituting for traditional
social class and economic status variables. The main arguments for using the lifestyle
concept in the disaggregate travel demand modeling approach, wherein the travel

behavior of an individual is the basic building block, are:

e to capture the constraints imposed on the travel decisions of individuals by the

mobility decisions;

e to incorporate implicitly the intra-household interactions and constraints in the

choice behaviors;
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e hypothesized that the primary changes in travel behavior due to new informa-
tion technologies (IT) such as Advanced Traveler Information Systems (ATIS)
and Advanced Traffic Management Systems (ATMS), and tele-options such as
tele-commuting, tele-conferencing, and tele-banking, would stem from the con-

sequent changes in lifestyles and activity patterns;
e to account for heterogeneity in choice behaviors in a systematic manner; and

e to incorporate “soft” or subjective information such as individual’s attitudes,

values and opinions, and perceptions.

It must be noted that the lifestyle concept is not directly measurable or observable,
and hence may be characterized through latent classes.

The above considerations are captured in the conceptual framework depicted in
Figure 8-1. In the figure, the ellipses represent unobservable concepts. The key

elements of the framework are:

1. The explicit incorporation of a latent lifestyle concept as the composite out-
come of the life decisions an individual makes. These life decisions are the prag-
matic decisions an individual makes in order to fulfill his/her feasible aspirations
within three important aspects of life: patterns of interpersonal relations (fam-
ily formation), economic activity (participation in the labor force) and patterns
of leisure (orientation towards different non-economic activity types, duration
and frequency). Jointly, they can be interpreted as a choice reflecting one’s

aspirations for a life pattern.

2. The individual’s latent information state concept which represents the experi-

ential knowledge of the individual along three dimensions:

(a) Activity and transportation network;

(b) Information technologies: perceived benefits of accessing or purchasing

information technologies (e.g., tele-options).
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(¢) Information sources: reliability and usefulness, as perceived by the indi-
vidual, of different information sources providing information on activity

and transportation network characteristics (e.g., ATIS).

The feedback from the information state occurs at two levels:

1. In the short term, activity/travel scheduling choices are affected. These relate

towards access and processing of real-time information source such as ATIS.

2. In the long term, the individual changes the lifestyle choice through activity pro-
gram shifts. These relate to shifts in usage of tele-options, purchase/subscribe

to new IT, etc.

The remaining components in Figure 8-1 and their implications are self-explanatory.

Latent Class Choice Model for Choice Set Heterogeneity

In the LCCM for choice set heterogeneity reviewed in section 2.7 the class indicators
utilized correspond to the recorded responses to alternative availability questions.
For example, if one considers the choice set formation process as one of elimination
of those alternatives not satisfying certain criteria or rules, the availability responses
reflect the final outcome of the process which is the choice set considered. Specifically,
information as to which of the attributes did not satisfy the individual’s criteria are
not utilized.

Noting that the rules adopted by individuals may be operationalized through a set
of criterion functions satisfying a set of inequalities, in principle, responses to ques-
tions related to “satisfaction” or “acceptability” of the attributes may meaningfully
indicate these criterion functions. For example, consider an individual who eliminates
an alternative depending on a threshold such as a reservation price. The response to
a question such as: “Is the price of alternative j acceptable to you?”, would reflect
whether or not the alternative satisfies the individual’s price threshold, and conse-

quently, may be utilized as the indicator of a price related criterion function. It is
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relatively transparent to extend previous work in choice set formation to include such
indicators.

It must also be noted that an exploratory data analysis of the availability and
acceptability indicators would reveal whether a conjunctive or a disjunctive rule is

adopted in the screening of alternatives.

Enhancements in Data Collection Efforts

The fruition of the statistically advanced and conceptually sophisticated set of tools
for discrete choice analysis put forth in this thesis depends heavily on the availability
of “richer” data such as attitudinal and perceptual indicators. Such data, routinely
collected in the marketing research context, are rarely collected in travel demand anal-
ysis. Consequently, more substantive research is needed in survey and questionnaire
design to reflect the changing needs of travel demand analysis, and more importantly,

to assess the practical significance and benefits of such modeling approaches.

Combining RP and SP Data

It must be noted that the case study for illustrating decision protocol heterogeneity is
in the context of simulated choice experiments, while the modeling approach is fairly
general and may be adopted for RP data, and also to combine RP and SP data.

If the preference model estimated on SP data suggests the existence of more than
one decision protocol, the question remains as to whether such heterogeneity may
exist in the actual market environment. If RP data is not available, then it is left
to the analyst’s judgment on how the SP model is utilized in forecasting and other
model applications.

Since decision protocols in RP and SP settings may differ, application of the
approach outlined in section 5.4 to validate decision protocols exhibited in SP analysis
with those of RP data would be a useful exercise. Specifically, we need to assess the

stability of decision protocols in both data sets in different choice situations.
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Appendix A

Simulation Estimator for Ordinal

Criteria Model

The latent class probability in an ordinal criteria model cannot be obtained in closed
form as it entails non-trivial multi-dimensional integration, and tractable numerical
procedures exist only if the number of dimensions of the latent class is limited to 3.
To handle large number of dimensions, we propose the use of the simulator proposed
by Geweke [1989] (see Bolduc [1993] for an application of the GHK simulator for the
estimation of the Multinomial Probit model).

Let the criterion functions Hy,,Vd = 1,..., D for individual n be written as:
Han = 0,7 + b4n, VYd=1,...,D (A.1)

where Z,, is a () x 1 vector of individual characteristics, 8, is a ) X 1 parameter vector,
and 6, is a Q) X 1 random vector. We allow for the random components of H,’s, i.e.,
04’s, to be correlated to capture the unobserved interrelationships among the latent

class dimensions'. The criterion functions can be written in a compact form as:

H, =©Z, + 6, (A.2)

If the random components are independent the class membership model reduces to the product
of ordinal probit models corresponding to each dimension and hence is tractable even for large
dimensions.
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where H,, is the stacked D x 1 vector of criterion functions, 6, is the D x 1 random
vector, and © is the D x () parameter matrix with the dtt vow corresponding to 6.
Assume that 6, ~ N(0,%) where ¥ is a D-dimensional correlation matrix?. If T is
the lower triangular Cholesky decomposition of ¥ such that ¥ = I'T”, the equivalent

model of equation (A.2) is written as:

where &, ~ N(0,Ip) with Ip a D-dimensional identity matrix. It must be noted

the parameters of I' are interrelated due to the correlation matrix it generates®. The

constraint set associated with the event T;, = [ly,...,[p]" is written as:
7'11171 Hln 9/1277 Y11 O e O fh-,, 7'111
7122_1 Hoy, 0520 Y1 Y22 .- 0 Eon 7122
: <| . |= . +1 . : . =
L Hpn 0pZn Ypr Yp2 --- Ypp/) \&Dn "
(A.5)

and can be explicitly specified for each criterion function as:

1 1 1 1
-1 < Hy, < R = Tii—1— (9/1Zn < §1n < T, — eiZn
21— 0520 — 111€in <&y < 7 — 052, — Y111
—_ n =
Y22 Y22

2 2
Tlo—1 < Hy, < Tlq

D—1 D—1

B B T = 0pZn — dgl Ypd&dn T — 02, — d; Ypd&dn
Tip—1 < HDn < T = — < fDn < —
YDD YDD

2Since the criterion functions are latent, the scale of each criterion function is set by fixing the
variance of its random component to 1. Consequently, 3 is a correlation matrix.
3For example, consider a two-dimensional class membership model with

< g; > ~ BVN <o, { /1) ’ D (A.4)

and ' = <zu ’YO ) then ¥ =TT’ implies v11 = 1, 722 = /1 — ¥3, and y12 = p < 1.
12 Y22
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The above constraints can be written in more compact form as:

+ —
Vlngglngyln

V;;“L(gln) < &op < 1y, (&)

Vgn(é-hh . ,SD—I;'n,) S fDn S VBn(é.l’n? . aé-D—l;’n,) (AG)
where
Tlll—l - 9/1an d=1
+ _ s A
vy, = / )
d'n Tldd,—l_oldlzn_ z Yar g€dn ( 7)
=1 . d=2,....D
Yal d!
and
Ti - 9,1Zn7 d/ - 1
Vim =\ W A8
dn T =0y Zn= 3 Vatdn (A.8)
= ., d=2,...,D
Ya'd’

Given the above, the observed probability, denoted by P(7,|Z,; ©,7,T") is written as:

Pr (Vltl S 5177, S 1/171, V;;L(é.ln) S 5277, S V27n(51n)a R

Vhal€ins - €p-1:) < Epn S Vpu(€rr-- - €poim))  (A9)

Noting that the ’s are assumed independent, by recursive conditioning, the above

probability reduces to

Pr (Vitl < gln < Vl_n) -Pr (V;’;L(gln) < g?n < VQ_n(é-ln”Vitl < gln < Vl_n) T (Al())

Now we turn our attention to approximating the above probability through impor-
tance sampling. Let r denote a particular random draw and &,, a given realization of
the random vector &, such that equation (A.6) is satisfied. Based on R such draws, the

required latent class probability can be approximated as, Pg(T,|Z,; ©,7,T), which
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equals

R
Z (Th|Z,;0,71,1)

I
M:u ;U|

Pr (Vltz S glnr S V;n> - Pr (Vg;l(é.l'n'f') S 5277,1‘ S Vgn(glnrﬂé.lnr) T
1

Pr (V_lD—n(glnTa s 7€D71:n7‘) < §Dn7‘ < V5n<€1nra s 7€D71:n7“)‘€1nr7 e 7§D71:m“>

(A.11)

%
Il

If ®(-) denotes the cumulative distribution function of the standard normal variable,

P.(T.|Z,;©,7,T) in the above equation can be compactly written as:

Po(Th Zn;©,7.7) = (®(v1,,) = B(1fy,)) - (®(13) — B(15,,)) -
(WD) — 2(v)) (A.12)

where the v’s for each draw are computed as:

T]ﬁ—l - 9/127—” d, — 1
= d'- A.13
Uy 7 .
d'nr 7_1371 , E Y gt g mr ( )
— . d=2...D
and
7—]1 9, Z d/ — ]_
— o / _1
Virpr = Tltjld/,fglez”"* z Vgt g <A14)
— . d=2....D

and &gy is drawn according to @1 <u (CI)(V(;W) - (I)(Vdnr)> + (ID(I/dm,)) where u ~
ulo, 1.

285



Appendix B

LISREL Model Estimation Results
for Shipper’s Freight Mode Choice
Case Study

In this appendix we present estimation results for the LISREL model systems utilized
in chapter 7. The estimation was conducted using standard software (LINCS from R.J
Software Inc. [1993]) for the estimation of the LISREL model. It must be noted that
the assumptions in the maximum likelihood estimation of these models are slightly
different from the assumptions in the sub-models presented in chapter 7. Herein
we assume that both the indicators and the explanatory variables determining latent
attitudes are multivariate normal vectors, while in the sub-models in chapter 7 we
allow only for the distribution of the indicators conditional on the latent attitudes to

be multivariate normal.

B.1 One latent attitude model

Herein we assume the existence of a single latent attitude which denotes the an “overall
attribute sensitivity” of the shipper to service attributes. The path diagram for the
latent variable model is represented in Figure 7-4 of chapter 7. Shipper’s character-

istics such as number of employees, density of shipments, earliest acceptable delivery
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time, annual sales, maximum acceptable delay, EDI usage, annual tonnage shipped,
average length of haul and average price are postulated to determine the shipper’s at-
titude. Also all the importance ratings are utilized as indicators of the latent attitude.

The estimated model system is presented in Table B.1.

B.2 Two latent attitude model

In this model we assume the existence of two latent attitudes — time sensitivity and
cost sensitivity — which capture the heterogeneity of the shipper to service related
attributes. In the specification of the formation of the latent attitudes through the
latent variable model, it is necessary to hypothesize which importance ratings indicate
each dimension, and which shipper’s characteristics determine them. After some
experimentation, the best representation of the latent variable model is illustrated in
path diagram in Figure 7-5 of chapter 7. In the measurement model, the importance
ratings for transit time, reliability and rate are utilized as indicators of time sensitivity,
while the importance ratings of rate, payment terms and billing, and loss and damage
are utilized as the indicators of cost sensitivity. The scale of time sensitivity is set to
that of the importance rating of transit time, while the scale of cost sensitivity is set
to that of the importance rating of payment terms and billing. The estimated model

system is presented in Table B.2.
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STRUCTURAL MODEL - LATENT ATTITUDE

|| Independent variable

| Estimate | t-stat ||

Number of employees 0.012 6.49

Density -0.072 -2.30
Earliest acceptable -0.004 -0.52
delivery time

Sales -0.048 | -13.14
Maximum acceptable delay 0.071 8.10

EDI usage 0.117 8.54

Annual tonnage -3x107% | -0.41

Average haul -0.080 -5.40
Average price -0.023 -3.94

Squared multiple correlation of structural equation= 0.08

MEASUREMENT MODEL

Indicator Estimate | t-stat | squared multiple
correlation

Transit Time 1.000 2 0.43

Consistency of 0.647 30.97 0.27

transit time

Rate 0.522 19.69 0.10

Payment terms 0.860 30.29 0.26

& billing

Loss & damage 0.684 32.69 0.31

Usability of 0.727 26.34 0.18

equipment

Responsiveness 0.563 27.05 0.19

Level of effort 0.912 32.35 0.30

*Fixed parameter.

Total number of observations= 485

Table B.1: One latent attitude model
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STRUCTURAL MODEL - TIME SENSITIVITY

Independent variable

| Estimate | t-stat ||

Number of employees 0.011 5.37

Density 0.011 0.32

Earliest acceptable 0.022 2.44

delivery time

Sales -0.050 | -12.82
Maximum acceptable delay 0.084 7.83

EDI usage 0.067 4.07

Squared multiple correlation of TIME SENSITIVITY model= 0.06

STRUCTURAL MODEL - COST SENSITIVITY

Independent variable

| Estimate | t-stat ||

Maximum acceptable delay | -0.080 -7.84
EDI usage 0.146 8.46
Annual tonnage 0.006 7.20
Average haul -0.220 | -12.70
Average price -0.052 -7.60

MEASUREMENT MODEL

Squared multiple correlation of COST SENSITIVITY model= 0.10

Indicator Time sens. Cost sens. squared multiple
estimate | t-stat | estimate | t-stat correlation

Transit Time 1.000 & - - 0.66

Consistency of 0.672 30.20 - - 0.44

transit time

Rate -0.209 | -6.98 0.797 | 21.92 0.25

Payment terms - - 1.000 - 0.51

& billing

Loss & damage - - 0.544 | 29.66 0.29

*Fixed parameter.

Total number of observations= 485

Table B.2: Two latent attitude model
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Appendix C

Latent Variable Model with

Ordered Categorical Indicators

In chapter 7 we assumed that the importance ratings of attributes of alternatives
are metrically scalable, although these ratings are measured on a Likert-type scale
and hence are ordered categorical variables. In this appendix, seeking a more realistic
representation of the latent variable model, we outline an approach which parallels the
work of Muthén [1983, 1984] to incorporate ordered categorical variables as indicators
of latent variables. The presentation of the model is unique with an emphasis on the
specification of the fixed and free parameters of the model necessary to aid in the
identification of the model. The necessary identification conditions presented have
not been explicitly enunciated in Muthén [1983, 1984] and deserve special attention.

A traditional latent variable model with continuous indicators consists of two
parts: a measurement model and a structural model. The first of these specifies how
the latent variables are related to the observed or measured variables (i.e., indicators
which are manifestations of the underlying latent variables) and the second specifies
the relationship from the explanatory variables to the latent variables. In similar
vein, we focus on the latent variable model with ordered categorical indicators which
consists of: a structural model representing the latent variables as a function of a set
of causal variables, and a measurement model which is the mapping from the latent

variables to the ordered categorical indicators.
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It must be noted that latent variable models with categorical indicators are im-
portant in many applications, particularly in the social and the behavioral sciences,
as the indicators frequently have a small number of categories. The assumption of
continuous indicators in such cases may not be appropriate, especially when the dis-

tributions of the indicators are skewed.

C.1 Structural model

As in the latent variable model with continuous indicators, the M x 1 vector of latent
variables denoted by Z* is assumed to be continuous and determined by the @ x 1

vector of explanatory variables Z,, through a linear structural model, i.e.,

Zy=7%+12Z+( (C.1)

where 7 is a M x 1 parameter vector of intercepts, I' is a M x () parameter matrix,
and (, is a M x 1 random vector. In the traditional latent variable model, the scale of
each latent variable is usually set to that of one of the continuous indicators by fixing
the coefficient of the latent variable in the measurement equation for that indicator to
1. Consequently, the unit of measurement for the latent variable is the corresponding
indicator. Herein, since the indicators are ordered categorical, we set the scale of the
latent variable 7, Vm = 1,..., M by fixing the variance of (,, to 1. Specifically,

we assume (, ~ N (0, ¥) where U is a correlation matrix.

C.2 Measurement model

In the latent variable with continuous indicators, one postulates a direct mapping

from the latent variables to the indicators through a measurement model such as:
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where \g is a P x 1 parameter vector of intercepts, A is a P x M parameter matrix, and
&, is a P x 1 random vector representing measurement errors. In a similar vein, noting
that the indicators are ordered categorical, we postulate an “inner” measurement

model with an intermediate P x 1 latent vector A*. referred to as latent indicator

n’

vector, specified as a linear function of Z, i.e.,
AL =X+ AZE+ &, (C.3)

As noted earlier in the latent variable model with continuous indicators, one element
of each column of A is fixed to 1. But in the above specification, such restrictions are
not imposed allowing the conduct of statistical tests for the significance of the effects
of different latent variables on the latent indicator vector.

An “outer” measurement model maps from the latent indicator vector A} to the
indicators A,. This mapping is based on a “threshold crossing” idea as in the ordinal

probability model of McKelvey and Zavoina [1975], i.e.,

1 if 70 =—-c0o< A5 <0=1f
2 if <A<

Apm =14 3 if <A, <7 (C.4)

L if 17, <A, <oo=r1]

where A, denotes the pth categorical indicator, L denotes the number of or-
dered levels such that A,, € {1,..., L}, and (7,...,7F_,) are estimable threshold
parameters?. Since the indicators are ordered categorical, it is necessary to fix the
diagonal elements of the covariance matrix of &,, denoted by ©, to 1. Further, if we
assume &, ~ N(0, Ip), where Ip is a P-dimensional identity matrix, then conditional

on Z*, the measurement model can be written as a product of ordinal probit proba-

IFor simplicity we assume the number of ordered levels for different indicators to be the same.
2Tt must be noted that the set of threshold parameters may be assumed to be the same across
the different indicators.
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bilities. It must be noted that if the set of threshold parameters are the same across
indicators, then it is necessary to fix only one of the diagonal elements in © to 1, and

all other diagonal elements may be free parameters.

C.3 Likelihood function and Estimation

Assuming that the set of threshold parameters are indicator-specific, and ¢ and
¢ are independent with &, ~ N(0,Ip), the probability of observing A, =
liny -y lpns -« Ipp] where 1,, € {1,...,L} given the explanatory variables Z,,

P(An|Zn; 7,1, Ao, A, 7, 0), is written as:

P
/ 1T {‘I)(Tlpn — Aop — MpZ") = ®(711,, 1 — Agp — /\pZ*)} [(Z*| Zn; 70,1, W) dZ*
Vi p=1

(C.5)
where Ag, is the pth component of Ao, and )\, is the pth row of A, f(Z*].) is the
distribution of the latent variables given Z,, and ®(-) is the cumulative distribution
function of the standard normal variate. Consequently, the log-likelihood of a ran-
dom sample of N observations for the latent variable model with ordered categorical
indicators, L(o, [, Ao, A, 7, V), equals

N P
3" log { / TT {@ (7, — Aop — MZ*) = D, 1 — Aop — ApZ")}
n=1

VA p=1

(2" Zni 0, T, W) dZ (C.6)

When the threshold parameters are shared across the P indicators, then one needs
to fix only one of the diagonal elements of © to 1. For example, assuming that
& ~ N(0,0) where © is a diagonal matrix, with say 61 = 1, the log-likelihood
function, L£(v, ', Ao, A, 7, U, O) equals

o (25 o)
n=1

e p=1 pr epp
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(2" Zn; 0,1, W) dZ (C.7)

Estimation of the model parameters by maximizing the likelihood function is
numerically feasible for latent variable models with up to three latent variables. Ap-
proaches to estimate models with large dimensions of the latent vector may include
estimation methods by simulation wherein the likelihood function is approximated by

Monte Carlo simulation.
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Appendix D

Latent Choice Choice Model for
Taste Variations: Estimation Using

the EM Algorithm

D.1 Overview of the EM Algorithm

Dempster et al. [1977] presented a broadly applicable algorithm for computing max-

¢

imum likelihood estimates from incomplete data. The term “incomplete data” in its
general form implies the existence of two sample spaces Y and X and a many-one
mapping from X to Y. The observed data y are a realization from )). The correspond-
ing  in X is not observed directly, but only indirectly through y. More specifically,
assume that there is a mapping € — y from X to ), and that « is known only to
lie in X (y), the subset of X determined by the equation y = y(x), where y is the
observed data. [x,y] is referred to as the complete data. The general idea behind
the algorithm is the approximation of the maximum likelihood estimates through a
particular iterative procedure. Each iteration of the algorithm consists of an expec-
tation (E) step followed by a maximization (M) step, and hence is dubbed the EM

algorithm. When the underlying complete data comes from an exponential family

whose maximum likelihood estimates are easily computed, then each maximization
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step of an EM algorithm is likewise easily computed. We begin by reviewing the
formulation of the general EM algorithm given in Dempster et al. [1977].

A family of sampling densities f([z,y]|®) = h(y|z, ®)f(x|®) depending on pa-
rameters ® € (2 is postulated and its corresponding family of sampling densities

g(y|®) is derived. The complete-data specification f(-|-) is related to the incomplete-
data specification by

9y®) = [ hiylz,®)f(2]®)d (D.1)
xX(Y)

The EM algorithm attempts to find a value of ® which maximizes g(y|®) given an
observed y, by making essential use of the associated family f(a|®). The condi-
tional density k(x|y, ®) defined on X (y) is given by f([x, y]|®)/g(y|®), so that the
incomplete log-likelihood, L(®) = log g(y|®), can be written as:

L(®) = log f([z, y]|®) — log k(x|y, P) (D.2)
For @ and ®’ in €) then one has,
L(®) = Q(®[|®') — H(®|D) (D.3)

where Q(®|®) = E(log f([z, y]|®)|y, ®') and H(®|®') = E(logk(x|y, ®)|y, ®').

Given a current best estimate ™, the EM iteration ®® — &+ g
1. E-step: Compute Q(®|®")).
2. M-step: Choose @7+ to be a value in ® € Q which maximizes Q(®|®®).

As noted earlier the algorithm is most useful in situations wherein the maximization
of log f([x, y]|®) over ® € € is easy. In such situations, the M-step maximization of
Q(®|P’) over @ € €2 can be carried out with relative ease. A fundamental property
of the EM algorithm is the monotonicity of the likelihood function along succes-
sive iterations (see Lemma 1 and Theorem 1 of Dempster et al. [1977]). Wu [1983]

studies the aspects of convergence of sequence of estimates generated by the EM
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algorithm and whether the algorithm finds a global maximum, local maximum or
stationary value of the incomplete likelihood function L(®). If the likelihood func-
tion is bounded from above then the likelihood sequence L(®®)) converges to some
L*. There is no guarantee that L* is the global maximum of L(®). This is because
even though a global maximization of Q(+) is involved in the M-step, the other term
H(:) in L(®) = Q(-) — H(-) may not cooperate. Further, even the convergence to
a local maximum cannot be satisfactorily addressed without further assumptions'.
Specifically, Wu [1983] shows that if Q(®|®’) is continuous in ® and ®’, then all
the limit points of the sequence ®® are stationary points of L(®) and L(®®)) con-
verges to L* = L(®*) for some stationary point ®*. Further, Wu [1984] shows that
if Q(®|®’) has continuous derivatives in ® and ®" and L(®) is unimodal in Q with
a unique stationary point, then ®®) converges to the unique maximizer ®* of L(®).

Further, slightly different sufficient conditions for convergence and a general de-
scription of the rate of the convergence of the algorithm close to a stationary point
are provided in Dempster et al. [1977] (see Theorem 2 of Dempster et al. [1977] and
Boyles [1983] for the correct versions of the sufficient conditions).

In the above setting, the support for & may either be discrete or continuous, and
accordingly g(y|®) is dubbed a finite mixture model or an infinite mixture model.
The EM algorithm in the context of finite mixture models, has been derived and
studied by a number of authors. Hasselblad [1966, 1969] (arbitrary finite mixtures
of univariate normal densities and mixtures of univariate densities from exponential
families), Day [1969] and Wolfe [1970] (mixture of two multivariate normal densities
with common covariance matrix and arbitrary finite mixtures of multivariate normal

densities, respectively).

D.2 Adoption for the Latent Class Choice Model

For the latent class choice model, one can regard the available data as an incom-

'If the sequence ®() converges to some ®*, then the hessian matrices of Q(-) and H(-) are
negative definite at ®* (the negative definiteness of the Hessian of H(-) follows from Lemma 2 of
Dempster et al. [1977]). But nothing can be said about the Hessian matrix of L(-) at ®*.
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plete data by considering individual’s choice indicator ¢, to be the “known” part of
an observation y, = (U, Sp), where s, is the index of the individual’s latent class. For
notational simplicity we drop the socio-economic and demographic characteristics and
attributes of alternatives in the f(:) and g(-) density functions. For ® = (8, p, T) €
Q) the sample probability mass functions g(g|®) = [1\_, Pr(7,|®) and f(y|®) =
1Y, Pr(5,|0, p, T) Pr(4n|5n, Bs, ) respectively?. Then for ®" = (6’, p’, ') € Q, the
conditional probability mass function k(y|y, ®’) equals

ﬁ 1(50|0"s 0's ') P(ijn| 50, B ) (D.4)

Pr(gn|®")

and the function Q(®|®’) is determined to be:

N S ) Pr(s,|0", p's 7") Pr(gn|sn. B, )
Q(@|@') = Z Z logPr Sn‘e, PsT )PI‘(yn‘Sna/BSn) ~ ’ =
L 2o Pr(g,|®’)

—_
»

n

- vy

PI‘ Sn 0’ ') Pr nS'm
[ 160", 'y ") Pr(gn] )]1ogpr(sn|eapﬂ-)

n=1 Sn =1 Pr(yn |¢,)
N Pl" Sn|0 ) p T ) Pr(yn|3n7/8, )
Sn 1 P N’n ny S D
+n§ 137%_1[ P73 ] 0g Pr(Jn|sn, Be,,) (D.5)

As seen in equation (D.5) the maximization problem has some attractive features.
Now we have a separable maximization problem with the first term in equation (D.5)
involves the parameters @, p, 7 alone and the second term involves the class-specific
choice model parameters 3,, Vs = 1,...,S. Under the assumption that the ran-
dom components in the criterion functions are multivariate normally distributed, by
fixing the p parameter vector, the log-concavity of the class membership model in
[0, ] is ensured due to the log-concavity of the generating multivariate density (see
appendix E for a proof). Consequently, the unicity of the maximum point is ensured
if the fixed correlation matrix does not lie on the boundary of the space of D x D
correlation matrices, where D equals the number of criterion functions.

Further, if the class-specific choice model parameters are not shared across the

20 are the structural parameters in the criterion functions, p are the parameters in the density
function of the random components of the criterion functions, and 7 are threshold parameters.
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classes, then the second term separates into S component problems, each of which
involves only one of the parameter vectors 3,. Even if the class-specific parameters
are shared, if one assumes that the choice process in each class is governed by a
multinomial logit model (MNL) then the second maximization problem is a concave
function since it is a convex combination of concave functions since the likelihood
function for each class is concave with respect to the class-specific parameters.

One can view the component problems and the maximization problem as a
weighted maximum likelihood estimation problem involving sums of logarithms
weighted by posterior probabilities that sample observations belong to appropriate

classes, given the current best estimate of ®.
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Appendix E

Issues of Identification and

Estimation in Latent Class Choice

Models and Agent-effects Models
for Panel Data

E.1 Latent Class Choice Model with MNL-type
Class Membership Model

Here we assume that each latent class s is associated with an underlying criterion

function H,,, where

Hyp = 0.7y + 60, V¥s=1,....5. (E.1)

where Z,, are the characteristics of individual n which affect class membership. Fur-
ther, assuming a criterion function maximizing assignment process the indicator func-
tion for the latent class s is written as:

1 if Hsn<vaésn;es): max {Hs’n(Znaés’n;es’>}
I = vl (E.2)

sn
0 otherwise

300



Then by specifying a probability density function for (61, ...,0sn), a probabilistic
class membership model can be constructed. For example, if the random variables,
Osny Vs =1,...,5, are independently and identically distributed Gumbel (0,1) ran-
dom variables we obtain the Multinomial Logit Model-type class membership model,

ie.,

Qs(Zn;0) = P(lg, =1|Z,,0)
exp(0.7,)

g .
> exp(0,7Z,)
s'=1

(E.3)

where Q4(Z,;0) denotes the class membership model. It must be noted that in order

to identify the class membership model we need to set s = 0 for some s, say s = 1.

For notational simplicity the data matrix can be modified so that 6 = [6},...,0,],
and
exp(0' Z,
Qs(Zn;0) = — ( ) (E.4)
> exp(0'Zgn)
s/'=1

If every class s has its own taste parameter vector, then the latent class choice model

which expresses the probability of choosing alternative i is written as:

S
P(i| Xy, Zn; 0, 8) = P(i| Xn; 05)Qs(Zn; 0) (E.5)

s=1

Let P(i|5,0) = P(i|Xn, Zn; 0, 5), P(ils) = P(i|Xn; 0s), and Q(s) = Qs(Z,;0). Dif-

ferentiating equation (E.5) with respect to 35 and 6 we obtain:

V5. P60, 8) = Q(s)Vs.P(i]s), Vs =1,...,8 (E.6)
S
Vo P(il0,8) = E_IIP(Z'IS)WQ(S) (E.7)

The second derivatives are given by:

V3.5.P(il0,8) = Q(s)V5, 5. Plils), Vs =1,...,5 (E.8)
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Vi, Pil0.8) =0Vs # & (E.9)

V2,4P(il6. 8) = V5. P(ils) Vo Q(s) (E.10)
S
Vi P18, 6) = X P(ils) V3Qls) (E11)

Hence the Hessian of the likelihood of single observation is written as:

v%lﬁlp(iw’ ﬁ) 0 T 0 v%}ﬁp(iwv 6)
Vi P(110,0) - 0 Vi P(il0, 5)
symmetric Ve P(il0, 3) Ve P(il0, 8)
S
5> P(ils) VieQ(s)

s=1

Given 6, and assuming that the class-specific choice model is an MNL then the likeli-
hood function is concave in 3. Further, noting that the MNL-type class membership
model is log-concave in 6, and the class-specific MNL model is log-concave in 3, the
likelihood function of the latent class choice model is a summation of log-concave
functions since the product of log-concave functions is log-concave. To characterize

the sum of log-concave functions, we prove the following lemma.

Lemma 1 If f(X) and g(X) are log-concave functions, their sum f(X) + g(X) is

also log-concave.

Proof: By log-concavity of f(X) and ¢g(X) we have for two points X; and X,

FEE2) > fx)p0) (E.12)
and ,
(FE22) > xg(x), (£13)

Our objective is to show that

Xi 4+ Xo
2

<f(X1 + X5

; ) 2 (0 +g(X))(F () + (X)) (E14)

) +g(
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Let f(Xl) = ar, f(XQ) = ag, f(%) = as, g(Xl) = b17 g(XQ) = b?a and g(%) =
bs. Then, we need to show that

(as + b3)* > (a1 + b1)(az + by)

(03 + 53)2 - (Cll + 51)(% + bz) >0
Since we have

arbi((as + b3)” — (a1 + b1)(az + b))

= al(al + bl)(bg — blbg) + b1<a1 + bﬁ(ag — alag) + (a1b3 — b1a3)2 (E15)

and noting that a; > 0, b; > 0, (a3 —ajaz) > 0 and (b3 —b1bs) > 0, the lemma follows.
|
Employing Lemma 1 to the log-likelihood function, the following proposition fol-

lows:

Proposition 1 The log-likelihood function for the latent class choice model with an
MNL-type categorical criterion class membership model and class-specific MNL model
18 strictly concave in 6, where 6 includes the parameters in the class-specific choice

model, and the parameters in the class membership model.

Proof: Trivial. [

E.2 Latent Class Choice Model with Ordinal Cri-
teria Class Membership Model

As the first step in the characterization of the likelihood function of the latent class
choice model with ordinal criteria class membership model, we analyze the multi-
variate ordinal probit model, also referred to as the Grouped Continuous Model for
Multivariate Ordered Categorical Variables in the biometrics literature (see Anderson

and Pemberton [1985]). Herein we observe for individual n , the ordinal categorical
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vector Yn = [Yin, - Ypnl, with ya, € L ={1,..., Lq}, Vd, where L, is the number
of levels in the d*® dimension. We postulate the existence of an unobservable (latent)

variable for each dimension d, denoted Hgy,’s, such that
Hyn = 0,7, + 64n, Vd=1,...,D (E.16)

where #; is an unknown parameter vector and 44, is a random component. Further,
correlations between the random components of H,'s (i.e., 64’s) are allowed to capture
the unobserved interrelationships between the different dimensions. The observed

levels in each dimension are associated with the latent variables as follows:

Yn = [Win - ypn) & {(7h, 1 <Hm<7), ), ¥d=1,. D},
‘v’[yln, e ,yDn]/ € {El X ,CQ X o X ,CD} (El?)

where
78 1 - lower bound value (threshold) for the latent variable of dimension d
when the corresponding level is yg,
T;fdn - upper bound value (threshold) for the latent variable of dimension d
when the corresponding level is g,
Assuming
6177,
~ N(0,R) (E.18)
5Dn
where R is a correlation matrix', the probability of observing [yi,,. .., ypns)" is given
by:
vl_'n, vE)n
/ e / for,n (U1, -, up) duy ---dup (E.19)
+ +
VUin, UDn

'Tt is necessary to set the scale of each latent variable, and this is usually done by fixing the
variance of the random components of the latent variables to unity.
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where f(-) is the density function of the multivariate normal density, v, = T;‘dnfl —

0,7, and vy, = T;ldn — 0,7, ford=1,...,D. In addition, 7§ Vd are set to —oco, 7} Vd
to +00, and 7{ Vd are arbitrarily set to zero to fix the origin of the latent variables.

It must be noted that multivariate ordinal probit model is a multivariate gener-
alization of the ordinal probit model of McKelvey and Zavoina [1975], an extension
of the multivariate probit model of Ashford and Sowden [1970] which allowed for two
levels in each dimension precluding the specification of estimable thresholds.

Haberman [1980] and Pratt [1981] have shown that the log-likelihood function of
the ordinal probit model of McKelvey and Zavoina [1975] is concave. We generalize
the result for the multivariate ordinal probit model in Proposition 2. It must be noted
that the uniqueness of the correlation parameters are not yet established.

Proposition 2 The log-likelihood function for the multivariate ordinal probit model

is strictly concave in 6.

Proof: First we show the concavity of the function:

h(vil;‘w S 7U$n7 Uiy - - 71}577,) = lOg / e / f517---75D(u17 T 7uD) duy -+ -dup (E20>
as a function of (vf,,...,v5,, vin,...,vp,) for v, > vl Vd. Defining indicator
functions Zy(ug, v3,,v5,) such that:

~ 1 v < ug < vy,
Id(ud7vdn,7vr;;7,) = ! ! (E21)
0 otherwise
the probability can be written as:
/ E / Ty (u1, 01, 01,) - - Ip(Up, Vpps Vi) fo1.nbp (U1, - -y up) duy -+~ dup  (E.22)
—0o0 —00

Noting that logZ;(ug,vy,,v4,) is concave in (ug,vy,,vs,), and log f is concave

in (uy,---,up) for the multivariate normal density (Prékopa [1971]) we have
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employing Theorem 6 of Prékopa® [1972, pp. 342] , that h is concave in

(Vs o s U Vs -, VD). Since the v's are linear functions of 6, as long as the
inequality restrictions are satisfied, it follows that log P in concave in 6. |

From Proposition 2, we note that if the class-specific choice model is MNL, then
the likelihood function of latent class choice model with ordinal criteria membership
model is a summation of log-concave functions for fixed R.

Employing Lemma 1 to the log-likelihood function, the following proposition fol-

lows:

Proposition 3 The log-likelihood function for the latent class choice model with or-
dinal criteria membership model and class-specific MNL model is strictly concave in 6,
where 0 includes the parameters in the class-specific choice model, and the structural

parameters in the class membership model.

Proof: Trivial. [

E.3 Discrete Panel Data Models

In the presence of panel data, it is possible to capture heterogeneity in preferences
among individuals through individual-specific effects since we have multiple responses
from the same individual. There are two approaches to estimating the model param-
eters in such a case. The first approach, referred to as the “fixed-effects” model in
the literature (Chamberlain [1980]), assumes that the alternative specific constants
(ASCs) in the choice model are individual-specific. If the model has the full set of
ASCs and N individuals, the model necessitates availability of sufficiently long spells
per individual and the estimation of large number of parameters ((J — 1)N + K)
where J is the number of alternatives, and K is the number of “other” parameters
in the utility function. The second, more tractable approach, is a model wherein the
individual-specific effects are assumed to be distributed in the sample. Such a specifi-

cation is referred to as the “random-effects” model (also called “agent effects” model)

2The integral of a log concave function with respect to some of the arguments is a log-concave
function of its remaining arguments.
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(Heckman [1981], Hsiao [1986]). Herein we focus on the random-effects model and
discuss some necessary identification restrictions not enunciated in the literature. To
motivate the necessary restrictions for identification consider a binary choice problem.

The utility functions for the two alternatives are written as:

Uitn = ' Xitn + Vin + €itn, 1=1,2 (E.23)

where v;, is the individual-specific error component for alternative i representing
individual’s unobserved intrinsic preferences towards the alternative, and subscript ¢
denotes the time period of observation. Assume that the ASC’s are included in the
[ parameter vector and that

2
07 PO102

~ BVN |0, (E.24)

2
Von PO102 0y

Vin

Assuming that €, ~ Gumbel(0, 1), the conditional choice model given (v, v9,) is

represented by a binary logit model:

exp(B' Xotm + Von)
exp(0' Xitn + vin) + exp(8' Xom + von)
exp(B' Xowm + (Von — vin)
exp (B’ Xitm) + exp(8'Xom + (V2n — Vin))

P(yfn(Q) - ]-|V1n7V2n) -

(E.25)

where y;,(7), for i = 1,2 denotes the choice indicator taking the value 1 if alternative
i is chosen at time ¢ and 0 otherwise. Let 7, = (12, — 115,), and by the distributional

2 = 02 + 02 — 2po109. Therefore, we can

assumptions for v’s, 7, ~ N(0,52%) where &
estimate from the data only &, while o, o9 and p are not estimable.

The preceding argument stems from the fact that the choice probabilities depend
only on the utility differences, and it naturally extends over to the multinomial choice
case. Consider a situation wherein an individual n picks an alternative from the index
set {1,...,J} over t, occasions. We assume for simplicity that at each occasion the

entire set of alternatives is available to each individual. Let Y, = (Yin,..., Y n)

denote the choice history, where Y, = (Y (1), yn(2), ..., ym(J))" is a vector of binary
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variables indicating the alternative chosen by the individual at time .

The utilities can be written in a compact form as:
Uin = XitnB+ Vn + €in (E.26)

where v, ~ MV N(0,%). Given €;,’s are independently and identically distributed
Gumbel (0,1), the probability of individual n choosing alternative ¢ on occasion t
conditioned on the individual-specific error component v, is given by the multinomial

logit model?, i.e.,

exp(0' Xitn + Vin)
Jél exp(3' Xjin + Vjn)
exp(0' Xitn + (Vin — Vn))
55 exp(8 X + (130 = 1)
exp(0' Xitn + Vin)
55 exp(9' X, + D)

P(ymm(i) = 1| Xin,vn) =

(E.27)

There exists a linear mapping matrix A; : (J — 1) x J that operates on v, to obtain

the differenced ,,. Further &, ~ MV N(0,%) where
> = A2A, (E.28)

Let G(-) and G(-) denote the cumulative distribution functions® of v,, and &,. The

unconditional probability of observing the sequence (Yi,, ..., Y: ») can be written as:

-/ {ﬁ Pn(m,|Xm,v)}dG(u)

g =1
tn B
I —1 t=1

3For notational simplicity, we assume that all the .J alternatives are available to each individual.
4The difference induces a new distribution whose density §(-) can be easily derived from the
density g(-) by the linear transformation with Jacobian equal to unity.
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Since from the data we can estimate 3 the question reduces to whether we can identify
% from X. Also, noting that ¥ has J(.J + 1)/2 nonredundant parameters, and ¥ has
J(J — 1)/2 parameters, we need to restrict J parameters in 3. The necessary and
sufficient conditions for this problem closely resemble conditions for the identifiability
of the variance-covariance matrix of random component in the Multinomial Probit
Model (see Ben-Akiva and Bolduc [1991]). Obviously restricting the v’s to only
J — 1 utility functions ensures the identification of the variance-covariance matrix
of the individual-specific error components. But the question remains as to which
alternative may be set as the base alternative. This issue is important if one notices
that even if the pure random components of the utility functions are assumed to be
homoscedastic, the error-component structure induces heteoscedasticity in utilities.
Consequently, by setting one alternative as the base sets the corresponding random
component’s variance lower than the variance of the random components of all other
utility functions. It must be noted this problem is analogous to the problem of setting
the base alternative in choice models estimated on non-rectangular data® wherein the
precision with which the alternative specific constants are estimated usually depends

on the base alternative. The ad hoc approaches to address the issue may include:

1. Estimating choice models with each of the alternatives set as the base alterna-
tive. Goodness of fit statistics from each of the models may be used to pick the

“best” model.

2. It is computationally convenient to pick the alternative which is available to all

the individuals in the sample as the base alternative.

It must be noted such considerations are often ignored with agent-effects models (see

for example, Chintagunta et al. [1991]).

5In rectangular choice data, the universal set of alternatives is available to every individual. If
each choice set varies across individuals then the choice data is usually referred to as non-rectangular.
In non-rectangular data it is often suggested to use as the base the alternative which is most often
available.
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Appendix F

Random Coefficients Multinomial
Logit Model: A Factor Analytic

Representation

The basic idea in the random coefficients model is the assumption that each indi-
vidual n has his/her own taste parameter (3, vector which differs from the “average”
parameter vector 3 for the “representative” individual by an unknown (hence ran-
dom) amount. Assuming a parametric distribution f(3;©) for the taste parameter

vector, the choice model is given as:

P(i1X:0) = [ P(iIX:4) £(5:0) d8 (F.1)

It must be noted that the estimation of the MNL model with random coefficients
is difficult as the choice probability calculation entails the evaluation of a multi-
dimensional integral since a model with K random coefficients is expressed as a K-
dimensional integral. Consequently, to reduce the dimensionality as well as to capture
the interrelationships between the different random coefficients in a systematic man-

ner we postulate that the randomness in K coefficients may be generated through
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M < K factors which may be assumed to be white noise. Specifically, let

where A is a K x M parameter matrix, and £ is a M x 1 random vector. The
specification of the free and fixed parameters in A depends on the the correlation
structure postulated between the random coefficients, and we illustrate it with an
example.

Consider a utility specification with five random taste parameters. Further, as-
sume that parameters 1, 3 and 5 may be correlated with each other, parameters 2 and
3 may be correlated, while there is no correlation between any two parameters from
the two different subsets, {1,3,5} and {2,4}. Consequently, the random coefficient

vector may be written as:

Bin B 1 0

Bon B 0 1

B | =|Bs |+ ]| a1 0 ( “an ) (F.3)
Ban Ba 0 g o

Bsn B Asi 0

If we assume that &, ~ N(0,02,), we should fix one element in each column of A to

1. To see why this is necessary, the variance-covariance matrix of (3, equals

o? 0 3107 0 5107
0 o3 0 120 0

31020 A2 0% 0 315107 (F.4)
0 1203 0 2,02 0

5107 0 A31 5107 0 A2 0%

Thus, if A\; is a free parameter we can atmost identify var(8i,) = A\?,0%, but not
A1 and o? uniquely. Hence, it is necessary to either fix A\;; or 0% to some constant.
Consequently, if o} is a free parameter, then \;; may be conveniently fixed to 1. In

similar vein, A9 is set to 1.
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The main advantage of the factor analytic representation for the generation of the
random coefficients is the reduction of the dimensionality of the integration involved
in the calculation of the likelihood function. Further, if the analyst can meaningfully
impose some correlation structure among the random coefficients, then the factor
analytic representation significantly reduces the number of parameters estimated.
For example, if an alternative attribute is specified as alternative-specific then we
might expect correlations among the corresponding J alternative-specific random

coeflicients.
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Appendix G

Some Characterizations of a Class

of Dynamic Choice Models

Before proceeding with the details of the class of dynamic choice models, we present
a general overview of the underlying processes in choice dynamics. The key necessary

features of dynamic choice models include:

e They must capture systematically the effects of past choice behavior on future

choice behavior; and

e At each time period or choice occasion the individual updates his/her infor-
mation state and has varying propensities to either continue with the previous
choice or switch to a new alternative or the analyst uses each individual’s choice

history to update the prior preference structure assumed for that individual.

Different types of assumptions on the prior information lead to specific types of

dynamic choice models. Some of the examples of prior information might include:

e Prior distribution of taste parameters;

e Prior distribution of latent (unobserved) classes such as choice sets, alternative

loyalty, market segments, etc.

It must be noted that the prior information is statistical in nature and hence can be

characteristized through some probability measure with a set of unknown parameters.
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As an illustrative example, we restrict our attention to dynamic choice model with

update on taste parameter distributions, while adoption to other types is transparent.

Dynamic choice model with update on taste parameters

Consider a situation wherein an individual n picks an alternative from the index set
{1,...,J} over t, time periods. We assume for simplicity that at time period the
entire set of alternatives is available for each individual. Let Y, = (Yip,...,Y:, n) de-
note the choice history, where Yy, = (Y (1), y4n(2), ..., yn(J)) is a vector of binary
variables indicating the alternative chosen by the individual at time ¢’ € {1,...,¢,}.

At time ¢ = 1, when the analyst starts making observations of the choices made
by individuals, unobserved heterogeneity in the underlying choice process may exist
across the members of the population. Assuming a random utility model for the

choice process, the utility of alternative ¢ to individual n at time ¢’ can be written as:

Uit’n = ﬁtIInXit’n + €iprn (G1>

We assume that €, are independent and identically distributed across time for the
same individual, while these error components may be correlated across alternatives.

The utilities can be written in a compact form as:

Ut’n = Xt’nﬂt’n + €4 (GQ)

It may be reasonable to assume, given the lack of prior information, that at the
first time period, the taste parameters are randomly distributed across the sample.
After the first time period, one expects to “learn” or gain experience, and thereby
leading to an “update” of the distribution of the taste parameters. This updating
mechanism is expected to be function of the first choice. The alternating sequence of
choice and updating mechanisms continues till we reach the end of the choice history
for an individual. Hence, even if the distribution of the taste parameters are identical

across the individuals at the start of the process, they vary at subsequent time periods
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depending on each individual’s choice history up to that time. Let fy,,() denote the

density of the taste parameter vector at time #’. We need a relationship such as:

ft’n(ﬁ) :g(fln(ﬂ)7yl’l?,a}/2n7"'7}/;,/—1,7‘1,;X1’n,7'"aXt'—17’r7,)7 t, S {17'°';t’n} (GS)

More specifically, we are looking for a sufficient statistic which summarizes all the es-
sential bits of information up to time ¢’ such as choices and the explanatory variables.
Such a relationship can be constructed by using a Bayesian updating scheme. For
example, if the initial density function is fi,(5) = f(8) Vn, then the density function

at the second time period, fa,(/3) is obtained as:

Pr(Yi,|X1: 8) ()

n = G4
ForB) = TBr(,, Ko B) 5V 5 (G4
and the choice probability at the second time period equals
Pr(Vaol X fon(8)) = [ Pr(Yanl Xau: 8) fonl 9)d8
JPr(Yin|X1n; 8) f(8)dB '
In this fashion, the density function fy, () at any time ¢’ is written as:
[120 Pr(Yon| Xon; 8)£(5)
t'n = 7 G.6
Fonl ) = T PVl X ) ()5 (G0)
and the choice probability at t" equals
bt Pr(Yon | Xon; d
Pr(}/f-:’n‘Xt’n; ft’n(ﬁ)) - st_l ( | ﬁ)f(ﬁ) 6 (G?)

I Pr(Yan| Xan; B) £(B)dB

Assuming that the attributes are time-invariant (i.e., X, = Xj,, Vt) then one would
expect the probability of choosing an alternative i to increase to 1 as the individual
choice history contains a sufficiently large number of alternative i choices. Consider

a situation wherein an individual chooses alternative ¢ every time until time t" — 1.
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The probability of choosing alternative i at time ¢ is written as':

J{Pr(yn(3) = 11X,; )} £(B)ds
J{Pr(ya(i) = 11X, 8)} ™" f(B)dp

Pr(yt’n(i) = 1|X1'n7 ft’n(ﬁ)) =
The change in the conditional choice probability from t’ to t' 4+ 1 equals

J{Pr(ya(i) = 11X )} T F(3)dB [ {Pr(ya(i) = 11X0; 8)}" ()
JAP(ya (i) = 11X B)} F(B)AB [ {Pr(ynli) = 11X 8)} ™" f(B)dB
(I Pr(yn(i) = 1 X0; B)} T F(B)dB [ {Pr(yali) = 11X0; B)} " F(B)dB —
(J {Pr(ya(i) = 11X )} F(8)dB)”

T{Pr(yn(i) = 11X B)} f(B)dB [ {Pr(y,(i) = 1|X,; 8)} ™" f(B)dB
(G.9)

Noting that In [ {Pr(y,(i) = 1| Xp; ﬂ)}t/ f(B)d3 is a convex? function in ' (see Hardy
et al. [1952]), we obtain that the numerator in equation (G.9) is positive. Hence the
conditional probability monotonically increases in ¢’. Since the conditional probability
is bounded between 0 and 1, the limit of the conditional probability sequence exists,

lim [ {Pr(ya(i) = 1 Xu: )} f(B)dB_ _
Y= [{Pr(ya(i) = 11X, )} f(B)dB

Therefore the model behaves consistently with our behavioral expectations. Note fur-

(G.10)

ther that the foregoing analysis applies to any choice history wherein all alternatives
other than alternative ¢ are chosen only a countably finite number of time periods.

The likelihood for the choice history Y, Pr(Y,|Xi,,..., X, »), equals

Pr(}/ln|X1n) Pr(}/gn|yln’ le XQ?‘L) T Pr(Y;‘,n,nD/lm cee a}/tn—l,nv Xlna Ce 7th—1,n)
= [ Py Xo ) £(8)d8) {f Pr(on| Xon; 5) PriYinl Xun; 5) /(S)af } N

S Pr(Yin| X1n; 8) f(B)dS
{ ST Pr(Yen| Xan; ﬂ)f(ﬂ)dﬁ}
ST Pr(Yen| Xan: 8) f(8)d3

'Note that by the assumption of time-invariant attributes, for any time ¢ Pr(y, (1) = 1| Xm; 3) =
Pr(yn (i) = 11Xn; B).
2The convexity result follows from a generalization of Holder’s inequality.

316



= [ L PVl X 91 (5)d5 (G.11)

Thus, through a bayesian updating scheme on the distribution of the taste parameters
(B the resulting likelihood function of the choice history is the same if one notes
that conditional on (3, the choices are independent since we assumed that €;,’s are
independent across t. It must be noted that the exact choice sequence does not affect
the likelihood function, and all that matters is the product of the choice probabilities
conditional on 3. So by directly allowing for interdependencies among the choices
across time for the same individual through the random taste parameters one is
actually capturing a dynamic choice model with a bayesian updating scheme on the

distribution of taste parameters.
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Appendix H

Approximations for Central

Moments of Function of Random

Variables

In this appendix, we outline a standard method to approximate the first two central
moments of a function of random variables. Consider a multivariate random vector,
X, with finite first and second moments, and an analytic function f(-) which generates
the random variable Y such that Y = f(X). Let E(X) = pand E((X —p)(X —p)') =

Y. By a Taylor’s series expansion of the f(-) about p, we can approximate Y as:

Y = F(X) % F(0) + VI X )+ 5(X —pf V(X —p) ()

where V f(-) and V2f(-) denote the first and second derivatives of f(-) , respectively.
Since E(V f(1) (X — 1)) = 0, we have

B(Y) & f(1) + 5E((X — ) V£ (1)(X — ) (H2)
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Thus, E(Y) is a function of the mean vector and the variance-covariance matrix of

the generating random variables. Further, by a first order Taylor’s series expansion

Var(Y) ~ Var(Vf(u)/(X - p))

= Vf(W)EVf(n (H.3)
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Appendix I

Methods for the Extraction of
Latent Variables

In this appendix, we briefly review the different methods for extracting the latent
variables after the latent variable model system has been estimated. We also elaborate
on constructing or estimating a model, referred to as the factor score model, which
maps from the indicators to the latent variables in a MIMIC model. Applying similar
tools for the more general LISREL model will be transparent.

In the MIMIC model, the linear structural model is written as:
n=Bn+Tx+( (I.1)

In equation (I.1), 7 is the m x 1 vector of latent endogenous variables; x is the ¢ x 1
vector of latent exogenous variables; B is the m x m coefficient matrix capturing the
influence of the latent variables on each other; and I' is the m x ¢ parameter matrix
reflecting the effects of x on 7. The matrix (I — B) is assumed to non-singular. ¢ is
the disturbance vector that is assumed to have an expected value of zero [F(() = 0]
and which is uncorrelated with x.

The linear measurement model is written as:
y=An+e (1.2)
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The p x 1 vector of observed variables, y, form the indicators of n; A is a p x m
parameter matrix capturing the mapping from 7 to y; and € is a p x 1 random vector
representing the errors of measurement for y. € is assumed to be uncorrelated with 7
and (. The expected value of € is zero. To simplify matters y and x are written as
deviations from their respective means (without any loss of generality).

Let the unknown parameters be stacked in a vector 0. Sy, denotes the observed
covariance matrix of y, S,, denotes the observed covariance between y and x, and
S,» denotes the covariance matrix of . Then the covariance matrix of the observed
[v/, 2']" is given by
Syy  Sya
Spy  Sux

S = (1.3)

Let X(#) denote the covariance matrix of the vector [y, 2] implied by the model

system, i.e., as a function of the unknown parameter vector 6, where

5(0) Yy (0)  Eya(0) (L4)
by

It must be noted that >,,(0) is not a function of the unknown parameters, since

Y.2(0) = E(xz’). Note that X,,(0) is written as
Syy(0) = E(yy') (L5)
Substituting equation (I.2) in equation (I.5) we obtain

Yyy(0) = El(An+e)(nf'A +€)]
= AE(m)N +© (1.6)

where © = FE(ee’). E(nn') can be further broken down by substituting the reduced

form of equation (I.1) —n = (I — B) '(T'z + ¢) — for n in equation (I.6) and by sim-
plifying to obtain
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Yyy(0) = A(I — B) ' (TE(x2")T' + ¥)[(I — B)""N + 6 (L.7)

where U = F(((’). Thus, the covariance matrix of y is a complex function of 5 model
parameter matrices.

Similarly, ¥,,(6) is given by
Yya(0) = E(ya') (1.8)
Substituting equations (I.2) in equation (I1.8) gives
Yya(0) = E[(An + €)2] (L9)
Again making use of the reduced form of 7 leads to
Yy2(0) = AMI — B) 'TE(xa") (1.10)
Assembling equations (I1.7) and (I.10) in equation (I1.4) gives

A(I = By Y(TE(2z2"\I' + U)[(I — By A’ +© A(I — B) 'TE(zz")

X(0) =
E(x2"T'[(I — B)" 11N E(zx)
(L.11)
The covariance matrix of 7 is obtained from equation (I.1) as:
Yy = (I — B)"Y(TE(x2")[" + W)[(I — B)™"] (1.12)

Primarily two methods may be adopted to extract the latent variables, in addition
to the obvious method of extracting the latent variables using the structural model. If
the extraction of the latent variables is based on the information from the indicators
y, then the extraction procedure is defined as the Partial Information Extraction
Method. If the extraction is based on information from both the explanatory variables

xr and the indicators, then the extraction method is defined as the Full Information
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Extraction Method.

In the popular extraction methods, only the information from the measurement
model is used in the extraction procedure, while the information from the structural
model is essentially ignored. To this end, we present an extraction method which uti-
lizes information contained in the structural and measurement models. Furthermore,
we compare the partial information and the full information extraction methods for

the single latent variable case.

1.1 Partial Information Extraction Methods

These methods are the usual extraction methods adopted in a Factor Analytic model.
Based on the assumptions made in the extraction procedure, the methods are further

classified into:
1. Weighted Least Squares Method; and

2. Regression Method.

I.1.1 Weighted Least Squares Method

Assume that the parameters in the MIMIC model have been obtained through some
estimation procedure (see, for example, Bollen [1989]). The measurement model is
given by equation (I1.2) i.e.,

y=An+e (1.13)

Regard the specific factors € =(ej,...,¢,)" as errors. Since var(e;) = 65, Vi =
1,2,...,p, need not be equal, Bartlett [1937] has suggested that weighted least squares
be used to estimate the latent variables. The sum of the squared errors, weighted by

the reciprocal of their variances, is given by

b

Il
i™

|Qm

- = (y— A0~ (y — An) (L.14)
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Then the coefficients of the factor score model are obtained by minimizing the function

given in equation (I.14) with respect to 7. The first order conditions lead to:

n = (Al®—1A)—1A/@—1y

= Ry (I.15)

where k is the m X p parameter matrix in the factor score model. The second order

condition is given by:
0?A
Mo’

=2N0 A (1.16)

which is positive definite since © is a positive definite matrix, implying that the
solution for 7 in equation (I.15) corresponds to the minimum of A. The main disad-
vantages of this method are: (1) information regarding the correlations between the
latent variables is neglected, and (2) extraction is based only on the measurement
model. The factor score model is unaffected by the assumptions on the explanatory

variables x.

I.1.2 Regression Method

In this method the latent variables are extracted using the measurement model, and
the information regarding the correlations between the latent variables. Assume that
the joint distribution of the indicators and the latent variables is multivariate normal,

ie., (v,n) ~ N(0,%) where ¥ equals

Lyy Ly
by

(L17)

ny 27777

The covariance matrix ¥, is given by equation (I.7), while the covariance matrix ¥,,

is given by equation (I1.12). 3, is obtained from equation (1.2) as

Sy = Sy, (1.18)
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Therefore, considering the conditional distribution of 7 given the indicators y, the

m X p parameter matrix in the factor score model, denoted by &, is given by:
k= YN (AS,,A +6)! (1.19)

If one uses the sample covariance matrix .Sy, for the indicators instead of the estimated

covariance matrix, xk equals

SN (Syy) ™ (1.20)

One of the main drawbacks of this method, is the possibility of non-zero coefficients
for some indicators in the extraction of a particular latent variable, even though
the corresponding indicators are not specified as indicators of that particular latent
variable (in the case of multiple latent variables). Such inconsistencies do not arise
in the Weighted Least Squares Method if © is a diagonal matrix. Even here it must
be noted that we do not make any specific assumptions on the distribution of the

explanatory variables x.

1.2 Full Information Extraction Method Under Nor-
mally Distributed Explanatory Variables

The drawbacks in the methods described in section 1.1 motivate the extraction of
latent variables using both the measurement model and the structural model, leading
to the full information extraction method. The extraction procedure is described
separately for the single latent variable case and the latent vector case, to illustrate
the close relationship between the Regression Method described in section [.1.2 and

the full information extraction method for the single latent variable MIMIC model.
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I[.2.1 Single latent variable case

The structural model for the single latent variable MIMIC model is specified as:

n=~z+¢ (I.21)

The basic idea in this method is to assume that (n,y’,2")" is distributed multivariate
normal and use the conditional distribution of 7 given (y/, z’)’ to fit the latent variable
as function of y and x. These fitted values are then “regressed” on the indicators y
to obtain the 1 x p parameter vector x of the factor score model. The conditional

expectation of 7 is given by (using sample covariance matrices):

—1

Sy Syx Y
Ely, 2] = { Sy S } we (1.22)
Sy Sz T
A Y
= { a B } (1.23)
x
where ¥,, = 02A’ and %,, = v/ E(xz'). Therefore, /) can be written as
ny n n n
i = ay + fz. (1.24)

On regressing 7 on y leads to the factor score model’s parameter vector s given by
K=&+ 35,5, (1.25)

The standard error of the factor score model is calculated as follows. We know that
in a multiple regression model of Y on X, the unbiased estimate of the variance of

the error term is given by (see Greene 1990)

s° = . (1.26)
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where e is the residual vector, N is the number of observations and K is the num-
ber of parameters estimated, and the estimated variance-covariance matrix equals

s?(X'X)~!. Similarly, the estimated variance-covariance matrix of 4 is written as
Var(#) = s*(Y'Y) ™ (1.27)

where Y is the stacked matrix of /. In this case e’e = f)'n) — 4'Y'Y'¥ where 7 is the

stacked 7. Therefore,
N —1)(62 — 4S5

and
2

° 5 (1.29)

Var(9) = m »

Comparison of Full Information Extraction Method and the Regression
Method for a single latent variable MIMIC model

The regression method yields the factor score vector kg given by equation (1.20). The

full information extraction method yields the factor score vector kr given by

kP =G+ (3S.,S;, (1.30)
Let .
S, Soz A B
W = (1.31)
where

= 5/ Sup(Si = 505y 500) ™' SuS)
- _Sy_ylsym(sm - SmyS;ylgym)—l

— — —~ —
w [OM]
R~ w

~— ~— ~— ~—

B/ = _<Sx$ - SwUSyiUlSU$>715$US;y1

S Q © =
|

= (Spz — Sm,Sy*ylSW)*1
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Then,
a=Y,,A+3,,C (1.36)

3 =%,,B+ %D (1.37)

Substituting equations (1.32), (1.33), (I.34), and (1.35) in equations (1.36) and
(I.37), and equations (1.36) and (1.37) in equation (1.30), and simplifying yields kp =
kgr. Therefore both the full information and the regression methods yield the same

factor score model.

1.2.2 Latent vector case

Here the extraction is similar to the single latent variable case. Assume that the

vector (1,4, x’)" is distributed multivariate normal with variance-covariance matrix

Y, i.e.,

Yo Yy X
D= By Ny Yy (1.38)
zxn Emy zxx

Therefore, using the conditional distribution of 7 given y and x, the fitted values 7 is

obtained, using sample variance-covariance matrix for (y', 2')’, as

-1

Sy Sya
0= {zny zw} we / (1.39)
Sy Sz T
_oalY (1.40)
T

Considering the set of equations describing 77 as a function of y, as a set of seemingly
unrelated regression equations, the only information needed for the maximum likeli-

hood estimation of the parameters of the model system are the variance-covariance
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matrix of the variables concerned, i.e,.

Sin O
I (L.41)
Yy Syy
Using equation (1.39),
S
Sip=A| Y (I.42)
L Emy
and _ -
by
Spp=A " (1.43)
Yan

Substitute equations (I1.42) and (1.43) in equation (I.41), and run the seemingly unre-
lated regression model taking care to specify the free and fixed parameters depending
on the relevant indicators for each of the latent variables as specified in the measure-
ment model. Therefore, in this method one controls the free and fixed parameters in

the model, thereby preventing undesirable non-zero parameter values.

1.3 Full Information Extraction Method Conditional
on Explanatory Variables

In the full information extraction method discussed earlier we assumed that x is
normally distributed. But this may be an unrealistic assumption as some of the
explanatory variables may be dummy or categorical variables. Further, even if all the
explanatory variables are continuous and normally distributed in the population, it
may be not be normally distributed in the sample. Herein, we present the extraction
method under such circumstances.

Given the structural and measurement models are specified as in equations (I.1)

and (1.2), we may assume the distribution of (,%’)" given = to be normally dis-
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tributed, i.e., (/,y') |x ~ N (M,X), where

( (I -B) Tz )
M = (1.44)
A — B)™'T'x
and
. ( (I-B)""[I-B)" (I—-B)""W[(I—-B)N\ ) (L45)
ANI—-B)"YW[(I-B)™) AUI-B)'W[(-B)''N+6

The conditional distribution of 1 given y and z is also normally distributed with

nl(y, x) ~ N(M1, Y1), where

My = (I-B) ™ 'To+(I-B)™"Y[({I-B"VNAI-B)™Y[(I-B)"AN+6)"
(y — A(I — B) 'T'z) (1.46)

and

% = (I-B)"9[(I-B)""~(I~-B)""0[(I-B)"IN
(A(I—B) "W[(I—B) AN +0)"'A( — B) "W[(I - B)""
= (I-B)"[(I-B)7")(I-NA(J-B) Y[ -B)IAN+6)"
A(I = B)~W[(I - B)7Y) (1A47)
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Appendix J

Methods for the Extraction of
Latent Class Probabilities

J.1 Extraction of Latent Class Probabilities for
Latent Class Model

In latent variable models, methods exist for extracting the latent variables from the
structural model, measurement model, and from both the structural and measurement
models. The primary objective of the extraction methods is to predict the latent
variables when the inputs to the model system change. For example, assume that the
analyst has estimated the latent variable model system. The analyst may conduct
future measurements of the explanatory variables, indicators or both, either from
the same population for which the model system was estimated or from a different
population wherein the analyst expects the estimated latent variable model system
(and hence the psychological “laws”) to hold. The analyst can predict the latent

variables from:

e Structural Model: If data is available only on the explanatory variables the
analyst can predict the latent variables using the estimated structural model.

This is the easiest and the most intuitive approach.
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e Measurement Model: If data is available only on the indicators, the analyst
can predict the latent variables using a model, referred to as the factor score
model, which maps from the indicators to the latent variables, and which is
constructed primarily from the measurement model using the “weighted least

squares method” or “regression method” (see Johnson and Wichern [1982]).

e Structural and Measurement Models: Herein information from both the esti-
mated structural and measurement models are utilized in the construction of

the factor score model (see Gopinath [1992]).

In similar vein, in the latent class model, one can either use the class membership
model, the measurement model, or both to estimate the latent class probabilities
depending on the availability of Z, or A,. For notational simplicity, let P(s|Z,) =
Qs(Zn;0), and g(A,|s) = g(A,|l%, = 1;¢s). If one observes only Z,,, then P(s|Z,) is

trivially obtained from the class membership model.

J.1.1 Extraction from the Measurement Model

Suppose one observes or measures only A, and we need to obtain P(s|A4,,).

Deterministic Assignment Approach:
Assuming that we have estimated the parameters of the latent class model and
these estimated parameters as “fixed” parameters!, the latent class assignment can

be conducted by maximizing the likelihood of observation of A,, i.e.,

S
max Znsg(An|s)
nsVs —l
s
subject to Z Ns =
s=1
ns > 0 Vs (J.1)

where 7,’s are the probabilities of interest. This formulation leads to the “determin-

'In reality, the estimated parameters are statistics and hence are random variables.
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istic” assignment of the individual to the latent class s* such that
s* = argmax{g(Aa|s)} (J.2)

The above assignment is obvious, since the optimal solution to a linear program is at

an extreme point of the polyhedron {3, ns = 1;ns > 0 Vs}.

Probabilistic Assignment Approach

Using a Bayesian approach,

9(Anls) P(s)

P(s|A,) = — (J.3)
5 g(als) P(s)
The unconditional probability mass function, P(s), may be calculated as:
P(s) = / P(s]2) f2(2) dz (J.4)
Z

where f7(z) denotes the probability density of the explanatory variables in the pop-

ulation. Thus, P(s|A,) can be (numerically) obtained as:

9(Anls) [ P(s]2)fz(2) dz
P(s[An) = -

. (1.5)
2 9(Aul) [ P(|2) fo(2) d2

s'=

J.1.2 Extraction from Class Membership and Measurement

Models

Here we address the question of how to estimate the latent class probabilities given
information on Z, and A,. One might be tempted to trivially adopt the class mem-
bership model and obtain P(s|Z,). The main drawback of this approach is that one

does not use the information from A,,. Using a Bayesian approach,

P(s, An|Zy)

P(s|Z,, A,) = P(AL|Z,)
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o(Anls. ) P(slZ)

2 9(Is Z) P(s1Z,)
o(Auls) P(slZy)

> 9Ails) P(s1Z,)

Thus, in general P(s|Z,, A,) # P(s|Z,).

J.2 Extraction of Latent Class Probabilities for
Latent Structure Choice Model

As in the latent class model, one can use either the structural model, or the structural
and measurement model, to estimate the latent class probabilities depending on the

availability of W,,, Z,,, Az..

J.2.1 Extraction using Structural Model

If only W), and Z,, are measured /observed, then P(l%, = 1|W,,, Z,) is trivially obtained

from the estimated structural equations for Z* and [¥ | i.e.,

7ZF = (I — By)'T,W, (J.7)
and
P(l:n = 1|an Zn) = QS(va ZZ» é) (J,8)

Note that some degree of inconsistency is introduced due to ignoring the sampling

. -l ES .
error in 7. More precisely,

~

P(LL, = 1Wa, Za) = [ QulZn,wiB)dF(w) (J.9)

n
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where F'(+) is the sampling distribution of Z;fb By drawing R draws from the sampling
distribution F', an estimate of P(I%, = 1|W,,, Z,,) is obtained as:

%rz_l {Qu(Zn,wM:0)} (1.10)

J.2.2 Extraction using Structural and Measurement Models

Suppose one observes the explanatory variables W,, and Z,,, and the indicators A.,
and Ag.,, then one might be tempted to trivially adopt the structural equations. The
main drawback in this approach is that one does not use the information from Ay,

and Ag.,. Using a Bayesian approach,

Agons Agnll® . Wo, Z2) P(I% W, Zn
DU 1. 2o A Ag) — T Az Asall, W Z2) PULWa, 21

S
’Z—:l f(AZ;na AS;n|l* Wna Zn) P(l;/n|Wn7 Zn)

s'n

(J.11)

*
sn?

The reader can easily verify that f(Az.n, Asn|l%,, Wh, Z,) is written as:

S 9(Azn 27) P(Asinllsy) Pl Zn, 27) F(Z27|Wa) dZ
P15, [Wa, Zn)

(J.12)

Thus, the required probability, P(I%,|W,, Zn, Az, As:n) reduces to:

P(Asnll5n) | 9(Aznl 27) P51 Zn, 27) (27 |Wa) dZ

S
ZlP(ASmU:,n)Zf* 9(Azn|Z*) P, | 20, Z%) f(Z¥|W,,) dZ*

s'=

(J.13)

In a similar vein, if one observes the explanatory variables (X, Z,, W), the choice
indicator Y,,, and the indicators of attitudes, perceptions and latent class, i.e., Az.,,

Ax.n, and Ag.,, the latent class probability, P(I%,|Xn, Zn, Wa, Y, Ax s Az, Asin),
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equals

P(Asalls) J J POYLll50, X P Z)g(Ax| X7)g( A2l 2°) (X7, 2°) dX* d2°

sn?

S
£ {PUsuz) ] J POLE0 P20 A5 X (AR Z 10 2 x|
(J.14)
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