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Abstract 
 

Microscopic traffic simulation is an important tool for traffic analysis and dynamic traffic 
management as it enables planners to evaluate traffic flow patterns, predict and evaluate the 
outcome of various response plans and assists in decision making. It is a vital tool for traffic 
management centers and can be helpful in developing contingency plans to enhance the safety 
and security of the transportation system. 

This thesis investigates the current state-of-the-practice in traffic microsimulation tools. A 
survey was developed and administered to developers. Results of the survey indicate critical gaps 
in including influencing external factors beyond the interaction of vehicles, such as incidents, 
work zones, or inclement weather, in traffic simulators. This thesis introduces a framework for 
incorporating such factors in existing models. The nature of the influencing factors limits 
disaggregate trajectory data collection generally needed to estimate driving behavior models. 
Therefore, an approach using aggregate calibration to refine and enhance existing driving 
behavior models is formulated. 

The aggregate calibration methodology is illustrated with a case study incorporating the 
effects of weather in driving behavior models using a freeway corridor in the Hampton Roads 
region of Virginia. MITSIMLab, a microscopic traffic simulation laboratory that was developed 
for evaluating the impacts of alternative traffic management system designs at the operational 
level, is used for evaluation. The presence of precipitation was found to be significant in 
reducing speeds in the case study and was incorporated into the driving behavior models with 
aggregate calibration. This methodology was found to improve the simulation results, by 
reducing bias and variability. Assessment of the approach is discussed and recommendations for 
improvement and further study are offered. 
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Chapter 1   
Introduction 
1.1 Motivation 

Accessibility and mobility are the key functions of transportation systems. Accessibility is 

the ability to reach desired goods, services, activities and destinations. Mobility is the movement 

of people and goods. Restrictions to accessibility and mobility, which can result from traffic 

congestion, natural disasters, or terrorism, for example, have a profound impact on the national 

economy, quality of life, and the nation’s safety and security. Intelligent Transportation Systems 

(ITS) and transportation analysis tools allow us to understand disruptions in transportation 

systems, predict effects, and therefore, mitigate the impacts of such events.  

Traffic congestion levels have increased in both large and small urban areas since 1982, 

affecting a larger portion of the day, more roads and more travel and causing increased costs to 

users. The Texas Transportation Institute (TTI) estimates that in 2001 the average cost of 

congestion effects per person was $520, ranging from $650 in very large metro areas to $130 in 

small areas (Schrank and Lomax, 2003). Additionally, the TTI study estimated that the average 

person experienced 26 hours of delay and wasted 42 gallons of fuel. These figures result in a 

total cost of $69.5 billion in cost, 3.5 billion hours of delay and 5.6 billion gallons of wasted fuel 

in 2001 (for the 75 study areas). These figures showcase the adverse effect of congestion on the 

economy, quality of life and the environment. Commercial vehicle operations are even more 

heavily impacted by congestion and inclement weather as travel delay disrupts the entire supply 

chain. Weather-related delay adds $3.4 billion in costs on freight operations alone (Row, 2003).   

By providing accessibility, transportation networks are a natural target for terrorism, as 

September 11th so horrifically demonstrated. Paradoxically, the very target can also provide 

safety and security. The terror in New York City could have been exponentially worse had 

transportation operators and analysts not used the system to their advantage to move millions of 

people efficiently out of the city and to prevent people from entering the danger zone. Even 

when an incident does not directly affect transportation, the transportation system is impacted. 

Transportation is the means by which responders get to the scene, citizens escape a hazard and 

 13 



victims are moved to safety. Effective, efficient evacuation is inextricably linked with the 

transportation. A critical component of U.S. homeland security is contingency and evacuation 

planning. 

Figure 1-1 graphically presents a risk continuum for a sample of the diversity of incidents 

that impact the transportation system as presented by Vince Pearce of FHWA (2004). Traffic 

accidents occur on a daily basis and have relatively low impact (per event) on the system when 

compared to natural disasters or acts of terrorism. Because accidents happen so frequently, there 

is increased knowledge about their impacts and more experience in managing them. However, 

when rarer incidents such as natural disasters or acts of terrorism occur, the consequences can be 

devastating to the transportation system and the community. It is vital for security and safety to 

be prepared in order to minimize the consequences with contingency planning.  

 

Frequency 
Terrorism  Earthquake  Hurricane Wildfire   Traffic crashes

Impact per incident 

Level of knowledge and experience 

Figure 1-1: Risk Continuum of Incidents Affecting Transportation 

Developing a safe, efficient, and redundant transportation system is critical. This goal can be 

facilitated by applying the appropriate Intelligent Transportation Systems and information 

technologies. Applications of ITS, systems that collect, store, process and distribute information 

relating to the movement of people and goods, have become effective tools for traffic 

management and have demonstrated the ability to provide remedial measures for traffic 

congestion and options for improving traffic operations. Microscopic traffic simulation is an 

important tool for traffic analysis and dynamic traffic management as it enables the user to 

evaluate traffic flow patterns, predict and evaluate the outcome of various response plans and 

assists in decision making. It provides a useful environment in which to test the effectiveness of 

various technologies, configurations or changes to the network. It can be used for both long-term 

planning operations, as well as for shorter-term incident or emergency management 

 National economic consequence per incident 
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strategies/plans. Real-time tools enable traffic management operators to be proactive, minimizing 

the disturbance to the system, rather than reactive in response to congestion or incidents. 

Traffic and transportation analysis tools are a perfect example of effective dual-benefit 

technologies advocated by ANSER (Advancing National Strategies and Enabling Results), a 

public service research institute that provides support to federal agencies for homeland security. 

Dual-benefit solutions are those that enhance the security of our nation while advancing some 

other public good, Enhancing transportation analysis tools not only provides daily benefit for 

commuters - by simulating field conditions, enabling more efficient traffic management and 

providing better information, but it enables traffic management centers to be prepared in case of 

destruction (intentional or not) to the critical parts of the system and to plan for and execute 

efficient and safe evacuations. 

However, the effectiveness of microscopic traffic simulation tools depends on the integrity of 

their underlying behavioral models. The Federal Highway Administration (FHWA) has found 

this topic and simulation tools to be so valuable that they have developed the Next Generation 

Simulation (NGSIM) program, which aims to improve the quality and performance of simulation 

tools, promote the use of simulation for research and application, and achieve wider acceptance 

of validated simulation results. Within these goals, the program’s objectives are to develop a core 

of useful and open behavioral models in order to enhance the state-of-the-art of behavioral traffic 

models and advance the state-of-the-practice of the traffic simulation models used by traffic 

professionals.  

Clearly, the foundation for developing effective and accurate driving behavior models is 

understanding which factors impact driver decisions, behaviors and movements. Much of this is 

known from a large-scale systems perspective; conditions that cause congestion, accidents and 

delay impact driver behavior. When events that are an aberration from the norm occur, it is more 

difficult to predict driver response and thus, the extent of the consequence of such an event.  

This can be supported by the fact that the primary cause of freeway congestion is a result of 

the temporary loss of capacity due to non-recurring events. The three main causes of non-

recurring congestion are incidents, work zones, and weather. Crashes were estimated to cause 

almost 40% of non-recurrent delay in an Oak Ridge National Laboratory (ORNL) study (Chin, et 

al, 2002). A significant portion of incidents occurs under adverse road conditions, for example in 
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the presence of rain, snow, sleet, fog, wet pavement, snowy pavement, slushy pavement or icy 

pavement. In 2001, more than 22% of vehicle crashes were weather related, with most occurring 

when the pavement was wet or during rainfall (Goodwin, 2003). Additionally, the inclement 

weather has significant adverse effects on mobility and productivity. While flooding and snow 

accumulation result in clear capacity reduction of the roadway, even light rain and wet pavement 

reduces capacity and increase travel time. The ORNL study also estimates that 27% of the non-

recurrent delay on freeways is due to snow, ice and fog, which reduce visibility and/or traction 

(Chin, et al, 2002).   

Further, a key way in which non-recurring congestion affects travel is the distinction between 

mobility, the ease of getting to a destination, and reliability, the predictability of travel times for 

trips. These factors are clearly linked. Recurring congestion, which occurs simply when the 

demand for the roadway exceeds its capacity, reduces mobility daily. Nonrecurring events, or 

temporary disruptions, dramatically reduce the available capacity and reliability of the entire 

transportation system. When uncontrollable events such as incidents and inclement weather 

events are large factors in capacity reduction, the ability to accurately predict travel times in 

these instances is critical. Travelers and freight operators are particularly sensitive to 

unanticipated disruptions to tightly scheduled personal activities and manufacturing distribution 

procedures. As a result, improved reliability is highly valued by travelers. Additionally, how 

drivers respond to improved reliability and traffic information influences mobility. 

Though there is knowledge of overall system effects, there is a deficiency in understanding 

of driver-level, microscopic response to such influencing factors. Current transportation analysis 

tools are lacking representation of many of these factors that influence traffic congestion and 

driving behavior. This thesis attempts to identify these deficiencies and develops an approach to 

include them in transportation analysis tools. The next chapter presents a detailed analysis of the 

existing capabilities of microscopic traffic simulators in modeling key factors that contribute to 

non-recurring congestion (incidents, weather and work zones), and also more fundamental 

factors, including network geometry, traffic control, vehicle interactions, and traveler 

information.  
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1.2 Objectives 
The objective of this thesis is to develop a framework for modeling key influencing factors in 

microscopic traffic simulation tools. The motivation for improving transportation analysis tools 

described above provides several limitations in existing traffic management and planning 

capabilities. This research aims to explore these limitations in more detail and identify critical 

gaps in existing models and microscopic traffic simulation tools. An approach of enhancing 

existing driving behavior models to include external factors with available aggregate data will be 

developed and applied with a case study in a Microscopic Traffic Simulator (MITSIMLab). The 

critical gaps identified and aggregate model approach should provide motivation and direction 

for future research. 

This thesis contains two key contributions. To assess the current state-of-the-practice in 

microscopic traffic simulation a survey was designed and administered to developers of 

simulation tools considered to be industry leaders. The results of this survey are summarized in 

Chapter 2. Based on responses from the developers, it is clear that there is a systematic limitation 

of simulation tools regarding incorporating the impact of external factors on driving behavior. 

The results of this survey and identification of the recurring omission of factors that literature has 

shown to be important provided a motivation to develop a methodology to incorporate such 

factors. Given the nature of the critical influencing factors and limited data available to model 

them, an aggregate calibration approach was then investigated and tested with a case study. A 

general calibration framework was modified to incorporate the external factor into existing driver 

behavior models. One of the critical external effects, weather, was used to test the methodology. 

1.3 Thesis Outline 
The remainder of this thesis is organized in five chapters. Chapter 2 presents background 

information, including a literature review and survey results reporting the state-of-the-practice in 

treatments of influencing factors on driver behavior. These results reveal the need to incorporate 

such factors into microscopic traffic simulation tools and driving behavior models. Chapter 3 

introduces a framework to calibrate driving behavior models and highlights an approach 

specifically for external factors. Due to the nature of these influencing factors and limitations of 

data, an aggregate calibration methodology is featured. 
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An application of the methodology is described in Chapter 4, where the study area in 

Hampton Roads, Virginia is introduced. Within this chapter, motivation to use weather to test 

this approach is discussed along with a description of the data available. The simulation 

environment used, MITSIMLab, and its driving behavior models are also introduced. Results of 

the case study, including origin-destination estimation and driving behavior parameter 

calibration are presented in Chapter 5 and conclusions and directions for further research are 

summarized in Chapter 6.  
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Chapter 2    
Background and Literature Review 
 

This chapter summarizes the state-of-the-practice in treatments of influencing factors on 

driver behavior. Examples of influencing factors include network geometry, work zones, 

incidents, traffic control and information, and environmental features such as adverse weather 

conditions. System state – the relation between a traveler and other travelers captured by their 

spacing, relative speed, and other variables – is not covered in this review, although it is well-

known to be a significant contributor to changes in travel and driving behaviors.  

Twelve state-of-the-art microscopic traffic simulation software tools were identified as 

industry leaders in traffic simulation. Developers of these tools were invited to respond to a 

questionnaire entitled, Influencing Factors in Microsimulation (Appendix A). The purpose of this 

survey was to identify the parameters and mechanisms used by existing simulators to capture the 

effects of external factors and conditions on driving behavior. The questionnaire, and this chapter 

is divided into eight sections, dealing with the representation of five categories: 1) network, 2) 

system management, 3) environment, 4) traveler characteristics, and 5) vehicle characteristics. 

Using the survey results, the status of individual factors was examined and an assessment of the 

gaps in simulation modeling was performed. The survey was developed and administered as part 

of the NGSIM Program and the results have been included in the NGSIM Task E.1-1: Core 

Algorithm Assessment, prepared for the Federal Highway Administration (Cambridge 

Systematics, 2004).  

Each subsection presents a table summarizing existing simulation capabilities with respect to 

influencing factors. These tables detail – for each influencing factor – the number of systems, out 

of the twelve that were surveyed, that represent the factor and at what level its effect on behavior 

is captured: explicitly (direct), using proxy methods (proxy), or not at all (none). Note that in 

many cases, a factor may be included but have no effect on behavior. For example, several 

simulation systems can animate vehicles traveling on curved roads, but the behavior of drivers is 

not different because the road is curved. Therefore, there may be instances where the factor is 

included in the system data but not utilized in the behavioral model. Alternatively, a factor that is 
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not explicitly included may be simulated using a proxy approach that does affect driver behavior. 

For example, several systems imitate inclement weather conditions by changing link 

characteristics such as speed distributions or speed limit.  

Table 2-1: Survey Participants 

Product Organization 

AIMSUN Transport Simulation Systems 

ARTEMIS University of New South Wales 

CORSIM FHWA 

Cube Dynasim Citilabs 

DRACULA University of Leeds 

INTEGRATION Virginia Tech University 

MITSIM Massachusetts Institute of Technology 

Paramics Quadstone 

SimTraffic Trafficware 

TransModeler Caliper Corporation 

VISSIM PTV 

WATSim KLD Associates 

 

Additional summary tables present an evaluation of the status of influencing factors on the 

three primary behavioral models, which are common to most simulations reviewed. These 

models are acceleration (an operational behavior); lane-changing (a tactical behavior); and route 

modification (a strategic behavior). These tables use symbol to evaluate the state-of-the-art: full 

circle ( ) entries indicate that the specific influencing factor is explicitly represented in current 

systems; split-circle (∅) entries indicate that only proxy substitute methods are used; hollow 

circles ( ) indicates that the influencing factor is not currently represented in existing systems; 

and empty entries indicate that the impact of the influencing factor on the behavior in question is 

marginal or unimportant. 

This section does not directly evaluate the quality of the implementations or models; rather, it 

is an inventory of existing simulation capabilities at the aggregate level of implementation 

(explicit, proxy, or none). Therefore, it is not necessarily accurate that an influencing factor 

represented explicitly in the majority of the simulation systems surveyed represents that the 

factor is unimportant for further study.  
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2.1 Network 
This section discusses the two main elements of network-related influencing factors, 

characteristics of links and characteristics of intersections. 

2.1.1 Link Geometry 
Network geometry has a direct effect on driver behavior. At the aggregate level, these effects 

have been studied extensively. For example, the various models within the Highway Capacity 

Model (HCM, 2000) predict levels of service and capacities of different road facilities and 

contain adjustment factors for lane width, median type (highways) and lateral clearance. One 

example of a more direct connection of network elements to microscopic traveler behavior is the 

fact that perception – reaction time, which is a factor in braking and lane changing, is affected by 

sight distance (McShane, et al., 1998). Additionally, acceleration capabilities and braking 

distance are affected by grade changes. Table 2-2 presents a summary of the influences of link 

geometry on behaviors. 

Table 2-2: Link Characteristics 

Represented Effect on Behavior 
Influencing Factor 

Yes No Direct Proxy None 

Horizontal curves 12  1 7 4 

Facility type 12  4 5 3 

Lane widths 9 3  3 9 

Median characteristics 7 5 1  11 

Shoulder characteristics 7 5 1  11 

Grade & grade changes 12  12   

Pavement quality 1 11 1 3 8 

Auxiliary lanes  11 1 7 1 4 

Route restrictions/lane use 11 1 8  4 

Sight restrictions 5 7 5 3 4 

Horizontal curves and facility type are represented in all of the systems surveyed, but the 

effects on driver behavior vary. While horizontal curves are purely geometric features with no 

effect on behavior in a few systems, others (ARTEMIS, CORSIM, CubeDynasim, DRACULA, 

MITSIMLab and WATSIM) have user-defined maximum speed for each arc or curve, which can 

affect acceleration. VISSIM allows the user the option of defining the curve as a slow moving 
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zone, which requires vehicles to decelerate before and accelerate after the curve, and a cost that 

would penalize it in the route choice model. Horizontal curves affect the car following model in 

INTEGRATION. In Paramics, the vehicle automatically reduces speed, dictated by radius of the 

curvature, the frictional effects, and the vehicle characteristics. Similarly, facility type (primarily 

urban, freeway, and rural or user-defined classes) does not affect driver behavior in some 

systems. However, in most systems (CORSIM, DRACULA, TransModeler, VISSIM, and 

WATSIM) acceleration and lane changing are explicitly affected by road type characteristics. 

Facility type is included as a parameter in the car-following model in INTEGRATION, while it 

affects lane changing and route choice in Paramics. MITSIMLab includes a freeway bias 

parameter in the route choice model, which captures driver preference to drive freeway routes 

over non-freeway routes. CubeDynasim contains link types for single lanes, multi-lanes, weaving 

areas, and lane shifts, etc. that effects lane changing and route choice.  

Eight of the systems explicitly represent lane widths, but it only affects driver behavior in 

VISSIM, which allows the lane width to be linked to a slow speed zone (i.e., if the lane width is 

less than ten feet, a different desired speed distribution is used). The lane width is only used for 

graphical display in MITSIMLab and other models. Typically a proxy approach is available to 

simply divide the link into segments and modify the speed limit and free-flow speed. 

Although seven of the systems represent shoulders, they only affect the acceleration model in 

INTEGRATION. Within the TransModeler on-street parking model, vehicles entering and 

leaving parking spaces affect the acceleration and lane-changing behaviors of vehicles upstream. 

All systems explicitly represent grade and grade change, which directly affects vehicle 

acceleration. Pavement quality is only explicitly represented in CORSIM (FRESIM) with a 

friction coefficient that affects the maximum speed on horizontal curves. Eleven systems 

represent auxiliary lanes. Within those, lane-changing behavior (and indirectly, acceleration) is 

affected in CORSIM, CubeDynasim, DRACULA, MITSIMLab, Paramics, TransModeler, and 

VISSIM. 

Eleven of the systems explicitly contain route restrictions or lane use privileges, which affect 

lane changing behaviors and route choice (for those systems that incorporate route choice). 

Vehicles are required to change lanes if they are not allowed in a specific lane or are prohibited 
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from entering it (i.e., HOV/bus lanes) and are not allowed to choose paths that are restricted to 

them. 

Five systems explicitly represent sight restrictions – CORSIM and DRACULA apply sight 

restrictions to lane changing movements while MITSIMLab and SimTraffic have visibilities of 

sight distance associated with control devices, which may affect both acceleration and lane 

changing. Similarly, CubeDynasim allows user-defined visualization zones at each conflict 

point. Several other systems represent sight restrictions by proxy, using speed distributions and 

maximum free-flow speeds. 

2.1.2 Intersection Geometry 
Table 2-3 below summarizes current simulation capabilities with regard to intersection 

characteristics. 

Table 2-3: Intersection Characteristics 

Represented Effect on Behavior 
Influencing factor 

Yes No Direct Proxy None 

Angle between links 11 1 7 2 3 
Flared lanes (slightly wider lanes at 
intersections allowing right turns 
without a full turning pocket) 

12  8  4 

Traffic calming static obstacles  6 6 3 5 4 

 

Eleven of the systems represent the angles between links, and in most it affects acceleration 

and lane-changing. AIMSUN and VISSIM also incorporate turn penalties, which affect route 

choice. All systems contain flared lanes, which affect lane-changing as some vehicles must move 

into the bay to complete the desired turn. Only three (AIMSUN CubeDynasim and 

TransModeler) of the systems explicitly can represent traffic calming obstacles, which affects 

acceleration due to reduced speeds and implicitly affects route choice as travel time on those 

links is increased. Five other systems (ARTEMIS, DRACULA, MITSIMLab, Paramics, and 

VISSIM) represent traffic calming via a proxy approach by locally modifying maximum speed 

and/or desired speeds. 
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2.1.3 Evaluation 
The various elements of the geometric design of the roadway are core factors affecting driver 

behavior. Table 2-4 presents a summary of these network factors in relation to key behaviors. 

The presence and the properties of curves and grades, medians and shoulders, lane width and 

pavement quality as well as the design of intersections and traffic calming devices affect both 

acceleration and lane-changing behaviors. These factors, perhaps to a lesser degree, also affect 

route choice behavior. For example, a driver may prefer to use highway facilities compared to 

surface streets or avoid roads with poor pavement quality; flared lanes and lane-use restrictions 

may force drivers to change lanes or select routes that they would otherwise not choose. 

Table 2-4: Best Practices of Important Network Effects 

Influencing Factor Acceleration Lane-Changing Route Modification 

Horizontal curves ∅   

Facility type ∅   

Lane widths ∅ ∅  

Median characteristics ∅   

Shoulder characteristics ∅   

Grade & grade changes    

Pavement quality ∅   

Auxiliary lanes    

Lane restrictions    

Sight restrictions ∅   

Angle between links ∅  ∅ 

Flared lanes    

Traffic calming     

 

The treatment of these factors in simulation systems is limited. In most cases, the effect of 

geometric characteristics is captured by proxy mechanisms such as defining slow moving zones 

or dividing links in different segments with different properties. These mechanisms allow the 

user to modify factors such as the means and distributions of maximum speeds and desired 

speed. While this may affect acceleration behavior directly, the impact on lane-changing is only 

indirectly captured. Limiting maximum or desired speeds suffices in uncongested traffic 

conditions, but is of little impact in congested conditions, where the interactions between 
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neighboring vehicles and network conditions play a subtler role in behavioral models. To 

illustrate this point, consider a section with narrow lanes. It is expected that traffic speed and 

capacity in that section would be reduced, which – under uncongested regimes – it is. Under 

congested regimes, however, the behavioral effects are subtler. Some drivers may be more 

inclined to stay in their lanes and, therefore, less likely to change lanes. Other vehicles may 

occupy space on two lanes, and so, reduce capacity even further. Under existing modeling 

approaches, these subtleties are not modeled and may overestimate capacity of such sections. 

2.2 System Management 

2.2.1 Traveler Information 
There have been many studies of drivers’ response to traveler information, including the 

effect of various types of information provided on route choice, as well as the benefits gained in 

both recurring and non-recurring congestion situations. 

Adler (1999) performed a laboratory experiment and determined that traveler information has 

significant short-term benefits to drivers unfamiliar with the network and that benefits decrease 

as familiarity increases. Hato, et al. (1999) found that reaction to traveler information is 

determined by an individual’s driving experience, individual characteristics, and the scope of 

information provided. Table 2-5 summarizes the current simulation capabilities with regard to 

traveler information. 

Table 2-5: Response to Traveler Information 

Represented Effect on Behavior 
Driver Response 

Yes No Direct Proxy None 

Route choice 8 4 8  4 

Type of information      

Traveler information 9 3 9  3 

Route guidance 8 4 8  4 

Mean of obtaining information      

Broadcast 4 8 3 1 8 

Location based 8 4 8  4 

Individual 9 3 9  3 
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Eight of the systems model en-route driver response, with slightly different approaches. 

Generally, the systems have both traveler information and route guidance provided via both 

location based (i.e., VMS) as well as individual (i.e., on-board device) systems. However, not all 

of the systems explicitly distinguish between traveler information and route guidance, as the 

traveler information provided is a cost (travel time or another model-specific cost) used in the 

dynamic route choice model. Only three systems (Paramics, VISSIM and INTEGRATION) 

support broadcast traveler information, where drivers obtain information at a user-specified time 

interval. 

One simulation system (AIMSUN) models dynamic driver response by associating specific 

actions with information for certain driver groups. For example, vehicles with a particular 

destination can consider changing paths when they receive information that explicitly affects 

them and their current route. The model contains a library, which can be modified by the user, of 

messages with corresponding actions. 

One approach, where the route choice model uses real-time data rather than historical data if 

the vehicle passes a VMS or has an on-board device, is used with some variations in several 

systems. ARTEMIS distinguishes between unguided and guided vehicles in that the route choice 

of unguided vehicles is based on perceived minimum cost to destination while that for guided 

vehicles is based on the current, minimum cost to destination. A unique feature of ARTEMIS is 

that vehicles queuing for longer than a user-defined critical time, will seek a less congested path. 

In the same way, guided vehicles (with an on-board navigation system) and those vehicles that 

pass a VMS in MITSIMLab receive updated real-time link travel times that are then used in the 

route choice model. The fractions of guided and unguided vehicles are user-defined. VISSIM 

also updates travel times for vehicle classes that get en-route traveler information (either 

broadcast at pre-specified time intervals, at certain decision points, or, to equipped vehicles) but 

from the vehicles current position to the desired destination on all alternative routes that are used 

by other vehicles. Route guidance finds the optimal route from the current position to the desired 

destination based on these travel times and other user-defined cost values. 

TransModeler explicitly models the difference between traveler information and route 

guidance. Traveler information simply provides updated link travel time values that may be used 

(depending on driver group specific parameters) as inputs into the route choice model to those 

 26 



who receive them via VMS or on-board devices. Route guidance information suggests or 

requires an action on the part of the driver (i.e., routing information or lane changes due to 

downstream lane closures). Drivers only process information that is relevant to them or on a 

potential path to their destination. 

Paramics allows the user to create custom route choice systems through API. Though 

DRACULA does not have en-route guidance, it provides dynamic speed limit (i.e., school zones) 

information to vehicles with onboard devices. This information influences future path selection. 

Paths are selected daily and driver route choice is a function of the historical experience of the 

driver. 

2.2.2 Traffic Control 
Traffic control devices clearly impact driver behavior. The Highway Capacity Manual 

(HCM, 2000) distinguishes between traffic flow on freeway and signalized arterial streets. Not 

only do intersections reduce flow and cause delay, but traffic control devices result in significant 

acceleration/deceleration and lane changing for turning movements. For the traffic control to 

work effectively, it must be seen and understood. There have been numerous studies using 

driving simulators (Allen, 2004) to study the effect of visibility, location, and physical 

configuration of control devices on drivers understanding of their environment. Toll plazas are a 

unique form of traffic control device as they often occur on freeways. Not only do toll plazas 

result in higher trip cost and often in delay, but with the mix of electronic toll collection (ETC) 

and cash vehicles can result in uneven queues that block lanes, significant weaving and 

ultimately result in safety problems (Lieberman, et al., 2004). Table 2-6 summarizes the current 

simulation capabilities with regard to traffic control. 

Traffic control devices and their control logic are represented in all of the models, and in 

most have a direct effect on driver acceleration. Visibility of the traffic control device is 

represented in most of the models and affects behavior in about half of the systems by 

influencing the point when drivers begin to respond to the signal or sign. The device size and 

display itself are only represented and affect behavior in AIMSUN and VISSIM. The physical 

location of the control device and associated stop lines are represented in the majority of the 

models, but attributes such as the height and position relative to the roadway do not play a role in 

any of the models.  
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Table 2-6: Traffic Control 

Represented Effect on Behavior 
Driver Response 

Yes No Direct Proxy None 

Device Property       

Type 12  10  2 

Size and display 4 8 2  10 

Visibility 10 2 10  2 

Location 11 1   12 

Control Logic      

Control logic type 12    12 

Cycle length / green time 12    12 

Electronic enforcement  12  3 9 

Toll collection      

Technology type 8 4 7 1 4 

Processing delay 6 6 5  7 

 

The control logic behind these devices is also represented in all of the systems. Pre-timed, 

actuated and coordinated control logic exist in most models. The type of logic does not affect 

driver behavior in any of the models, and so, for example, drivers do not react differently to a 

green light in a pre-timed signal compared to an actuated signal or consider permitted/protected 

left turns at intersections when choosing routes.  

None of the surveyed simulators represent surveillance in the form of electronic enforcement. 

However, Paramics, VISSIM and MITSIMLab can represent surveillance by proxy via changed 

speed distributions. In MITSIMLab the user also can adjust the percentage of drivers that would 

comply with the traffic light. Additionally, Paramics indicated that red-light enforcement could 

be simulated by decreasing the green time to mimic drivers stopping early when red-light 

cameras or police presence is known. 

Toll collection was modeled in the majority of systems, with direct acceleration effects as 

vehicles slow or stop to the necessary speed. Route choice was also explicitly represented as an 

additionally cost and sometimes delay is associated with paths that include toll collection. 

Additionally, in several models the restriction of some toll lanes to drivers with smart tags was 

included. Lane changing and weaving are explicitly affected by toll plazas in many (AIMSUN, 
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CubeDynasim, MITSIM, TransModeler, VISSIM and WATSIM) systems. Processing delay is 

incorporated into many models based on a distribution and vehicle classification (for example, 

average delay of those with smart tags would differ from those without). 

2.2.3 Evaluation 
Advanced Traveler Information Systems (ATIS) are emerging as important tools to alleviate 

traffic congestion through provision of real-time information to drivers. This is an area where 

detailed simulation systems are particularly useful, since the effects of ATIS technologies can 

only be captured and evaluated through modeling of the responses of individual drivers to the 

information. Table 2-7 presents the status of the best practices in modeling response to traveler 

information. 

Table 2-7: Best Practices of Response to Traveler Information 

Influencing Factor Route Modification 

Type of Information ∅ 

Traveler information ∅ 

Route guidance ∅ 

Means of obtaining information  

Broadcast ∅ 

Location based ∅ 

Individual ∅ 

 

A significant portion of the systems surveyed do not model en-route route choice at all. Most 

other systems do not differentiate between traveler information (general presentation of traffic 

conditions) and route guidance (“turn here” type instructions). Similarly, only some of the 

systems capture the differences between the various means of information such as VMS, 

broadcast and in-vehicle. With some variations, all existing systems capture the impact of 

traveler information by augmenting the travel times used in the route choice models with 

network-wide and detailed real-time information. These approaches fail to capture the effects of 

the different media. Travelers associate different levels of accuracy and reliability to different 

sources of information and, thus, their response to the different media varies. Also, different 

services may present information at different levels of detail. For example, a VMS can only 

display a few generic items of information, whereas an in-vehicle unit may provide customized, 
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very detailed, information. As a result of the failure of existing systems to capture these aspects 

of traveler information, they, in many cases, can only be used to evaluate ATIS at a conceptual 

level under idealized conditions, but not at the detailed operational level required to fine-tune 

such technologies. 

The simulation systems surveyed represent a wide variety of traffic control devices and the 

logic that controls them in great detail. This is not surprising given that many of the simulation 

applications center on evaluating various traffic control strategies. The main effect of control 

devices on driver behavior is captured through the guidance and information control they display 

(e.g. green or red light, various messages displayed on a VMS) and through their visibility to 

drivers. These factors are very well represented in existing systems. 

Secondary effects may be seen in drivers’ response to the underlying control logic and not 

only to the display. For example, drivers may react differently to a green light which is part of a 

green wave along an arterial compared to the case that isolated intersections are operated 

separately. Drivers also may be more likely to use the amber time to cross an intersection or run 

a red light when the signal cycle is longer. These effects are not represented in current systems. 

Similarly, control features, such as the physical location of light heads in terms of height and 

position relative to the roadway, that may be important if the simulation system is used to 

evaluate the detailed design of an intersection, also are not represented.  

Table 2-8: Best Practices of Traffic Control 

Influencing Factor Acceleration Lane Changing Route Modification 

Device properties    

Control Strategy    

Surveillance / Enforcement ∅   

Toll collection ∅ ∅ ∅ 

 

2.3 Environment 

2.3.1 Incidents 
The primary traffic effect of incidents is lane closures or blockages, which result in reduced 

capacity and congestion. Lane closures require forced lane changes and the resulting congestion 

makes cooperative lane changing necessary. Most lane changing systems assume that vehicles 
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may only change lanes if they do not interfere with vehicles in the destination lane by forcing 

them to slow or stop. In a congested situation, vehicles would not be able to change lanes 

without cooperation from vehicles in the destination lane (Hidas, 2002). Additionally, incidents 

increase travel time on the affected links, which may impact driver’s route selection in the 

presence of information. Table 2-9 summarizes the current simulation capabilities with regard to 

incidents. 

 

Table 2-9: Incidents 

Represented Effect on behavior 
 

Yes No Direct Proxy None 

Incidents      

Inputs 11 1    

Influencing factor      

System effects      

Lane closures 11 1 11  1 

Shoulder use/closure 3 9 2 3 7 

Distractions 5 7  6 6 

Behavioral effects      

Emergency braking 10 2 10  2 

Rubber-necking 9 3 9  3 

 

Eleven of the systems model incidents. All have inputs for the incident’s location, lanes 

affected, start time and duration. However, they do not all include all of the system and 

behavioral effects related to incidents. Lane closures clearly affect acceleration and lane 

changing. For those systems that have dynamic route choice, lane closures also implicitly affect 

route choice if information is available as travel times are increased for links and paths with lane 

closures. 

Only three systems explicitly capture shoulder usage or closure. However, the shoulder status 

only affects driving behavior in VISSIM and Paramics, where the effects are the same as those 

for a standard lane. Additionally, three systems capture the behavioral effects of shoulder status 

using a proxy by modifying the link maximum speed. The behavioral effects of distractions in 
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terms of degrading effects on adjacent lanes and/or lanes in the opposite direction is modeled in 

five of the systems via slow speed zones or reducing the free-flow speed of affected links. 

Almost all tools that model incidents capture emergency braking, which directly affects the 

acceleration of nearby vehicles and in some systems, lane changing. It also implicitly affects 

route choice by increasing link or path travel times in those systems with route guidance. Nine of 

the systems capture the effects of rubber-necking via slow speed zones, or reduced maximum 

speeds at the incident location, to adjacent and opposite direction lanes. Rubber-necking affects 

acceleration, car-following and implicitly route choice (in those systems that have route 

guidance) with increased link costs. 

2.3.2 Work Zones 
Work zones typically reduce the number of available lanes, which cause a reduction in 

capacity and can create congestion. As with incidents, this may require cooperative lane changes. 

Other features typical of work zones are narrower lanes, lack of shoulder, abrupt lane shifts and 

traffic control devices. These factors may cause drivers to be more cautious or drive less 

aggressively.  

A recent study at the University of Illinois developed speed-flow curves for work zones 

based on the principle that drivers reduce their speed based on work zone operating factors such 

as work intensity, lane width and lateral clearance. Field data from the eleven interstate work 

zone sites in Illinois used for this study indicated speed reduction as well as larger headways for 

all traffic flow levels (Benekohal, et al., 2003). According to another study of speed-reduction 

patterns (Benekohal, et al., 1992), drivers tend to reduce their speeds at different locations within 

a work zone. While 63 percent of all drivers reduced their speeds after passing the first work 

zone sign, 11 percent reduced when they neared the location of construction activities and 

11 percent did not reduce speed at all (the remaining did not indicate a pattern). Additionally, a 

study of traffic in interstate highway work zones revealed a safety paradox – vehicles traveling in 

work zones with higher speed limits demonstrated a significantly smaller time gap acceptance 

than those traveling within zones with slower speed limits (Sun and Benekohal, 2003).  

Table 2-10 summarizes the current simulation capabilities with regard to work zones. As 

shown, none of the systems explicitly model work zones. Ten of the systems capture work zone 
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effects by modeling it as a pre-defined incident. However, this approach does not necessarily 

capture all the system and behavioral effects associated with work zones. 

Table 2-10: Work Zones 

Represented Effect on Behavior 
 

Yes No Direct Proxy None 

Work Zones      

Inputs 10 2    

Influencing factor      

System effects      

Variable/reduced speeds 10 2 10  2 

Lateral clearance 4 8 1 4 7 

Lane shifts 6 6 4 2 6 

Lane width reductions 6 6 3 3 6 

Reduced shoulder 5 7 1 4 7 

Pavement markings 4 8 2 1 9 

Behavioral effects      

Emergency braking 10 2 10  2 

Rubber-necking  9 3 9  3 

Visual distractions 5 7  6 6 

Aural distractions 3 9  4 8 

 

Reduced speeds and variable speed limits are represented in all of these systems; variable 

speed limits clearly affect driver acceleration, lane changing, and indirectly route choice for 

those with dynamic route guidance. Only a handful of systems capture other system effects 

related to work zones. AIMSUN captures the effects of lane shifts, lane width reductions and 

reduced shoulder through the link characteristics, which affects the car-following model and 

acceleration behavior. CubeDynasim explicitly represents lane shifts with a unique link type that 

affects lane changing. VISSIM explicitly addresses the issue of lateral clearance and reduced 

road width with a user-specified distribution of required clearance distance. Vehicles with a 

clearance distance smaller than the width of the road will undergo a forced lane change or select 

an alternate path. 

MITSIMLab, Paramics and WATSIM modify the link characteristics by reducing free flow 

speeds to replicate the driving behavior resulting from these system effects. Additionally, in 
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Paramics, restrictions can be placed on each lane to prevent vehicles of certain widths from using 

them. 

Emergency braking and rubber-necking are modeled as described in the section on incidents. 

None of the systems has explicit parameters to model visual and aural distractions. Several 

systems attempt to capture these effects by changing average link free-flow speed and with 

obstacles linked with a slow speed zone, respectively. 

2.3.3 Weather 
Inclement weather reduces visibility and traction of the road and undoubtedly affects driver 

behavior. While literature on the effects of weather on driver behavior is not abundant, several 

field studies correlating weather conditions or warnings of poor weather-related road conditions 

to driving behaviors have been conducted. 

A study at the University of Virginia found traffic volume reductions ranging from four to 

10 percent in light rain and 25 to 30 percent with heavy rain (Byrne, et al., 2003). The same 

study resulted in a 5-6.5% average decrease in vehicle speed, regardless of rain intensity. Several 

other studies have indicated that there are significant speed reductions on freeways during 

adverse weather conditions (typically ranging from 10-30 percent). For example, Knapp, et al. 

not only observed an average speed reduction, but also noted that off-peak speed reductions were 

highly correlated with visibility and surface conditions (Knapp, et al., 2001). Additionally, a 

University of Vermont study of traffic flow on signalized arterials concluded that inclement 

weather had a significant impact on the values of saturation headways and therefore, saturation 

flow rate (Agbolosu-Amison, et al., 2004). The study also noted that slushy and snowy 

conditions seemed to have the most impact on flow rate at signalized intersections. According to 

a Goodwin study, speed reductions on signalized arterial streets range from 10 to 25 percent on 

wet pavement and from 30 to 40 percent on slushy or snowy pavement while travel time delays 

can increase by 11 to 50 percent, depending on the severity of the weather (Goodwin, 2002). 

Another study reports average travel time delays of 14% for the Washington, D.C. metropolitan 

area (Stern, et al, 2003). 

Not only does experiencing weather conditions affect driver behavior, but knowledge or 

warning of inclement weather also has been seen to result in more cautious driver behavior. A 

field study to test the effect of variable message signs that provided slippery road condition 
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information found that drivers reduced speeds and increased headways. The warning also 

resulted in psychological effects of refocusing of attention to seek cues on potential hazards, 

testing the slipperiness of the road, and more careful passing behavior (Luoma, et al., 2000). 

Another field study in Britain resulted in similar findings – drivers understand the need to reduce 

speeds and increase headways in inclement weather conditions. However, in this study, drivers 

only reduced their average speed by 3 mph, not enough to make a significant difference in 

required braking distance or safety. Edwards proposed that these behaviors were a result of 

drivers over-estimating their driving capabilities, even while adapting to their environment 

(Edwards, 1999). 

Table 2-11 below summarizes the current simulation capabilities with regard to weather. 

Table 2-11: Weather 

Represented Effect on Behavior 
Influencing Factor 

Yes No Direct Proxy None 

Conditions      

Wind 4 8  5 7 

Rain  6 6  7 5 

Fog 6 6  7 5 

Snow 6 6  7 5 

Ice 6 6  7 5 

Lighting 5 7  6 6 

System Effects      

Reduced visibility      

Systemwide 6 6 4 3 5 

Localized 7 5 4 4 4 

Reduced surface quality      

Systemwide 7 5 3 5 4 

Localized 6 6 2 5 5 

 

As shown above, none of the systems explicitly model weather. Six systems (AIMSUN, 

DRACULA, Paramics, TransModeler, VISSIM, and WATSIM) represent weather conditions by 

proxy. AIMSUN, DRACULA, Paramics, and WATSIM change link characteristics of free-flow 

speed, speed limits, or capacity while TransModeler and VISSIM additionally vary 

driver/vehicle characteristics such as the desired speed curve or acceleration capabilities. 

 35 



Several systems contain parameters that represent the system effects of weather conditions, 

including visibility (CORSIM, DRACULA, MITSIMLab, TransModeler and VISSIM) and 

surface quality (CORSIM, MITSIMLab and VISSIM), which affects acceleration and lane 

changing. Other systems represent the effects by proxy through changing link characteristics. 

2.3.4 Evaluation 
Environmental elements are important factors affecting driver behavior. Table 2-12 

represents the current best practices of modeling these important environmental factors. 

Table 2-12: Best Practices of Important Environmental Effects 

Influencing Factor Acceleration Lane Changing Route  
Modification 

Conditions    

Wind ∅   

Rain  ∅   

Fog ∅   

Snow ∅   

Ice ∅   

Lighting ∅   

System effects    

Lane closures   ∅ 

Shoulder use/closure ∅   

Reduced speeds ∅   

Lateral clearance    

Lane shifts ∅   

Pavement markings ∅   

Reduced visibility ∅   

Reduced surface quality ∅   

Behavioral effects    

Distractions ∅   

Emergency braking    

Rubber-necking ∅   

 

Most systems capture the impacts of incidents and work zones in similar ways. Blocked lanes 

cause drivers to change lanes. Vehicles in other lanes may be forced to slow down by modifying 

the definitions of maximum and desired speeds in the same ways these mechanisms were used to 
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model the impacts of the geometric design. The same criticism we discussed in that section also 

applies: maximum and desired speeds mostly affect the acceleration of drivers in uncongested 

conditions and have much less impact on accelerations in congested conditions and on lane 

changing behaviors. Moreover, this approach also implicitly assumes that apart from blocked 

lanes and their effect on desired speeds, incident locations and work zones are no different from 

normal sections since the same behavioral models with the same parameter values still apply. 

That is, if the geometry is similar (e.g., the number of blocked and open lanes), drivers’ behavior 

and the resulting traffic conditions around an incident, a work zone and “standard” facilities such 

as a lane-drop would also be similar. Unfortunately, empirical evidence to support or disprove 

this assumption is scarce. 

This kind of assumption is clearly invalid for modeling weather effects. Adverse weather 

conditions result in defensive driving behavior. This manifests itself in reduced desired speeds 

and more conservative car-following and lane-changing behaviors. However, similar to the cases 

of incidents and work zones, as well as geometry effects, the only mechanisms available to users 

to capture weather effects are the maximum and desired speed, and acceleration capabilities. 

2.4 Vehicle Characteristics and Type 

2.4.1 Vehicle Characteristics 
Vehicle characteristics clearly play a large role in influencing driver behavior. Some, such as 

acceleration and speed capabilities, are quite straightforward. Vehicle dimensions also affect 

driver behavior: length affects gap acceptance while changing lanes; height affects visibility, or 

lack thereof; width affects speed and blocks neighboring lanes; and vehicle mass affects 

acceleration. Additionally, turning radii affects maneuverability. Table 2-13 summarizes the 

current simulation capabilities with regard to vehicle characteristics. 

In all systems, length is a major factor in lane-changing and acceleration due to gap 

acceptance dependence on vehicle length. Width is modeled in seven of the systems, and height 

to a lesser extent in only four systems. MITSIMLab allows the user to input different turning 

restrictions (based on vehicle type) to capture situations where the vehicle is too large to 

reasonably complete the maneuver (due to tunnels or overpasses). Vehicle width only affects 

behavior in VISSIM, where vehicle clearance is required and affects acceleration (vehicles will 
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slow if the lane is not wide enough for them), lane changing (vehicles will move to alternate 

lanes if possible), and route choice (drivers may select an alternative route with wider lanes). 

Vehicle height only affects behavior in MITSIMLab, where the user can specify height 

restrictions on the link so specific vehicles may not select a path using that link. 

Table 2-13: Vehicle Characteristics 

Represented Effect on Behavior 
Influencing Factor 

Yes No Direct Proxy None 

Vehicle dimensions      

Width 7 5 1  11 

Length 12  11  1 

Height 4 8 1  11 

Articulated vehicle section 6 6 1  11 

Vehicle mass 4 8 4  8 

Passenger capacity 8 4   12 

Acceleration capability 12  12   

Speed capabilities 12  12   

Turning radii 1 11 1  11 

 

While six systems represent articulated vehicles, the only model in which it affects driver 

behavior is TransModeler (affects lane-changing). Only INTEGRATION, Paramics, 

TransModeler and VISSIM contain parameters for vehicle mass, which directly affect 

acceleration (and emissions modeling in VISSIM). Eight systems represent passenger capacity, 

but it does not affect driver behavior in any of them. 

All systems contain parameters for acceleration and deceleration capabilities and speed 

capabilities, which directly affect acceleration and in some cases lane-changing. VISSIM also 

contains explicit parameters for turning radii, which affects acceleration and route choice (the 

vehicle will not complete a turn if it is physically unable to, in which case it may need to select 

an alternative route). 

2.4.2 Vehicle Types 
While only limited literature exists on this topic, there is little doubt that drivers interact 

differently with various vehicle types. For example, drivers tend to avoid driving in close 
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proximity or behind large trucks and act more cautiously near motorcycles and bicycles. Large 

trucks not only have more restricted acceleration and deceleration capabilities, but they also limit 

visibility downstream, often block signs (Abramson, 1971) and create a draft and more spray in 

wet road conditions. Motorcycles cause different driver behaviors because they are more difficult 

to see, can share lanes with other vehicles and are not as protected (perhaps causing people to 

drive more cautiously). Additionally, drivers tend to avoid following buses due to their slow 

speeds and frequent stops (Silva, 2001). Pedestrian interaction and interference also are 

significant, along with interaction with on-street parking maneuvers, particularly in large, dense 

urban networks. Table 2-14 below summarizes the current simulation capabilities with regard to 

modeling vehicle types. 

Most systems define several vehicle types with specific characteristics (or distribution of 

characteristics) to distinguish their driving behavior. With this flexibility a variety of passenger, 

commercial, and transit vehicles can be modeled depending on the mix of vehicles using the 

network. These vehicle types are fairly standard across the systems and have pre-defined and 

user-defined parameters. However, emergency vehicles, motorcycles, bicycles, and pedestrians 

are not widely modeled. Of the systems representing emergency vehicles, VISSIM is the only 

one that allows emergency vehicles to run red-lights. CORSIM now includes an experimental 

component that allows other vehicles to react to the emergency vehicle (McHale and Holm, 

2003). VISSIM is also the only simulation system reviewed that allows motorcycles and bicycles 

to pass other vehicles in the same lane. 

Interactions among the different vehicle types are not widely modeled. Most simulation tools 

base their car following systems on the driving characteristics of surrounding vehicles. In 

MITSIMLab, the behavior of vehicles following trucks and of trucks themselves is different. 

TransModeler has explicit parameters relating to large trucks and heavy equipment in their lane 

changing and acceleration systems. 
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Table 2-14: Vehicle Type 

Represented Effect on Behavior 
Vehicle Type 

Yes No Direct Proxy None 

Passenger vehicles      

Automobiles 12    12 

Guided vehicles 7 5   12 

SUVs 11 1   12 

Taxis 9 3   12 

Motorcycles 6 6   12 

Commercial vehicles      

Emergency vehicles 6 6   12 

Large trucks 12  1  11 

Heavy equipment 7 5 1  11 

Small trucks/vans 12    12 

Transit vehicles      

Buses 12    12 

Minibuses 11 1   12 

Trains 8 4   12 

Light rail/trams 9 3   12 

Non-motorized vehicles      

Bicycles 4 8   12 

Pedestrians 6 6 5  7 

 

2.4.3 Evaluation 
The characteristics of the vehicle and the interactions between different vehicle types play an 

important role in driving behavior. The vehicle dimensions affect its maneuverability, and, 

therefore, impact both acceleration and lane-changing behaviors. Vehicle capabilities in terms of 

speed, acceleration and turning radii act as constraints, which dictate what the driver can and 

cannot do. As shown in Table 2-15, most of these factors, and in particular the vehicle length and 

maximum capabilities seem to be adequately represented in most simulation systems. 
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Table 2-15: Best Practices of Vehicles Characteristics and Interactions 

Influencing Factor Acceleration Lane Changing Route Modification 

Width    

Length    

Height    

Articulated vehicle section  ∅  

Vehicle mass    

Acceleration capability    

Speed capabilities    

Turning radii ∅   

Passenger vehicles    

Commercial vehicles ∅ ∅  

Transit vehicles    

Non-motorized vehicles    

 

The situation is different in representing vehicle types. Most systems allow great flexibility in 

defining and modeling a large number of vehicle types. In most cases, however these vehicles 

types and their characteristics are not taken into account when vehicles interact with each other. 

For example, a vehicle would follow another vehicle in the same way regardless of the type of 

the lead vehicle. However, there is empirical evidence that this is not true in reality. Drivers 

would follow trucks, buses and even SUVs that obscure their field of view differently than they 

would passenger cars (Yoo and Green, 1999). Similarly, the behaviors of buses in service and the 

vehicles surrounding them may be affected. For example, bus drivers who are required to make 

stops, would change lanes differently than other vehicles. The drivers of other vehicles would be 

more likely to change lanes when they follow a bus in service to avoid being forced to stop 

(Silva, 2001) 

2.5 Traveler Characteristics 

2.5.1 Assessment 
The National Highway Traffic Safety Administration (NHTSA) estimates that driver 

inattention is a factor in 25 to 30 percent of traffic crashes in the United States (Shelton, 2001). 

With drivers engaged in distracting activities – including eating and drinking, manipulating 

music, grooming, conversing, using cellular phones, and reading, among others – 16 percent of 
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the time their vehicles are moving (Stutts and Hunter, 2003), it is easy to see that distraction and 

inattentiveness are significant factors affecting driver behavior. According to a study by the 

American Automobile Association Foundation for Traffic Safety, drivers are more often 

preoccupied with music, food, grooming, and reading than cell phone usage (Crawley, 2003). 

Ninety-one percent of drivers engaged in manipulating audio controls, 71 percent ate or drank, 

46 percent groomed, and 40 percent read (though most when the vehicle was stopped), while 

fewer than 35 percent used cellular phones (Stutts and Hunter, 2003). The perception and 

reaction times of distracted drivers increase, which leads to delayed acceleration and braking and 

potentially hazardous lane-changing maneuvers, affecting the acceleration behaviors of nearby 

vehicles. 

Because humans are complex, so is their driving behavior – occurring simultaneously within 

three conscious behavioral areas of the individual: affective, cognitive, and sensorimotor (James, 

1984). A study of driver psychology found the driver to be involved in the effort to comply to 

rules, norms, and roles of driving behavior, which involves the driver’s motivation, character, 

and conscience, as well as their rationality, understanding and driving efficiency and sensory 

awareness. All of these psychological characteristics affect driving behavior and make it difficult 

to model. 

While it has been argued that driver attitude or motivations are uncorrelated with observable 

dynamic behavior, it is hard to believe that driver psychological factors do not influence at least 

their acceleration behavior. Winsum (1999) argues that drivers aim to maintain a following 

distance based on a time headway, which, while primarily dependent on driver skills, also 

depends on driver state, visual conditions, and the mental effort and attention the driver is willing 

to pay to the lead vehicle. In the context of car-following behavior, Boer (2000) argues that 

psychological elements must be included in the systems. Drivers perform many tasks while 

driving (necessary tasks like shifting as well as extraneous tasks causing distractions), so car 

following receives sporadic attention and control. In addition, drivers are satisfied with a range 

of conditions rather than one optimal condition, and drivers use a set of highly informative 

perceptual variables to guide decision-making and control. Table 2-16 summarizes the current 

simulation capabilities with regard to traveler characteristics. 
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Driver perception is only represented in TransModeler and VISSIM. TransModeler models 

perception in the form of driver response time, which affects acceleration (different desired 

acceleration rates based on driver type) and lane-changing (different desired speed and minimum 

gap acceptance). VISSIM models a perception threshold, which affects acceleration, lane-

changing and route choice. CubeDynasim uses visualization zones to simulate driver visual 

acuity.  

Nine of the systems model familiarity of drivers with the network, which affects driver route 

choice. Additionally, in AIMSUN, CORSIM, MITSIMLab and TransModeler it also affects lane 

changing by increasing the visibility of traffic control devices. All systems represent driver 

aggressiveness, which affects desired acceleration and minimum gap acceptance in lane-

changing. Six simulation tools model driver value of time, which affects route choice in all 

systems, and the level of aggressiveness in some. 

 

Table 2-16: Traveler Characteristics 

Represented Effect on Behavior 
Influencing Factor 

Yes No Direct Proxy None 

Perception      

Visual acuity of drivers 2 10 2 1 9 

Attentiveness of drivers 2 10 2  10 

Decision-making      
Familiarity of drivers with 
network 9 3 9  3 

Driver aggressiveness 12  12   

Driver value of time 6 6 6  6 

Compliance      

Speed limits 9 3 9  3 

Traffic signals 9 3 8  4 

Ramp Metering 7 5 6  6 

Lane restrictions/usage 9 3 8  4 

Route guidance 8 4 7  5 

Road type preference 5 7 5  7 

Control      

Driving skill 2 10 1 1 10 

Driver impairment 1 11 1  11 
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For those systems that consider compliance to traffic signals and signs, acceleration behavior 

is affected. Lane restriction compliance affects acceleration and lane-changing behaviors, and in 

some cases, route choice. CubeDynasim contains a violator vehicle type for speed limit and 

traffic control compliance. Similarly, VISSIM specifies traffic control compliance by vehicle 

class but utilizes a desired speed curve distribution for speed limit compliance. Route guidance 

compliance clearly affects route choice, as does road type preference. 

Driver control is only represented in VISSIM, similarly to the perception threshold that is 

defined by driver type. It affects both acceleration and lane-changing. WATSIM represents 

driving skill though a proxy using a driver characteristic ranging from aggressive to cautious. 

2.5.2 Evaluation 
Every decision that humans make is influenced by the characteristics of the decision-maker. 

Driving and travel behaviors are no different. Table 2-17 presents the best practices of modeling 

traveler characteristics. 

Table 2-17: Best Practices of Important Traveler Characteristics 

Influencing Factor Acceleration Lane Changing Route  
Modification 

Driver network familiarity    

Driver aggressiveness    

Driver value of time    

Compliance    

Control ∅ ∅  

 

The heterogeneity that driver characteristics bring about has an important effect on traffic. 

However, it is not critical, in most traffic simulation applications, to identify the precise 

psychological sources of that heterogeneity. The approach taken by most systems is to represent 

driver heterogeneity by one or a few factors (often dubbed “aggressiveness” or similar terms) 

that affect acceleration, lane changing and route choice behaviors. Most systems also include 

factors that are more narrowly defined, such as familiarity and compliance, to address the 

variability in specific situations. While this approach seems appropriate for the level of detail 

required in most applications, a clear methodology for determining appropriate psychological 
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representations remains an open question. The psychological factors represented by the driver 

characteristics variables are unobservable and so, the distributions of these factors can only be 

identified through the use of sophisticated formulation and estimation techniques of the various 

behavior systems. 

2.6 Summary and Conclusions 
This section summarizes findings with respect to state-of-the-practice in representing the 

influencing factors in microscopic traffic simulation models and the gaps that have been 

identified.  

Lane changing and acceleration behaviors are affected most by those factors that capture the 

impact of the geometric design, incidents and work zones and the effects of weather conditions. 

The treatment of these factors in traffic simulation models is very limited and basic. In most 

cases, their effects are captured by proxy mechanisms that allow the user to modify the 

distributions of maximum speeds and desired speeds. This approach is limited in that it only 

addresses situations in which maximum and desired speeds are significant factors, namely 

acceleration behaviors in uncongested traffic conditions. It does not capture the effects on lane-

changing and acceleration in congested conditions, where maximum and desired speeds are of 

marginal importance. Even for these mechanisms that exist in traffic simulation models, there are 

very few empirical results in the literature to guide the user in setting up and changing the values 

of the relevant parameters to quantify the effect of various factors. For example, rubbernecking, 

the phenomenon of vehicles (even in the unaffected opposite direction) slowing down near an 

incident is well recognized. It is a significant source of delays caused by incidents and its impact 

continues even after the physical blockage of the road is removed. Rubbernecking is often 

modeled by locally reducing the maximum or desired speed. However, in order to model it 

realistically there is a need to develop guidelines as to the extent of this reduction and the 

contributing factors (characteristics of the incident).  

Information and the response to information directly affect route choice behavior. Existing 

models modify the travel times that factor into the route choice as the basic mechanism to 

incorporate the impact of traveler information. While this approach is reasonable, further work 

needs to be done to model the finer details of the information and the response to it, such as the 

differences between various means of providing information in terms of level of detail and 
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perceived reliability. However, response to information is only one aspect that needs to be 

incorporated in route choice models. Many of the factors which were discussed above in the 

context of acceleration and lane-changing may also affect route choice. For example, drivers 

may show preference to particular facility types over others (e.g. highways over urban streets), 

pavement conditions and the geometric features of different routes may affect route choices in 

adverse weather conditions, etc. These considerations are largely ignored in most route choice 

models, which are primarily based on travel times.  

Both driving behaviors (acceleration and lane-changing) and route choices are influenced by 

the driver and vehicle characteristics. These factors are important in that they reflect the 

heterogeneity in the population of drivers, which has a significant effect on traffic conditions. 

However, these factors are not observable. Nevertheless, they should be incorporated in behavior 

models as latent variables and their distributions in the population be estimated jointly with the 

other parameters of the various models. Once these distributions are estimated, the framework of 

most existing simulation models offers the capability to use these as inputs.  
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Chapter 3   
Methodology 

Chapter 2 reviewed the current state of the practice in traffic microsimulation capabilities to 

capture the impact of external factors. This chapter presents a framework for incorporating 

influencing factors in driving behavior models.  

3.1 Framework 
Generally, calibration and validation of microscopic traffic simulation models consists of two 

steps, as shown in Figure 3-1.  First, the individual models that comprise the simulation are 

estimated using disaggregate data, independent of the overall simulation model. Next, aggregate 

data (traffic counts, speeds, occupancy) is used to fine-tune parameters and calibrate general 

parameters for the simulator. This approach was developed by Toledo, et al (2004) and has been 

applied in several cases studies. 

The disaggregate data used in the first step includes detailed driver behavior information, 

such as vehicle trajectories of the subject and surrounding vehicles. Disaggregate data is 

complex, difficult to process, expensive and has several limitations. Because trajectory data, 

detailed, sub-second vehicle position data, is costly to obtain and analysis is quite laborious, it is 

generally limited to small sections of roadway in optimal conditions. This means that the data is 

not necessarily representative of not only each segment of the original study area, but also other 

locations. For this reason, the second step of the calibration framework is completed to refine the 

models.  

More importantly for the purposes of this research, the limitations and expense of trajectory 

data mean that it is not available, specifically for many of the influencing factors of interest. For 

example, inclement weather conflicts with visibility conditions necessary for collecting the data. 

Incidents are difficult to record in that their location is unknown ahead of time and often their 

impacts are more widespread, for example with queue propagation, than the small study area. 

Geometric impacts can also make exacerbate the complexity and cost of trajectory data 

collection with difficult sight lines.  
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Figure 3-1: Overall Calibration Framework 

3.2 Aggregate Calibration Methodology 
Aggregate calibration is based on a formulation of an optimization problem that seeks to 

minimize a measure of the deviation between observed and corresponding simulated 

measurements. The reason for this approach is that, in general, it is not feasible to isolate the 

contribution of individual models to the overall error. For example, OD estimation methods 

require an assignment matrix as input. The assignment matrix maps OD flows to traffic counts at 

sensor locations. Usually the assignment matrix is not readily available and needs to be 

generated from the simulator. Therefore, the assignment matrix is a function of the route choice 

and driving behavior models used. Simulated flows are a function of the OD flows, driving 

behavior and the route choice model itself.  
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Hence, the following optimization problem, which simultaneously calibrates the parameters 

of interest (OD flows, route choice and driving behaviors) may be formulated:    
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arg min
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OD AX Y

β θ

β θ=

= −

 (3-1) 

where, β, θ and OD are the vectors of parameters to be calibrated: driving behavior, route 

choice and OD flows, respectively; Mobs and Msim are vectors of observed and simulated traffic 

measurements, respectively; g(.) represents the simulation process; Yobs are observed traffic 

counts at sensor locations; and A is the assignment matrix. 

The problem above is very difficult to solve exactly. The OD constraint, for example, is a 

fixed-point problem, which is a hard problem in its own merit. Therefore, the iterative heuristic 

approach outlined in Figure 3-2, which accounts for interactions between driving behavior, OD 

flows and route choice behavior by iteratively calibrating driving behavior parameters and travel 

behavior elements, is used.  

At each step, the corresponding set of parameters is calibrated, while the other parameters 

remain fixed to their previous values. The proposed calibration process proceeds as follows: 

1. Initialize parameters β0, θ0 and OD0. 

2. Estimate OD and calibrate route choice parameters assuming fixed driving behavior 

parameters. 

3. Calibrate driving behavior parameters assuming the OD matrix and route choice 

parameters estimated in step 2. 

4. Update habitual travel times using the OD matrix, route choice and driving behavior 

parameters estimated in steps 2 and 3. 

5. Check for convergence:  if convergence, terminate. 

 Else, continue to step 2. 
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Figure 3-2: Methodology for Aggregate Calibration of Microsimulation Models 
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The following sections describe OD estimation and calibration of driving behavior 

parameters in more detail. 

3.2.1 OD Estimation 
The OD estimation problem is often formulated as a generalized least squares (GLS) 

problem. The GLS formulation minimizes the deviations between estimated and observed sensor 

counts while also minimizing the deviation between the estimated OD flows and seed OD flows. 

The corresponding optimization problem is: 

( ) ( ) ( ) ( )HTHHTH

x
XXVXXYAXWYAX −−+−− −−

≥

11

0
min  (3-2) 

X and XH are vectors of estimated and historical (seed) OD flows, respectively. YH are the 

historical (observed) sensor counts. W and V are the variance-covariance matrices of the sensor 

counts and OD flows, respectively.  

However, in most cases the assignment matrix is not known. Therefore, the iterative process 

shown in Figure 3-3 is used: First, the simulation is run, using the calibrated parameters and a set 

of seed OD flows to generate an assignment matrix. This assignment matrix is in turn used for 

OD estimation. Due to congestion effects, the assignment matrix generated from the seed OD 

may be inconsistent with the estimated OD and further iterations are performed. 

 

Figure 3-3: OD Estimation Process 

3.2.2 Calibration of driving behavior parameters 
Driving behavior parameters are calibrated by minimizing a function of the deviations of 

simulated measurements from observed ones: 
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where,  and  are the observed and simulated speeds and/or flows, respectively, 

measured at sensor n during time period t. N and T are the number of sensors and time periods, 

respectively, and β are the parameters to be calibrated. 

obs
ntY sim

ntY

While the initial estimation (Ahmed, 1999) of driving models included a wide range of 

parameters, during this step only a limited set of parameters may be calibrated. Hence, given OD 

flows and steady-state travel times, a subset of driving behavior parameters is calibrated using 

the formulation shown in Figure 3-4. 

To calibrate the parameters, the algorithm proceeds as follows: an original set of K points is 

generated consisting of a feasible starting point (specified by the user) and K-1 additional points 

generated from random numbers that satisfy explicit and implicit constraints. The objective 

function is evaluated at each point and the point having the highest function value is replaced by 

a point (satisfying constraints) which is located between the centroid of the remaining points and 

the rejected point. The process continues until the objective function value converges to the 

minimum. 

The module accepts as input the measured flows, speed etc. values from sensors in the real 

network. Each time the objective function is evaluated, the simulator is called and the outputs 

from the simulator are used in the objective function. To take care of the stochasticity related to 

the simulator, the simulator can be run for a number of times and then the average value of the 

objective function over these runs can be used in the box algorithm. 
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Figure 3-4: Box Algorithm used in Parameter Estimation 
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3.2.3 Validation Methodology 
The purpose of validation is to determine the extent to which the simulation model replicates 

the real system. This is done by comparing measures of performance (MOPs), or statistics of 

outputs of interest from the two systems. There are several goodness-of-fit measurements that 

can be used to quantify the similarity between observed and simulated MOPs. The following is 

adapted from Pindyck and Rubinfield (1997). 

The root mean square error (RMSE) and the root mean square percent error (RMSPE) 

quantify the overall error of the simulator, penalizing large errors at a higher rate than smaller 

ones. RMSPE quantifies the total percentage error and similarly, root mean normalized error 

quantifies the total percentage error using the average of observed records.  
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where,  and  are observed and simulated measurements at space-time point n, 

respectively. 

obs
nY sim

nY

The mean error (ME) and mean percent error (MPE) indicate the existence of systematic 

under-or over- prediction in the simulated measurements, and are calculated by: 
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Theil’s inequality coefficient, shown below, also provides information on the relative error. 
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where U is bounded, 0 ≤ U ≤ 1 and U=0 implies a perfect fit between observed and simulated 

measurements and U=1 implies the worst possible fit. This measurement may be decomposed 

into three proportions of inequality: bias (UM), variance (US) and covariance (UC), given by: 
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where Y , σ and are the means and standard deviations of the series and ρ is their correlation 

coefficient. UM + US + UC = 1, by definition. The bias reflects the systematic error while the 

variance proportion indicates how well the simulation model replicates the variability in the 

observed data. Both should be as close to zero as possible, and as a correspondingly, covariance 

should be close to 1. 

3.3 Application of Aggregate Calibration 
This thesis hypothesizes that some of the critical influencing factors discussed in the previous 

chapter can be captured and applied in existing driving behavior models with aggregate 

calibration and validation. Disaggregate data necessary to estimate driving behavior models that 

incorporate key influencing factors may not be available or technically possible to obtain. There 

also may be cases where the nature of the key influencing factor does not warrant the expense 

and labor involved in estimating the entire behavioral model. For example, weather is certainly a 

critical factor in determining driver behavior, but its impacts can perhaps be captured in the fine-
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tuning of parameters used with existing models rather than require an entirely new model 

structure.  

The next chapter describes a case study and the simulation environment in which this 

approach will be applied and tested, as well as a description of the specific driving behavior 

models.  
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Chapter 4    
Case Study 

This chapter presents the case study, MITSIMLab, the traffic simulation laboratory utilized 

in this research, and existing driving behavior models that will be enhanced with the aggregate 

calibration methodology. 

4.1 Case Study Description 
For this thesis, the external effect of weather on acceleration and lane changing behavior is 

applied to a freeway corridor in Hampton Roads, Virginia. Figure 4-1 presents a map of the 

study area region.  

 

 

Figure 4-1: Map of Hampton Roads Region 
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Weather is an exemplary influencing factor to test with this model. Literature found weather 

to be one of the most important causes of congestion and incidents. Adverse weather conditions, 

with precipitation and decreased visibility, are not suited well for disaggregate model estimation 

as trajectory data in these conditions is not available or very limited. Therefore, aggregate 

weather and traffic data can be used to fine tune the existing behavior models used in the 

microscopic traffic simulation that have been calibrated previously with disaggregate data. 

A 3.6 mile section of I-264 eastbound, between mile markers 15.1 and 18.7, was used to test 

the approach. The section contains 3 on-ramps and 4 exits, including exits 16, 17a, 17b and 18. 

Figure 4-2 shows an aerial photo of the study corridor, with the exit 17 cloverleaf quite 

prominent and Table 4-1 identifies the exit destinations. 

 

Figure 4-2: Aerial photograph of study corridor 

Table 4-1: I-264 exit locations 

 
Exit No. Intersects City/County 

16 Witchduck Rd. - Route 190 Virginia Beach 

17 Independence Blvd. - Route 225 
(NB)/Route 410 (SB) 

Virginia Beach 

18 Rosemont Rd. - Route 411 Virginia Beach 

 

Data was gathered from ADMS Virginia Smart Travel Lab and consists of sensor data 

(counts, occupancy and speed) as well as hourly weather data (precipitation, visibility and 
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temperature) from the Norfolk International Airport weather station. Incident data was reviewed; 

however specific information regarding incident location was unavailable, and therefore 

eliminated from the study.  

Two time periods – AM peak and PM peak – were used to calibrate the model. The hours 

between 6:00 - 7:00 AM and 4:00 - 5:00 PM were selected for the AM and PM peak, 

respectively. Fifteen days for each period, all without reported incidents, were used with a mix of 

days with precipitation, low visibility and fine weather days (high visibility and no precipitation). 

The PM period had significantly higher traffic volumes and densities, indicating congestion.  

Maximum free flow speeds in the study area were reported as 65 mph, with recorded speeds 

ranging from 11 mph to 65 mph during the observed periods. The average speed on the mainline 

was 58 mph, ranging from 31 to 65 while densities ranged from 7 vpm to 66 vpm. The average 

flow was approximately 5900 vph. Precipitation for the observation periods ranged from none to 

0.12 in/hr and visibility ranged from 0.13 miles to 10 miles (maximum reported visibility). 

The following sections introduce MITSIMLab, the simulation environment utilized in this 

study, describe relevant driving behavior models and discuss preliminary data analysis.  

4.2 MITSIMLab 
MITSIMLab is a microscopic traffic simulation laboratory developed for the design and 

evaluation of Advanced Traffic Management Systems (ATMS) and Advanced Traveler 

Information Systems (ATIS). MITSIMLab can represent a wide range of traffic management 

system designs and model the response of drivers to real-time traffic information and control, 

thus simulating the dynamic interaction between the traffic management system and the drivers. 

MITSIMLab consists of three modules: 

1. Microscopic Traffic Simulator (MITSIM) 

2. Traffic Management Simulator (TMS) 

3. Graphical User Interface (GUI) 

MITSIM represents the “real-world” with detailed traffic and network elements and their 

behaviors and is the focus of this thesis. The main elements of MITSIM are network 

components, travel demand and route choice and driving behavior. The road network is 
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represented with nodes, links, segments and lanes and along with traffic control and surveillance 

devices are represented at the microscopic level. Travel demand is simulated based on time-

dependent origin-destination (OD) trip tables given as an input to the model. A probabilistic 

route choice model is used to capture drivers’ route choice decisions, which may be based on 

historical or real-time travel time information. 

 The OD flows are translated into individual vehicles wishing to enter the network at a 

specific time. Each vehicle/driver combination is assigned behavior parameters (desired speed 

and aggressiveness, for example) and vehicle characteristics and moves through the network 

according to acceleration (car-following) and lane-changing models. The acceleration model 

captures the response of a driver to conditions ahead as a function of relative speed, headway and 

other traffic measures. The lane changing model distinguishes between mandatory and 

discretionary lane changes. The driving behavior models implemented in MITSIM are discussed 

in more detail in the following section. 

The TMS represents the traffic control and routing logic in the network under evaluation. 

The control and routing strategies generated by the traffic management module determine the 

status of the traffic control and route guidance devices. Drivers respond to the various traffic 

controls and guidance while interacting with each other. An extensive GUI is used for both 

debugging purposes and demonstration of traffic impacts through vehicle animation. 

4.3 Driving Behavior Models  
The driving behavior models implemented in MITSIM and described in detail below were 

estimated by Kazi Ahmed in his dissertation entitled Modeling Drivers’ Acceleration and Lane 

Changing Behavior (1999). The integrated lane changing model was estimated by Tomer Toledo 

in his dissertation entitled Integrated Driver Behavior Modeling (2003). 

4.3.1 Acceleration 
MITSIM considers two acceleration regimes: free-flow and car-following. The free flow-

flow acceleration regime, in which the vehicle travels at his/her desired maximum speed, 

prevails when there is no lead vehicle or the lead vehicle in front is far enough ahead that it has 

no impact on the subject vehicle. The free-flow acceleration model is shown in Equation 4-1: 
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If the headway is less than the threshold, the car-following model dictates acceleration 

decisions when a lead vehicle is near enough to the subject vehicle that the subject must 

accelerate or decelerate to maintain a safe following distance. The car-following acceleration 

(when the relative speed is positive, deceleration when the relative speed is negative) is shown in 

Equation 4-3. 
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and was estimated to contain the following behavioral parameters: 
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Based on a priori knowledge and the literature review, it is expected that the acceleration 

parameters most affected by adverse weather conditions are the desired speed and the sensitivity 

of the relative speed of vehicles.  

4.3.2 Lane Changing 
MITSIM contains two lane changing models, one that distinguishes between discretionary 

and mandatory lane changing (Ahmed’s) and one that is an integrated model, combining the two 

types, utilizing lane utilities (Toledo’s). The more sophisticated integrated model will be used in 

this study; the structure and functional form is presented below.  

Toledo bases his model on three main elements of driving behavior: short-term goal (defined 

by the driver’s target lane), short-term plan (defined by the target gap in the target lane) and the 

driver’s actions, the two dimensional movements (accelerations and lane changes) that the driver 

performs in order to execute the short-term plan, as shown in Figure 4-3. 
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Figure 4-3: Structure of Integrated Lane Changing Model in MITSIM 

At the highest level, the driver chooses a target lane. The driver then evaluates the adjacent 

gap in the target lane and decides whether the gap can be used to execute the lane change. If so, 

the lane change is executed and the short-term goal is accomplished. If not, the driver evaluates 

available gaps in the target lane and chooses the one that would be used to perform the desired 

lane change.  

The target lane model consists of a utility function for each of the three possible target lanes, 

the current lane (CL), the right lane (RL) or left lane (LL), given below: 

)()()( tvtXtU CL
nn

CLCLCL
n

CL
n εαβ ++=  (4-5) 

)()()( tvtXtU RL
nn

RLRLRL
n

RL
n εαβ ++=  (4-6) 

)()()( tvtXtU LL
nn

LLLLLL
n

LL
n εαβ ++=  (4-7) 

where, Xn are vectors of explanatory variables affecting the utility of the lane, β are the 

corresponding vectors of parameters, ε are the random terms associated with the lane utilities, vn 

is an individual specific error term and α are the parameters of vn for each of the current, right 

and left lanes.  

 63 



If the utility of one of the adjacent lanes results in it being selected, the driver seeks an 

acceptable gap in the target lane. Drivers are assumed to have minimum acceptable lead and lag 

gap lengths, which vary not only by driver, but also among individual under different traffic 

conditions. The critical gap model for driver n at time t is expressed in Equation 4-8: 
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Model estimation resulted in the following expressions for lane utility: 
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where, EMURL(t) and EMULL(t) are right and left lane gap acceptance maximum utilities, 

respectively. The results of the estimation of lead and lag gap are shown in the following 

expressions: 
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where,  

 speedrelative (lag) leadtV lead
n =∆ )(  

Based on a priori knowledge and literature review, it is expected that lane changing 

parameters most affected by adverse weather will be the lead and lag critical gaps. Additionally, 

the desired speed will likely be reduced and the utility of the current lane will likely be affected 

for discretionary lane changes. 

4.4 Discussion of Data  
This section describes the data used in the study in more detail, beginning with limitations of 

available data, analysis of traffic data with weather information, and a basic sensitivity analysis 

of important driving behavior parameters. 

4.4.1 Limitations of Data 
The available data has several limitations that may confine the model calibration. Firstly, 

aggregate data is used for both traffic and weather information.  

 Weather data – availability of weather data was quite restricted, spatially, temporally 

and in scope. Weather effects on the roadway segment were inferred based on the 

weather data from Norfolk International Airport (NIA). 

– NIA is located more than 5 miles from the study area. While the dates were selected 

for days during which there was continuous precipitation for more than two hours 

around the study area to minimize the chance that weather conditions at the airport 

were different from those on the roadway, it does guarantee that weather on the I-265 

corridor exactly matches the reading at the airport. This likely has the most influence 

on the visibility readings as it is much more a localized element. 

– Furthermore, the weather data is collected hourly while traffic data is in 5 minute 

intervals so error was introduced in the mapping of hourly weather station data to the 

sensor data.  

– Precipitation, visibility and temperature are the only weather data points available. 

Other data that may be important and affect driving behavior are pavement conditions 

and wind speed. 

 65 



– Given the climate of the Hampton Roads region, all precipitation was rain. Literature 

indicated that snowy and slushy road conditions have a significant impact on capacity 

and speed reduction. 

 Incidents – Information on accidents, special programs and road construction were not 

available in enough detail (i.e. location and specific lane) to incorporate them into the 

simulation and therefore were not used in this study. Study dates were selected such that 

no accidents (based on more than one blocked lane) occurred during the observed time 

periods. While this has the benefit of reducing incidents as an additional influencing 

factor and enabling the model to focus explicitly on weather effects, this could under-

estimate the impact of weather on driving behavior in terms of reduced speeds and 

increased congestion and delay, given that 22% of accidents occur due to adverse weather 

conditions (Goodwin, 2001). 

 Sensor error – There is inherent error in the sensor data. Upon inspection of the sensor 

data, it was determined that 12 sensor readings (those not shaded in Table 4-2) could be 

used for OD estimation (only 1 of which contained incomplete data) and 6 sensors could 

be used for parameter estimation due to erroneous speed readings. Additionally, no speed 

readings were greater than 65 mph. It is highly unlikely that with low densities and a high 

level of service that some vehicles do not travel above the speed limit. Figure 4-4 shows 

the sensor locations in a schematic of the study area (Smart Travel Lab, 2004). 

 

Table 4-2: I-264 EB Sensor Information 

Sensor Mile-
Marker Roadway Counts Speed Problem 

160 15.1 Norm    

161 15.2 On    

163 15.3 Off ∅ ∅ Some dates missing 

165 15.6 Norm ∅ ∅ Some dates missing - discard 

167 16.1 Norm  ∅ Some dates default speed of 65 

169 16.3 Off    

172 16.4 Norm ∅ ∅ Counts error - discard 

173 16.5 On  ∅ Some dates default speed of 65 

175 16.5 Off  ∅ Most readings default speed of 65 
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176 16.6 Norm    

177 16.7 On  ∅ Most readings default speed of 65 

180 17.1 Norm  ∅ Most readings default speed of 65 - 
discard 

182 17.9 Norm    

185 18.4 Norm  ∅ Most readings default speed of 65 - 
discard 

188 18.7 Norm  ∅ Most readings default speed of 65 

189 18.6 Off    

 

Figure 4-4: Study Area Schematic with Sensor Location 

 

4.4.2 Weather Effects 
A University of Virginia study by Byrne, et al (2003), using data from the Hampton Roads 

study region (sensors on I-64), indicated that there is approximately a 5-6.5% decrease in vehicle 

speed during the presence of rain (regardless of rain intensity). Therefore, it is assumed that the 

study area will have similar results.  

The six sensors reporting usable speed data were used for analysis. Speed-density plots 

indicated that speeds on days with precipitation tended to be lower, particularly at higher 

densities. Figure 4-5 and Figure 4-6 are sample plots from sensors 160 and 182, respectively, on 

the freeway. As shown in the figures, there are higher densities at sensor 160 than 182 and the 

speed difference is more apparent. 
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Sensor 160: Speed - Density
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Figure 4-5: Sensor 160 Speed-Density Plot 

 

Sensor 182: Speed - Density
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Figure 4-6: Sensor 182 Speed-Density Plot 
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Three of the sensors with usable speed data are located on entrance or exit ramps. Sensor 169 

is an off-ramp located at exit 17a - Figure 4-7 shows quite a defined speed-density curve, with 

speeds tending to be lower on days with precipitation than on those without. 

Sensor 169: Speed - Density
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Figure 4-7: Sensor 169 Speed-Density Plot 

Given this initial investigation of the data, regression analysis was performed to quantify the 

effect of weather on speed and confirm that it is in fact a significant factor. Several studies have 

been undertaken to quantify the impacts of weather on travel behavior. A FHWA Road Weather 

Management Program study in the Washington, DC metropolitan area attempted to quantify the 

amount of travel delay due to the effects of adverse weather (Stern, et al, 2003). Similarly to this 

thesis, the study used hourly weather data with travel time data in five minute intervals and used 

a two-step linear regression process to predict travel times based on the following weather 

variables: 
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Table 4-3: Observational Elements in FHWA DC Regression Analysis 

Description Classifications 

Precipitation type and intensity None 
Light rain/snow 

Heavy rain 
Heavy snow/sleet 

Sustained wind speed < 30 mph ≥ 30 mph 

Visibility distance ≥ 0.25 miles < 0.25 miles 

Pavement condition Dry 
Wet 

Snow/Ice 
Black ice 

 

The study indicated that pavement condition and precipitation were the most important 

explanatory variables, finding a R2 value of 0.23, on average. 

A study of traffic flow-density relationship by Kockelman (1998) explored the influences of 

weather conditions, as well as driver- and vehicle-population characteristics, using a third-order-

polynomial regression, with linear functions of explanatory variables. A dummy variable for 

observations that occurred during rainfall was used, and was found to be significant, resulting in 

lower flows. 

With these studies as a starting point, regression analysis to predict travel speed was 

performed with available data. Several regression models were tested. Of particular interest is the 

insignificance of visibility across the all model formulations. Table 4-4 presents a sample of 

statistics demonstrating that visibility is insignificant in this data set. Also worthy of mention is 

that the sign of the coefficient for many sensors is not as expected and indicates that speed 

decreases as visibility increases. However, the magnitude of the coefficient is quite small, 

resulting in less than a half of a mph change in speed. Since it contradicts a priori estimates and 

literature, it is likely that the quality of weather data has a significant effect on this phenomenon, 

as visibility is quite dependent on geography and location.  
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Table 4-4: Sample Statistics for Visibility 

 160 176 182 

R Square 0.001 0.003 0.004 

  Coef t Stat Coef t Stat Coef t Stat 

Intercept 61.6 121 58.3 485 55.3 138 

Visibility (mi) -0.039 -0.559 -0.017 -1.054 0.064 1.161 

 161 169 189 

R Square 0.000 0.000 0.000 

  Coef t Stat Coef t Stat Coef t Stat 

Intercept 38.3 90 38.3 90 59.5 169 

Visibility (mi) -0.004 -0.069 -0.004 -0.069 0.015 0.316 

 

Regressions using both actual precipitation rates and precipitation categories were tested. A 

linear model including density and precipitation showed the best fit across all sensors, with 

precipitation significant for all sensors. The results for the regression with density and 

precipitation amounts (in/hr) for mainline and ramps are shown in Table 4-5 and Table 4-6, 

respectively. 

Table 4-5: Regression Results for Mainline Sensors 

Sensor: 160 176 182 

Multiple R 0.835 0.558 0.634 

R Square 0.697 0.312 0.402 

Adjusted R Square 0.695 0.308 0.398 

Standard Error 2.68 0.951 2.96 

Observations 360 360 360 

Parameters  Coef t Stat Coef t Stat Coef t Stat 

Intercept 72.5 174 60.8 285 60.4 89 

Density -0.393 -26.95 -0.145 -12.58 -0.222 -5.14 

Precipitation -36.9 -7.12 -3.94 -2.15 -78.1 -13.5 
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Table 4-6: Regression Results for On- and Off-ramp Sensors 

Sensor: 161 169 189 

Multiple R 0.644 0.919 0.594 

R Square 0.415 0.845 0.353 

Adjusted R Square 0.412 0.845 0.349 

Standard Error 3.08 2.852 2.71 

Observations 360 360 360 

Parameters  Coef t Stat Coef t Stat Coef t Stat 

Intercept 45.9 90 68.8 271 64.6 155 

Density -0.529 -15.50 -0.819 -41.78 -0.179 -11.0 

Precipitation -21.0 -3.54 -39.10 -7.02 -44.0 -8.46 

 

The results for the regression with density and precipitation categories for mainline and 

ramps are shown in Table 4-7 and Table 4-8 respectively. 

Table 4-7: Regression Results for Mainline Sensors 

Sensor 160 176 182 

Multiple R 0.832 0.554 0.496 

R Square 0.693 0.307 0.246 

Adjusted R Square 0.691 0.303 0.241 

Standard Error 2.70 0.955 3.33 

Observations 360 360 360 

 Coef t Stat Coef t Stat Coef t Stat 

Intercept 72.6 172 60.8 284 60.8 80 

Density -0.387 -26.14 -0.143 -12.44 -0.250 -5.13 

Precipitation - C -1.95 -6.70 -0.143 -1.41 -3.02 -8.37 
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Table 4-8: Regression Statistics for On- and Off- Ramps 

Sensor 161 169 189 

Multiple R 0.638 0.913 0.535 

R Square 0.407 0.833 0.287 

Adjusted R Square 0.403 0.833 0.283 

Standard Error 3.10 2.96 2.84 

Observations 360 360 360 

 Coef t Stat Coef t Stat Coef t Stat 

Intercept 45.8 90 68.9 243 64.4 146 

Density -0.522 -15.12 -0.836 -41.57 -0.174 -10.1 

Precipitation - C -0.898 -2.71 -1.421 -4.50 -1.70 -5.62 

 

As shown in the tables above the two models show very similar descriptions of speeds, 

decreasing speed up to 5%. Precipitation was statistically significant (for all but sensor 176, 

which was significant at an 85% confidence interval). The University of Virginia study of this 

region indicated that rain intensity had no affect on speed reduction, but presence of rain was a 

key factor. Both the Kockelman study and the Mitretek/FHWA study used presence of rain, 

rather than precipitation amount. These studies, coupled with the fact that the weather data may 

not exactly represent the conditions at each sensor, provides motivation to classify the 

precipitation data. Additionally, it is more likely that the exact value of precipitation will be 

unknown in planning applications. 

The Virginia study classified precipitation into light and heavy rain based on 

recommendations from the Cooperative Institute of Meteorological Satellite Studies (Byrne, et 

al, 2003), shown in Table 4-9. These classifications will be used in this study as well. 

 

Table 4-9: Precipitation Intensity Classification 

Rain Intensity Rainfall (in/hr) 

None < 0.01 

Light 0.01 – 0.25 

Heavy > 0.25 

 73 



A regression model including only the effects of precipitation was tested - the variable was 

significant (again, for all but Sensor 176, which was significant at 85% confidence interval), but 

the R2 value was significantly lower, indicating that, intuitively, just precipitation is not a valid 

predictor for speed. However, since the driving behavioral models include density and other 

factors already estimated and validated with disaggregate data, precipitation is sufficient as an 

explanatory variable for the weather conditions.  

4.4.3 Sensitivity Analysis of Behavior Parameters 
Based on the literature review and knowledge of driving behavior models, four key 

components of driving behavior were identified as being most critical in driving behavior in 

MITSIMLab: free flow acceleration, car following acceleration, lane changing, and gap 

acceptance. Within these four models, eight parameters were identified, as shown in Table 4-10. 

A sensitivity analysis was performed, isolating each model while keeping all other parameters at 

their original values, to measure the impact of the individual factors on the overall predictive 

quality of the system.  

Table 4-10: Behavior Parameter Sensitivity Analysis 

Model & Parameter 
Ahmed and Toledo’s 
Estimated Parameter 

Value 
% Improvement 

Acceleration   

Free flow  - Desired speed distribution*   

Mean of distribution around SL  -  

Distribution in population  -  
6.9% 

Car following   

Acc constant (alpha) 0.0400 

Dec constant (alpha) -0.0418 
17.7% 

Lane Changing - Utility   

Current lane constant 3.9443 

Right lane constant -0,3213 
0.0% 

Gap Acceptance   

Lead constant 0.5 

Lag constant 0.5 
4.1% 

* Desired speed distribution parameters were estimated by Ahmed (1999). The 
aggregate calibration results are based on a standard normal distribution. 
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The sensitivity analysis results indicated that the car following parameters had by far the 

most impact on simulating driver behavior. In addition, the desired speed distribution and gap 

acceptance models resulted in a marginal improvement. Interestingly, lane changing utility did 

not significantly impact the overall quality of the simulation.  

Given this sensitivity analysis, parameters for the car following model (the acceleration and 

deceleration constants), free flow acceleration (desired speed distribution) and the gap 

acceptance models will be included in the calibration. The weather model will also include 

parameters specific to the weather condition for car-following, speed distribution, and gap 

acceptance. Calibration results are presented in Chapter 5. 
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Chapter 5    
Results

This chapter presents results of OD estimation and driving parameter calibration for a base 

case and one including parameters to account for the presence of precipitation. An initial origin-

destination matrix was estimated using the available sensor counts. Given that the study area is a 

corridor, route choice is eliminated, and the aggregate calibration procedure is simplified. The 

driving parameters estimated by Ahmed and Toledo were used as the starting point in parameter 

calibration. 

5.1 OD Estimation 
OD estimation was performed for both the AM and PM periods of observation. Figure 5-1 

and Figure 5-2 present plots of observed counts versus simulated counts for AM and PM periods, 

respectively. As the figures show, both periods have unbiased results that indicate the simulation 

represents the real-world conditions. 

AM OD Estimation

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

Observed Counts (veh)

Si
m

ul
at

ed
 C

ou
nt

s 
(v

eh
)

T

 
Figure 5-1: AM Observed vs Simulated Counts 
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PM OD Estimation
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Figure 5-2: PM Observed vs Simulated Counts 

 

Table 5-1 presents the goodness-of-fit statistics of OD estimation.   

 

Table 5-1: Statistics for AM and PM OD Estimation 

Statistic AM PM 

RMS 25.2 39.9 

RMSN 11.9% 13.6% 

U (Theil's inequality coefficient) 0.0449 0.0513 

UM (bias proportion) 0.0030 0.0002 

US (variance proportion) 0.0131 0.0127 

UC (covariance proportion) 0.9839 0.9871 

 

Theil’s inequality coefficient indicates a very good fit between observed and simulated 

measurements (as 0 implies a perfect fit). As expected, the bias and variance portions of the 

inequality were quite low, indicating an unbiased simulation that is able to replicate the 

variability of the observed data.  
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5.2 Parameter Estimation 
Per results of the literature review and sensitivity analysis described in Chapter 4, a set of 

parameters for car following acceleration and deceleration, the desired speed distribution and gap 

acceptance were estimated for this study area and conditions. The existing models were 

calibrated in order to fine-tune the model for the study location and act as a base for comparison 

with the model incorporating weather factors. Table 5-2 presents the results of the base 

parameter calibration. 

Table 5-2: Base Model Parameters 

Model & Parameter Value 

Acceleration  

Free flow  - Desired speed distribution*  

Mean of distribution around SL 0.0462 

Distribution in population 0.0811 

Car following  

Acceleration constant (alpha) 0.2228 

Deceleration constant (alpha) -0.0416 

Gap Acceptance  

Lead constant 0.4451 

Lag constant 0.6721 

*See Table 5-4 for speed distribution results 

Given that the study location data varies from the trajectory data used to estimate the models, 

it is not surprising that some parameters differ somewhat from values originally estimated for 

Ahmed and Toledo’s models. However, it is important to ensure that the results of the calibration 

are realistic. All of the parameters are intuitive and conform to previously estimated ranges. The 

acceleration constant is significantly higher than the value estimated by Ahmed, but is within the 

range of values that were discussed in the dissertation (Ahmed, 1999). The deceleration constant 

is quite close to that estimated originally by Ahmed. The values estimated to form the desired 

speed distribution result in a typical distribution curve as estimated previously. The critical gap 

constants are within the same order of magnitude as those estimated and validated in Toledo’s 

dissertation, but with a slightly lower lead constant and a slightly higher lab constant, indicating 

slightly more aggressive and conservative gap acceptance for lead and lag gaps, respectively. 
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As described in Chapter 4, the effects of weather were incorporated into the model using a 

variable to reflect the presence (and intensity, however the data set was limited to light rain 

conditions) of rain. In addition to the parameters described above in the base model, parameters 

designed to capture the effect of weather for acceleration, desired speed distribution and critical 

gaps, were estimated. In other words, the overall value for each parameter was estimated as 

Wwiii ⋅+= βαα 0  (5-1) 

where, i represents the model (car-following, desired speed, gap acceptance), α is the 

parameter of interest for each model, W is the presence of rain (0 or 1), and β is the parameter 

associated with the affects of rain and is applied to the relevant models as described below. 

For the free-flow desired speed distribution, each of the estimated parameters (mean of the 

distribution above the speed limit and the distribution around the speed limit) are used with a 

weather parameter to determine the appropriate desired speed distribution for the enhanced 

model. So, the desired speed is determined as follows: 
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where, i is the percentile from 5% to 95%. The car following and gap acceptance models are 

modified from those originally estimated by Ahmed and Toledo, respectively, to incorporate 

weather as shown in the following expressions.  
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Table 5-3 presents the results of parameter calibration for this model. 

Table 5-3: Parameter Calibration Results Including Effects of Weather 
Value in Fine 

Weather, W = 0 
Value in Rain, 

W = 1 Model & Parameter 
(α+β(0)) (α+β(1)) 

Acceleration   

Free flow  - Desired speed distribution*   

Mean of distribution around SL 0.0478 0.0238 

Distribution in population 0.0039 0.0745 

Car following   

Acc constant (alpha) 0.2862 0.2147 

Dec constant (alpha) -0.0044 -0.0760 

Gap Acceptance   

Lead constant 0.2742 0.5234 

Lag constant 0.5222 0.7714 

 

The results of this estimation also are intuitive and agree with the literature on the subject. 

Acceleration and deceleration is negatively affected by the presence of precipitation, while the 

critical gap is increased. This indicates more cautious car-following behavior. When the driver 

has the opportunity to accelerate, he or she does so in a more conservative fashion in adverse 

weather conditions. Similarly, when conditions require that the driver slow, they demonstrate 

more caution by decelerating more when there is precipitation. Additionally, the mean of desired 

speed distribution around the speed limit decreases, indicating more conservative free-flow 

behavior in inclement conditions. The reduction in the mean of the desired speed supports the 

literature review. However, the spread of the distribution increases in the presence of rain. The 

increase in spread over the mean can be explained by the varying aggressiveness of drivers – 

while many drivers do change behavior based on environmental conditions, some do not, 

increasing the overall distribution. Gap acceptance results also indicate more conservative lane-

changing behavior. Drivers require a larger lead and lag gap in inclement weather than in fine 

weather conditions, indicating increased caution. 

It is also important to compare the new model results with the base model. As expected, the 

base model parameter values are within the range of those parameters estimated for fine and 
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inclement weather for the car-following and gap acceptance models. The mean of the desired 

speed over the speed limit in the base model also is within the range of the two means in the 

enhanced model, as expected. However, the distribution in the base model is significantly higher, 

particularly relative to the distribution when there is no precipitation. This indicates that factors 

causing lower speeds and higher variance can be captured in other parameters, namely, the 

effects of precipitation, and lends further evidence that adverse weather is an important factor in 

driving behavior and introduces variability.  

Table 5-4: Desired Speed Distribution Calibration 

Including Weather 
Percentile Base 

Fine Precipitation 
0.05 -0.0873 0.0413 -0.0987 
0.15 -0.0379 0.0437 -0.0534 
0.25 -0.0085 0.0451 -0.0264 
0.35 0.0149 0.0463 -0.0049 
0.45 0.0359 0.0473 0.0144 
0.55 0.0564 0.0483 0.0332 
0.65 0.0774 0.0493 0.0525 
0.75 0.1008 0.0504 0.0740 
0.85 0.1302 0.0519 0.1010 
0.95 0.1796 0.0542 0.1464 

 

Table 5-5 presents statistics useful for comparing the effectiveness of the model 

incorporating weather factors.  

Table 5-5: Statistics for Speed Comparison in Hampton Roads, Virginia 

Statistic Base With Weather 
Effects 

RMS 8.11 
 7.80 

RMSN 14.9% 14.5% 

U (Theil's inequality coefficient) 0.0768 0.0738 

UM (bias proportion) 0.2746 0.1798 

US (variance proportion) 0.1354 0.0907 

UC (covariance proportion) 0.5900 0.7295 

 

The statistics for measures of effectiveness indicate that the weather model performed better 

than the base model without the external factors. Both root mean square error and the normalized 
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root mean square error indicate the overall error of the simulator is reduced by including the 

effects of weather. The enhanced model resulted in an approximately 5% improvement in root 

mean square value. Additionally, and more significantly, Theil’s inequality coefficient 

demonstrates a large benefit with the enhanced model. Both models result in a coefficient 

indicating a good fit between observed and simulated measurements (the weather model more 

so). However, the proportions of the inequality show significant improvement with the enhanced 

model. The base model shows bias and tends to under-estimate speeds on fine days as it does not 

distinguishing weather as an external factor. The bias proportion is improved by 35%. The 

variance proportion is also better (by 33%) in the enhanced model, indicating the model better 

replicates variability in the observed data. 

5.3 Recommendations 
Despite significant limitations of both traffic sensor data and detailed weather data, the 

enhanced model incorporating the external effects of precipitation conditions preformed 

significantly better than the model without the explanatory weather factors. The Federal 

Highway Administration’s Road Weather Management Program has placed a priority on 

obtaining better weather information. Research, such as this, on the impact of weather on travel 

speeds, roadway capacity is a critical element in improving overall network operations and 

system efficiency and reliability by providing tools and knowledge to traffic management 

centers.  

One of the program initiatives is the installation and utilization of environmental sensing 

stations (ESS), sensors at locations along the roadway that collect atmospheric (visibility, wind 

speed, precipitation type and rate) and pavement data (temperature and condition – e.g. wet, icy, 

flooded). The weather data supplied with these sensor stations can be matched to traffic sensors 

in the roadway and will provide a more detailed and comprehensive description of weather 

conditions and important influencing factors. As this detailed weather data (both type and 

location of information) becomes available, the aggregate calibration approach applied in this 

study can certainly be enhanced and improved upon. Additionally, since driving behavior, 

especially with respect to weather, is so location-specific, other study areas should be evaluated, 

particularly those with snowy and icy conditions.  
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Chapter 6    
Conclusions
6.1 Summary 

Microscopic simulation provides a solid, sophisticated and efficient environment for 

transportation analysis. However, most state-of-the-art microscopic traffic simulation tools 

capabilities in simulating the real-world are limited. The reason for these gaps is primarily lack 

of data and knowledge, not physical resources. While it is known that many external factors 

influence driving behavior, the extent to which these impact traffic is known on a macroscopic 

level. The implications on driving behavior models are mostly unknown.  

This thesis has developed a framework to fill such gaps by incorporating influencing factors 

in a microscopic traffic simulation environment using available aggregate data. Aggregate 

calibration was used to modify existing driving behavior models with additional explanatory 

variables. The approach was tested in a case study using weather conditions in the Hampton 

Roads region of Virginia. 

The aggregate calibration methodology applied to weather conditions showed that both the 

external weather factor and the calibration approach resulted in significant improvement of the 

model for the case study location, improving the root mean square error by 5%. Inclusion of the 

weather explanatory variable resulted in a better model performance with regard to predictability 

of speeds and the enhanced model reduced the bias and variability by 35% and 33%, 

respectively, that occurred with the original model. Despite limited weather data and limitations 

of the sensor data, this approach demonstrated promise and can likely be enhanced as more 

detailed data regarding the explanatory factors weather data becomes available. Additionally, it 

is likely that other influencing factor not  

The aggregate calibration approach is not restricted to systematic environmental impacts 

such as weather, but has potential to improve the performance of microscopic simulation tools by 

incorporating other influencing factors in the driving behavior models. Results of the survey on 

the state-of-the-practice in microscopic traffic simulation revealed many such external factors 

that may be integrated with this approach. For example, work zone and incidents, two primary 

 83 



contributors to non-recurring traffic congestion, are likely candidates for this type of inclusion. 

Knowledge of the impact of these events on transportation systems, and specifically driver 

behavior and reaction, is critical to efficient transportation systems operation. These events are 

critical but detailed data about the microscopic impacts are unknown, making it an ideal 

candidate for study with the approach presented in this thesis.  

6.2 Future Research 
Driving behavior models and transportation analysis tools are only as high-quality as the data 

available to estimate, calibrate, and validate them. As more detailed trajectory data and more 

extensive aggregate data is collected, these models can be refined to incorporate more 

influencing factors and better represent real-world conditions, which is vital for efficient traffic 

management, contingency planning, and long-term land use planning. 

The literature review and survey of existing traffic simulation capabilities indicated there are 

still critical gaps. In order to capture the effects of geometry, incidents, work zones and weather, 

data about the relevant factors needs to be collected along with detailed trajectory data. Data 

collection should be performed in facilities with different geometric characteristics, under 

varying weather conditions and also include periods of time where incidents and work are 

present. Once such data is available, the relevant factors can be explicitly represented as 

explanatory variables in the models that will be developed using disaggregate estimation and 

validation. This kind of data collection effort is not an easy (or inexpensive) task, and thus makes 

this type of model estimation and calibration a long-term goal.  

However, until detailed disaggregate data is available, a shorter-term goal of using aggregate 

data to enhance existing behavior models and improve traffic simulation capabilities can be 

investigated. This thesis developed one approach of refining existing behavior models using 

available aggregate data and calibration methods and applied it to weather conditions, one of 

many influencing factors found to be lacking in existing traffic simulation tools. Driving 

behavior and conditions is very site-specific and therefore estimation results are not necessarily 

transferable, but application of the methodology and calibration process should be. There is 

certainly a need for further investigation into this type of approach and development of other 

approaches to include external factors into driving behavior models and simulation tools. 
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Appendix A 

Influencing Factors in Microsimulation 
Questionnaire  

 

 

Simulation of Network 
A. Link Characteristics 

Please answer the questions below for each of the following link characteristics: 
Horizontal curves  

 
 
 
 
 
 
 
 
 
 

 

Facility type (e.g. freeway, urban street, tunnel, bridge, elevated road) 
Lane widths 
Median characteristics 
Shoulder characteristics 
Grade and grade changes 
Pavement quality 
Auxiliary lanes (e.g. taper, parallel)  
Route restrictions / lane use privileges 
Sight restrictions 
Other (please specify) _________________________________________________________ 

1. Does your model contain parameters for the link characteristic? Please be specific. 

2. How do you represent the link characteristic in the model? Please be specific – explain both 
explicit and proxy approaches. 

3. How does the characteristic (and corresponding parameters) affect driver behavior? 
 Acceleration ________________________________________________________________ 
 Lane Changing ______________________________________________________________ 
 Route choice ________________________________________________________________ 
 Other (please specify) _________________________________________________________ 

4. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of links… 

B. Intersection Characteristics 

Please answer the questions below for each of the following geometric features of intersections: 
Angle between links (e.g. 90°, 60°) 
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Flared lanes approaching the intersection (turn pockets)  
 
 

 
 

 
 
 

 
 
 
 

Traffic calming static obstacles (e.g. flower-beds, concrete islands, curbs) 
Other (please specify) _________________________________________________________ 

1. Does your model contain parameters for the intersection characteristic? Please be specific. 

2. How do you represent the intersection characteristic in the model? Please be specific – 
explain both explicit and proxy approaches. 

3. How does the characteristic (and corresponding parameters) affect driver behavior? 
 Acceleration __________________________________________________________________  
 Lane Changing ________________________________________________________________  
 Route choice __________________________________________________________________  
 Other (please specify) ___________________________________________________________  

4. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of intersections… 

 

Simulation of System Management 
C. Response to Traveler Information 

1. In your model, how does traveler information affect drivers’ behavior? 
Route Choice 
Other (please specify) 

2. Does your model contain parameters for the type of traveler information? Please be specific. 
Traveler Information 
Route guidance 
Other (please specify) 

3. How do you represent the type of traveler information in the model? Please be specific – 
explain both explicit and proxy approaches. 

4. Does your model contain parameters for the means of obtaining traveler information? Please 
be specific. 
Broadcast (e.g. HAR) 
Location based (e.g. VMS) 
Individual (e.g. on-board device) 
Other (please specify) __________________________________________________________  

5. How do you represent the means of traveler information in the model? Please be specific – 
explain both explicit and proxy approaches. 
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6. What are the limitations associated with your approach to modeling driver response to 
traveler information? 

Further comments on simulation of response to traveler information… 
 

Simulation of Environment 
D. Incidents 

1. What are the incident inputs in your model? 

Please answer the questions below for each of the following incident characteristics: 
 

 

 

 

 

 
 

 

 

 
 
 
 

 
 

 

 

 

System effects 
Lane closures 
Shoulder use / closure 
Distractions 
Other (please specify) _______________________________________________________  

Behavioral effects 
Emergency braking 
Rubber-necking (same and opposite direction) 
Other (please specify) _______________________________________________________  

2. Does your model contain parameters for the incident characteristic? Please be specific. 

3. How do you represent the incident characteristic in the model? Please be specific – explain 
both explicit and proxy approaches. 

4. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Other (please specify) ___________________________________________________________  

5. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of incidents… 

E. Work Zones 

1. What are the work zone inputs in your model? 

Please answer the questions below for each of the following work zone characteristics: 
System effects 

Reduced speeds / variable speed limits 
Lateral clearance 
Lane shifts 
Lane width reductions 

 87 



 

 

 

 
 

 

 

 

 

 
 
 
 

 
 

 

 

 

 

 

 

 
 

– 

– 

 

– 

– 

 

 
 

 

Reduced shoulder 
Pavement markings 
Other (please specify) _______________________________________________________  

Behavioral effects 
Emergency breaking 
Rubber-necking  
Visual distractions 
Aural distractions 
Other (please specify) _______________________________________________________  

2. Does your model contain parameters for the work zone characteristic? Please be specific. 

3. How do you represent the work zone characteristic in the model? Please be specific – explain 
both explicit and proxy approaches. 

4. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Other (please specify) ___________________________________________________________  

5. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of work zones… 

F. Weather 

Please answer the questions below for each of the following weather characteristics: 
Conditions 

Wind 
Rain  
Fog 
Snow 
Ice 
Lighting 
Other (please specify) 

System effects 
Reduced visibility (e.g. fog) 

System wide 
Localized 

Reduced surface quality (e.g. ice) 
System wide 
Localized 

Other (please specify) ______________________________________________________ 
Behavioral effects 

Emergency breaking 
Skidding  
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Other (please specify) ______________________________________________________  

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 

1. Does your model contain parameters for the weather characteristic? Please be specific. 

2. How do you represent the weather characteristic in the model? Please be specific – explain 
both explicit and proxy approaches. 

3. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Distinctive behavior – Skidding ___________________________________________________  
Other (please specify) ___________________________________________________________  

4. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of weather… 
 

Simulation of Vehicle 
G. Vehicle Characteristics 

Please answer the questions below for each of the following vehicle characteristics: 
Vehicle dimensions  

 Width 
 Length 
 Height 

Articulated vehicle sections 
Vehicle mass 
Passenger capacity 
Acceleration and deceleration capabilities 
Speed capabilities 

 Turning radii 
Other (please specify) _________________________________________________________ 

1. Does your model contain parameters for the vehicle characteristic? Please be specific. 

2. How do you represent the vehicle characteristic in the model? Please be specific – explain 
both explicit and proxy approaches. 

3. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Other (please specify) ___________________________________________________________  
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4. What are the limitations associated with your approach to modeling this vehicle 
characteristic? 

Please answer the questions below for each of the following vehicle types: 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 

 
 
 
 

Passenger vehicles 
Automobiles 
Guided (intelligent) vehicles 
SUVs 
Taxis 
Motorcycles 

Commercial vehicles 
Emergency vehicles 
Large trucks 
Heavy equipment 
Small trucks / vans 

Transit vehicles 
Buses 
Minibuses 
Trains 
Light rail / trams 

Non-motorized vehicles 
Bicycles 
Pedestrians 

Other (please specify) ___________________________________________________________  

5. Does your model contain distinct behavior parameters for the vehicle type? Please be 
specific. 

6. What are the vehicle characteristics that define the vehicle type? 
Vehicle dimensions ____________________________________________________________  
Articulated vehicle sections ______________________________________________________  
Vehicle mass __________________________________________________________________  
Passenger capacity _____________________________________________________________  
Acceleration and deceleration capabilities ___________________________________________  
Speed capabilities ______________________________________________________________  
Turning radii __________________________________________________________________  
Other (please specify) ___________________________________________________________  

7. How is the driver behavior of vehicles interacting with the vehicle type affected? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route Choice__________________________________________________________________  
Other (please specify) ___________________________________________________________  

8. What are the limitations associated with your approach to modeling this vehicle type? 

Further comments on simulation of vehicles… 
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Simulation of Traveler 
H. Traveler Characteristics 

Please answer the questions below for each of the following traveler characteristics: 
 

 

 

 

 
 

 

 

 

– 

– 

– 

– 

– 

 

 

 
 

 

 

 
 
 
 

Perception 
Visual acuity of drivers 
Attentiveness of drivers 
Other (please specify) 

Decision Making 
Familiarity of drivers with the network 
Driver aggressiveness 
Driver value of time 
Compliance 

Speed limits 
Traffic signals 
Ramp metering 
Lane restrictions / usage 
Route guidance 

Road type preference 
Other (please specify) 

Control 
Driving skill 
Driver impairment 
Other (please specify) 

1. Does your model represent the traveler characteristic? Please be specific. 

2. How do you represent the traveler characteristic in the model? Please be specific – explain 
both explicit and proxy approaches. 

3. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Other (please specify) ___________________________________________________________  

4. What are the limitations associated with your approach to modeling this vehicle type? 

Further comments on simulation of travelers… 
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Simulation of Traffic Control 
I. Traffic Control 

Please answer the questions below for each of the following traffic control characteristics: 
 

 

 

 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 
 
 

Device property 
Type (e.g. ramp meter vs. traffic control) 
Size and display (e.g. of the control head, posted sign) 
Visibility 
Location 
Other (please specify) _______________________________________________________  

Control strategy 
Control logic type (e.g. pre-timed, actuated, priority, adaptive) 
Cycle length / green time 
Other (please specify) _______________________________________________________   

Surveillance system  
Electronic enforcement 
Other (please specify) ________________________________________________________  

Toll collection 
Technology type 
Processing delay 
Other (please specify) _______________________________________________________  

6. Does your model contain parameters for the traffic control characteristic? Please be specific. 

7. How do you represent the traffic control characteristic in the model? Please be specific – 
explain both explicit and proxy approaches. 

8. How does the characteristic (and corresponding parameters) affect driver behavior? 
Acceleration __________________________________________________________________  
Lane Changing ________________________________________________________________  
Route choice __________________________________________________________________  
Other (please specify) ___________________________________________________________  

9. What are the limitations associated with your approach to modeling this characteristic? 

Further comments on simulation of incidents… 
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