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Employing a strategy of sampling of alternatives is necessary for various transportation
models that have to deal with large choice-sets. In this article, we propose a method to
obtain consistent, asymptotically normal and relatively efficient estimators for Logit Mix-
ture models while sampling alternatives. Our method is an extension of previous results for
Logit and MEV models. We show that the practical application of the proposed method for
Logit Mixture can result in a Naïve approach, in which the kernel is replaced by the usual
sampling correction for Logit. We give theoretical support for previous applications of the
Naïve approach, showing not only that it yields consistent estimators, but also providing its
asymptotic distribution for proper hypothesis testing. We illustrate the proposed method
using Monte Carlo experimentation and real data. Results provide further evidence that the
Naïve approach is suitable and practical. The article concludes by summarizing the findings
of this research, assessing their potential impact, and suggesting extensions of the research
in this area.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Employing a strategy of sampling of alternatives is frequent in various transportation models that deal with large choice
sets. This is the case, for example, of models of residential location, route choice, or activity-based models. Sampling of alter-
natives in such models may be needed, for example, to deal with the computational burden of managing large choice-sets, or
because it is too costly to measure the attributes of all the alternatives. The problem of estimating a choice model with a
sample of alternatives was resolved for the Logit model by McFadden (1978). However, the assumptions of the Logit are
too restrictive for various choice problems, motivating the extension of McFadden’s (1978) result to more flexible models.

The first extension of McFadden’s (1978) result to non-Logit models was developed by Guevara and Ben-Akiva (2013),
who studied the problem of sampling of alternatives in Multivariate Extreme Value (MEV) models. The MEV is a family of
models that include the Logit and other closed-form models that allow some level of correlation among alternatives, such
as the Nested Logit and the Cross Nested Logit. The method proposed by Guevara and Ben-Akiva (2013) achieves consistency,
asymptotic normality and relative efficiency while sampling alternatives, and is based on the expansion of a term that gets
truncated because of the sampling. If the researcher can sample a different set to perform the expansion of the truncated
term, the method can be applied directly. In turn, when the researcher cannot re-sample, assumptions about the choice
probabilities are needed. Guevara and Ben-Akiva (2013) illustrate the application of the method to different Monte Carlo
experiments and to real data. Results show that the method is practical and yields acceptable results, even for relatively
small sample sizes.
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A second extension of McFadden’s (1978) result to non-Logit models was developed by Guevara et al. (in preparation),
who studied the problem of sampling of alternatives in Random Regret Minimization (RRM) models. In RRM models, every
alternative is compared to all other alternatives to build what is called a regret function (Chorus, 2010). Evaluation of this
function quickly becomes difficult as the number of alternatives grows, motivating the need for sampling of alternatives.
Guevara et al. (in preparation) show that a method, based on the expansion of the terms that get truncated because of
the sampling, yields consistent, asymptotically normal and relatively efficient estimates. The authors also provide evidence
showing that the method is practical and yields acceptable results for finite samples.

The extension of McFadden’s (1978) result to Logit Mixture models is relevant because the Logit Mixture is fully flexible,
in the sense that it can approximate any random utility model (McFadden and Train, 2000). The first studies in the area are
the articles by McConnel and Tseng (2000) and Nerella and Bhat (2004), who provided Monte Carlo evidence suggesting the
suitability of a Naïve approach for sampling of alternatives in a random coefficients model. In this Naïve approach the kernel
of the model is simply replaced by McFadden’s (1978) correction for Logit, ignoring the fact that the IIA assumption is for-
mally broken in Logit Mixture models. A similar empirical result is reported by Azaiez, 2010, who additionally showed that
the Naïve approach seemed to do better than an approximated method inspired in the approach used by Guevara and Ben-
Akiva (2013) for MEV models. Lemp and Kockelman (2012) also provide evidence suggesting that the Naïve approach is suit-
able, but that its empirical efficiency depends on the sampling protocol considered. Seemingly contradicting all previous re-
sults, Chen et al. (2005) provide empirical evidence suggesting that the Naïve approach is not suitable for an error
components Logit Mixture model. Finally, von Haefen and Domanski (2013) studied the problem of sampling of alternatives
in a latent-class model, which is a special case of a Logit Mixture. The authors demonstrate how the expectation–maximi-
zation (EM) algorithm (see, e.g., Train, 2009) can be used with the Logit sampling correction to generate consistent estimates.

In this article, we study the conditions needed to achieve consistency, asymptotic normality and relative efficiency while
sampling alternatives in Logit Mixture models. Our methodology can be seen as an extension of McFadden’s (1978) result for
Logit, and it builds on the methodology proposed by Guevara and Ben-Akiva (2013). We show that the proposed method in
practice can be applied in three ways, one of which is the previously considered Naïve approach. We use Monte Carlo exper-
imentation and real data to illustrate the different versions of the proposed method and to shed light on their finite
properties.

The article is structured in seven sections. Following this introduction, Section 2 shows that the conditional probability of
choosing an alternative, given that a certain subset was drawn, can be written as a Logit Mixture model in which the kernel is
the product of two terms, one of which is McFadden’s result for sampling of alternatives in Logit. It is then shown that the
maximization of a quasi-log likelihood function based on this expression results in consistent estimators of the model
parameters. However, this estimator is not practical since it still has a term that depends on the full choice-set. Next, in Sec-
tion 3 we show that a proper approximation of the unfeasible term will result in consistent, asymptotically normal and rel-
atively efficient estimators of the model parameters. In Section 4 we describe three possible methods to develop the
approximation in practice. In Section 5 we provide Monte Carlo evidence to illustrate the application and to assess the per-
formance of the estimators using the three methods. Section 6 reports the application of the method to real data on residen-
tial location and Section 7 summarizes the main conclusions, implications, and potential extensions of this research.
2. Consistency of an estimator for Logit Mixture models, conditional on a sampled choice set

In this section we show that the maximization of a modified log-likelihood function allows the consistent estimation of
the parameters of a Logit Mixture model under sampling of alternatives. The derivation will be constructed as an extension
of McFadden’s (1978) result on sampling of alternatives for the Logit model. It will result in an impractical method that will
still depend partially on the full choice set. This limitation will be addressed later in sections 3 and 4 by constructing feasible
estimators inspired in the methods proposed by Guevara and Ben-Akiva (2013) for sampling on MEV models.

Consider the problem of modeling the probability that an agent n will choose an alternative i within the Jn elements of the
set Cn. Agents are assumed to be rational, in the sense that they choose the alternative from which they retrieve the largest
utility Uin, which is assumed to be composed by a systematic part V and a random part e, as shown in:
Uin ¼ Vin þ ein ¼ Vðxin;bnÞ þ ein: ð1Þ
The systematic part of the utility depends, usually linearly, on attributes xin with a vector of coefficients bn, which can be
interpreted as agents’ taste for the attributes. Taste is assumed to be heterogeneous among agents but, and without loss of
generality, generic among alternatives.

If it is assumed that e is distributed iid Extreme Value (0,l), the probability that agent n will choose alternative i, given bn,
will correspond to the Logit model shown in:
Lnðijbn; xn;CnÞ ¼
elVðxin ;bnÞP

j2Cn
elVðxjn ;bnÞ

; ð2Þ
where l is the scale of the distribution of the error terms. For identification, l is normalized to equal 1.
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However, the researcher does not know each bn, only their density over a set of parameters h. For example, if b follows a
Normal distribution, h will be the mean and variance of b. Therefore, the researcher can only specify the following expression
for the probability that agent n will choose alternative i.
Pnðijh; xn;CnÞ ¼
Z

Lnðijb; xn;CnÞf ðbjhÞdb ¼
Z

eVðxin ;bÞP
j2Cn

eVðxjn ;bÞ
f ðbjhÞdb: ð3Þ
Consider now that the true choice set Cn is too large to be practical for estimation and that the researcher needs to sample
a subset Dn witheJn elements. This may be needed, for example, to reduce the computational burden or because it is too costly
to identify all the alternatives. Dn must include the chosen alternative i. Otherwise, the model could not be estimated. Var-
ious sampling protocols can be used to build the set Dn. For example, one could first draw the chosen alternative and then
sample a given number of additional alternatives with a fixed probability, or by importance sampling.

Define p(i,Dn|bn,xn) as the conditional probability that agent n will choose alternative i and that the researcher will sam-
ple the set Dn, given the coefficients bn and attributes xn. By the Bayes theorem, this conditional probability can be rewritten
as shown in:
pði;Dnjbn; xnÞ ¼ pðDnji; xnÞLnðijbn; xn;CnÞ ¼ pðijbn; xn;DnÞpðDnjbn; xnÞ; ð4Þ
p(i|bn,xn,Dn) in Eq. (4) is the conditional probability that the agent would choose alternative i, given that the set Dn was con-
structed by the researcher. p(Dn|i,xn) is the conditional probability that the researcher would construct the set Dn, given that
alternative i was chosen by the agent.

Note that it is considered in Eq. (4) that p(Dn|bn, i,xn) = p(Dn|i,xn) because, after conditioning on i, it is assumed that the
way the other elements on Dn are drawn does not depend on bn. This assumption is not essential and can be generalized, but
it is representative of most strategies for sampling of alternatives that can be applied in practice. For some special cases, this
term may become even further simplified. For example, if the sampling protocol used was to draw the chosen alternative i
and then to draw eJn � 1 alternatives with a fixed probability, then p(Dn|i,xn) = p(Dn|i). Furthermore, if that fixed probability is
independent across alternatives pðDnjiÞ ¼ pðDnjjÞ 8j 2 Cn. In general, the conditional probability p(Dn|i,xn) will depend on xn

and will not be equal across alternatives.
Considering that the events of choosing each alternative in Cn are mutually exclusive and totally exhaustive, p(Dn|bn,xn)

can be rewritten using the Total Probability theorem (see, e.g., Bertsekas and Tsitsiklis, 2002) as shown in:
pðDnjbn; xnÞ ¼
X
j2Cn

pðDnjj; xnÞLnðjjbn; xn; CnÞ

¼
X
j2Dn

pðDnjj; xnÞLnðjjbn; xn; CnÞ
; ð5Þ
where the second equality in Eq. (5) holds because p(Dn|j,xn) = 0"j R Dn since Dn must include the chosen alternative.
Combining Eq. (4) and Eq. (5), the following expression for the conditional choice probability is obtained
pðijbn; xn;DnÞ ¼
pðDnji; xnÞLðijbn; xn;CnÞP

j2Dn
pðDnjj; xnÞLðjjbn; xn;CnÞ

¼ eVðxin ;bnÞþlnpðDn ji;xnÞP
j2Dn

eVðxjn ;bnÞþlnpðDn jj;xnÞ
; ð6Þ
where ln p(Dn|j,xn) is termed the sampling correction.
Eq. (6) indicates that the conditional probability of choosing alternative i, given that a particular choice-set Dn was con-

structed, depends only on the alternatives in Dn. This is a consequence of the Independence of Irrelevant Alternatives (IIA)
property, expressed in this case in the cancellation of the denominators when dividing the probabilities of two alternatives in
the Logit kernel. This result holds because, given bn, the model is a Logit.

McFadden (1978) demonstrated that the maximization of a quasi-log likelihood, constructed using the conditional choice
probabilities shown in Eq. (6), yields consistent estimators if the Logit model has fixed coefficients, that is, if bn = b"n. In
what follows, we will extend McFadden’s (1978) result for the case when the coefficients are random.

Consider now that the researcher does not know each bn, but only their density over a set of parameters h. Then, using the
Bayes’ theorem, and conditioning conveniently to retrieve the result shown in Eq. (6), p(i|h,xn,Dn) can be written as follows
pðijh; xn;DnÞ ¼ pði;Dn jh;xnÞ
pðDn jh;xnÞ ¼

1
pðDn jh;xnÞ

R
pði;Dnjb; xnÞf ðbjhÞdb

¼ 1
pðDn jh;xnÞ

R
pðDnjb; xnÞpðijb; xn;DnÞf ðbjhÞdb

¼
R pðDn jb;xnÞ

pðDn jh;xnÞ

� �
eVðxin ;bÞþln pðDn ji;xn ÞP
j2Dn

eVðxjn ;bÞþln pðDn jj;xn Þ f ðbjhÞdb

: ð7Þ
Then, defining
Wn ¼
pðDnjb; xnÞ
pðDnjh; xnÞ

¼
P

j2Dn
Lnðjjb; xn;CnÞpðDnjj; xnÞP

j2Dn
Pnðjjh; xn;CnÞpðDnjj; xnÞ

; ð8Þ
we will show that one can obtain consistent estimators of the distribution parameters h by maximizing the quasi-log-like-
lihood function shown in Eq. (9), where i corresponds to the alternative chosen by agent n.
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QLLM;D ¼
XN

n¼1

ln
Z

Wn
eVðxin ;bÞþlnpðDn ji;xnÞP

j2Dn
eVðxjn ;bÞþln pðDn jj;xnÞ

f ðbjhÞdb: ð9Þ
However, Eq. (9) is not practical for the problem of sampling of alternatives in Logit Mixture models. Although the sum in
the denominator of the kernel depends only on the alternatives in the set Dn, the term Wn still depends on the full choice-set,
as shown in Eq. (8). We will solve this limitation later in sections 3 and 4, but we first need to show that the maximization of
the quasi-loglikelihood shown in Eq. (9), yields consistent estimators of the model parameters.

Maximizing Eq. (9) is the same as maximizing Eq. (9) times 1/N, which is in turn a sample analog of the expected value E()
of the log-likelihood constructed using the conditional probabilities shown in Eq. (7) over the population
1
N

XN

n¼1

ln
Z

Wn
eVðxin ;bÞþlnpðDn ji;xnÞP

j2Dn
eVðxjn ;bÞþln pðDn jj;xnÞ

f ðbjhÞdb � E ln
Z

W
eVðxi ;bÞþlnpðDji;xÞP
j2DeVðxj ;bÞþlnpðDjj;xÞ f ðbjhÞdb

 !
;

where x, D and W are random variables that take values xn, Dn, and Wn respectively.
The expected value depends on the joint density f(i,x,D|h�), where h� corresponds to a vector of population parameters of

the distribution of b. Then
EðÞ ¼
Z
fln /iðhÞgf ði; x;Djh�ÞdidDdx; ð10Þ
where
/iðhÞ �
Z

W
eVðxi ;bÞþlnpðDji;xÞP
j2DeVðxj ;bÞþln pðDjj;xÞ f ðbjhÞdb ¼ pðijh; x;DÞ: ð11Þ
By the Bayes theorem we can re-write the joint density as f(i,x,D|h⁄) = p(i|h�,x,D)p(D|h⁄,x)f(x). To simplify the notation, we
assume that the full choice-set C does not vary in the sample. This assumption is not essential and can be generalized. Under
these conditions, the integration of alternatives i will be over all the elements in C and the integration of subsets D will be
over all possible subsets D # C. Therefore, Eq. (10) can be rewritten as follows:
EðÞ ¼
Z
½
X
i2C

X
D # C

flnð/iðhÞÞpðijh�; x;DÞpðDjh�; xÞg�f ðxÞdx: ð12Þ
Then, replacing /i(h�) � p(i|h�, x, D), the following expression for the expectation is obtained
EðÞ ¼
Z X

D # C

pðDjh�; xÞ
X
i2C

ð/iðh�Þ ln /iðhÞÞ
( )" #

f ðxÞdx: ð13Þ
Note that the only part of E() in Eq. (13) depending on the arguments h has the form
X
i2C

/iðh�Þ ln /iðhÞ: ð14Þ
This expression has a maximum at h = h� because
@

@h

X
i2C

/iðh�Þ ln /iðhÞ
" #

h¼h�

¼
X
i2C

/iðh�Þ
1

/iðh�Þ
@/iðhÞ
@h

jh¼h� ¼
X
i2C

@/iðhÞ
@h

jh¼h� ¼ 0;
where the last equality holds because
X
i2C

/iðhÞ ¼ 1:
Then, under general regularity conditions, this maximum is unique and the maximum of Eq. (9) converges in probability
to the maximum of the true likelihood, and therefore it yields consistent estimators of the model parameters (Newey and
McFadden, 1986).

3. Asymptotic distribution of a feasible estimator for sampling of alternatives in Logit Mixture models

The quasi-loglikelihood shown in Eq. (9) is not practical because the term Wn depends on all the alternatives in the
choice-set Cn. In this section we will show that if an approximation for Wn is properly constructed using the elements in
Dn, one can achieve consistency, asymptotic normality and relative efficiency.

Consider that cW n is an estimator of Wn that fulfils the following three requirements:

� cW n is an unbiased estimator of Wn,
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� cW n is a consistent estimator of Wn as eJn grows,
� cW n is feasible in the sense that it is constructed solely using alternatives in Dn.

Then, it can be shown that the maximization of the feasible quasi-log-likelihood function shown in Eq. (15)
QLFeasible
LM;D ¼

XN

n¼1

ln
Z cW n

eVðxin ;bÞþln pðDn ji;xnÞP
j2Dn

eVðxjn ;bÞþlnpðDn jj;xnÞ
f ðbjhÞdb; ð15Þ
provides, under general regularity conditions, consistent estimators ĥ of the model parameters h⁄, as eJn grows with N at any
rate. If eJn grows faster than

ffiffiffiffi
N
p

; ĥ will also be asymptotically normal, with the following parameters:
ĥ �a Normalðh�;X=NÞ ¼ Normalðh�;R�1MR�1=NÞ; ð16Þ
where M ¼ Var @ ln /ðh�Þ
@h

� �
, R ¼ E @2 ln /ðh�Þ

@h@h0

� �
; and /() is defined as in Eq. (11).

X is usually termed the ‘‘robust’’ or ‘‘sandwich’’ variance–covariance matrix (see, e.g., Train, 2009, p. 201). A feasible esti-
mator for X was proposed by Berndt et al. (1974).

Note that X is also the variance–covariance matrix of the unfeasible estimator resulting from the maximization of Eq. (9).
Therefore, it can be affirmed that the estimators resulting from the maximization of Eq. (15) will be relatively efficient, com-
pared to any other estimator considering an approximation of Wn .

Finally, an additional condition has to be added when Jn is finite and the protocol to draw alternatives is sampling without
replacement. Under those conditions, eJn cannot go to infinity with N to derive the asymptotic distribution. Instead, eJn would
need to increase only up to eJn ¼ Jn for achieving consistency, asymptotic normality, and relative efficiency, because then the
feasible estimator in Eq. (15) would become equal to the one shown in Eq. (9).

The derivation of the asymptotic distribution in Eq. (15) is analog to the demonstration developed by Guevara and Ben-
Akiva (2013, Appendix 1) for the feasible estimator while sampling alternatives in MEV models. Both demonstrations are
also analog to the procedure used by Train (2009, pp. 247–257) to derive the asymptotic distribution of simulation-based
estimators.

The demonstration consists of two stages. The first analyzes the asymptotic distribution of the sample average of the true
score g(h) and an approximation of it ĝðhÞ. In the second stage this result is used to derive the asymptotic distribution of the
estimators of the model parameters when considering the approximation.

The key difference between the derivation described by Guevara and Ben-Akiva (2013, Appendix 1) and the derivation
needed in the case studied in this paper is in the definition of the score functions g(h) and ĝðhÞ. In this case it holds that
gðhÞ ¼ 1
N

XN

n¼1

@ ln /nðhÞ
@h

¼ 1
N

XN

n¼1

@

@h
ln
Z

Wn
eVðxin ;bÞþln pðDn ji;xnÞP

j2Dn
eVðxjn ;bÞþlnpðDn jj;xnÞ

f ðbjhÞdb: ð17Þ
for the unfeasible estimator, where i corresponds to the alternative chosen by agent n, and
ĝðhÞ ¼ 1
N

XN

n¼1

@ ln /̂nðhÞ
@h

¼ 1
N

XN

n¼1

@

@h
ln
Z cW n

eVðxin ;bÞþln pðDn ji;xnÞP
j2Dn

eVðxjn ;bÞþlnpðDn jj;xnÞ
f ðbjhÞdb; ð18Þ
for the feasible approximation.The reader is referred to Guevara and Ben-Akiva (2013, Appendix 1) for further details on the
derivation of the asymptotic distribution shown in Eq. (16).

4. Practical implementation of the feasible estimator for sampling of alternatives in Logit Mixture models

4.1. Introduction

The practical application of the proposed method for sampling of alternatives in Logit Mixture models requires construct-
ing an estimator of Wn using solely the elements in the set Dn. In this section we propose and analyze three feasible estima-
tors: Population Shares, 1_0 and Naïve. Then, in Section 5 we study their performance using Monte Carlo simulations.

Reconsider the term Wn in Eq. (8) with more detail.
Wn ¼
P

j2Dn
Lnðjjb; xn;CnÞpðDnjj; xnÞP

j2Dn
Pnðjjh; xn;CnÞpðDnjj; xnÞ

¼

P
j2Dn

pðDnjj; xnÞ eVðxin ;bÞP
j2Cn

eVðxjn ;bÞ

� �
P

j2Dn
pðDnjj; xnÞ

R
eVðxin ;bÞP
j2Cn

e
Vðxjn ;bÞ

f ðbjhÞdb

� � : ð19Þ
The problem is that both Ln(j|b,xn,Cn) and Pn(j|h,xn,Cn) depend on the full choice set Cn. One possible approach to avoid this
limitation is to approximate the sums of exponentials by a term constructed from the expansion of the alternatives in Dn.
This approach is inspired by the one used by Guevara and Ben-Akiva (2013) for the problem of sampling of alternatives
in MEV models. Formally, the approximation proposed for Wn is
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cW n ¼

P
j2Dn

pðDnjj; xnÞ eVðxin ;bÞP
j2Dn

wjneVðxjn ;bÞ

� �
P

j2Dn
pðDnjj; xnÞ

R
eVðxin ;bÞP

j2Dn
wjneVðxjn ;bÞ

f ðbjhÞdb

� � ; ð20Þ
where the wjn are expansion factors. We need to define the expansion factors required to fulfill the assumptions needed for
the validity of the approximation described in Section 3.

Consider first unbiasedness. Instead of finding proper expansion factors wjn such that cW n becomes an unbiased estimator
of Wn, we can find expansion factors that would result in an unbiased estimator (bBn) of the sum of the exponentials (Bn)
embedded both in Ln(j|b,xn,Cn) and Pn(j|h,xn,Cn), where
Bn ¼
X
j2Cn

eVðxjn ;bÞ

bBn ¼
X
j2Dn

wjneVðxjn ;bÞ:
ð21Þ
Since Wn is continuous in the sum of the exponentials, the result described in Section 3 is applicable with a version of the
score g(h) and its approximation ĝðhÞ, written explicitly as a function of the sum of the exponentials.

The expansion factors wjn needed for obtaining an unbiased estimator of the sum of the exponentials Bn depend on the
sampling protocol used to draw Dn. Consider, for example, that the sampling protocol is the following: draw the chosen alter-
native, and then to draw eJ � 1 alternatives randomly. In such a case, it can be shown (see, Guevara, 2010, Chapter 5) that the
expansion factors needed to achieve unbiasedness will be those shown in:
wjn ¼
1

Pnðjjh; xn;CnÞ þ
~J�1
J�1 ½1� Pnðjjh; xn; CnÞ�

: ð22Þ
For other sampling protocols, the expansion factors would have to be different from those shown in Eq. (22), but they will
necessarily have to depend on the choice probabilities Pn(j|h,xn,Cn), because the chosen alternative must be included in Dn for
estimation.

The second condition needed for the application of the result shown in Section 3 is consistency. Since the expansion fac-
tors shown in Eq. (21) result in unbiased estimators, to achieve consistency it suffices to note that the variance of the esti-
mated sum of the exponentials necessarily decreases with eJ .

The final condition is feasibility. The expansion factors shown in Eq. (22) still depend on the choice probabilities and, con-
sequently, on the full choice set. Following the approach used by Guevara and Ben-Akiva (2013) for MEV, we explore two
possibilities to approximate the choice probabilities at this stage.

4.2. Population shares method

The first alternative is to replace the individual choice probabilities in Eq. (22) by an estimation of the population share of
the respective alternative. For example,
Hj ¼
1
N

Xn

n¼1

yjn
could be a sample estimator of the population share of alternative j, where yjn that takes value 1 if j is the alternative chosen
by n, and zero otherwise.

If the sampling protocol used to build Dn is to draw the chosen alternative and then to draw eJ � 1 alternatives randomly,
the Population Shares method will correspond to consider the following approximation for the term Wn:
cW Pop:shares
n ¼

j2Dn pðDnjj; xnÞ eVðxin ;bÞX
j2Dn

1

Hjþ
~J�1
J�1ð1�Hj Þ

" #
eVðxjn ;bÞ

8>>>><>>>>:

9>>>>=>>>>;
P

j2Dn
pðDnjj; xnÞ

R
eVðxin ;bÞP

j2Dn
1

Hjþ
~J�1
J�1ð1�Hj Þ

" #
eVðxjn ;bÞ

f ðbjhÞdb

8>>>><>>>>:

9>>>>=>>>>;

: ð23Þ
In Section 5 we will use Monte Carlo simulation to study the performance of this method on finite samples and, in Sec-
tion 6, we will implement it with real data. It can be hypothesized that, despite the asymptotical validity of the Population
Shares method, its performance in finite samples may be challenged for three reasons. First, Population Shares requires mak-
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ing a rather rough approximation of the individual choice probabilities. Second, the method does not make directly an
approximation over Wn, but on a component of it. Third, significant numerical difficulties may arise when evaluating theeJ integrals that are needed to calculate the denominator in Eq. (23).
4.3. 1_0 Method

The second alternative to develop a practical estimator is to replace the individual choice probabilities in Eq. (22) by yjn,
which takes value 1, if j is the alternative chosen by n, and zero otherwise.

If the sampling protocol used to build Dn is to draw the chosen alternative and then to draw eJ � 1 alternatives randomly,
the 1_0 method will correspond to consider the following approximation for the term Wn:
cW 1 0
n ¼

P
j2Dn

pðDnjj; xnÞ eVðxin ;bÞP
j2Dn

1

yjnþ
~J�1
J�1ð1�yjnÞ

" #
e

Vðxjn ;bÞ

8>>>><>>>>:

9>>>>=>>>>;
P

j2Dn
pðDnjj; xnÞ

R
eVðxin ;bÞP

j2Dn
1

yjnþ
~J�1
J�1
ð1�yjnÞ

" #
eVðxjn ;bÞ

f ðbjhÞdb

8>>>><>>>>:

9>>>>=>>>>;

: ð24Þ
In Section 5 we will use Monte Carlo simulation to assess the performance of this method on finite samples. It can by
hypothesized that the 1_0 method may potentially suffer the same limitations of the Population Shares method.
4.4. Naïve method

Another alternative to develop a feasible method is to approximate directly the choice probabilities Ln(j|b,xn,Cn) and Pn(-
j|h,xn,Cn) in Eq. (19). This approximation can be done in different ways, including using an estimator of the population share
of each alternative, or by considering that the probability is equal to 1 for the chosen alternative and zero otherwise. How-
ever, there is a better option in this case.

Consider, for the moment, that the researcher knows the true Pn(j|h,xn,Cn), the population choice probability for each indi-
vidual and alternative. If such information happens to be available, Pn(j|h,xn,Cn) could be directly replaced to calculate exactly
the denominator in Eq. (19). Then, the only missing component would be the kernel choice probabilities Ln(j|b,xn,Cn) in the
numerator of Eq. (19).

But, if each Pn(j|h,xn,Cn) is known, they would make a very good approximation of Ln(j|b,xn,Cn). Such an approximation is
far better than using a flat estimator of the Population Shares for all n, or by approximating each probability to 1 when the
alternative is chosen and to zero otherwise. Furthermore, if Pn(j|h,xn,Cn) is used to approximate Ln(j|b,xn,Cn) in Eq. (19) and
the denominator is known, we will provide an unbiased and consistent estimator of Wn directly, instead of approximating
the sums of the exponentials embedded in it.

The final step of the analysis is practicality. Interestingly, if the Pn(j|h,xn,Cn) are used to approximate Ln(j|b,xn,Cn) in the
numerator of Eq. (19), then cW n becomes exactly equal to one.
cW Na€ive
n ¼

P
j2Dn

Pnðjjh; xn; CnÞpðDnjj; xnÞP
j2Dn

Pnðjjh; xn; CnÞpðDnjj; xnÞ
¼ 1: ð25Þ
This implies that there is no need to know the true Pn(j|h,xn,Cn), and therefore, the Naïve method is feasible. Also, there is
no need to calculate multiple integrals, as was the case for the approximations used in Eq. (23) and Eq. (24). Furthermore, the
Naïve method is independent from the sampling protocol, unlike the methods Population Shares and 1_0.

For the approximation shown in Eq. (25), the likelihood of the model becomes the same as that of the Naïve approach
considered by McConnel and Tseng (2000), Nerella and Bhat (2004), Chen et al. (2005), Azaiez, 2010 and Lemp and Kockel-
man (2012). Consequently, it can be affirmed that this research provides a formal theoretical support for the use of the Naïve
approach for estimation and sampling of alternatives in Logit Mixture models. The research shows that the Naïve approach
for sampling of alternatives in Logit Mixture models implicitly considers an approximation that achieves consistency,
asymptotic normality and relative efficiency.

In Section 5 we will use Monte Carlo simulation to study the performance of this method on finite samples and, in Sec-
tion 6, we will implement it with real data. It can be hypothesized that the Naïve method performs better than the Population
Shares and the 1_0 methods for three reasons. First, because the approximation implicit in the Naïve approach should be
more precise than those considered by the alternative methods. Second, the Naïve approach should have a weaker depen-
dence on eJ since it acts directly on Wn instead of on the sum of the exponentials embedded on it. Third, the Naïve approach
should have better computational properties since it does not require the calculation of additional integrals.
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5. Monte Carlo experimentation

5.1. Introduction

In this section we develop three Monte Carlo experiments, in which we apply the different versions of the proposed meth-
od for estimation with sampling of alternatives in Logit Mixture models. The purpose of these experiments is twofold: to
illustrate the application of the versions of the method, and to shed some light on their behavior in finite samples.

The first experiment is a random coefficients model, analog to those considered by McConnel and Tseng (2000), Nerella
and Bhat (2004), Azaiez, 2010 and Lemp and Kockelman (2012). The second experiment is an error component model, analog
to the one considered by Chen et al. (2005). The final experiment studies the impact of the noise of the data. In this case the
variance of the systematic utility is varied, while keeping fixed the variance of the error term. This experiment is analog to
one of the experiments developed by Lemp and Kockelman (2012).

All models were estimated using the Maximum Simulated Likelihood approach, considering 500 random draws. To avoid
chatter (McFadden and Train, 2000), the same 500 draws were used throughout the estimation. Estimation was performed
using the BFGS algorithm coded in the optim package of the open-source software R (R Development Core Team, 2008), on an
IBM eServer with a CPU Intel Xeon X5560 of 2.80 GHz and 12 GiB RAM.

5.2. Random coefficients experiment

The true or underlying model in this Monte Carlo experiment is a random coefficients Logit with N = 1000 observations
and J = 1000 alternatives for all observations (Cn = C). The systematic utility considers a single attribute that is distributed
Uniform(�2,1) for the first 500 alternatives and Uniform(�1,2) for the second half. This uneven distribution across alterna-
tives aims to build an experiment as simple as possible, while avoiding particular results that may arise from full symmetry.
The specification also considers a generic linear taste coefficient b, which is distributed Normal with mean lb = 1.5 and stan-
dard deviation rb = 0.8 across the 1000 observations. The random utility is completed by adding to the systematic utility an
error term that is distributed Extreme Value with location parameter 0 and scale 1. The choice yjn was defined by simulating
the choice probability shown in Eq. (2), evaluated for each observation.

The experiment is completed by considering a particular sampling protocol to build subsets of alternatives Dn from the
choice-set C, for each observation. This sampling protocol first draws the chosen alternative for each observation, and then
samples eJ � 1 alternatives randomly without replacement. We repeated the experiment sampling with eJ = 5, 30 and 50 alter-
natives from the 1000 alternatives available for each observation.

The three versions of the method for estimation while sampling alternatives in Logit Mixture models were applied to the
experiment. The first version of the method studied was Population Shares. In this case, Wn is approximated using Eq. (23).
The second method considered was 1_0. In this case, Wn is approximated using Eq. (24). The third method used is Naïve, in
which Wn is approximated by 1, as shown in Eq. (25).

The experiment was repeated 100 times using different seeds for the generation of random variables. These repetitions
were used to build four statistics to evaluate the efficacy and efficiency of each method in recovering the true values of the
model parameters: the mean lb = 1.5 and standard deviation rb = 0.8 of the random coefficient b.

Table 1 reports the summary statistics for the random coefficients model. The rows correspond to the results obtained
with each method (Population Shares, 1_0 and Naïve) and the columns report the results for various sample sizeseJ ¼ 5;30;50: The summary statistics reported are the following:

Bias: Calculated as the difference between the average estimator, across the 100 repetitions, and the true value of each
parameter. A smaller bias implies better finite-sample efficacy.

Mean Squared Error (MSE): Calculated as the sum of the sampling variance and the square of the bias. A smaller MSE im-
plies a more efficient method.

t-Test: Calculated as the ratio between the absolute value of the bias and the sampling standard deviation of the estima-
tors. This statistic is used to test the null hypothesis that the mean of the sampling distribution is equal to its respective true
value.
Table 1
Estimation results for the random coefficients experiment.

Method eJ 5 30 50

Stat. Bias MSE t-Test Count Bias MSE t-Test Count Bias MSE t-Test Count

Pop. Shares l̂b �0.09318 0.01624 1.072 56 �0.06934 0.008114 1.206 42 �0.04073 0.005499 0.6572 62
r̂b �0.08028 0.03379 0.4855 75 �0.02335 0.01010 0.2390 73 �0.02105 0.009764 0.2181 73

1_0 l̂b 0.1492 0.02966 1.736 28 0.09045 0.01299 1.305 43 0.04482 0.006670 0.6565 65
r̂b 1.690 2.888 9.446 0 0.2759 0.08595 2.783 4 0.1417 0.02924 1.479 35

Naïve l̂b �0.03998 0.01292 0.3757 73 �0.01762 0.004607 0.2688 70 �0.01379 0.004599 0.2077 70
r̂b �0.1175 0.03949 0.7332 71 �0.03597 0.01037 0.3775 74 �0.02749 0.009926 0.2871 73

100 repetitions. J = N = 1000. Population parameters l = 1.5; r = 0.8.
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Fig. 1. Sampling distribution, random coefficients experiment.
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Count: Calculated as the number of times the estimator of each repetition is within a 75% confidence interval of the true
value. The interval is constructed using the sampling variance from the repetitions. This statistic is often called the empirical
coverage and serves to assess the shape of the sampling distribution. The closer to 75 this statistic is, the closer its empirical
distribution is to its theoretical sampling distribution.

Additionally, Fig. 1 portrays the detailed sampling distribution obtained from the 100 repetitions. The plots on the left
report the results for the mean lb, and the plots on the right depict the results for the standard deviation rb. The two upper
plots describe the results obtained with the Population Shares method. The plots in the middle illustrate the results of the
method 1_0, and the lower plots depict the results obtained with the Naïve method. The abscissa of each plot corresponds
to the sample size eJ and the ordinate corresponds to the respective estimator. For each eJ , the black large dot corresponds to
the sample average of the respective estimator, and the grey smaller dots correspond to each one of the 100 repetitions. Fi-
nally, a horizontal line is drawn on each plot to remark the true value of the respective parameter.

In addition to making a relative comparison of the versions of the method, based on Fig. 1 and the statistics reported in
Table 1, we will consider specific thresholds to asses the absolute suitability of each estimator. The t-test is required to be
below t5%=2;100�1 ¼ 1:984. The Bias and MSE are required to be below 0.075 for lb and 0.04 for rb, which is equivalent to con-
sider the Bias and the MSE to be below 5%, relative to the respective true value of each estimator. Finally, for the empirical
coverage, the acceptable discordance with the nominal value will be defined as 10%, which corresponds to Counts above 67.

Table 1 and Fig. 1 show that results obtained using the method 1_0 are poor, largely dominated by Population Shares and
Naïve, which are very similar among them. When only five alternatives are sampled for the 1_0 method, the t-statistic of rb is



Table 2
Estimation time [minutes] for the random coefficients experiment.

eJ 5 30 50

Pop. Shares 3.183 37.93 84.45
(0.6540) (12.17) (16.90)

1_0 3.085 42.66 97.34
(0.6318) (11.87) (23.90)

Naïve 0.7682 2.967 4.962
(0.1615) (0.5417) (0.8914)

Average minutes for 100 repetitions. Standard error in parenthesis. 100 repetitions. J = N = 1000.
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far greater than t5%=2;100�1 ¼ 1:984, and the t-statistic of lb is rejected with 90% confidence. Equivalently, the bias, MSE and
Count are poor, particularly for rb. Notably, not even one realization of rb is within a 75% confidence interval when eJ ¼ 5.
Statistics for the 1_0 method get better as eJ grows, but all are still clearly inferior to those of the Population Shares and Naïve
methods. These results suggest that the impact of using the observed choice as a rough approximation of the choice prob-
abilities to calculate the expansion factors in Eq. (22) was not suitable in this context.

Results for the Population Shares method are significantly better. First, the t-test is always below t5%=2;100�1 ¼ 1:984. The
MSE is small. The threshold of 5% relative MSE is satisfied for all values of eJ . The Bias is also well-behaved. The 5% threshold is
satisfied when eJ = 30 for lb and rb. The only potential limitation is with the empirical coverage, specially for the estimator of
lb. When eJ = 5,30, only about 50 out of 100 realizations are within a 75% confidence interval. The 10% threshold is satisfied
for rb when eJ = 5, but it is not satisfied for lb, even when eJ = 50. These results suggest that using the Population Shares as a
rough approximation of the choice probabilities to calculate the expansion factors in Eq. (23) yields somewhat acceptable
results. However, relatively large sample sizes may be required for developing proper hypothesis testing with finite samples.

Finally, Table 1 and Fig. 1 show that the Naïve method behaves slightly better than the Population Shares method. In this
case, all the criteria are fulfilled when eJ ¼ 30. When eJ ¼ 5 the results fail only the criterion for the Bias for rb. These results
suggest that the approximation Ln(j|b, xn, Cn) � Pn(j|h, xn, Cn) used to build the Naïve estimator shown in Eq. (25), yields good
results, even with small sample sizes. This conclusion is consistent with previous results reported by McConnel and Tseng
(2000), Nerella and Bhat (2004), Azaiez, 2010 and Lemp and Kockelman (2012).

In addition to evaluating efficacy and efficiency, it is also critical to assess the practicality of the different versions of the
methods. The Population Shares and 1_0 versions require ad hoc implementations, while the Naïve method can be imple-
mented directly in canned software like BIOGEME (Bierlaire, 2003) or ALOGIT (Daly, 1992). The Population Shares and 1_0
versions also require the evaluation of more integrals to calculate the denominators in Eqs. (23) and (24). This larger com-
plexity may impact efficacy, efficiency, and estimation time.

Table 2 reports the average estimation time obtained from the application of the different methods for the 100 repeti-
tions. Results show that estimation time for the Naïve method is smaller than the other methods for all values of eJ investi-
gated. When eJ ¼ 50, the estimation time of the Naïve method is approximately 5 min, while it approaches or surpasses an
hour and a half in the other methods. Results in Table 2 also show that the estimation time grows with eJ , and that it does
it at different rates, for each method. For the Naïve method, each additional eJ translates to approximately 0.1 additional min-
utes in estimation time for all the ranges of eJ studied. For the other methods, each additional eJ translates to approximately
1.4 min in estimation time, when eJ is between 5 and 30, and the rate grows to about 2.3 min when eJ is between 30 and 50.
The differences in estimation time are explained by the need to calculate integrals to evaluate the terms cW n for the Popu-
lation Shares and the 1_0 methods, which are shown on Eq. (23) and Eq. (24), respectively.

These results suggest that both the Naïve and Population Shares methods yield acceptable results for a random coefficients
model, but the former seems to be more robust. Furthermore, these results show that the Naïve approach is several times
faster and easier to apply than the other methods.
5.3. Error components experiment

The true or underlying model in this Monte Carlo experiment is an error components Logit with J = 1000 alternatives and
N = 1000 observations. As in the previous experiment, the systematic utility considers a single attribute that is distributed
Uniform(�2,1) for the first 500 alternatives and Uniform(�1,2) for the second half. In this case, the specification considers
a linear taste coefficient b = 1.5 that is fixed across observations. There is also an error component, shared by the alternatives
between 501 and 1000, which is distributed Normal with mean zero and standard deviation r = 0.8. This specification of the
error components model allows for correlation among the alternatives between 501 and 1000. In this sense, it is similar, but
not equal, to consider a Nested Logit model in which the second half of the alternatives belong to a nest (Walker et al., 2007).

Table 3 summarizes the statistics for the different methods. As in the random coefficients experiment, in this case the 1_0
method is significantly poor. Although the fit improves with eJ , the criteria for the Bias, MSE, t-test and Count are far from
being fulfilled, even for eJ = 50, and are particularly poor for r .



Table 3
Estimation results for the error components experiment.

Method eJ 5 30 50

Stat. Bias MSE t-Test Count Bias MSE t-Test Count Bias MSE t-Test Count

Pop. Shares b̂ �0.03754 0.005360 0.5973 67 �0.01536 0.003794 0.2575 70 �0.006116 0.003338 0.1065 71

r̂ �0.4587 0.3266 1.345 42 �0.02442 0.1568 0.06180 73 �0.004522 0.1244 0.01282 80

1_0 b̂ 0.4013 0.1699 4.274 0 0.08332 0.01089 1.327 46 0.04662 0.005825 0.7714 62

r̂ 3.41 11.67 13.00 0 0.7568 0.6305 3.148 2 0.4260 0.2498 1.630 31

Naïve b̂ �0.007112 0.005242 0.09871 76 �0.008314 0.003655 0.1388 74 �0.004756 0.003469 0.08101 73

r̂ �0.2210 0.1846 0.5997 71 �0.1020 0.1066 0.3288 81 �0.07183 0.1021 0.2307 78

100 repetitions. J = N = 1000. Population parameters b = 1.5; r = 0.8.
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The Population Shares method behaves much better in this experiment. From eJ = 30 the relative Bias is below 5%, t-test is
below t5%=2;100�1 ¼ 1:984 and relative Count is below 10%. The only criteria that is not met is that of the relative MSE, which is
still 16% for eJ = 50. However, this limitation in efficiency is not severe and of second importance, compared to the Bias.

The Naïve method also behaves acceptably well in this case, but it is slightly inferior to the Population Shares method. The
main limitation is that the relative Bias, the most relevant measure, is still 9% for r when eJ = 50. These results cannot be cata-
logued as severe, but suggest that there is a qualitative difference with the results obtained with the Population Shares method.

The finding that, in this case, the standard deviations seem to be harder to estimate with the Naïve method, is concordant,
to some extent, with the results reported by Chen et al. (2005). However, in our case we find that the problem is much less
severe. This discrepancy in the results might be explained by the fact that Chen et al. (2005) considered only a single real-
ization of the model, instead of repeating the experiment various times. Consequently, it could be the case that the particular
realization considered by Chen et al. (2005) may have been especially poor by chance.

These results suggest that although the Naïve method yields acceptable results for an error components model, the Pop-
ulation Shares method is more robust in this context, at least regarding the Bias and the empirical coverage of the mean.
5.4. Noise variation

The final experiment assesses the impact of the variation of the relative noise of the model. This experiment is con-
structed by varying the Random Coefficients experiment described in Section 5.2 for eJ = 5. The only component that is chan-
ged in this case is the variance of the single attribute x of the systematic utility. This affects the relative noise of the model
because the scale of the Extreme Value error is maintained for all cases.

The first case corresponds to a relatively Large Noise. This is achieved by reducing the variance of the attribute, compared
to the reference case described in Section 5.2. The attribute in this case is generated Uniform(�1.5,0.5) for the first 500 alter-
natives and Uniform(�0.5,1.5) for the second half. Consequently, the variance of the attribute for all alternatives and obser-
vations is in this case 0.08333.

The second case is Middle Noise, which corresponds to the model described in Section 5.2. In this case, the attribute is
generated Uniform(�2,1) for the first 500 alternatives and Uniform(�1,2) for the second half. Consequently, the variance
of the attribute for all alternatives and observations in this case is 0.7500.

The third case corresponds to Small Noise. In this case, the attribute is generated Uniform(�3,2) for the first 500 alterna-
tives and Uniform(�2,5) for the second half. Consequently, the variance of the attribute for all alternatives and observations
in this case is 2.083.

The results are reported in Table 4. As with the previous experiment, method 1_0 is inferior and the Population Shares and
Naïve methods are similarly well behaved. The impact of the variation of the noise, both for Population Shares and Naïve
Table 4
Estimation results for the noise variation eJ = 5.

Method Stat. Large noise Middle noise Small noise

Bias MSE t-Test Count Bias MSE t-Test Count Bias MSE t-Test Count

Pop. Shares l̂b �0.07707 0.013585 0.8814 58 �0.09318 0.016238 1.0719 56
�0.093290 0.016386 1.0643 53

r̂b �0.0931 0.0550 0.433 75 �0.08028 0.0338 0.48553 75 �0.053851 0.0148 0.49282 68

1_0 l̂b 0.2513 0.0766 2.169 15 0.14922 0.02966 1.736 28 0.06330 0.010431 0.7898 59
r̂b 2.21 4.91 11.59 0 1.6899 2.8877 9.446 0 1.1520 1.3444 8.734 0

Naïve l̂b �0.01265 0.012191 0.1153 75 �0.03998 0.012923 0.3757 73 �0.050481 0.012550 0.5048 65
r̂b �0.1240 0.0655 0.554 79 �0.11750 0.0395 0.73324 71 �0.088492 0.0196 0.81627 56

100 repetitions. J = N = 1000. Population parameters l ¼ 1:5; r ¼ 0:8; eJ ¼ 5.
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methods, is equally small. In general, as the relative noise decreases, the Bias of the mean lb slightly increases and the Bias of
the standard deviation rb slightly decreases. As the relative noise decreases, MSE of rb slightly decreases, and it generally
increases for lb. Finally, the shape of the sampling distribution becomes slightly worse as the noise decreases. This can
be noted in that, as the noise decreases, the Count differs more from its nominal value 75, and the t-tests become larger.

These results suggest that the variation of the noise had little or no impact in the relative efficiency or efficacy among the
different versions of the methods. This might be explained by that, differently from Lemp and Kockelman (2012), the meth-
ods that we study do not differ in their use of the attributes of the model.
6. Application to real data

The section applies the method to real data. For this application, we revisit the Lisbon database of residential location
used by Guevara and Ben-Akiva (2013). As with the Monte Carlo experiment, the purpose of this application to real data
is twofold: to illustrate the implementation of the proposed method and to shed light on its finite-sample properties.

The database consists of 63 observations of chosen dwellings among a choice-set of 11,501 residences. The dwellings be-
long to the municipalities of Lisbon, Odivelas and Amadora, all within the Lisbon Metropolitan Area in Portugal. Details on
the construction of this database can be found in Guevara, 2010.

Guevara and Ben-Akiva (2013) used this database to estimate a Nested Logit model considering a single nest for the 3483
dwellings that belonged to the municipalities of Odivelas and Amadora. In the present article we develop an analog model in
which we capture the correlation among the dwellings from those two municipalities by considering an error component
term that is shared only by those alternatives.

The systematic utility of the model depends linearly on four attributes: (1) dwelling price, which interacts with three in-
come levels; (2) the distance to head-of-the-household’s workplace; (3) the logarithm of the dwelling area; and (4) the log-
arithm of dwelling age +1. Because of the omission of quality attributes that are likely to be correlated with dwelling’s price,
we correct for endogeneity using the control-function method. As in Guevara and Ben-Akiva (2012, 2013), we use, as instru-
mental variables for price, the average price of similar dwellings beyond 500 m and within 5 km.

We first estimate the Full Model, considering all 11,501 alternatives. Then we subsequently sample a different number of
alternatives. The Full Model serves as a benchmark to compare the results obtained when sampling alternatives. The proto-
col used to sample alternatives was to draw first the chosen alternative and then to sample randomly up to complete ~JOA

from Odivelas–Amadora, and the same eJL from Lisbon. We considered the following set of sample sizes for eJOA ¼ eJL: 5, 30,
50 and 100.

Table 5 reports the estimation results. We only report the results obtained with the Population Shares and the Naïve meth-
ods. The 1_0 results are not reported for the sake of space and because, just as in the Monte Carlo experiment, the 1_0 meth-
od showed the poorest results in this case study.
Table 5
Lisbon’s error component model while sampling alternatives.

Variables Full
model

eJOA ¼ eJL ¼ 5 eJOA ¼ eJL ¼ 30 eJOA ¼ eJL ¼ 50 eJOA ¼ eJL ¼ 100

Pop. Shares Naïve Pop.
Shares

Naïve Pop. Shares Naïve Pop. Shares Naïve

Dwelling price (in
100,000 €)

�2.935
(1.246)

�2.655
(0.7256)

�2.655
(0.7256)

�3.082
(1.278)

�3.049
(1.286)

�3.062
(1.508)

�3.034
(1.521)

�2.962
(1.307)

�2.952
(1.297)

Dwelling. price ⁄
[Inc. > 2,000 €/M]

0.8877
(0.7363)

1.036
(0.5705)

1.036 (0.5705) 0.8796
(0.7606)

0.8698
(0.7611)

0.8719
(0.7774)

0.8655
(0.7811)

0.8572
(0.7928)

0.8541
(0.7894)

Dwelling price ⁄
[Inc. > 5,000 €/M]

0.8138
(0.3049)

0.7483
(0.3387)

0.7483
(0.3387)

0.7737
(0.3723)

0.7737
(0.3691)

0.9017
(0.3871)

0.8992
(0.3841)

0.8426
(0.2887)

0.8421
(0.2880)

Distance to
workplace (km)

�0.2715
(0.1008)

�0.2263
(0.05274)

�0.2263
(0.05274)

�0.2927
(0.1015)

�0.2897
(0.1064)

�0.2785
(0.09912)

�0.2765
(0.1046)

�0.2698
(0.09271)

�0.2690
(0.09316)

Log (dwelling area
[m2])

2.380
(1.263)

1.652
(0.7329)

1.652 (0.7329) 2.409
(1.278)

2.369
(1.291)

2.592
(1.549)

2.555
(1.566)

2.419
(1.307)

2.408
(1.298)

Log [dwell. age
(years)+1]

�0.4740
(0.1512)

�0.5302
(0.1303)

�0.5302
(0.1303)

�0.5236
(0.1771)

�0.5189
(0.1790)

�0.4880
(0.1915)

�0.4845
(0.1931)

�0.4905
(0.1666)

�0.4893
(0.1657)

d̂ control-funct. Aux.
variable

1.125
(0.6511)

0.8708
(0.3528)

0.8708
(0.3528)

1.251
(0.6369)

1.233
(0.6414)

1.242
(0.7833)

1.226
(0.7899)

1.125
(0.6421)

1.120
(0.6381)

rO-A Odiv.–Amadora 0.8629
(2.547)

1.956E�06
(1.882E�04)

�1.276E�07
(1.337E�05)

1.515
(2.377)

1.401
(2.427)

1.305
(2.978)

1.212
(3.069)

0.9355
(2.230)

0.9028
(2.234)

Log-likelihood �560.01 �110.46 �110.46 �218.32 �218.35 �250.20 �250.23 �294.25 �294.26
Est. time [hrs] 11.76 0.1156 0.01151 1.682 0.04099 4.850 0.08185 17.95 0.1655
Sample size N 63 63 63 63 63

Choice-set size eJ 11,501 10 60 100 200

Error component for Amadora and Odivelas. Include sampling correction and correction for endogeneity with control-function method d̂. Sample eJOA alts.
from Odivelas–Amadora and eJL from Lisbon municipality. €/M: Euros per month. Robust standard errors in parenthesis. Inc.: monthly income.
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The estimators of each parameter for the Full Model are shown in the first column of Table 5, together with the respective
robust standard error in parenthesis. It can be noted that all the coefficients have the expected sign. Dwelling price is neg-
ative, but it becomes less negative as income grows. Distance to the workplace is negative, dwelling’s area is positive and
dwelling’s age is negative. Also, the coefficient of the auxiliary variable d̂ of the control function method is positive and sig-
nificant. This implies that the model did suffered endogeneity, and that the omitted quality is positively correlated with price
(Guevara, 2010). Finally, the estimator of rOA is 0.8629. This parameter accounts for the correlation among the alternatives in
Odivelas and Amadora. This term has low significance, arguably because of the small number of observations available.

We now compare the estimators of the Full Model, with those obtained when sampling alternatives. We first consider the
deviation of each estimator relative to the respective estimator obtained for the Full Model. When eJOA ¼ eJL = 5, the relative
deviation of the terms other than rOA, goes from 10% to 31% for both the Naïve and Population Shares methods, and it jumps
to 100% for rOA. Results improve as eJOA ¼ eJL grow, but only when eJOA ¼ eJL = 100, the estimators reach a more than acceptable
level, compared with the estimators obtained with the Full Model. In that case the relative deviation of the terms other than
rOA, goes from 0% to 4% both for the Naïve and the Population Shares method. Also, the relative deviation for rOA is 5% for the
Naïve method, and 8% for the Population Shares method.

We conclude that, in this case study, the Naïve method is slightly better than the Population Shares method for all sample
sizes, and that when eJOA ¼ eJL = 100, the estimators obtained are reasonably close to those of the Full Model.

The conclusion is qualitatively the same when analyzing the deviation between the robust standard error obtained while
sampling alternatives, and the robust standard error obtained with the Full Model. The Naïve method behaves slightly better
than the Population Shares method for all sample sizes considered and, when eJOA ¼ eJL = 100, the estimators of the standard
errors are reasonably close to those of the Full Model, although this final statement means accepting deviations of up to 12%.

There are two points to note regarding the log-Likelihood achieved by each model. First, the log-likelihood is not compa-
rable between models estimated with different eJ . Second, the differences in log-likelihood observed between the Population
Shares and the Naïve methods are negligible, and possibly purely attributable to sampling or estimation error.

The final statistic for comparison is estimation time. Table 5 shows that the estimation time of the Full Model of this case
study was about 12 h. When eJOA ¼ eJL = 5, both methods take significantly less time. The Naïve method takes less than one
minute and the Population Shares method takes about 7 min. Estimation time for the Naïve method grows almost linearly
with eJ at a rate of almost 3 s for each additional eJ . Consequently, even for eJ = 100, estimation time is under 10 min, and sig-
nificantly shorter than that of the Full Model. The growth rate with eJ of estimation time for the Population Shares method is
more than linear. Indeed, the estimation time for eJ = 100 is about 18 h, almost 6 h more than the estimation time of the Full
Model. As a result, the potential benefits of sampling of alternatives using the Population Shares method vanished, possibly
because of the need for calculating additional integrals in the evaluation of Eq. (23).
7. Conclusion

This research provides a formal demonstration of the consistency, asymptotic normality and relative efficiency of a fea-
sible estimator for sampling of alternatives in Logit Mixture models. This methodology is an extension of McFadden’s (1978)
result for Logit, and it builds on the methodology proposed by Guevara and Ben-Akiva (2013) for MEV models. This extension
for Logit Mixture models is relevant because Logit Mixture is fully flexible, since it can approximate any random utility mod-
el (McFadden and Train, 2000).

We show that a feasible version of the proposed method is equivalent to consider a Naïve form of the conditional likeli-
hood, in which the kernel of the Logit Mixture model is replaced by McFadden’s (1978) sampling correction for Logit. It can
be stated that the main contribution of this research is in the provision of theoretical support for previous empirical works
suggesting the suitability of the Naïve approach. We show that the Naïve approach yields consistent estimators, and describe
how to do proper hypothesis testing with it.

This investigation suggests that the Naïve approach should be preferred for estimation while sampling alternatives in Lo-
git Mixture model because: (1) it yields consistent estimators; (2) it achieves relative asymptotic efficiency; (3) it can be ap-
plied in canned software; (4) proper hypothesis testing could be performed using robust standard errors, which are already
available in canned software; (5) it is independent of the sampling protocol considered and does not require constructing an
estimator for the choice probabilities; and (6) it is much faster than other feasible methods, with empirical evidence suggest-
ing that its estimation time is linear in the choice-set sample size.

Three possible extensions can be identified for this research. The first line is to perform an analytical study of the finite-
sample properties of the estimators investigated in this paper. This would help in identifying the conditions under which
each method achieves better efficacy, efficiency, and estimation time.

A second line of research is in the practical and theoretical study of the sample sizes required for proper estimation. Pre-
liminary evidence suggests that it is not a matter of the ratio eJ=J as suggested by Nerella and Bhat (2004), but it possibly
depends on the variance of the data and the error one is willing to accept for the estimators. Two practical strategies might
be followed to this respect. The first would be to increase eJ until the estimators have changes that are small enough, similar
to the procedure suggested by Chiou and Walker (2007) for determining the proper number of draws for estimation of the
Logit Mixture with maximum simulated likelihood. The second approach would be to study the error obtained by sampling
multiple times for a given eJ .
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A final line of research would be to study the performance of the proposed methods when the model is estimated using
different procedures or under other contexts. Estimation methods that are potentially attractive to be analyzed are, for
example, the MAMCL (Bhat, 2011), EM (Train, 2009), and Hierarchical Bayes (Train, 2009). Other contexts to be considered
are, for example, panel data (Cherchi and Guevara, 2012a), or models with multiple random coefficients (Cherchi and Guev-
ara, 2012b).
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