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SUMMARY

When the number of alternatives in a choice-set is huge, sampling is unavoidable. In 1978 Daniel
McFadden showed that consistent estimation under sampling of alternatives is possible if the true
model is Logit; that is, if the errors of the random utilities are independent and identically
distributed {id) Extreme Value. However, th& assumption might be easily broken in models
with large choice-sets. For example, in residential location, dwelling-units are expected to be
correlated depending on proximity. This paper extends McFadden's result to MEV models, a
class of closed-form discrete choice models that allows for different degrees of correlation
between alternatives. A methodology to achieve consistency, asymptotic normality and relative
efficiency is proposed and deployed for all MEV models and then illustrated using Monte Carlo
experimentation and real data for the Nested Logit model, an important member of the MEV
class. Experiments show that the proposed methodology is practical, that it is substantially better
than an uncorrected model, and that it yields acceptable results, even for small sample sizes. The
paper finishes with a synthesis and an analysis of the impact, limitations and potential extensions
of this research.
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1 Introduction

The computational burden and the impossibility of identifying or measuring the attributes
of a huge number of alternatives in spatial choice models, makes it necessary to only
consider a subset of the choice-set in practical applications. McFadden (1978)
demonstrated that if the model underlying the choice process is Logit, the problem of
sampling of alternatives and estimation can be addressed by adding a corrective constant
to the systematic utility of each alternative.

The Logit model requires the assumption that the error terms of the random utilities
are uncorrelated among alternatives. This assumption may be invalid for some spatial
choice models. In residential location, the error terms may be correlated according to
proximity or nested according to different decision levels. Equivalently, in route choice
modeling, routes that share sets of common links may be perceived as more similar than
other routes that are complete substitutes, breaking from the Logit assumption.

Ignoring a non-Logit structure in spatial choice modeling may significantly impact
the quality of such models. For example, if the underlying model is a Nested Logit with
nests defined by geographical areas, a location subsidy will trigger more intra-area than
inter-area household relocation. This effect would be impossible to capture with a Logit
model, resulting in misleading guidance for urban policy analysis. This suggests
extending McFadden’s result on sampling of alternatives in Logit models to a more
general class of models that allows correlation among the error terms of the utilities.

Building on an idea originated by Ben-Akiv§2009), in this paper, we extend
McFadden'’s results to the Multivariate Extreme Value (MEV) models, a class of closed-
form discrete choice models that allows for certain degrees of correlation among
alternatives. We also use Monte Carlo experimentation and real data to show the impact
of the application of this novel method in the estimation of Nested Logit models while
sampling alternatives.

The paper is structured as follows. The next section describes McFadden’s results on
sampling of alternatives in Logit models. Next, the proposed extension to MEV models is
presented. The following sections describe the formulation of the proposed methodology
for the Nested and the Cross-Nested Logit models, the main members of the MEV
family. Then, the effects of the proposed methodology are analyzed using a Monte Carlo
experiment and real data on residential location choice from Lisbon, Portugal. The final
section summarizes the main conclusions, implications, and potential extensions of this
research.

2 Estimation and Sampling of Alternatives in Logit Models

Consider that the random utility;,, which a household retrieves from alternativie can
be written as the sum of a systematic paend a random error termas shown in Eg.
(1)

Uin =Vin +£in :V(Xin’ ﬁ*)+£in’ (1)
where the systematic utility depends on variaklasd parameteys'.

! Unpublished Manuscript.
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Then, if¢ is independent and identically distributed Extreme Value (@), the
probability thatn will choose alternative will correspond to the Logit model shown in

Eq. (2)

R()= Ze’zf,% , (2)

whereGC, is the choice-set af, elements from which househaldchooses an alternative.
The scale: in Eqg. (2) is not identifiable and usually normalized to equal 1.

Consider that, of the true choice-§gt only a subsed, with 3n elements is sampled

by the researcher. For estimation purpofgsmust include (and therefore depends on)
the chosen alternativiebecauseptherwise, the quasi-log-likelihood of the model may
become unbounded, making the estimation of the model parameters impossible.

Term 7{i,D,) the joint probability that househohi would chose alternativeand

that the researcher would construct the Bgt Using the Bayes theorem, this joint
probability can be rewritten as shown in Eq. (3

)
7{.D,)= D, [i)p,()= (i1 D,)A(D,), (3)
where n(i | Dn) is the conditional probability of choosing alternativgiven that the set
D, was constructed, anﬂI(Dn |i) is the conditional probability of constructing the Bgt
given that alternativewas chosen.

Since the events of choosing each one of the alternativ&sare mutually exclusive
and totally exhaustive, we can use the Total Probability theorem (see, e.g., Bertsekas and
Tsitsiklis, 2002) to write the probabilitsr(D, ) of constructing the s@, as shown in Eq.

4)
mD,)=> D, 1iP.(j)= > 7D, 1i)R.(i). 4)

joc, j0D,
where the second equality holds becauébn | j): o0 on,.
Substituting Eq. (4) and the Logit choice probabilRyi) shown in Eq. (2) into Eq.
(3), Eq. (5) is obtained by canceling and re-arranging terms.
Vi, +In 7D,
i 1D,)= Zee—"(,,(% ©)
cD,
The expressionn 77(Dn | j) is termed the sampling correction.

Eq. (5) indicates that the conditional probability of choosing alternatgreen that a
particular choice-seb,, was constructed, depends only on the alternativé3,.inThis
results from the cancellation of the denominators when dividing the probabilities of two
alternatives in the Logit model, which is known as the Independence of Irrelevant
Alternatives (llA) property. Note that although IIA is a convenient mathematical
property, it results from the assumption that the error structiick & statement that may
be unrealistic in spatial choice models.

Acta XV Chileno de Ingenieria de Transporte, 2011



McFadden (1978) demonstrated thardD,, | j)>0 and known for al| in D,, and if
the true model is Logit with choice-98¢, it is possible to obtain consistent estimators of
the model parameter8* by maximizing the following quasi-log-likelihood function:

N gV lin B)+ In 7Dyl x,)
QLLogit,D = ZI (6)

n=1

: ZeV(xjn B)rnm(Dylix)
jDDn
McFadden’s procedure falls into the type of estimators identified by White (1982),
which achieve the consistent estimation of the model parameters in spite of being
misspecified.
Eq. (6) can be simplified if the sampling correctib'nn(Dn |i) is the same for all

alternatives. In that case, the sampling correction will cancel out in Eg. (6) and can be
ignored. The effects of using other sampling protocols are studied by Manski and
McFadden (1981), Ben-Akiva and Lerman (1985), Watanatada and Ben-Akiva (1979)
and Frejingeet al. (2009).

Diverse applications of McFadden’s results on sampling of alternatives for Logit
models can be found in the literature. Some examples are Parsons and Kealy (1992) and
Sermons and Koppelman (2001). In turn, the extension of McFadden'’s results to non-
Logit models is a problem for which few little progress have been made in the last 30
years. Some advances have been done for choice-based samples; cases where the full
choice-set is available to the researcher, but the observations are instead sampled
depending on the choices. First, Manski and Lerman (1977) proposed a consistent but
inefficient estimator for non-Logit models. This estimator was also used by Cosslett
(1981) and by Imbens and Lancaster (1994). Later, Gagetoal. (2005) proposed an
efficient estimator for a particular case of the Nested Logit model. Lastly, Bieztaate
(2008) proposed an alternative estimator that is applicable to MEV models with choice
based samples and does not require knowledge of the sampling protocol.

Additionally, some analyses have been done regarding the impact of sampling of
alternatives in Logit Mixture models. For example, McConnel and Tseng (2000), and
Nerella and Bhat (2004), used Monte Carlo experimentation to study the problem of
sampling of alternatives in random coefficients Logit models and found that sampling
causes only small changes to parameter estimates. In turneCdief2005) used Monte
Carlo experimentation to show that, for Logit Mixture models that capture correlation
among alternatives, the effects of sampling might be severe. Finally, Domanski (2009),
citing an unpublished paper attributed to Haefen and Jacobsen, claims that the use of the
expectation-maximization algorithm (see, e.g., Train, 2009) might result in the consistent
estimation of model parameters while sampling of alternatives in random coefficients
Logit Mixture model.

Regarding the problem of sampling of alternatives for the Nested Logit, several
authors have directly applied McFadden’s results for Logit without any modification.
Examples of these type of applications include Berkovec and Rust (1985),eTain
(1987), Hansen (1987), and Rivera and Tiglao (2005). As it will be shown later, this
approach may significantly impact the estimators of the model parameters. Finally, to the
best of my knowledge, the only attempt to deal with the problem of sampling of
alternatives in the Nested Logit model corresponds to the work of Lee and Wadell
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(2010). These authors use a method based on an idea originally suggested by Ben-Akiva
(2009), which we further develop in the next section.

3 A Novel Method for MEV Models

In this section, we present a novel methodology to address the problem of sampling of
dternatives and estimation for Multivariate Extreme Value (MEV) models, based on an
idea originated by Ben-Akiva (2009).

The genesis of MEV models goes back to 1973, when Ben-Akiva proposed the
Nested Logit model. Afterwards, McFadden (1978) showed that the Logit, the Nested
Logit and other models belonged to a more general class of closed-form choice models
that can handle diverse correlation structures among alternatives in the choice-set.
McFadden originally denominated this class of models as Generalized Extreme Value
(GEV) models. Since the error terms for this class of models follow a MEV distribution,
the models themselves are termed here as MEV.

The joint distribution of the error terms of the utilities in MEV models has the

following cumulative density function
Fley,....6,)=€ dean..eny), 7)

whereG is a generating function that is specific to each member of the MEV family, and
y is a set of distribution parameters@fcomplies with certain requirements (McFadden,
1978) the choice model implied by Eq. (7) will be consistent with the random utility
maximization theory. Later, Ben-Akiva and Lerman (1985) show that the MEV choice
probability can be written in a Logit form as shown in Eq. (8)

o V(% .B)+In G[< e >|Dcn;y)

P(i)= (8)

Z:ev(x,.n B)+inG, (< V'">|Dcn;yj ’

joc,

where q(<ev'n>mn- ) ode,...e"y)_ -G

ae N n

Given the Logit form of the MEV model, it might look as if the problem of sampling
of alternatives can be easily extended to MEV by following the same process of analysis
deployed before for Logit, as shown in Eq. (3)-(5). That procedure results in the
following expression for the conditional probability of choosing alternafiggven that
setDp was constructed:

v(x, ;;)+|nq(< i) J+Inn(Dn|i)
i |D,)=—

)nG () iy Jema(oy)
Ze J [ I0C
jOD,

Then, the same demonstration developed by McFadden (1978) for Logit, can be
claimed to show that the maximization of the following quasi-log-likelihood function
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N N V(% .B8)+In G(< i) ?V)+Inn(Dn|i)
QLMEVDC:ZInn(ian):Zln €

o n=1 n=1 V( Xin » 5)+|nG(< V'n>

De

joBy,

9
;y)+|nn(Dn|J) ©

Ioc,

leads to consistent estimators of the model parameters.

However, it can be immediately noted that Eq. (9) is not practical. Even though the
denominator of the choice probability depends onlyDanthe argument of the term
InG,, still depends on the full choice-g&t. Ben-Akiva (2009) suggests that this problem
might be solved 5, is replaced by an estimator that depends only on the dbpset

In this paper, we formalize the idea proposed by Ben-Akiva (2009), analyze the
conditions required for its success, study the asymptotic properties of the estimators
resulting from it, determine the correct expansion factors required in some relevant
examples, and study the properties of the estimators using Monte Carlo experimentation
and real data.

The results on consistency, asymptotic normality and efficiency can be summarized
in the following theorem:

Theorem: Given N observations, a choice-s€t, of cardinalityJ,, and a subsdD, of
cardinality 3 If
a)zp . ]j)>0 §OD, andr(D,|j)=0 0jOD,,

& J/)

Vln
b) the choice model is MEV an@,, = =9 C{e ae -

o) G, = f(B(C,)) wheref is continuous and twice-differentiable,
d) B,(D,) is a consistent (ird,) and unbiased estimator &(C,), and

e) Var(ém): K./J_ with K, scalar;
then, the maximization of the quasi-log-likelihood function
N - ()gn B)+n f( )-flnn(D )
Qluev.o =2 N7{i1D,)= Zln 5> o oo oy (10)

joD,
yields, under general regularity conditions, consistent estimatorl) (of the model

parameterg*, as J increases withN at any rate. IfJ increases faster thaiN , the

estimators of the model parameters will be consistent, asymptotically normal, and as
efficient as the estimators obtained from the maximization of a quasi-log-likelihood
shown in Eq. (9). Finally, i, is finite and the protocol is sampling without replacement,

J, needs to increase only up th =J, in order to achieve consistency and relative
efficiency.

Proof. Given thatl.%I IS a consistent estimator d_, as 3 increases, the Slutsky

in?

theorem guarantees thlaltf(Bi( )) will also be a consistent estimatorlofG,,, because

in?
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the log andf are continuous. Equivalently, sinogi | D,) is continuous ininG,,, the

Slutsky theorem guarantees thafi | D,) will be a consistent estimator offi |D,).

Finally, McFadden’s consistency results for Logit, shown in Eq. (6), guarantees that the
maximization of the quasi-log-likelihood shown in Eq. (10) will result in the consistent
estimation of the model parameterd\asicreases.

Note that the claim of McFadden’s consistency result is establishEdraseases,

but the consistency oB,,, In f(B,(D,)) and /(i | D,) is established a, increases. To

in?

rely legitimately on the Slutsky theorem, it is indispensable to determine a concordance
betweenJ, andN. This concordance can be established by analyzing the asymptotic

properties of the estimators.

The asymptotic distribution of the estimators of the model parameters that result from
the maximization of the quasi-log-likelihood shown in Eq (10) can be derived using the
two-stage approach employed by Train (2009, pp. 247-257) to analyze the asymptotic
properties of simulation-based estimators. In a first stage, we will analyze the asymptotic
distribution of the sample average of the score, which is defined as the gradient of the
quasi-log-likelihood shown in Eqg. (10). In a second stage we will use those results to
derive the asymptotic distribution of the estimators of the model parameters.

Consider that the choice-safsandD, of cardinalities) and J respectively, do not
vary across observations, and that there is a single te@) that needs to be
approximated for each observatian Then, instead oBi,, the term considered in this
case should bB,,. These assumptions are not essential, and can be easily generalized, but
help in substantially to reduce notation burden. With the same purpose, we will refer to
the whole set of model paramet@grandy, just ass.

Under this setting, the sample average of the score evaluated using the eﬁmator
will correspond to:

N 18, 1&0Inr, _1¢ 0

= = n="N_"1In .
g(ﬁ) N ; gn(ﬁ) N ; aﬁ N ; aﬁ zev(xin,ﬂ)ﬂn f(én)+lni'r,,(D|j,ﬂ)
jOD

To study the asymptotic distribution @) in the vicinity of the true valueg*,

consider the following re-arrangement of terms

46)= d4p7)+[ Bdp))- dpv)+[98r)- E(G(8))-

The first term A = g(8*) is the statistic that is being approximatedd{ys*), where
@0t BIING, (C+inz, (DF.4)

V0t )i 1 (8, }rinz, 04.5)

N

_1doinm(B) 19
g(ﬂ)_ N ; Y] - N ; algln zeV(xjn,ﬁ)+InGn(C)+Inﬂn(D|j,ﬁ) )
jOD
The second termA = E(§(8*))-g(58*) corresponds to the bias of the estimator of
g(,[?*). The third termAs corresponds to the noise of the approximation, which is the
difference between a particular realization@)ﬁi?*), and its expected value.

Consider the noise terfg, which can be rewritten as follows:
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A= o(8*)-Ea(8))
= 26 (6)- . (57)]

= iz dn1
N5
where eacld, is the deviation on(,B*) from its expectation for observation Note that

eachd, depends on a particular draw of alternatives to construct tHe. Sgtis means

that there is a distribution of valuesafdepending on all possible draws of alternatives

in D. The distribution ofd, has zero mean because the expectation is subtracted in the
creation ofd,. Also, note that the variance @f should decrease with the cardinalityDof

because@([z’*) should become closer to its expected valug) amcreases. To account
for this effect, the variance af, can be expressed &/ J, where$, is the variance

when J =1. Then, relying on the generalized version of the central limit theorem (see,
e.g., Train, 2009, pp.246), the no&sewill have the following limiting distribution:

JNA, T? - Norma(O,S/j),

whereS is the population mean &. Consequently, the asymptotic distribution of the
noiseAs will be

A a~Norma(0,$/3N).

It is interesting to note what occurs with the nofgewhen N increases butl is
fixed. In this case,\/NA3 will have a limiting distribution, but will not vanish d¢
increases. In turn, the asymptotic variance of the n&jseill decrease adl increases,
even if J is fixed. Note also that when the protocol is sampling without replacement and
Jis finite, J needs to increase only upesince from that poiny3) = E(§(8)) = 9(8)

because any resorting of the alternatives in the choic€-sell have no impact on the
choice probabilities.

Consider the bias terdy,. This bias exists because the method described in Eg. (10)
considers an unbiased estimagy of B,, but the calculation of(8) involves a series

of nonlinear transformations o@n. The bias can be studied by taking a second order

Taylor's approximation of§(8) around B, =B,. Noting that §(8,B.)=g,.(8), it
follows that

()= 0.(8) 32 [8.(6)-8.(8)+; S [8(8)- B () +o.

Then, taking expectations (over possible realizations of th)segcalling thatl_5>n is an
unbiased estimator oB,, and considering that the discrepamgyhas zero mean, this
Taylor's approximation can be rewritten as

£(6,(6)-0,(6) = 1“5 vars (5)

n
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Note that theVar(én(,B)) should decrease a3 increases because thed, will
become progressively closer 8, . Assuming that this relationship can be captured by

the expressionvai(B,(8)) = K,/J , whereK,, is a scalar, the bia can be rewritten as
A = E3(A) - 9(8) = S E(6.(6) -0,
p =Ly 106K,

N52 oB? J

24
079,
LP
n

whereZ is the sample average %ﬂ

The biasA; will vanish asN increases, if and only ifJ increases also with.
Otherwise, §(8) will be an inconsistent estimator @f(3). Instead, an even stronger

assumption is required to achieve asymptotic normality. To understand why, consider the
biasA,; normalized for sample si2¢

\/WAZ:@Z.

This term will vanish adN increases, if and only ifl increases faster thaw/N .
Otherwise, the estimatc@(,[?) will have neither a limiting nor an asymptotic distribution.

Equivalent to what occurred with the noigg, note that when the protocol is

sampling without replacement addis finite, J needs to increase only up dpsince
from that point E(§(8)) = g(8) because any resorting of the alternatives in the choice-set
C will have no impact on the choice probabilities.

In summary, it was shown that ¥ increases witlN at any rate §(8) IF - g()
and when J increases faster tha¥iN , §() will be asymptotically Normal. Given that
§(8) P - g(B), the limiting and asymptotic distributions @{3) will be the same as
those ofg().

To study the asymptotic properties of/3), label W the population variance of
g,(8*). Then, assuming thag(8) equals zero in the population, by the central limit
theorem, the limiting distribution of(3) corresponds to

JYN(g(8*)-0)f ~ Norma(o,w),
and the asymptotic distribution corresponds to

g(8 ) ~Norma(o,w/N).

It is then possible to combine the results for the componer@é,[i‘))fin order to study
the asymptotic distribution of the estimatq@’sof the model parametefs This can be
achieved by taking a first-order Taylor’s expansion@ﬁf?) around the true valugs
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dp)= os*)+ R6-p7] +a,
where ﬁe:ag/a/;. Then, note that the estimato;é of the model parameteys are

defined by the condition@(ﬁ’):o, because dividing Eq. (10) By does not impact the

solution of the problem. Assuming that and the discrepanclsappears asymptotically,
it follows that the limiting distribution of the estimators is

IN(B-p2)=V N R)484) =V N-Rf A+ A+ ). (11

As established before, if increases faster thafAN the termsd, andAg will vanish.
Under this condition, the terA; in Eq. (11) becomes asymptotically equal g(qb’)
which has a limiting distribution ofv'N(g(8*)-0) ~ Norma(0,w). Note that

RIP- R, whereR = E(fi). This implies that the limiting distribution of tlestimators
of the model parameters becomes

IN(B-p*)m? - Normalo,R*WR ™), (12)
and their asymptotic distribution will be
3 ~Norma(* R *WR*/N) = Norma(s*,@/N), (13)
* 2 *
whereQ =R™WR™, W =Var w andR=E 0°In z,(4*| D) .
)] 0B0p'

Q is usually defined as the “robust” or “sandwich” variance-covariance matrix of the
estimators of the model parameters (see, e.g., Train, 2009, pp. 201). 8eahdl974)
proposed an estimator £f that is known as the BHHH matrix and is used, for example,
by the discrete-choice estimation software Biogeme (Bierlaire, 2003). To deploy the
BHHH matrix for this case, note thgtis the Hessian of the model shown in Eqg. (9). A
consistent estimator & is its sample analog, which can be constructed from the Hessian
of the quasi-log-likelihood shown in Eg. (10). Equivalently, the variance-covariance
matrix of the score of the model shown in Eg. (10), evaluated at the estimated values
VV(,@’) IS a consistent estimator . Given thatg(,[?):o, VV(,[?) can be calculated as
the outer product of the scores of the model shown in Eq. (10). In summary, the BHHH
estimator for the variance-covariance matrix of the estimators of the model parameters
resulting from the maximization of the quasi-log-likelihood function shown in Eq. (10),
corresponds to the following expression:

5 -[nAB1D)|" iamm(,&m)am:z(mo) o*In A3 D) |

0B op =) ] op 0B ap'

These results imply that the estimators obtained by the maximization of Eq. (10) will
have the same asymptotic variance-covariance matrix as the estimators that would be
obtained by using Eqg. (9); that is, if the full choice<Se$ available for the calculation of
the expansion of the terimG, . Then, it can be affirmed that estimators obtained by
maximizing Eqg. (10) are efficient among all possible approximations of the model
described in Eq. (9Q.E.D.

It is interesting to note that the estimators obtained by maximizing Eq. (9) are not
globally efficient because Eg. (9) is not the true log-likelihood and therefore the

1C
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Crammer-Rao lower bound is not attained. This also implies that the estimators obtained
by using McFadden’s (1978) method for Logit are also inefficient. McFadden (1978) did
not study the asymptotic distribution of his estimators. However, following the same line
of analysis deployed in this section, it can be shown that the asymptotic distribution of
McFadden’s (1978) estimators will be equal to Eq. (13), using instead Eq. (6) to calculate
the termsR andW.

Additionally, the fact that the estimators obtained with the method deployed in Eq.
(20) will not be consistent unlesk increases witth, implies that, in practice, we should
test the stability of the estimators of the model parameters as a functidn Ibfthe
estimators for different values of are statistically equal, we can be sure that the finite

sample (of alternatives) bias is negligible. Otherwise,should be increased until
attaining stability. This is equivalent to the need for testing for the stability of Logit
Mixture’s estimators as a function of the number of draws, in the simulated maximum-
likelihood framework (Walker, 2001).

The practical implementation of the method to achieve consistency and asymptotic
normality under sampling of alternatives in MEV models depends on the specific MEV
model and the sampling protocol being considered. In the next two sections, we analyze
this implementation in detail for the Nested and the Cross-Nested Logit models,
respectively. Then, for illustrative purposes, in Section 6, we develop a Monte Carlo
experiment where the performance of the method is analyzed under different
circumstances. Finally, in Section 7, the methodology is applied to a Nested Logit of
residential location choice that was estimated using real data from Lisbon, Portugal.

4 Formulation of the Method for Nested Logit

The Nested Logit model is a closed-form discrete choice model that allows for the
correlation among random components of the utilities of alternatives that belong to
mutually exclusive and totally exhaustive subsets (or nests) of the full choice-set. In this
model, the marginal choice probabilities are written as the product of the conditional
probability of choosing each alternative (given that the respective nest is chosen) and the
marginal probability of choosing the respective nest. The utility of a nest is defined as the
expected maximum utility of choosing the alternatives that belong to that nest, what is
known as the inclusive value (Ben-Akiva and Lerman, 1985).

McFadden (1978) showed that the Nested Logit model can be alternatively
formulated as a member of the MEV family. The generating funcidor a Nested

Logit model withM nests is
U

G(<eV|n >|Dcn : y) = ;(Dé“i)neﬂm\/mJ " (14)

wherem(i) is the nest to whichbelongsyy is the set of scalgs, of the nests, an@un
is the set of alternatives that belong to the ngst In this caselnG,, corresponds to the

expression shown in Eq. (15).

11
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InGin :(L_ J(m Ze m(i)VJnJ+|n'u+( m(i)_l)vi (15)

/’Im(i) jDCm(i)n

Then, if a sampl®mngn, is drawn from the true choice-3B4, the only term that
would be affected (and therefore needs to be approximated) is the sum of the
exponentials of the systematic utilities, the argument ofldgsum The sum of the
exponentials will be denoted as

B, = e

IBCon(iyn

One way of approximatingBi, is by constructing an expanded sum of the
exponentials of the utilities of the alternativesdDinn. Then, the challenge would be to
determine the expansion factovg, required to obtain an unbiased and consistent
estimator of the sum of the exponentials.

To obtain an unbiased estimator, the expansion factors have to comply with the
conditions shown in Eq. (16), where the first expectation is taken over all valiesnoff
the second expectation is taken oxand all potential seBmn.

£p)- £8)=0= 5[_ > é‘"‘“’“’“}— EX,D( > vvjne“m“’VJ“J (16)
J0Chm(i)n

jDDm(i)n
Note that eacte’"""" can be seen as a random variable with nMEan , the mean of

the empirical distribution o0& . In this case the first component of Eq. (16) becomes

HB)= E{,— Zeﬂm(i)vi”J = J i) Tm(i)n -
Cin(i)n

The expansion factoss;, required to obtain an unbiased estimatoBpthall depend
on the sampling protocol. For analytical purposes we will consider first that the protocol
is sampling without replacement and then that it is sampling with replacement. Finally,
we will show that the expansion factaovg required in both cases can be summarized in a
single expression.

Consider first that the protocol is sampliwghout replacement by nest. Then, using
the following indicator function
_{1 if j O Dy

1JDDm(i)n 0 0/ W

~
1

it is possible to rewriteE( n) in Eq. (16) as follows:

E(i%): E{iuoz V\/j”eﬂm(i)vjn] - E[ leDDm(i)n V"Jneﬂm("v"”J :
m(i)

jmm(i)n

n

Then, by the Law of Total Expectations (also known as the Law of Iterated
Expectations), which is equivalent to the total probability theorem used in Eq. (4),

dgn): E(E[ leDDm(i)n V\ljne#m(i)vjn |1jDDm(i)an

]DCm(l )n
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( ) ( Lo nWJnE(eﬂm(i)an |1JDDm(i)n)J:E( Zlmm Wn”m(i)n}

Jmm(l)n TCon(i)n
dBfn ) E ]'JEIDrn )erﬂm(i)n d

where E(e/‘m' " |1J.DDm(i)n):/7m(i)n results from the fact that the distribution ef"?"

determines the sampling bf,)n, but the causality does not go in the other direction.

Given this result, one way for Eq. (16) to equal zero is by having

W, = VE[Lp,
where E(llEID ) is the probability of drawing alternatiyebecause the protocol in this
case is sampllng without replacement.

Consider now that the protocol is sampliwgh replacement by nest. Then it is
necessary to define the sé{n(i)n and the indicator functiom,, . The former is a set that
includes all the repetitions of the alternatives sampled, and the latter corresponds to the
number of times alternatiieis repeated in the ) min- Then B, can be rewritten as

follows
Z\T\,jneﬂm(% = > 7, W, and therefore

jDDm(i)n jmm(i)n
E(Eh)z 2 erﬂm(i)nE(ﬁin) and then W, =1/ E(f,,).
jDCm(i)n
Finally, since
r s n — n — (i Vin
Bn: ZVVme J an Jn J Zvvjne‘u()l’
JOBm(i)n iODp(iyn JODi(i)n

the expansion factors required to obtain an unbiased estimation of the sum of the
exponentials, for the case of sampling with replacement, are equal to

=7, /i, ).
The expansion factors required when the protocol is with or without replacement can
be summarized in a single expression by noting that, when the protocol is sampling
without replacementiy,, =1 if  is in Dmn, and E(liuﬁm(i)n) is also the expected number of
times alternativej would be drawn to construct the sBt,j.. Then, the general
expression for the expansion factors required to obtain an unbiased estimBfocan
be denoted as shown in Eq. (17).

w, = E(TTT (17)
The next step is to prove that the expansion factors shown in Eq. (17) will lead to
consistent estimators @& _ as jm(i)n increases. This results directly from any weak Law
of Large Numbers. Actually, consistency would be granted even if no expansion factors
were considered at all. Agm(i)n increases, even an estimatorByf that only considers

the simple sum of the exponentials of the alternativéiy, will eventually be as near
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to Bi, as desired, a§m(i)n increases. The difference is that the expansion factors shown in

Eq. (17) will converge faster, leading to better finite sample properties. In addition, using
Eq. (17) is what allows obtaining an unbiased estimator, condition required in the
derivation of the results on efficiency and asymptotic normality.

5 Formulation of the Method for Cross-Nested Logit

The Cross-Nested Logit model is a closed-form discrete choice model that allows for
correlation among the random components of the utilities of all alternatives in the choice-
set. Similar to the Nested Logit, the Cross-Nested Logit considers a set ofhmests
However, in the Cross-Nested Logit model the nests are totally exhaustive but not
mutually exclusive in the coverage of the alternatives in the choice-set. The correlation
structure is defined by a non-negative weightrepresenting the degree of belonging of
alternative| to the nest. Examples of applications of the Cross-Nested Logit model and
variations of it are the works of Small (1987), Vovsha (1997), Vovsha and Bekhor
(1998), Bierlaire (2001), and Papola (2004).

The Cross-Nested Logit model can be formulated as a member of the MEV family. In

general, withM nests, the generating functi@that results in the Cross-Nested Logit
model is

“
M Hm
\/ll'l - -_— mVin
G(<e >IEC ’y) _Z(Zajmeu ] ’
" m=1\_iCC,
wherem are the nestg, corresponds to the set of scalgsof the nests, and;, are the
weights. Then, the terimG,, corresponds to the following expression:

H~Hm
Hm

M
In Gin = In Z ,L[(]imev\ (.um_l)( Z ajme:umvi ]
m=1 e,

Just as it occurred with the Nested Logit, if a saniples drawn from the true
choice-seC,, the only term affected will be the sum of the exponentials, which is now
weighed by the termsy,. Then, consistency, relative efficiency, and asymptotic
normality can be achieved for the Cross-Nested Logit while sampling of alternatives,
using the following estimator:

ABn = Z ijnajme#mvj = Bln = chjme'umvj '

joD, c,
The same derivation used in Eq. (16)-(17) can be used to show that the expansion factors
Wi, required in this case are also those shown in Eq. (17).

6 Monte Carlo Experiment

6.1 Model Setting

A Monte Carlo experiment was performed to analyzeibustrate the properties of the
proposed method in achieving consistency in the case of sampling of alternatives in MEV
models. The setting of this experiment is summarized by Figure 1. The true or underlying

14

Acta XV Chileno de Ingenieria de Transporte, 2011



model is a Nested Logit with 1,005 alternatives, among which the first 5 belong to one
nest (J, =5) and the other 1,000 to a second nelstX 1000). The systematic utilities

Vin depend upon two variables, andx,, which were constructeidd Uniform (-1,1) for

the N=2,000 observations. The true parameters of the model arel,

th=2,1,=3,B =5, =1
u=1

H1=2 >, =3

1,004 1,005

V()ﬁT ”8) = 1Xlin * 1X2in

Figure 1 Monte Carlo Experiment: Nesting Structure. 1,005 Alternatives

N=2,000J, =5 J,=5; J, = 1000 J, = 5anc500

The methodology used to implement the Nested Logit model shown in Figure 1 for
Monte Carlo experimentation was performed in several steps. First, the choice probability
was calculated replacing the true values of the parameters in Eqg. (8). Then, these choice
probabilities were used to build a discrete cumulative density function by alternative.
Afterwards, a random number Uniform (0,1) was generated for each observation. Finally,
the chosen alternative was determined as the inverse of the cumulative density function,
evaluated for each random number.

The sampling protocol used to draw alternatives from the choice-set in this
experiment was stratified importance sampling without replacement by nest. First, the
chosen alternative for each observation was included. Then non-chosen alternatives were

randomly sampled, without replacement by nest, to make a tota_l b for the first
nest, andj2 =5 and 32 =500 for the second nest.

Given this sampling protocol, the conditional probability of constructing a particular
setD, for observatiom, given that alternativewas chosen, corresponds to

Jo-DI )
”n(DIi)=(J~m(')_j (3"””‘(')} ,
m(i) mzm(i)
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wherem’#m(i) is the nest to which does not belong and the expression on parenthesis
corresponds to the binomial coefficient.

It can be shown that

({m(i)—lJ: ) (Juy=D! :Jm(i,({m@)J
o) 7L Gy D'y 1= Gy D) ' Iy WImi)

and therefore, the conditional probability of constructing th®gegiven that alternative
I was chosen, corresponds to

Ao do ()Y (3.)
ﬂn(D ll)_ jm(i)[(‘ij (jzj ] (18)

Given that the second term in Eq. (18) does not vary across alternatives, it will cancel
out when taking the log to calculate the sampling correction(D,, |i). Then, the
estimator of the conditional probability of choosing alternatjvgiven that the sdb,
was constructed, will correspond to Eqg. (19)

(i)

V(o4 B)+in 1(8,(D,))+n™
. e
i|D )=
77( | n) B £(8,,(Dy))+ 2

ZeV(X,

jop,

whereln f(ém(Dn))=[L—1J[ln ijne/‘"‘(”vj"J+ln,u+( i) ~LVin -

0 T}

The final step corresponds to the specification of the expansion fagtofiis task
is substantially different depending on whether the Bet(used for the sampling
correction) is or is not also used for the expansion of the sum of the exponentials.

Consider first that the sdd, is also used for the expansion of the sum of the
exponentials. Then, given that the sampling protocol is without replacement, the
numerator in Eq. (17) will equal 1E(ﬁjn), the expected number of times alternajive
might be sampled to construct the & remains to be calculated. Given that the
protocol is without replacementE(ﬁjn) corresponds to the probability of sampling
alterativej.

E(ﬁjn) can be calculated using the Law of Total Expectations. The idea is to divide
the space into mutually exclusive and totally exhaustive events with known probabilities
of occurrence, and for which the conditional expectation pfis also known. Consider

the following events:
A:: The chosen alternativejis
Az: The chosen alternative is rjpbut it is within those in the nesi(j)
Asz: The chosen alternative does not belong to them(@st

The event#\;, A, andAs are totally exhaustive and mutually exclusive because only
one alternative is chosen and the nests in the Nested Logit model are mutually exclusive
and totally exhaustive. The probabilities of these three events depend on the choice
probabilities:

: (19)
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P(A)=P.(j) : The probability of choosing alternatijie
P(A) = an(|) : The probability of choosing other alternativesri), which
0) is equal to the sum of their choice probabilities.
=1- an(|) : The probability of choosing an alternative outsiug),
which is equal to 1 minus the probability of the nme§).

The conditional expectations af, given the eventéy, A, andAs are also known:

E(ﬁjn |'°1) =1 : Because the chosen alternative is always sampled.
v . : Because if is not chosen, but the chosen alternative is in
E(ﬁjn |A2): 3 m(j), only J,;)—1 out of J,;)—1 alternatives remain to be
m(i) sampled from the nest(j).
E(ﬁ. |A3): ~m(,) . Because if the chosen alternative is in natn(j), jm(j) out
" Jny  of J,) alternatives remain to be sampled from the mégt

Then, by the Law of Total Expectations, the expected number of times altejnative
might be drawn will correspond to

En= Epl AEA+ Eni A KA)+HT, I A)P(A).

By replacing terms, Eq. (20) is finally obtained.

e )=R i1+ 07 S0+ 70 1- Fe0) @)

Iin(i) 1mcm m(})

The expression shown in Eq. (20) for the denominators of the expansion factors
depends on the choice probabilities, which are unknown beforehand in an application
with real data. In section 6.3, we analyze alternatives to achieve this goal in practice.

Consider now the case when aBgtis used for the sampling correctidm7z(D, |i),

and a different seISn is drawn to construct the expansion of the sum of the exponentials.
We term this alternative procedure re-sampling. In this case, the conditional probability
of choosing alternative given that the setS, and D, were drawn, will correspond to
Eq. (21).
V(% .8)+In f(éin(lsn))ﬂnj
. ~ e ")
#10,,5,)= - (21)
Ze )
jOD,

As stated before, the g8t must include the chosen alternative. Otherwise, the quasi-
log-likelihood of the model may become unbounded, making impossible the estimation
of the model parameters. In turn, the getused for the expansion of the sum of the
exponentials in Eq. (21) does not need to include the chosen alternative, as Iyng as
does it. This small difference is relevant because, if the sampling protocol used to build
the setD, does not require drawing the chosen alternative forcedly, there is no need for

knowing the choice probabilities beforehand to calculate the expansion fagtors
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The implementation of the expansion method in practice whedoes not require

drawing the chosen alternative forcedly becomes then considerably simpler. Consider for
example that the sampling protocol used to build theDgetvas importance sampling

without replacement by nest. Under this setting, the denominators of the expansion
factors, the equivalent to Eq. (20), would simply be the ratio shown in Eq. (22), where

J.(;) corresponds to the cardinality Of,.

(22)

6.2 Assessment of the Methods with and without Re-sampling

Given this Monte Carlo experiment, the sampling protocol described and the expansion
proposed, five models were estimated and the results are shown in Table 1. Thfirst (
Samplingin Table 1) corresponds to the true model, where no sampling was applied. This
model is estimated as a benchmark for the best possible estimators that could be expected
for this particular experiment.

Table 1 Monte Carlo Experiment: Sampling in MEV with and without Re-Sampling

. Expanded Expanded
_ No Sampling Full InG, Unexpanded _
Experiments True Prob. Re-Sampling
est. s.e est. s.e est. s.e es. S.¢ est. s.e
'Bxl 1.009| 0.04681 0.9906 0.06112 2.570 0.1612 0.9102 0.0p020 0[9301 0J06705
ﬁxz 1.062| 0.04933 1.0279 0.06233 2.630 0.1649 0.9276 0.06124 0}{9558 0)06818
_ M 2.055| 0.2076 2.111 0.2289 0.2655 0.006477 2.211 0.2688 1.976 0[2913
J, =5
31 -5 M 2.824| 0.1125 2.881 0.1291 1.130 0.075p2 3.313 0.1j786 21853 0/1567
L=
L(g) | -10,312.00 -1,942.70 -2,036.24 -1,968.59 -2,030.30
L(O) -13,825.49 -4,605.17 -4,605.17 -4,605.17 -4,605.17
,52 0.2544 0.5790 0.5587 0.5734 0.5583
'Bxl 1.009| 0.04681 1.00§ 0.04678 0.75834 0.04708 1.005 0.04679 1.004 0)04679
,BXZ 1.062| 0.04933 1.05§ 0.04915 0.7913 0.04950 1.056 0.04918 1.055 0/04917
_ My 2.055| 0.2076 2.065 0.2088 2.730 0.3086 2.063 0.2Dp88 2|065 02091
J, =5
31 -500 My 2.824| 0.1125 2.832 0.1130 3.785 0.2186 2.831 0.1131 2|834 01133
,=
L(ﬂ) -10,312.09 -9,115.24 -9,117.40 -9,115.91 -9,115.37
L(0) | -13825.49 -12,449.12 -12,449.12 -12,449.12 -12,449.12
o’ 0.2544 0.2681 0.2679 0.2681 0.2675

N=2,000.3,=5,3 =3 =5:J,=10003,=J, =

5andb00

The second modeF(ll InG,, in Table 1) corresponds to the application of sampling
of alternatives and the corresponding sampling correction, but using the full choice-set to
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evaluate the terminG,, as shown in Eq. (9). Even though this model is impractical

because it requires knowledge of the full choice-set, it was estimated to show that Eq. (9)
is correct, and to quantify and to differentiate the effects of sampling of alternatives,
when having a reduced choice-set, from its effects in the approximatia®Ggt

The third model estimatedJfexpandedn Table 1) considers that a dBt was
sampled from the full choice-s€l,, that the corresponding sampling correction was
applied, and that the same $&t was used to construct the tedmG,,, without any
expansion term. This model acts as a benchmark because it corresponds to what has been
used to date by the researchers to estimate Nested Logit models under sampling of
alternatives (see, e.g., Berkovec and Rust, 1985; Btaal,1987; Hansen, 1987; and
Rivera and Tiglao, 2005).

The fourth model estimatedXpanded True Prohin Table 1) corresponds to the
method proposed for cases where the sami,sstused for the sampling correction and
for the expansion ofinG, using Eq. (20). The calculation of Eg. (20) involves

knowledge of the choice probabilities, which are unknown beforehand in a real
application. However, in this Monte Carlo experiment the true choice probabilities are
available beforehand and are therefore used to show the performance of the method
proposed for the expansion of the sum of the exponentials.

The last model estimatedEXpanded Re-samplinop Table 1) corresponds to the
method proposed for cases where aB3eis used for the sampling correction, and a

different set ISn (constructed independently from the chosen alternative) is used for the
expansion ofinG,, using Eq. (22). For fair comparison with other models, the number of

alternatives considered in the 561; is the same as that used for the Bgt that is,

J,=J,.

The first result that should be noted in Table 1 is that, as expected, all estimated
parameters for thBlo SamplingandFull InG,, models are statistically equal (with 95%
confidence) to the true values. Regardiagl InG,, note that, as the sample size
increases, the standard error of the estimators is reduced as a result of the increment in
the number of casesl(j—l). In other words, efficiency increased as more information
became available.

Regarding the modé&Jnexpandednote that forj2 =5, the model estimates are very

far from the true values. Remarkably, one of the scale parameters is even below one,
which makes this result inconsistent with utility maximization (Ben-Akiva and Lerman,

1985). The bias in this model is reduced substantiallyigox 500. This occurs because

the Unexpandedormulation collapses to the true model as the sample size increases.
However, even for:]w2 =500, the estimators are still statistically different (with 95%
confidence) from the true values.

In the case of théexpanded True Probmethod, all estimates in Table 1 are
remarkably better than those of tHaexpandednodel and statistically equal (with 95%
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confidence) to the true ones with 95% confidence, eveﬁg‘(;TS. For the bias, note that
it is not negligible forj2 =5, but for 32 =500, it is significantly reduced.

Figure 2 shows the evolution of the estimatorsjgsis increased for the model
Expanded True PrabAs jzapproacheéz, the estimators of the model collapse to those

of the No Samplingmodel. Remarkably, the estimators quickly stabilize jgrbelow

100 and are never far from the true values. As shown in Table 1, even for a sample size
as small as:J“2 =5, all the estimators are statistically equal (with 95% confidence) to the
true values.

1.05 ‘ S — 1.10
\ | —
\ | —
1.00 Rl -1.009 Lo || 1.062
2 + B
ﬁxl 0.95@ X, 100 7
3 3
0.90 0.95
0.85 T T T 0.90 T T T
0 100 200 300 400 500 600 700 0 100 200 300._400 500 600 700
J, J
2.50 3.30
2.45 4 325
2.40 4 320 ¢
2.35 - 3154,
A~ 230 77 310,
My o205t H, 3.05 1+
2.20 1= 3.00 13
2.15 5 2.95 ',35
2.10 3 RS 2.90 %
2.05 {5FES ™ 2.055 285 |-t 2 824
2.00 } } } 2.80 | | &
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
J, J,

Figure 2 Monte Carlo Experiment: Estimators asj2 Increases. Expanded True Prob.

Figure 2 is also useful for analyzing the small sample bias. First, note that the
parameter that has the poorest convergence behavior (larger variance and sigpe) is
the scale of the second nest. It can be hypothesized that this occurs because sampling is
performed only from the second nest in this experiment. Figure 2 also shows that both
scales j and [, are biased upward and that the model parameferare biased
downward. The experiments analyzed did not allow proposing hypotheses to explain this
result. Further analysis of the finite sample properties of this estimator, and potential
ways to improve them, are left for future research.

Finally, the last column in Table 1 shows that the results forEtmanded Re-
Samplingmethod are statistically equal (with 95% confidence) to those obtained by using
the Expanded True Prolmethod, and also statistically equal (with 95% confidence) to
the true values. This implies that if re-sampling to perform the expansion of the sum of
the exponentials is possible, it should be preferred because it avoids approximating the
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choice probabilities. In the next section, we analyze the performance of different
procedures that can be used in practice when re-sampling is not possible.

6.3 Expansion in Practice when Re-sampling is not Possible

When re-sampling is not possible the results of the method for sampling of alternatives in
MEV shown in Table 1, require knowledge of the choice probabilities, which are not
available in an application with real data. To avoid this problem, three methods used to
approximate the choice probabilities are examined and the results are summarized in
Table 2.

Table 2 Monte Carlo Experiment: Different Estimators of Choice Probabilities

Expanded Expanded Expanded Expanded
Experiments True Prob. All or Nothing Population Shares| lIterative Prob.
est. s.e est. s.e est. s.e es. s.¢
,3,(1 0.9102| 0.0602Q 0.7440 0.05335 1.1833 0.06906 0.9444 0.06528
B, 0.9276| 0.06124 0.756p 0.05417 1.1%8 0.07020 0.9630 0.06641
3 _5 My 2211 | 0.2688| 2.787 0.332f 1.685 0.2151 2031 0.2r34
31 __ 5 My 3.313 | 0.1786| 4.328 0.281y 2.714 0.1251 3.410 0.1808
2 L(8) -1,968.59 -1,864.44 -1,982.65 -1,991.85
L(0) -4,605.17 -4,605.17 -4,605.17 -4,605.17
Yok 0.5734 0.5960 0.5703 0.568
,3,(1 1.005 | 0.04679 1.00§ 0.04643 1.007 0.04681 1.005 0.04679
B, 1.056 | 0.04918 1.055 0.04912 1.0538 0.049p0 1.056 0.04918
- Hy 2.063 | 0.2088| 2.066 0.2088 2.059 0.2083 2.063  0.2p88
ji ;ZOO M, 2831 | 0.1131f 2.833 0.1131 2.825 0.1125 2.831  0.1130
L(3) -9,115.91 -9,114.88 -9,115.92 -9,115.92
L(0) -12,449.12 -12,449.12 -12,449.12 -12,449.12
ok 0.2681 0.2682 0.2681 0.2681

N=2,000.J, =5,J, =5:J, = 1000 J, = 5and500

One alternative is to approximate the probability of the chosen alternative to equal 1,
and the probability of the non-chosen alternatives to equal zero. This model is termed
ExpandedAll or Nothing in Table 2. Replacing these assumptions in Eqg. (20), the
expansion factors used in this case will correspond to the following:

w,, =1 if j is the chosen alternative

J -
Wi, :\.]J“L if j is not chosen, but another alternativenify) is chosen
m(j)
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w;, :% if j is not chosen, and no other alternativen(j) is chosen.
m(j)

The expansion factors that result in this case are equivalent to those used by Frejinger
et al. (2009) to approximate the denominator of a Logit model with sampling of
alternatives, and to those used by Lee and Waddell (2010) to expand a Nested Logit
model under sampling of alternatives. That is, although it is not mentioned by those
authors, they implicitly approximated the probability of the chosen alternative to 1, and
the probability of the non-chosen alternatives to 0.

A second possibility to approximate the choice probabilities needed for the
calculation of the expansion factors is to use the population shares of each alternative.
Although the true population shares are not available in a real application, good
approximations of them are clearly plausible from different sources (Census data for
spatial choice models or flow counts in route choice modeling). This method is termed
ExpandedPopulation Shareg Table 2. Replacing the population shares in Eq. (20), the
expansion factors implied by this procedure are the following:

W, = populatioghareofalternatie j

W= = 1 = On=1---,N;0j0OC,.
W. + Jm(i) -1 ZW + Jm(i) 1- ZW

SN L !

m(j) E‘l?mu)n m(j) I0Cin( )

Finally, an iterative method can be proposed. This method starts with an estimation of
the population shares of each alternative, and then estimates the choice probabilities for
each observation, iteratively, until convergence. This method is tefExpdnded
Iterative Prob.in Table 2 and can be summarized as follows.

Step O:
k=0
W, = populatioshareofalternatie j
wk = _ 1 _ On=1---,N; jOC,

" Jm(j) _1 J

w0~ - S
J m(j) 1|D% I0C(j)n ‘]m(l)
Step 1:
X X ewmmmdmw»
Estimate the model using® to obtain and P*(j) =
n Z V\r )fﬂ ;3’ +In f ))
10D,

Step 2:
Wk+l - 1

" Iy =1 SN .

)43 )+ 31 Fuie)
In(3) _1:5?m(.>n In(3) 1D )

Step 3
k=k+1
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Go to Step 1 until convergence.

Convergence can be stated in terms of the estimated parameters of the model, the
expansion factors, or the choice probabilities. For the applications of the iterative
procedure in this research, the following stopping criterion was used:

Br(i) - Br (i) = ¥(200).
The three methods proposed to approximate the choice probability when re-sampling
is not possible were used in the estimation of the problem of sampling of alternatives for

the Nested Logit model described in Figure 1. Table 2 shows the results of the three
methodologies, compared to the results obtained witkxpanded True Probnethod.

Consider the case of thexpanded All or Nothingand theExpanded Population
Sharesprocedures. Table 2 shows that @;:5, the estimators of both methods are
statistically different (with 95% confidence) to the true ones. Although, comparing these
results with those of thenexpandednethod reported in Table 1, it should be noted that
the new estimators have a smaller bias. F-p:: 500, theExpanded All or Nothingnd

the Expanded Population Sharestimators are statistically equal (with 95% confidence)
to those obtained by using tBxpanded True Prolmethod, and also statistically equal
(with 95% confidence) to the true values.

Finally, for theExpandedterative Prob.method, Table 2 shows that fag =5 and

32 =500 the estimates are statistically equal (with 95% confidence) to those obtained

using the Expanded True Probmethod, and also statistically equal (with 95%
confidence) to the true values. This implies that, when re-sampling is not possible, the
iterative procedure proposed to approximate the choice probabilities should be preferred
to expand the sum of the exponentials.

max, ;

6.4 Additional Experiments

In this section, we present four additional experiments to illustrate the performance of the
proposed method for addressing sampling of alternatives in MEV models, under different
circumstances.

The first three experiments explore the effect of the distribution of the data. These
experiments consider the same structure described in Figure 1. The only difference is that
the distributions of attributes, andx, vary across observations. Under this setting, the
estimators of the model parameters were obtained for 100 repetitions usthgpémeled

True Prob.method and for different values 5@. Table 3 reports the bias, mean squared
error (MSE) and t-test against the true value of the scale of the second, rfesteach
experiment.

The first experiment is termddniform Mixture For the first 1,000 observations,
was drawn from aiid Uniform (-1,1) distribution and, from aniid Uniform (-1.5,1.5)
distribution. For the second half of the observatiogsyas drawn from afid Uniform
(0,2) distribution and, from aniid Uniform (-3,1) distribution. The results of this model
are shown in the first column (after the labels) of Table 3. It can be noted that the sample

size required to obtain an estimator @f statistically equal (with 95% confidence) to its
true value is larger than 25 alternatives in this case. This value is larger than that obtained
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for the experiment reported in Table 1 and confirms that the threshold required for
attaining valid estimates of the model parameters depends on the data.

The second experiment is termedrying 32. This experiment considers the same

structure and distribution of the data used inWm&orm Mixture experiment. The only
difference is that the number of drawn alternatives varies across individuals following a
Discrete Uniform distribution with limits

[13./2)[23,]] .

Then, for example, fod,=10 in Table 3, the number of alternatives considered for each

of the 2,000 observations can be any integer between 5 and 20, with equal probability.
The results of this experiment are shown in the second column of Table 3. Although this
experiment is not directly comparable with thlmiform Mixture setting, it can be
affirmed that the fact that, in both cases, sample sizes around 25 were large enough to
obtain an estimator of the scale of the second nest that was statistically equal (with 95%
confidence) to its true value, is evidence that varying the sample size across observations
causes only minor impacts in the estimation procedure.

Table 3 Monte Carlo Experiment: Additional Experiments on Sampling in MEV

i, Uniform Mixture Varying 32 Normal Uniform

J, Bias MSE | t-testtrue Bias MSE | t-testtrue| Bias MSE | t-testtrue
10 0.4878 0.2624 3.125 0.4502 0.2317 2.641 1.359 1.989 3.616
25 0.2760 | 0.09404 2.065 0.2623 0.08881 1.85¢ 1.063 1.223 3.493
50 0.1512 | 0.03729 1.259 0.1465 0.03799 1.139 0.7938 0.6914 3.206

100 | 0.07260 | 0.017343 0.6612 0.07413  0.02034 0.6085 0.5505 0.8516 2.498
250 | 0.01492 | 0.01154 0.1402 0.01941  0.01369 0.1682 0.2968 0.1228 1.592
500 | -0.006329| 0.0110% -0.06033 0.0002020 0.01305 0.001768 041473 0.p4756 0/9155
N=2,000.3, =5,J, = 1000 31 =5; Average and variance from 100 repetitidBspanded True Prob.

The third experiment is termédbrmal Uniform In this case isiid Normal (0,1) for
the first 1,000 observatiorad Normal (1,2) for the rest. In tuxaiid Uniform (1,3) for
the first 1,000 observations and Uniform (0,4) for the rest. The results of this experiment
are shown in the third column of Table 3. This experiment shows that the sample size
required to attain estimators that are statistically equal (with 95% confidence) to the true
values is now between 100 and 250. This result is further evidence that the performance
of the method can be significantly affected by the distribution of the data.

The fourth experiment sheds light on whether or not the sample size required to attain
a desirable bias can be stated as a percentage of the cardinality of the true choice-set. The
experiment described in Figure 1 was modified only regarding the number of alternatives
in the second nest, which is 1,000,000 in this case. The distributigraniix, are again
iid Uniform (-1,1) for theN=2,000 observations. The model is described in Figure 3 and
the results are reported in Table 4.
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1,000,004

V(x" "B) = 1Xlin + 1X2in

Figure 3 Monte Carlo Experiment: Nesting Structure. 1,00,005 Alternatives

Table 4 Monte Carlo Experiment: Sampling in MEV. 1,000,005 Alternatives

Expanded
i True Unexpanded
Experiments values True Prob.
Est. s.e est. s.e
B, 1 2.947 0.3594 | 0.9403 0.07198
B, 1 2.820 0.3412 | 0.911§ 0.06894
N y 2 0.1427 | 0.003651| 1.8771  0.5237
J, =5
31 g Uy 3 1.073 0.1322 3.372|  0.2203
, =
L(3) -1,348.82 -1,341.87
L(0) -3,670.51 -3,670.51
P’ 0.6336 0.6355
B, 1 1.887 0.4404 1.014|  0.0593p
B, 1 1.784 0.4162 | 0.9629  0.0558p
- 7 2 0.1896 | 0.02426 1.836 0.455
J, =5
= 3 1.645 0.3837 3.054 0.162
J, =500 Ho
LiB -9,253.96 -9,241.78
L(0) -12,710.46 -12,710.46
o’ 0.2723 0.2732

N=2,000.J, =5,3 =3 =5:J, = 10000003, = J, = 5ancs00
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In this case the true model is not estimatable with commercial software because the
computational costs are unbearable. In turn, it is possible to simulate independently the
choices for each observation, then to sample a small number of alternatives from the true
choice-set, and store that subset of information, for subsequent estimation. Using this
procedure, samples of 5 and 500 alternatives were drawn from the second nest.

Table 4 contrasts the estimators that are obtained usindJtlespandedand
Expanded True Prolmethods. Similar to what occurred in the experiments reported in
Table 1, the estimators of tliexpanded True Prolmethod are also statistically equal
(with 95% confidence) to their true values, even for a sample size as small as 5.
However, comparing Table 1 with Table 4, it can be noted that the confidence is smaller
in the case where the true choice-set has 1,000,005 alternatives.

Given that the quality of the estimators obtained with samples of 5 and 500 are
gualitatively equal when the cardinality of the true choice-set is 1,005 or 1,000,005, it can
be affirmed that there is evidence that the sample size required to obtain acceptable
estimators is independent of the true cardinality of the choice-set.

7 Application to Real Data

The final step corresponds to the demonstration of the method proposed for sampling of
aternatives and estimation in MEV models using real data. The case study corresponds to
a residential location choice model situated in the Portuguese municipalities of Lisbon,
Odivelas and Amadora, which are located at the center of the Lisbon Metropolitan Area
(LMA).

The data to estimate the model was constructed using the combination of two sources.
The first source was a small convenience online survey (SOTUR) conducted in 2009 by
Martinezet al. (2010) in the LMA. The second source corresponds to a snapshot of the
dwellings that were advertised for sale in February 2007 within the municipalities of
Lisbon, Odivelas and Amadora (Martinez and Viegas, 2009). The details on the
construction of the database by matching both sources can be found in Guevara (2010).

The database is compounded of 11,501 alternatives, from which only 63 correspond
to chosen dwellings. The main descriptive statistics of the database are shown in Table 5.
Regarding dwelling attributes, Table 5 shows that dwellings from the Lisbon
municipality tend to be more expensive and older than those from Odivelas and
Amadora, although the differences are not statistically significant (with 95% confidence).
Also, the dwellings from both regions have approximately equal area. Finally, dwellings
from Lisbon are significantly closer, in average, to the workplace of the head-of-the-
households of the sample. Table 5 also shows the distribution of household location,
classified by income. It should be noted that 51 out of 63 households reside in Lisbon
municipality and that the larger share of households in the sample have an income that is
between 2,000 and 5,000 Euros per month (€/M).

Using the database described in Table 5 we considered a Nested Logit model
allowing for correlation between alternatives on a geographic base. The structure used is
shown in Figure 4. We considered one nest for the 3,483 alternatives that belong to the
Municipalities of Odivelas and Amadora, and the other 8,018 alternatives from the
Municipality of Lisbon, were considered to belong to the root of this Nested Logit model.
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The nesting structure used is simple principally because of the small number of
observations available. More interesting structures, such as multilevel nests by area, were
impossible to estimate. However, the nesting structure considered does serve well its
main purpose of demonstrating the methodology for sampling of alternatives and
estimation developed in this research. Furthermore, despite its simplicity, the nesting
structure is concordant with what is observed in the city. The municipalities of Odivelas
and Amadora are approximately what Rayle (20@ffined (using a factor-analysis
approach) as the “Inner Periphery” of the central LMA, a sector that has marked
differences with the Lisbon’s Municipality.

Table 5 Summary of Lisbon’s Residential Location Choice Database for Estimation

Average Dwelling Attributes
(Standard Deviation)

Household Location

Total
Municipality Price | Distance to Area Age Dwellings Income Income Income
100,000 Workplace m3 | [vears] Available <2,000 25%%% 5000 | Tot.
[€] [Km] [E/M] [€’ IM] [e/M]
2.356 4.508 99.30 39.93
Lisbon 8,018 16 28 7 51

(1.354) | (2.389) | (41.77)| (36.21)

Odivelas 1.680 10.581 98.44 | 32.17
and 3,483 5 7 0 1
Amadora | (0-8365) | (1.253) | (32.59)| (31.68)

2.151 6.347 | 99.01 | 3758
Total 11,501 21 35 7 63
(1.260) | (3.499) | (39.22)| (35.08)

€/M: Euros per month. Standard errors in parenthesis.

Odivelas-Amadora Lisbon Municipality
Jo.A=3,483 J.=8,018

Figure 4 Nesting Structure of Lisbon’s Nested Logit Residential Location Choice Model

2 Unpublished Manuscript.
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Under this setting, a Nested Logit model was estimated with the assumption that the
11,501 alternatives corresponded to the true choice-set. This model considered the
correction for endogeneity caused by the omission of attributes using the Two-stage-
control-function (2SCF) method (Hausman, 1978; Heckman, 1978), as it is described in
detail by Guevara (2010).

The results of this model are reported in the second column of Table 6 and are
repeated in Table 7. It should be noted that the signs of the coefficients of the models are

as expected. The coefficient of dwelling argfa)(is positive, meaning that households
prefer larger dwellings. The contrary occurs with dwelling prig§§),( age (36), and
distance to workplace of the head-of-the-househﬁl‘d,(which are perceived negatively.
Also, the impact of dwelling price decreases with household income ﬁ’g\@> , but 0

is negative for all stratum sinc8, + 3, + 3, <O for all cases. Finally, it should be noted

that the scale of the nest is statistically different (with 95% confidence) from 1, what
implies that the null hypothesis that the choice model is a Logit, is rejected.

Table 6 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model

Sampling 5 + 5 Alternatives

No Sampling Unexpanded ExPanded
Variables Iterative Prob.

IB s.e ,é s.e ,é s.e
1. Dwelling price (in 100,000 €) -4.393 0.7058 -3.095| 0.6498 -5.374 0.8947
2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.291 0.4756 1.834 0.7048
3. Dwelling price * 1[Income > 5,000 €/M] 0.9463 0.5284 0.5298 0.5364 0.7604 0.6779
4. Distance to Workplace (in Km) -0.1774| 0.0538| -0.1617 0.0528 -0.1782 0.0639
5. Log [Dwelling Area (in n?)] 4.217 0.7854 2.220| 0.553p 4.454  1.03p4
6. Log [Dwelling Age (in years) +1] -0.6381| 0.1158| -0.485 0.1180 -0.7252 0.1604
7.8 Control-function Aux. Var. 1987 | 04711| 0.6193 03864 2.145 0.5763
8.u0. Odivela-Amadora Nest 1.329 0.09414 5.480 3.053 1.392 0.1266
Log likelihood at ConvergenceL(/},/;) -547.89 -94.96 -93.53
Log likelihood at Zero L(ﬁ =0,/i= 1) -589.06 -134.13 -134.13
Adjusted p? 0.08518 0.3666 0.3623
Sample Size N 63 63 63
Choice-set Size J 11,501 10 10
Estimation Time ( in seconds] 363.0 1.080 10.65

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity
with 2SCF. Sample 5 alts. from Odivel-Amadora nest and 5 from Lisbon municipal€/M: Euros per mont

To demonstrate the method proposed in this paper to achieve sampling of alternatives
and estimation in MEV models, we performed two experiments where we sampled a set
of alternatives in the choice-set and then re-estimated the model with and without the
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expansion of the sum of the exponentials proposed in this paper. The sampling protocol
used in the first experiment was the following. First, the chosen alternative was included.
Then, alternatives were randomly drawn from the Odivelas-Amadora nest and from the
root (Lisbon) up to make a total of 5 alternatives for each case.

Table 7 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model
Sampling 500 + 500 Alternatives

No Sampling Unexpanded Expanded
Variables Iterative Prob.

Ié s.e IB s.e ,é s.e
1. Dwelling price (in 100,000 €) -4393 | 0.7058| -4.349 0.678 -4.347  0.7054
2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.242 0.5649 1.184 0.5776
3. Dwelling price * 1[Income > 5,000 €/M] | 0.9463 | 0.5284| 0.9564 0.5290 0.9923  0.53383
4. Distance to Workplace (in Km) -0.1774| 0.0538| -0.1766 0.05288 -0.1811 0.05880
5. Log [Dwelling Area (in n?)] 4.217 0.7854 4.177 0.745( 4.223 0.7902
6. Log [Dwelling Age (in years) +1] -0.6381| 0.1158| -0.6362 0.1128 -0.6321 0.1161
7.8 Control-function Aux. Var. 1987 | 04711| 1.908| 04460 1.93]  0.4683
8.0 Odivela-Amadora Nest 1.329 0.09414 1.510 0.161 1.326 0.09340
Log likelihood at ConvergenceL(/},/;) -547.89 -382.38 382.95
Log likelihood at Zero L(ﬁ =0,= 1) -589.06 -424.25 424.25
Adjusted p? 0.08518 0.1223 0.1162
Sample Size N 63 63 63
Choice-set Size J 11,501 1,000 1,000
Estimation Time (in seconds) 363.0 55.27 220.8

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity
with 2SCF. Sample 500 alts. from Odivelas-Amadora nest and 500 from Lisbon municipality. €/M: Euros per month.

The results of the model estimated using this sampling protocol, are shown in Table
6. In the third column are reported the estimators ofithexpandednodel where the
sampling correction was applied but the sum of the exponentials of the Odivelas-
Amadora nest was calculated using only the 5 alternatives sampled from the nest. Note
that several estimators are statistically different (with 95% confidence) from those of the
original model. Remarkably, the estimator of the scale of the Odivelas-Amadora nest is
highly positively biased. This means that the use otthexpandeanodel for simulation
would cause an important overestimation of the substitution among dwellings in the
Odivelas-Amadora nest.

The fourth column of Table 5 reports the estimators of the model estimated using the
ExpandedIterative Prob.method, where the sampling correction is applied and the sum
of the exponentials is expanded using the iterative procedure described in Section 6.3.
Equivalent to what occurred in the Monte Carlo experiments, the estimators are
remarkably similar to those of the model without sampling and statistically equal (with
95% confidence) to them.
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The second experiment corresponded to the application of the same sampling
protocol as before, but with alternatives that were sampled up to make a total of 500 for
the Odivelas-Amadora nest and 500 for the root (Lisbon). The results of the models
estimated using this sampling protocol are shown in Table 7. Equivalent to what occurred
with the Monte Carlo experiments, the estimators of theexpandedand of the
Expanded lIterative Probmodels are similar to those of the model without sampling

when J is large. All estimators are statistically equal (with 95% confidence) in both
cases. The most significant difference is that the bias of the estimator of the scale of the
Odivelas-Amadora’s nest is smaller for thepandedterative Prob.model.

Finally, Table 6 and Table 7 report also the computational time used in the estimation
of the different models. In the case where only 10 alternatives were sampled, the
differences in computational costs were huge. The true model that considers the full
choice-set of 11,501 alternatives took approximately 350 times more to be estimated than
the Unexpandednodel, and approximately 35 times more thanEkpandediterative
Prob. method. The differences are reduced to 7 and 1.7 times respectively, when 1,000
alternatives are sampled. These differences in estimation time, together with the evidence
gathered from the Monte Carlo experiment with one million alternatives, reflect the
significant gains that can be obtained with sampling. The methodological developments
of this paper will allow taking benefit of these gains in the implementation of spatial
choice models with more realistic error structures rendering the development of better
tools for policy analysis.

8 Conclusion

Sampling of alternatives for non-Logit models is a problem that has been open for over

30 years, and that have hindered the development of suitable spatial choice models. This
paper proposes a novel method to address this issue for MEV models and illustrates its
properties by means of a Monte Carlo experiment applied to the Nested Logit model, and

a case study based on real data on residential location choice from Lisbon, Portugal.

Monte Carlo experiments showed that the sampling of alternatives causes a
significant bias in the estimators of the model parameters when the choice model is
Nested Logit. In addition, the proposed method for expanding the sum of the
exponentials performed well, even for small sample sizes. In cases where it is possible to
obtain an additional sample to expand the sum of the exponentials, the method proposed
is easily applicable. When it is not possible to re-sample, the method requires knowledge
of the choice probabilities in order to build the expansion factors. In this final case, an
iterative procedure showed satisfactory results.

Monte Carlo experiments additionally offered evidence that the sample size required
to obtain good estimators while sampling alternatives in MEV models depends on the
distribution of the data available and cannot be expressed as a percentage of the
cardinality of the true choice-set. In general, an appropriate strategy to determine if the
size of the sample of alternatives is large enough might be to test the stability of the
estimators with different number of alternatives sampled.

The application with real data demonstrated that the proposed method to achieved
consistency while sampling of alternatives in MEV is practical and may have a
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significant impact in the design of more sophisticated modeling tools for policy analysis
in urban systems.

Different lines for future research may be proposed to address the limitations of this
study. First, it would be interesting to apply the method developed in this paper into
larger real databases and other spatial choice models, such as job and firm location, route
choice or activity scheduling. Finally, it would be interesting to assess the full impact of
the methodological advances of this research in policy analysis by applying them in the
framework of an operational microscopic integrated urban model such as UrbanSim
(Waddellet al, 2008).
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