
Design and Implementation of an Interface for the

Integration of DynaMIT with the Traffic

Management Center

by

Manish Mehta

B.E. (Hons.) University of Roorkee, India (1997)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

c© Massachusetts Institute of Technology 2001. All rights reserved.

Author .
Department of Civil and Environmental Engineering

May 11,2001

Certified by. .
Moshe E. Ben-Akiva

Edmund K.Turner Professor of Civil and Environmental Engineering
Thesis Supervisor

Certified by. .
Haris N. Koutsopoulos

Operations Research Analyst, Volpe National Transportation System
Center

Thesis Supervisor

Accepted by .
Oral Buyukozturk

Chairman, Department Committee on Graduate Students

.

Design and Implementation of an Interface for the

Integration of DynaMIT with the Traffic Management

Center

Manish Mehta

Submitted to the Department of Civil and Environmental Engineering
on May 11, 2001

in partial fulfillment of the requirements for the degree of
Master of Science in Transportation

Abstract

DynaMIT (Dynamic Network Assignment for the Management of Information to
Travelers) is a simulation based real-time system with traffic prediction and guidance
generation capabilities. It is intended to operate within Traffic Management Centers
(TMC) to provide decision support and pro-active route guidance. The objective of
this research is to develop an interface for the Integration of DynaMIT with Traffic
Management Centers. A successful integration of DynaMIT within the TMC requires
a continuous and real-time exchange of data from multitude of legacy information
sources. The proposed interface intends to synchronize the operation of the different
information sources and the various components within DynaMIT through a common
time server. The interface also converts the sensor and incident data (needed by
DynaMIT for state estimation) into a common readable format and similarly converts
the guidance provided by DynaMIT into an acceptable format. The system is designed
over an extensible Common Object Request Broker Architecture (CORBA), which
can help in the implementation of the system across multiple platforms and remote
hosts.
The same interface is also used to integrate DynaMIT with MITSIMLab, a

laboratory for the evaluation of Dynamic Traffic Management Systems. The Traffic
Management Simulator (TMS), within MITSIMLab, emulates the TMC operations
and hence can be a good test for the evaluation of the interface as well as DynaMIT,
before applying it on real world. Suitable adapters have also been developed on the
MITSIMLab side to transfer and receive required data. The interface is applied and
tested on two case studies - the Central Artery/Tunnel Network in Boston and a
test network in Irvine California. In the Irvine case study the interfaces between
MITSIMLab and DynaMIT will replicate exactly the interfaces at the traffic control
centers in the test site.

Thesis Supervisor: Moshe E. Ben-Akiva
Professor of Civil and Environmental Engineering
Massachusetts Institute of Technology

Thesis Supervisor: Haris N. Koutsopoulos
Operations Research Analyst
Volpe National Transportation System Center

Acknowledgments

I would like to express my deep gratitude for the constant guidance and support from

my advisors, Professor Moshe Ben-Akiva and Dr. Haris Koutsopoulos, during the

course of my graduate study. Their insights, suggestions and criticism contributed

in large measure to the success of this research. Dr. Koutsopoulos has been a

special mentor for me during my stay at MIT and has spent hours going over the fine

details and discussing the bigger picture of the implemented research. His patience,

encouragement and help, during the ups and downs, have been invaluable and would

be difficult to express in words.

My thanks also goes to the Oak Ridge National Laboratories and the Federal

Highway Administration for their financial support. My special thanks also to the

MIT Center for Transportation Studies for providing me an opportunity to pursue

the graduate program, which itself has been a special experience for me.

My gratitude also goes to Dr. Didier Burton and Bruno for acquainting me with

the systems in the MIT ITS Lab at the beginning of my research.

My stay at MIT and at the ITS Lab has given me many moments and experiences

that I will cherish for all times to come. My friends and colleagues from the ITS

program have confirmed my belief that there is always something to learn from

everybody. Among these friends are Rama, Tomer, Yosef, Leanne, Angus, Marge,

Kunal, Zhili, Srini, Deepak, Dan and many others to whom I will always be thankful.

We have had many a useful debates and discussions on academic and not-so-academic

matters, which have all contributed to my education.

Finally, my special thanks to my parents for their love, understanding and

encouragement. They have set high standards for me and inspired me to pursue

my goals with high integrity and determination.

5

Contents

1 Introduction 12

1.1 Dynamic Traffic Assignment Systems 13

1.1.1 DynaMIT . 13

1.2 Irvine Traffic Management Center Testbed- An Overview 18

1.2.1 Surveillance Systems . 19

1.2.2 Control and Guidance Systems 20

1.2.3 Incident Management Systems 20

1.2.4 Communication Systems . 21

1.3 Motivation and Research Objective 22

1.4 Literature review . 24

1.4.1 Dynamic Traffic Management Systems 24

1.4.2 Evaluation of Dynamic Traffic Management Systems 27

1.4.3 Interfacing of ATMS/ATIS subsystems 29

1.4.4 Architecture for Integration with TMC subsystems 32

1.5 Thesis Outline . 34

2 Integration and Evaluation Requirements 35

2.1 Off-line Evaluation Requirements . 35

2.1.1 Methodology . 36

2.1.2 MITSIMLab - A Traffic Simulation Laboratory 37

2.2 Interfacing Requirements for MITSIMLab subsystems 38

2.2.1 Time Server . 39

2.2.2 Surveillance System . 39

6

2.2.3 Incident Management System 40

2.2.4 Guidance and Control System 41

2.2.5 Software and Communication System 42

2.3 On-line Integration Requirements . 44

2.3.1 Architectural Requirements 45

2.3.2 Surveillance Interface . 47

2.3.3 Incident Detection Interface 48

2.3.4 Traffic Control and Route Guidance Interface 49

3 Interface: Architectural Design 50

3.1 System Architecture . 50

3.1.1 Distributed Implementation 52

3.1.2 Dynamic Traffic Management Simulator (DTMS) 54

3.1.3 Traffic Management Center Adaptor (TMCA) 58

3.1.4 DynaMIT Communicator . 59

3.1.5 Software Environment . 60

3.2 Process Description . 61

3.3 Architecture for MITSIMLab-DynaMIT Interface 63

3.4 Architecture for TMC-DynaMIT Interface 66

4 Implementation Framework 70

4.1 Off-line Evaluation . 70

4.1.1 Off-line, Open-loop Implementation 71

4.1.2 Off-line, Closed-Loop Implementation 78

4.2 On-line Implementation . 85

4.2.1 On-line, Open-loop Implementation 86

4.2.2 Interface Compliance . 89

5 Case Study 92

5.1 Case Study I - Central Artery/Tunnel Network 93

5.1.1 The Network . 93

7

5.1.2 The Scenarios - Incident in Third Harbor/ Ted Williams Tunnel 95

5.1.3 Measures of Effectiveness (MOE) 97

5.1.4 Historical Data and Inputs . 98

5.1.5 Route-Choice and Control . 100

5.1.6 Results . 101

5.2 Case Study II - The Irvine Network 109

5.2.1 The Network . 109

5.2.2 The Interface . 111

6 Conclusions 113

6.1 Research Contribution . 113

6.2 Future Work . 115

A Sample Data Files 122

8

List of Figures

1-1 Overall System Structure of DynaMIT 15

1-2 The Rolling Horizon Implementation of DynaMIT 17

1-3 Operational Framework of DYNA . 25

1-4 Evaluation Framework for DTMS . 29

1-5 Interfacing Framework for ADVANCE 31

1-6 Interfacing Framework for DYNA . 32

1-7 DynaMIT’s role with ATMS/ATIS subsystems in the Traffic

Management Centers . 33

2-1 Software Architecture of MITSIMLab 43

2-2 UC Irvine TMC Testbed Information Flow 45

3-1 Overall Interface Architecture . 51

3-2 Overview of a CORBA Application 53

3-3 Simultaneous support of Multiple TMC-DynaMIT instances 55

3-4 Multiple Server Instantiation for each TMC-DynaMIT pairing 57

3-5 Registration of Server Information . 57

3-6 Client/Server Location and Communication Process 61

3-7 Push/Pull model for providing asynchronous communication 62

3-8 Communication between TMC Adaptor and MITSIMLab 65

3-9 Integrated TMC architecture (Phase I) 67

3-10 Integrated TMC architecture (Phase II) 69

4-1 Framework for Open-loop Evaluation 72

9

4-2 Framework for Off-line, Open-loop, Implementation (MITSIMLab-side) 74

4-3 Framework for Off-line, Open-loop,Implementation (DynaMIT-side) . 77

4-4 Framework for Closed-loop Evaluation 79

4-5 Framework for Off-line, Closed-loop, Implementation (DynaMIT-side) 81

4-6 Framework for Off-line, Closed-loop, Implementation (MITSIMLab-side) 83

4-7 Framework for On-line, Open-loop,Implementation of DynaMIT) . . . 87

4-8 DynaMIT system interfaces as specified in ICD (from Summers and

Crutchfield (1999)) . 90

5-1 The CA/T Network - Incident in Tunnel 94

5-2 The Central Artery / Tunnel Network (source: http://www.bigdig.com) 94

5-3 The CA/T Network - Representative Sensor Locations 96

5-4 OD pairs for the CA/T Network . 96

5-5 Measure of Consistency for Route-Guidance 102

5-6 Scatter Plot of Travel Times for UnGuided Vehicles 105

5-7 Scatter Plot of Travel Times for Guided Vehicles 105

5-8 Comparison of Average Travel Times for All Vehicles 106

5-9 Comparison of Average Travel Times as a function of Departure Times 107

5-10 The Coded Irvine Network . 110

5-11 The Irvine Network (source: http://www.mapquest.com) 110

5-12 A snapshot of the DynaMIT-MITSIMLab closed-loop implementation

on the Irvine Network . 112

10

List of Tables

5.1 Origin-Destination Flows and Paths for CA/T Network 99

5.2 Comparison of Sensor Counts for No-Guidance and Guidance Scenarios 104

5.3 Comparison of Average Travel Times for OD Pairs 108

11

Chapter 1

Introduction

Increasing congestion and traffic problems in the major cities around the world, has

led to tremendous amount of research and development in the field of Intelligent

Transportation Systems (ITS). ITS technologies are being developed to improve

efficiency, productivity, and safety of existing transportation facilities, increase

mobility, and alleviate the impact of transportation on the environment. A lot of

effort has been concentrated on the development of various tools for the optimization

of transportation systems. These systems, jointly referred to as Dynamic Traffic

Management Systems (DTMSs), are based on a whole ensemble of diverse and

complex software systems. In the future, DTMSs, with coordinated Advanced

Traffic Management System (ATMS) and Advanced Traveler Information System

(ATIS)operations, are supposed to be operated in the Traffic Management Centers

(TMCs) to provide advanced traffic management with dynamic route guidance and

traffic control. Dynamic Traffic Assignment (DTA) has been one of the most

recent developments in this field, receiving extensive attention from transportation

researchers worldwide. The real-time DTA system is envisioned as an ATMS and

ATIS support system that will reside within a TMC. DTA systems use advanced travel

behavior and traffic models to analyze multi-source data to estimate and predict traffic

network states. Dynamic modeling and control of a multi-destination traffic network

in real-time make these systems fairly complex. DTA systems, in order to operate

successfully within TMCs, require to be integrated with many important technologies

12

and software systems. A successful integration of a DTA system within the TMC

requires a continuous and real-time exchange of data from multitude of legacy

information sources and diverse software systems, posing some difficult problems for

system integration, data communication, interfacing, and synchronization. Design of

such an interface for the integration of a DTA system (DynaMIT) with the TMC is

the focus of this work.

1.1 Dynamic Traffic Assignment Systems

Dynamic Network Assignment (DTA) systems are the latest generation of real-time

support systems, designed to reside in Traffic Management Centers for the support

of ATIS and ATMS operations. DTA systems aim at providing route guidance

and traffic control based on predicted rather than historically measured traffic

conditions. These systems, thus, are dynamic and envisioned to receive real-time and

continuous data and disseminate proactive strategies for optimal traffic assignment.

As a TMC support system, DTA will interact with other systems within a TMC,

including surveillance, incident detection and management, and variable message sign

(VMS) systems. DTA systems currently are receiving extensive interest from the

transportation research communities and are under active development, validation

and evaluation. DynaMIT (Dynamic Network Assignment for the Management

of Information to travellers) is one such DTA system being developed at the

Massachusetts Institute of Technology (Ben-Akiva et al. (1996a)).

1.1.1 DynaMIT

DynaMIT is a simulation based real-time Dynamic Traffic Assignment system with

traffic prediction and guidance capabilities. It is designed to operate in real-time,

and accept real-time surveillance data (including real-time sensor and incident data).

Based on the surveillance data, DynaMIT estimates and predicts time-dependent

Origin-Destination (OD) flows. The system, using the predicted OD flows predicts

future traffic conditions, and interfaces with the traffic control system to generate

13

route guidance consistent with the predicted traffic conditions. Bottom et al. (1998)

discuss the importance and generation of consistent anticipatory route guidance.

Figure 1-1 gives the overall structure and implementation framework of DynaMIT.

DynaMIT is organized around two major simulation tools: Demand Simulator and

the Supply Simulator.

The demand simulator itself has two broad functions: (i) it estimates and

predicts the time-dependent Origin-Destination (OD) flows, and (ii) calculates

driver’s decisions in terms of departure time, mode-choice and route-choice. DynaMIT

starts with a network representation and a historical estimate of the OD flows. But

the actual OD-flows in the network may be very different actual travel demand in the

network due to random fluctuations and shifts. DynaMIT can estimate OD flows by

using a Kalman Filter approach (Kalidas et al. (1997) and Kalidas (1996)), or using

a more generic GLS approach (derived from Cascetta et al. (1993)). The driver’s

decisions are implemented through various behavioral models, which calculate the

probabilities of selecting the various choices the drivers have from their respective

choice sets. Utilities for all the available alternatives are calculated based on the

various attributes of available choices and their calibrated coefficients. The individual

probabilities are calculated using MNL-type models (Ben-Akiva and Lerman (1985)).

The supply simulator is designed as a Mesoscopic Traffic Simulator. It is

a time-based simulation model, designed to operate in real-time. Its accuracy (like

other time based simulation models) is controlled by the time steps. The simulation

of the traffic proceeds through two steps, (i) Update Phase during which the values

of the various quantities of interest (e.g. speed, density, etc.) are updated, and

(ii)Advance Phase, which is used to advance the traffic packets to their new positions.

The simulation network is represented through nodes, links segments and lanes. The

supply simulator gets from the demand simulator a list of vehicles. Speed calculations

are made using the macroscopic speed-density relationships. The evolution and

dissipation of queues is modeled through a deterministic queueing model, and is lane

based.

DynaMIT operates in a rolling-horizon as described and below (and shown in

14

Nertwork
Representation
Historical Data

Calibrated Parameters

Inputs

Surveiollance &
Incident Informatioon

Historical Real-time

State Estimation

Assignment
Matrix

Supply
Simulation

Demand
Simulation

Estimated
Demand

Congruity

Prediction-Based Guidance Generation

Future
Network

Conditions

Prediction
Information
Generation

Information
Strategy

Congruity

Guidance
Dissemination

Figure 1-1: Overall System Structure of DynaMIT

15

Figure 1-2).

The figure shows two roll-overs for the rolling horizon implementation. When the

current time is 8:00, DynaMIT does a state estimation past. In this example, the

state estimation starts 15 minutes earlier and uses sensor counts during this time

period. After the state estimation, DynaMIT would predict thirty minutes in future

(in this example). The estimation and prediction computations, for example, may

take upto seven minutes. In that case the guidance is disseminated at 8:07. The next

set of fifteen minutes aggregated sensor counts would be available at 8:15. DynaMIT

would thus roll-over at this time. It again estimates the state at 8:15 and predicts

half an hour to the future and disseminates information at 8:22 (taking into account

the computational delay). Estimations and predictions would proceed in a similar

manner in subsequent intervals.

DynaMIT has two main functions: state estimation and prediction-based guidance

generation.

State estimation provides the estimates of the current states in the form of

network state (giving link or segment based flows, queues, speeds and densities)

and OD flows. the state estimation is carried out through successive iterations

between two simulation tools: Demand Simulator and the Supply Simulator. The

OD estimation utilizes an assignment matrix, that maps OD flow to link counts.

The assignment matrix is obtained through the network state estimation modules

which consist of the two subsystems - the mesoscopic simulator and the Behavioral

Module that captures the driver behavior on the network, by predicting driver path

choices and driver response to information and travel guidance. The mesoscopic

traffic simulator (described above) simulates the traffic conditions in the network and

generates the assignment matrix. The traffic simulator also measures link counts at

the sensor locations which are then compared with the sensor counts obtained from

the field. If the two match well we achieve congruency. Otherwise, the assignment

matrix is again used for OD-estimation and the process is repeated till we achieve

congruency.

Once the congruency is achieved (or the pre-specified maximum number of

16

7;45 8:00 8:15 8:30

State Estimation

Prediction Horizon

At 8:00

��
Comp. Delay

8:07

7;45 8:00 8:15 8:30

State Estimation

Prediction Horizon

At 8:15

��Comp. Delay

8:22 8:45

Figure 1-2: The Rolling Horizon Implementation of DynaMIT

iterations are made), the network conditions (which include the estimated OD-flows,

link flows, speeds, queues and densities) are preserved as the estimated state.

Prediction-based Guidance Generation is solved as a fixed point problem.

The guidance depends on the expected future traffic conditions, which depend on

drivers choice, which in turn depends on the guidance provided. Ben-Akiva et al.

(1996a) proposed an iterative approach to solve this problem. We begin with a base

guidance case and simulate through the mesoscopic traffic simulator to generate a

guidance (based on link travel times). We then do a route-choice based on these

travel counts and again generate the travel times. The two travel times are compared

till we reach consistency. The best guidance is dissipated to the users. The quality of

prediction depends on the current state estimation, which thus needs to be updated

at a regular basis. This formulates the rolling horizon approach of solution, as shown

in Figure 1-2.

DynaMIT, when installed at the traffic control center, must interact in real-time

17

with the various elements and systems in the TMC. The integration of DynaMIT

with TMC depends on the system as well as the communication architecture. At

the modeling level, DynaMIT needs to have sufficient flexibility to take continuous

real-time inputs and disseminate continuous or discrete set of guidance as required

by its user. The TMC should also have an open architecture to support integration

with the DTA system. We would next look at the state of art practices at the

traffic management centers and then formulate a set of requirements for interfacing

DynaMIT with the TMCs.

1.2 Irvine Traffic Management Center Testbed-

An Overview

DynaMIT is envisioned to operate within a Traffic Management Center as a support

for ATMS/ATIS operations. A complete integration of DynaMIT within TMC

depends on the system and communication architecture of the TMC. A TMC itself

consists of multiple ITS systems, which include the systems that provide the basic

functionality (e.g. controlling signals, collecting data, etc.) and some others that

are interfaced to enhance the operational capabilities of the TMC (e.g. the adaptive

control systems, route-guidance systems, etc.).

Different TMCs have widely varying architectures and number and types of

individual subsystems. The interfacing requirements and the data acquisition

and processing capabilities of individual TMCs also vary a lot. This makes the

development of a generic interface that would support all the different TMC types,

a very difficult problem. All interfaces require some kind of customization at the

TMC level. Customization at the TMC-level, would standardize all the data and

information that comes out the TMC and this would help in increasing the flexibility

of interfacing with multiple types of different support systems. Even though an

adaptor specific to the TMC is required for complete application, a good design should

be able to produce a fairly generic interface that can be adopted to the individual

18

TMCs with minimal modifications.

In order to develop a complete set of interfaces for the individual subsystems, we

need to look more specifically at the TMC in hand. In this section we look at the

functionality and operations of a specific TMC. Many features and characteristics

are common to most TMCs. However as with every TMC, certain features and

characteristics are unique.

DynaMIT is intended to be field tested at a testbed developed at University

of California, Irvine, which receives data directly from the City of Irvine Traffic

Management Center, the Caltrans District 12 TMC and the City of Anaheim Traffic

Management Center. We will use this test-bed as the focus of our description and

describe the different subsystems we need to interface with in order to integrate the

DynaMIT operations in real-time. Many of the characteristics discussed here are

generic to most of the TMCs and hence this discussion can be extended to represent

general characteristics of subsystems in a Traffic Management Centers.

We next describe the different subsystems which need to be interfaced and are of

specific interest to this study:

1.2.1 Surveillance Systems

The TMC testbed has developed an extensive surveillance support system to support

field testing. Traffic information is collected using a variety of technologies including

loop detectors (sensors), video surveillance and closed-circuit television (CCTV),

infrared sensors, vehicle probes, and mobile videos. A series of portable Video Image

Processing (VIP) systems and supporting wireless communication infrastructure have

been deployed as a part of new technology initiative to capture real-time surveillance.

These systems work on Spread Spectrum Radio (SSR) technology and have been

deployed under the federal Mobile Video Surveillance / Communication (MVSC) field

operation test project. The video image processing surveillance function processes

video images received from two fixed-field-of-view (FFOV) cameras to generate the

pertinent data.

Each VIP sensor node can send in the following data: (i) date and time, (ii)

19

detector ID, (iii) vehicle loop count, (iv) lane count, (v) speed, (vi) occupancy,

(vii) density, and (viii) queueing data. The information is captured by the sensors,

processed locally, and aggregated for transmission to the TMC. Regular scanning

frequencies are 1/240s and broadcasting frequencies are about 30 seconds.

1.2.2 Control and Guidance Systems

TMCs can have a centralized, distributed, or a hierarchical control mechanism. In

a centralized environment, a central facility collects traffic status data and makes

traffic control decisions. In a distributed environment, control is performed locally,

generally at the intersection level. A hierarchical control configuration is a hybrid

between central and distributed control. The Irvine TMC control and guidance

systems are designed to be centralized, with a variety of control mechanisms, including

Variable Message Signs (VMS), ramp metering, real-time traffic adaptive signal

control, highway advisory radio, lane usage control, etc.

In addition, Anaheim has been developing a Motorist Information System (MIS).

There are four main component of this system (FHWA (1993)): information kiosks,

highway advisory radio, highway advisory telephone, and a CATV feed. These will be

strategically placed and play recorded messages to provide guidance. These messages

will be updated at a periodic rate to maintain latest information.

1.2.3 Incident Management Systems

The TMC test-bed incorporates automatic incident detection by autonomously

spotting conditions of non-recurring congestion. The incident is usually detected

through a video input or specific information form the mobile sources. TMC

requires some specific information processing capabilities like, integrated data

management, real-time traffic simulation model execution, image processing for area-

wide surveillance and incident detection, to provide incident management (FHWA

(1993)).

Expert systems generally guide through the steps necessary to quickly and

20

efficiently respond to an incident. The control options include sending advisory

messages to VMS, route diversion alternatives via an interface to ATIS or radio

broadcasts.

1.2.4 Communication Systems

The testbed system is built upon a wide-area communications network backbone

linking the cities of Anaheim and Irvine Traffic Management Centers to the California

Department of Transportation’s District 12 TMC and with the ATMS research

laboratories at the University of California, Irvine, Institute of Transportation

Studies. The communication network is based on an ATM infrastructure, designed

to be compatible with the existing Teleos ISDN PRI network established by the

Caltrans Wide Area Network (WAN). The ATM infrastructure is linked with the

Caltrans District 12 TMC and the City of Irvine ITRAC via an OC3 155 Mbps

SONET fiber optics network, and with the City of Anaheim TMC via ATM T-1.

The system also has a MPEG 1 video transmission system, allowing for selection and

display of freeway video surveillance cameras within District 12.

The TMCs are equipped with UNIX workstations and numerous PC-compatible

machines. The UCI laboratories have SGI IRIX 6.5, SunOS 5.6 and HP UX

11, besides PC-based computers. The fiber optic ATM links enable high speed

exchange of traffic data and video images - both real-time and historical. Several

communications interfaces or interties have been developed to perform these

exchanges.

The testbed and TMC is distributed using CORBA (Common Object Request

Broker Architecture) to provide to external agents the following services:

(a) real-time data in the form of LDS (raw loop detector data), VDS (processed

loop controller data), RMS (processed ramp metering control data, and CMS

(status and message on each Changeable Message Sign).

(b) CCTV switching

(c) ramp meter control

21

(d) Historical Data, and

(e) One switched video channel.

The CORBA services can also be used to develop own interfaces for

communication with the rest of the system and for research and prototype deployment

in the testbed.

1.3 Motivation and Research Objective

The real-time DTA systems are envisioned to be a part of the TMCs, and

thus need to be integrated with the TMCs to realize their design objective.

These systems are TMC-independent software systems intended to run in all

configurations of TMCs. However the TMC configuration and communication

architecture itself is far from standard and shows marked variations in different

places. TMC must though comply with an adequate generic system architecture

that allows an easy integration/interface of both internal systems and external

systems. Efforts so far have been concentrated in developing stand-alone DTA

systems. ?)Fernandez:2000)has proposed an open standard architecture that could

be possibly used to integrate Dynamic Traffic Management Systems (DTMSs)within

TMCs. However, DTA systems work independently and they may not comply with

this architecture to enable successful integration. An interface therefore needs to be

designed that will act as an intermediate layer enabling the compliance of individual

DTA systems with the overall system architecture within the Traffic Management

Centers.

As a preclude to full-scale field application of the DTA systems, a strong need

is felt to evaluate these systems off-line, using a ground-truth simulator1. Such a

laboratory-evaluation system can be a very handy research tool and would also help

in assessing the performance of the DTA systems before they are introduced on-line.

The simulator can be calibrated with field data and hence replicate the ”real world”

1A traffic simulator like MIT’s MITSIM or Quadstone’s Paramics.

22

data that DTA systems are ultimately envisioned to work with. Such an off-line

evaluation can serve the following important purposes before the DTA systems are

finally integrated with the TMCs:

• Assess the quality of estimation and prediction capabilities of the DTA systems,
using real operational data, and the performance of various models used in the

system against real data.

• Assess the benefits and applicability of the outputs generated from these systems
for the actual on-line TMC operations.

• Assess the efficiency and real-time performance of the system and make the

required performance improvements.

• Understand and address any problems that might arise in the system and

communication architecture of software.

In this research, a system interface is designed that allows integration of DynaMIT

with the Traffic Management Centers. The architecture is distributed, using the

Common Object Request Broker Architecture (CORBA). The proposed interface

intends to synchronize the operation of the different information sources and the

various components within DynaMIT through a common time server. The interface

also converts the sensor and incident data (needed by DynaMIT for state estimation)

into a common readable format and similarly converts the guidance provided by

DynaMIT into an acceptable generic format.

The same interface is also used to integrate DynaMIT with MITSIMLab. Ben-

Akiva et al. (1996b) proposed the applicability of MITSIMLab (Microscopic Traffic

Simulation Laboratory) as a suitable simulation laboratory for the evaluation of

Dynamic Traffic Management Systems. A suitable adapter is written on the

MITSIMLab side to establish the communication between MITSIMLab and the rest

of the system.

23

1.4 Literature review

As seen in section 1.3, we have two broadly defined objectives for this study - (i)

interfacing of a Dynamic Traffic Assignment system (DynaMIT) with MITSIMLab,

(ii) interfacing of DynaMIT with the Traffic Management Centers. In reviewing the

previous literature and research, we would thus investigate the following areas of work

in order to learn from the experience of the other researchers and their implemented

frameworks:

• Dynamic Traffic Assignment and Dynamic Traffic Management systems,
• Tools and Methods used for investigating dynamic traffic management systems,
• Previous work in interfacing different dynamic traffic control and assignment
systems.

• Proposed designs and architectures for the integration of DTMS with TMCs.

1.4.1 Dynamic Traffic Management Systems

Dynamic traffic management systems include a whole assembly of different integrated

and stand-alone dynamic traffic control and guidance systems. Development of such

dynamic route guidance systems and dynamic traffic control strategies has been

receiving increasing attention over the last decade.

Dynamic Traffic Assignment (DTA) systems have been envisioned to be at the core

of many of these different subsystems and processes (FHWA (2000)). The success of

many of the DTMS and other ITS subsystems, like the Advanced Traveler Information

System (ATIS), Advanced Traffic Management Systems (ATMS), Advanced Public

Transportation Systems (APTS), Commercial Vehicle Operations (CVO), and

Emergency Management Systems (EMS), is dependent on the availability of timely

and accurate estimates of the prevailing and emerging traffic conditions.

DTA systems can provide this capability of traffic estimation and prediction

and are anticipated to be ATMS and ATIS support systems. Dynamic traffic

assignment has been a relatively recent development and has received extensive

attention from the transportation research communities (DYNA (1992-1995);FHWA

24

(1995), Mahmassani et al. (1994), MIT (1996)). Gartner and Stamatiadis (1997)

and Chen and Hsueh (1997) presented the framework for integrating dynamic traffic

assignment with real time traffic adaptive control.

DYNA (DYNA (1992-1995)) was developed under the European DRIVE II

program. It has been designed as a real-time traffic prediction system for an inter-

urban motor-way network. The system collects network-wide data through on-line

roadside measurement stations, and uses prediction-error feedback to update the

traffic state. Figure 1-3 provides the operational framework of the system. The system

regularly communicates with the operators at a number of levels, and continuously

forecasts in a rolling horizon implementation. DYNA uses both traffic control and

travel information strategies, and is based on variety of models which cab be sub-

grouped into two categories. Behavioural Traffic Model (B.T.M.) concentrates on

OD flow representation and sub-models that emulate human behavior and traffic

assignment. The second category, Statistical Traffic Model (S.T.M.) focusses on the

link density representation of the network traffic. DYNA has been extended by the

European Union’s Fourth Framework project DACCORD (Hague Group (1997)),

to include the implementation and demonstration of a DTMS. DACCORD includes

the EUROCOR (Middelham et al. (1994))traffic control project, and the GERDIEN

project for systems architecture and traffic prediction.

Network Traffic
Process

Data
Collection

Traffic Flow
DYNA Real-time

Prediction System

Historic
Database

Traffic
Operator

Infrastructure
Information

Figure 1-3: Operational Framework of DYNA

25

The United States Federal Highway Administration (FHWA) initiated a DTA

project in 1994, to meet the rapidly emerging needs for a traffic estimation and

prediction system. Two separate research project began in 1995 under this initiative

under the management of Oak Ridge National Laboratory(ORNL).

DynaMIT (Dynamic Traffic Assignment for the Management of Information to

Travellers) was initiated at Massachusetts of Institute of Technology (MIT). DynaMIT

(MIT, 1996; Ben-Akiva et al., 1997) is a real-time system designed to reside in TMCs

for the support of ATIS operations. The system architecture and operational features

of DynaMIT have been discussed in section 1.1.1.

The second system DYNASMART-X (DYnamic Network Assignment

Simulation Model for Advanced Road Telematics) has been developed by University

of Texas at Austin (UTX). DYNASMART-X (Mahmassani et al. (1994))is a real-

time traffic estimation and prediction system for support of ATMS and ATIS

operations. It uses network algorithms and models for trip-maker behavior in response

to information in an assignment-simulation framework. DYNASMART-X provides

control actions, in the form of information to users about traffic conditions and routes

to follow as well as signal control strategies. DYNASMART-X uses microsimulation

for individual user decisions, and mesosimulation for traffic flow. Similar to DynaMIT

it tries to achieve consistency between predicted network conditions, supplied

information and user decisions. It is implemented in a rolling horizon framework and

has features to recognizes multiple user classes. Origin-Destination estimation and

prediction is an essential part for the simulation-assignment that is being implemented

by DYNASMART-X. It adopts a distributed software implementation using CORBA.

Variety of route guidance systems have been field-tested in the past or are currently

under the testing stage. ADVANCE is a real-time in-vehicle route-guidance system

that has been tested in suburban area of Chicago.

RT-TRACS (Real-Time Traffic Adaptive Signal Control Strategy) is a program

sponsored by FHWA to improve traffic control by performing signal optimization in

real-time. RT-TRACS (Tarnoff and Gartner (1993))is intended to be a multi-level

system that consists of a number of real-time control prototypes that each function

26

optimally under different traffic and geometric conditions and are accordingly invoked

and switched from one to another dynamically to produce best possible results. Five

prototypes have been developed and are being evaluated for use in the RT-TRACS

program. Three of these prototypes, RHODES from University of Arizona, OPAC

from PB Farradyne, and RTACL from the University of Pittsburgh are at the advance

state of development.

1.4.2 Evaluation of Dynamic Traffic Management Systems

Traffic management systems can be evaluated either through field tests or through

computer-based simulations.

Field Testing is the most direct and definite way of testing traffic management

systems.

A systematic study (McNally (1999)) on the performance evaluation of Advanced

Traffic Control Systems was conducted from 1994 to 1998 in the city of Anaheim,

California. Adaptive signal control technologies were evaluated, including SCOOT

(2nd generation model) and a 1.5 generation control (1.5GC) approach, and a

video traffic detection system (VTDS). The project, in addition to evaluating the

performance of the traffic control technologies, examined institutional issues, as well.

A number of other field studies have been conducted under the California

PATH (Partners for Advanced Transit and Highways) ATMIS (Advanced Traveler

Management and Information Systems) research. These include the evaluation of

Phase I of a PeMS (performance Evaluation Measurement System), called Transacct.

The system was located at the University of California, Berkeley, campus, and was

used for studies like, estimation of reliable real time speeds, congestion measures,

etc. Another study was Dynamic Origin/Destination estimation using true section

densities (Sun (1999)). Yet another study has been the Freeway service Patrol project

(Petty et al. (1996)), which gets real-time information on the vehicle trip time and

distance traveled, using patrol service as probe vehicles.

An example for evaluation of traffic control systems is the study of INFORM

(Information for Motorists), a traffic management system designed for a 40-mile

27

long highway corridor in Long Island, New York (Smith and Perez (1992)). In the

evaluation, motorists response to and effectiveness of ramp metering and variable

message sign strategies were evaluated.

A number of projects have also been field tested to evaluate the Advanced

Traveler Information Systems. TravInfo (Miller (1998)) was a field operational

test in the San Francisco Bay Area, sponsored by FHWA. The evaluation studied

the institutional, technological, and traveler response elements of TravInfo. The

technology element focussed on the operational effectiveness of TravInfo’s Traveler

Information Center and a study of Information Service Providers reaction to and use

of TravInfo information. Traveler response investigated public access to and use of

different types of information by TravInfo and changes in individual traveler behavior.

The ADVANCE project (Bowcott (1993);Saricks et al. (1997)) has another example

of field-evaluation of ATIS. A field test for evaluating ADVANCE dynamic route

guidance system (Schofer et al. (1996)) was conducted in Chicago’s suburban areas.

Vehicles equipped with MNA (Mobile Navigation Assistant) acted as probes, sending

real time travel information to a traffic management center, which was in turn relayed

the information to equipped vehicles to aid in dynamic route planning.

Computer-simulation based evaluations provide a very good alternative to

field tests because they are much less expensive and allow greater flexibility in testing

lot of different strategies, in a controlled environment.

There have been extensive studies of the performance of traffic control and route

guidance systems using simulation. For example, simulation has been used to evaluate

the design of ramp metering strategies (Payne (1973)), urban traffic signal controls

(Sibley (1985); Yauch et al. (1988)), route diversion (Stephanedes et al. (1989);

Barcelo and Ferrer (1995)) and mainline metering (Haboian (1995)). Yang (1997)

used a microsimulator to evaluate a dynamic traffic management system. Hasan

(1999) used a microsimulator (MITSIM) to evaluate ramp control algorithms.

Studies integrated traffic management systems, using simulation, have been

relatively rare. CORSIM (FHWA (1996)) is being used to study the prototypes of

RT-TRACS. Reiss and Gartner (1991) also conducted some simulation based studies

28

on an earlier version of INFORMS (IMIS).

Ben-Akiva et al. (1995) identified the different requirements for evaluating

Dynamic Traffic Management Systems using simulation and provided an evaluation

framework for DTMSs (shown in Figure 1-4). Based on the goals and objectives of

the management system, a control strategy is formulated and fed into the simulation

laboratory, which then operates on a set of scenarios. Based on the results of the

pre-set performance measures, modifications are done in the control strategy till we

observe the desired set of results. Because it is capable of realistically simulating

the traffic flow in the network and its dynamic interrelationship with the control and

route guidance system under consideration (which many of the other simulators lack),

MITSIMLab (Yang (1997)) is an effective simulation laboratory for evaluating DTMS

(Ben-Akiva et al. (1996b)).

Goals and Objectives of Management Systems

Traffic Control Strategy Decisions

Simulation

Performance Measures

Scenarios

Figure 1-4: Evaluation Framework for DTMS

1.4.3 Interfacing of ATMS/ATIS subsystems

Literature on the interfaces of dynamic traffic assignment systems with other TMC-

based subsystems has very limited. But there are many examples of other guidance

and traffic control systems that have been interfaced in the past.

The ADVANCE project, during its testing in the Chicago suburban area, was

interfaced with different internal and external subsystems which operated in sync.

29

ADVANCE consisted of five subsystems, namely (i) the Traffic Information Center

(TIC) which contained the central facility, the operator interface, etc.; (ii) the

Traffic Related Functions (TRF) which includes the traffic algorithms; (iii) the

Communications Subsystem (COM) which provides message carrying capability

between the TIC and the vehicles in the field; (iv)the Mobile Navigation Assistant

(MNA) which contains in-vehicle route planning and display capabilities; and (v) the

Help Center (HC) which provides for roadside vehicle assistance requests and driver

queries.

The data flow between the MNA and TIC was through the COM interfaces on

the TIC and MNA sides. the TRF internally contained multiple subsystems - each

specific to an algorithmic role, which were interfaced with the TIC which in turn

communicated with the MNA in each vehicle. Figure 1-5 shows overall interfacing

framework adopted by ADVANCE.

Federal Highway Administrations’s, Turner-Fairbank Highway Research Center 2

has taken many initiatives to interface various simulation and traffic control tools.

One of the interfacing tool is TSIS (Traffic Software integrated System) which

provides state-of-the-art environment for managing, controlling, and coordinating the

application of various traffic engineering analysis and simulation tools. It provides

a framework for exchanging data between different traffic engineering tools and

standard interfaces for communicating with real-time traffic control systems and

hardware devices.

The FHWA’s Traffic Research Laboratory (TReL)3 has also integrated a hardware-

in-the-loop simulation with a video camera sensor collection tool and a real-time traffic

adaptive signal control algorithm. It has also developed a communication interface

between the signal control algorithm, the sensors, and the CORSIM simulation engine.

Elaborate interfacing for CORSIM is being planned in order to allow it to operate as

a simulation-based evaluation tool for traffic management systems.

The DYNA project also required significant interfacing before it was applied to

2http://www.tfhrc.gov
3http://www.its.dot.gov

30

TRF Off-Line

Attributes
Database

Static
ProfilesMemory Cards

Loop Detectors
Probe Reports

Static Profiles
Updates

Travel Time
Prediction

TRF On-Line

Data Fusion

Incident Detection

TRF
Data
Store

TIC

TIC Active
Data

TIC Operator

Figure 1-5: Interfacing Framework for ADVANCE

31

the Rotterdam network in Holland. The framework for surveillance interfacing is

shown in Figure 1-6. The measurements are obtained from the surveillance station

which are average one minute flows, one minute velocities and a congestion indicator

that flags a time sequence for which link velocity falls below a critical value. The

measurements then pass through several stages of processing, starting with detection

at the road surface, local processing to aggregate over 1 minute interval, transmission

to intermediate portals where the time stamp is added, and finally transmission to

the traffic center. The data arriving at the TMC is then added to a file, which is used

by the system subsequently.

Motorway Network
Input

Database

Surveillance
System

DYNA
Controller

DYNA
Predictor

Control
Measures

Prediction
& Outputs

Figure 1-6: Interfacing Framework for DYNA

1.4.4 Architecture for Integration with TMC subsystems

The real-time traffic estimation and prediction capabilities can be very useful to

many subsystems that operate within and outside the Traffic Management Centers.

The Travel Management Team at Office of Operations Research and Development

(FHWA) identified almost fifty independent ITS (Intelligent Transportation System)

packages and subsystems that would support TMC operations and which can use the

32

data provided by DTA systems.

The U.S. Department of Transportation (DOT) has developed a National ITS

Architecture4 to promote development of Intelligent Transportation Systems that are

uniform and inter-operable. The architecture provides a framework in which the DTA

systems are intended to operate and interface. Figure 1-7 provides an overview of the

envisioned framework of operation of DTA systems and provides a wholistic view for

integration and inetrfacing requirements of DTA systems.

Traffic
Management

Centers

APTS &
CVO

Traffic Control
Incident

Detection &
Management

Congestion
Mangement

Traffic Info.
Mangement

(VMS)

Database &
Statistics

Surveillance &
Probe Vehicles
Management

DynaMITATIS Service
providers

Travelers

Figure 1-7: DynaMIT’s role with ATMS/ATIS subsystems in the Traffic Management
Centers

There is currently no working example of an integrated TMC-DTA system. Ruiz

(2000) provided an architecture for integration of Dynamic Traffic Management

Systems. The architecture was based on a generic distribution mechanism using

CORBA (Common Object Request Broker Architecture), and based on an abstract

factory pattern that permits anonymous use of DTMSs within TMCs. The

4Available at http://www.itsonline.com/archls.html

33

architecture sought to implement a Publisher/Subscriber pattern to provide parallel

programming on top of CORBA’s synchronous communication paradigm.

1.5 Thesis Outline

Thesis is organized as follows: Chapter 2 specifies the off-line evaluation requirements

for DynaMIT and the implementation requirements for the interface. It also

provides the requirements for on-line integration of DynaMIT with the Irvine Traffic

Management Center.

Chapter 3 discusses the overall system architecture for interfacing DynaMIT

with MITSIMLab for off-line evaluation. It also discuss the design architecture for

integration with the Traffic Management Center at Irvine.

The first part of Chapter 4 presents the implementation framework for combined

MITSIMLab-DynaMIT operations. The second part discusses the systematic way in

which the interface is implemented for DynaMIT-TMC operations. It will also discuss

the interfaces’s compatibility with the Interface Control Document (ICD) proposed

by FHWA.

Chapter 5 includes two case studies that demonstrate the functional viability

of the interface. The first case study is based on the Central Artery Network in

Boston. The case study presents results that demonstrate the usefulness of predictive

route guidance. It also demonstrates the flexibility of the interfaced MITSIMLab-

DynaMIT tool in studying various scenarios useful for evaluating DynaMIT. The

second case study focusses on the Irvine network. The case study illustrates the

effective operational viability of the interface in supporting large networks. It also

constitutes a big step forward in terms of the ultimate goal of testing DynaMIT with

the real data from Irvine test network. The final chapter concludes the work presented

in this study and gives directions for future work in this field.

34

Chapter 2

Integration and Evaluation

Requirements

We divide this chapter into two parts. In the first part we describe the design

requirements of the Interface so that DynaMIT can work in a closed-loop format

with MITSIMLab - our ground truth simulator. As mentioned in the previous

chapter, such a closed-loop system can be an excellent research tool and a good

precursor to the actual on-line integration of DynaMIT with the TMCs. The second

part describes the requirements for the integration of DynaMIT with the Traffic

Management Centers. Special attention is paid to the Traffic Management Center

at Orange County, California, where DynaMIT is intended to be first integrated for

field-testing.

2.1 Off-line Evaluation Requirements

Computer Simulation systems provide an effective tool for testing alternate system

designs before conducting expensive on-field operational tests. Various individual

control elements of traffic management systems have been studied using simulation

before. A similar simulation-based approach for evaluating Dynamic Traffic

Management Systems has been proposed by Ben-Akiva et al. (1994a). In the following

section we investigate the system and modeling requirements to pursue this line of

35

approach.

2.1.1 Methodology

Ben-Akiva et al. (1996b) proposed an overall evaluation and design refinement

framework for evaluating Dynamic Traffic Management Systems (see Figure 1-4). A

simulation laboratory is used to compare the candidate designs against a base case.

The inputs to the simulation laboratory are (i) the elements (e.g. surveillance and

control devices) and the logic that determines how the system under investigation

operates; and (ii) the scenarios against which the system will be tested. A set of

performance measures are computed, and then the results are analyzed to suggest

any improvements.

Yang (1997) demonstrated the use of MITSIMLab as a possible simulation

laboratory for evaluating Dynamic Traffic Management Systems. A more detailed

description of MITSIMLab and its subsystems is provided in section 2.1.2 and 2.2.

MITSIMLab has the following essential characteristics that are required for

evaluating DynaMIT:

• flexibility to simulate a wide array of traffic management system designs,

networks and control strategies.

• representation of the surveillance system, including real-time sensor counts and
incident detection.

• modeling the response of drivers to real-time traffic information.
• incorporation of guidance (generated by DynaMIT) through a wide array of
information dissemination strategies.

• open architecture, which facilitates interfacing and integration.

The effectiveness of the guidance generated by DynaMIT can be tested in

MITSIMLab against the base case of no-guidance. The sensitivity of results (benefits)

to a variety of design characteristics associated with DynaMIT can also be tested.

36

2.1.2 MITSIMLab - A Traffic Simulation Laboratory

MITSIMLab (Yang and Koutsopoulos (1996); Koutsopoulos et al. (1994) is a traffic

simulation laboratory, consisting of a traffic flow simulator (MITSIM) and a traffic

management simulator (TMS). To capture the real-time control and routing strategies

and simulate the surveillance system, the traffic and network elements are represented

in a fairly detailed level. Such detailed modeling is able to capture the stochastic

nature of traffic flow and drivers response to route guidance - a feature that is very

important for evaluating dynamic traffic management systems.

The Microscopic Traffic Simulator (MITSIM) models the traffic in the network.

The road network with the traffic surveillance and control devices are represented

in detail to emulate the ”real world” elements. The Network consists of nodes,

links, segments and lanes. The Surveillance system consists of various forms of

detectors. Traffic signal devices, message signs, lane use signs, and special facilities

(like Toll Booths, etc.) are also represented. Vehicle trips are generated based on

pre-determined origin-destination (OD) tables. MITSIM uses lane-changing and car-

following models to move vehicles. Behavioral parameters are assigned randomly

based on pre-determined and calibrated user characteristics. Vehicles are moved at a

pre-fixed step size according to various constraints.

The Traffic Management Simulator (TMS) has the control and route guidance

system. It receives input from the MITSIM surveillance system in the form of real-

time traffic measurements. Based on the surveillance data, TMS generates control

and route-guidance and updates the traffic signals and signs in the network. TMS

can model both pre-timed and reactive systems(adaptive systems where control and

route-guidance is provided based on the prevailing traffic conditions). Yang (1997)

provides detailed description on design and models of TMS.

There is a very strong coupling between the traffic flow and control strategies.

Traffic control and routing strategies effect the traffic flow and control strategies

themselves are triggered by the traffic flow as measured by the surveillance system.

As a result, TMS and MITSIMLAB can simulate a wide range of traffic control and

37

advisory services, including:

• Intersection controls such as traffic signals, yield and stop signs.
• Mainline Controls such as lane use signs, variable speed limit signs, variable
message signs, etc.

• Ramp Controls such as ramp metering and speed limit signs.

These signals are controlled by traffic signal controllers, which can be of four

types - static, pre-timed, traffic adaptive and metering controllers. Each controller is

characterized by a set of data items (such as signal type, controller type, number of

egresses, IDs, etc.), and as the simulation progresses, the controller can switch from

one type to another.

2.2 Interfacing Requirements for MITSIMLab

subsystems

The TMS within MITSIMLab, emulates the operations in the Traffic Management

Center. We discuss here the interfacing requirements for each of the subsystems in

TMS in order to integrate DynaMIT with MITSIMLab. This would be in many ways

very similar to the interfacing requirements for integration of DynaMIT with TMCs.

The integration of DynaMIT with the TMS would require interfacing between the

following components/ subsystems:

• Surveillance System.
• Incident Management System.
• Time Server.
• Guidance and Control System.
• Software and Communication System.

38

2.2.1 Time Server

Both MITSIMLab and DynaMIT have their individual time clock components. The

time clock utility in MITSIMLab is called by multiple objects throughout the software,

and plays an important role in determining the step sizes, vehicle movements and

control regulation. The simulation speed is governed by the computational time of the

algorithms. It can practically proceed as fast as the computational times allow it to.

This time may be faster than or slower than the real-time. The speed, however, can

be slowed down manually, by changing a parameter that would decrease the advance

frequency of MITSIMLab’s internal clock. Similarly a different clock component is

extensively used within DynaMIT by its supply and demand simulators.

The rolling horizon implementation of MITSIMLab-DynaMIT closed loop would

require the TMS to make multiple and discrete calls to DynaMIT for providing

prediction-based guidance. Similarly DynaMIT gets the sensor counts and incident

data in discrete steps. The exchange of data thus occurs with an accompanying

time stamp, which signifies the time interval the data belongs to. This calls for a

clear mechanism for communication of a common time between the two systems.

Also, MITSIMLab cannot be blocked while DynaMIT is generating guidance. The

communication has to be asynchronous. Therefore, the time communication has to

be uni-directional rather than bi-directional. Since MITSIMLab simulates the reality

in our case, it should act as the time server for closed system.

An interface, thus, is required to be able to provide the timing data from

MITSIMLab to DynaMIT. MITSIM and TMS operate with a common clock, and

this time message requires to be communicated to DynaMIT on a regular basis.

That way DynaMIT always knows the current time in MITSIMLab and can associate

appropriate time stamps with the surveillance, incident and guidance data.

2.2.2 Surveillance System

MITSIMLab can simulate the following type of sensors, Yang (1997):

• Traffic sensors, collecting traffic counts, occupancy and speed data at fixed

39

points in the network.

• Vehicle sensors, which extract information on individual vehicles.
• Point to point data sensors, which extract information such as vehicle travel
time from one point in the network to another.

• Area wide sensors such as radar detectors and video cameras.

In addition, external agency reports - e.g. a vehicle passing an incident using a

cellular phone to report it - can also be simulated using a probablistic model. A

working probability is assigned to each sensor to simulate sensor breakdowns.

MITSIM provides TMS with the real time surveillance data. The data can be

provided as per the MITSIM step size or at whatever step size is required by TMS

for its control operations.

DynaMIT requires sensor counts from TMC (or from MITSIMLab’s TMS) in

order to carry out the OD estimation. DynaMIT simulates traffic on its own and

generates the traffic counts from the simulation. A comparison of the TMC counts

(true counts) and the simulated counts is used to decide whether the OD estimation

has converged. If not then DynaMIT readjusts the OD flows and simulates again to

obtain a new set of sensor counts. The iterative procedure is repeated on till the TMC

and simulation counts converge. DynaMIT has a surveillance component of its own

that helps it in recording the sensor counts. All sensors in DynaMIT are link-wide.

DyanMIT sensors measure vehicle counts, flows, speed and density.

An interface is required that sends the sensor counts, as observed by MITSIMLab,

to DynaMIT. The sensor counts need to be aggregated for the time period DynaMIT

estimates the state of the network. Also filtering of sensor and surveillance data is

required to report the counts only from the type of sensors used by DynaMIT.

2.2.3 Incident Management System

MITSIMLab reads the incident data from a scenario definition file. Each incident is

represented based on the location (segment) where it occurs, and the visibility and

number of lanes affected. Lane-specific information then includes the severity of the

40

incident and its length, maximum speed, start time and the expected duration. The

maximum speed specifies the upper bound with which vehicles can move through the

incident. The TMS can control the clearance time of the incident. For example after

the start of the incident, TMS perceives that the incident may take longer time to

clear-up, the TMS can accordingly increase the expected end-time. This would be

very similar to the role of a typical TMC during the management of an incident.

When an incident occurs in MITSIM, a message is sent to TMS describing the

characteristics of the incident. The TMS then formulates a response plan after

adding appropriate delays (See Yang (1997) for more information on the Incident

Management in MITSIMLab).

DynaMIT models incidents based on the following information: location (segment

on which the incident occurs), start-time, expected end-time, and capacity reduction.

DynaMIT does not take into account the location or length of incident within the

segment. It reduces the capacity of the entire segment by the specified factor.

Hence, the interface is required to convey to DynaMIT: (i) the location of the

incident, (ii) start-time, (iii) expected end-time, and (iv) the capacity reduction factor.

2.2.4 Guidance and Control System

In MITSIMLab traffic regulation and route guidance is conveyed to individual

drivers in the simulated network through a variety of devices and information means

such as Variable Message Signs (VMS), in-vehicle units, etc. Vehicles view these

devices and signs, and respond to the given control and route guidance according

to the behavioral models. Each driver in the simulation can be either informed or

uninformed depending on access to in-vehicle information source. The state of signals

and signs is managed by the controllers in TMS.

MITSIM has two sets of travel time information: historical and real-time.

Historical travel times are specified through a pre-specified data files. The real-time

link travel times need to be updated periodically whenever information is received

from TMS. Upon receiving the information the guided vehicles may update their

route decisions based on the updated travel times.

41

DynaMIT has to provide TMS information about the predicted traffic conditions.

DynaMIT’s predicted traffic conditions take into account the drivers response to the

provided guidance. As Kaysi et al. (1993) pointed out, predictive route guidance can

minimize the inconsistency between provided information and drivers’ experience and

hence avoid problems such as over-reaction.

Prediction based route guidance is provided by taking into account drivers’ current

position, destination and projected travel times on the alternate paths. Expected

travel times on the paths are calculated based on the projected time-variant travel

times. Hence, the interface is required to provide guidance from DynaMIT in the

form of a time-variant travel time list for each link. Periodic updates of guidance

should be possible, in order to comply with the rolling-horizon implementation.

In addition, in order to investigate the sensitivity of the results to design

characteristics of ATIS, the following parameters are additional inputs which the

interface should be able to manage:

• different frequencies of guidance updates;
• different lengths of the prediction horizon;
• computational delay; and,
• various time resolutions of the guidance provided.

2.2.5 Software and Communication System

MITSIMLab is written in C++ using object oriented programming principles. The

software system Yang (1997) consists of two simulation programs: MITSIM and

TMS. A master controller (SMC) launches and synchronizes the execution of the

MITSIMLab modules. Figure 2-1 provides the software architecture of MITSIMLab

(Yang (1997)).

The communication between the modules is handled using interprocess

communication and data files. The interprocess communication is implemented

using the Parallel Virtual Machine (PVM). PVM (Geist et al. (1994)) provides the

distributed architecture to MITSIMLab.

42

Utilities

IPC Wrapper
(PVM)

Motif Wrapper

General
Road Network

Drawable
Road Network

Surveillance
System and Traffic

Controllers

GDS
Wrapper

OD Trip
Tables

Vehicle Trip
Table

Information
Network

MITSIM TMS

SIMLAB
M ASTER

C ONTROLLER

Figure 2-1: Software Architecture of MITSIMLab

43

DynaMIT is also written in C++ using the object-oriented paradigm. The

system architecture is distributed and based on the Common Object Request Broker

Architecture (CORBA).

The interface needs to provide the communication capability between CORBA-

based DynaMIT and PVM-based MITSIMLab. Also, the basic design of the

MITSIMLab-DynaMIT interface system should enable communication between the

various subsystems located over multiple hosts. The different software systems may

not be required to be running on the same host but may actually be located on

different hosts in the network. This is required in order to emulate the actual

subsystems in the TMCs which may be distributed across the network. Thus, the

interface would be required to be able to locate and match different subsystem servers

and clients throughout the network.

2.3 On-line Integration Requirements

Although the off-line evaluation serves as an excellent alternative for testing the

capabilities and potential of traffic management systems, it is only a preliminary test

in the evaluation process. The off-line tests can help in pointing out the potential

deficiencies and shortcomings of the system ahead of the costly field tests. A first

step towards full scale field deployment is the integration of the DTA system with

the Traffic Management Center. The main objectives of the on-line evaluation would

be to:

• assess the quality of the estimation and prediction capabilities using real

operational data,

• assess the benefits and applicability of the outputs generated by the system,
• assess the real-time deployability, and
• pursue any refinements that might be necessary for further application.

As seen in section 1.2, TMCs have widely varying architectures and subsystem

configurations. Design of a sufficiently generic interface which would require minimal

44

improvisations to adopt to individual TMCs is a core requirement. Still, some

level of customization for the individual TMC, where DynaMIT is to be installed,

is unavoidable. In this section we discuss a set of requirements that make the

designed interface fairly generic. We also discuss the integration requirements for

complete interfacing with the TMC testbed at the University of California, Irvine.

As in the previous section we also discuss the interfacing requirements for each of the

subsystems.

2.3.1 Architectural Requirements

TMCs operate as a collection of multiple and sometimes highly dissimilar subsystems.

Some of the functions are implemented on legacy sources that have highly varied

system configurations are architectures. Furthermore, TMC data sources might

themselves be actually located on multiple geographical locations and varied

platforms. Figure 2-2 provides an example of the University of California, Irvine

Testbed’s information flow.

Real World:
City of Anaheim,

Caltrans District 12
City of Irvine network

City of Anaheim TMC

City of Irvine TMC

Caltrans District 12 TMC
UCI ATMS
Laboratory

T
M

C
-D

yn
aM

IT
 In

te
rf

ac
e

Traffic
Simulator

Off-line
Database

Figure 2-2: UC Irvine TMC Testbed Information Flow

The laboratory is actually receiving data from three individual TMCs (City of

45

Anaheim TMC, Caltarns District 12 TMC, and City of Irvine TMC). The three TMCs

may have varied configurations which alter the frequency, accuracy and the type of

data that is available for feeding into DynaMIT. Such varied configurations warrant

the adoption of an architecture that can be easily extensible to different types of

platforms, situated at multiple locations. This requires implementation of a suitable

middleware technology that provides distributed implementation over multiple hosts

and across multiple platforms.

The UCI Testbed communication has itself been implemented using CORBA

(Comon Object Request Broker Architecture) over a large backbone of ATM network.

The individual hosts are located over a TCP/IP network.

Another requirement of the interface architecture is the parallel implementation

of multiple sources and users. For example, the interface should be able to allow

simultaneous provision of data from a real-world source (like a TMC) and from

another source like a Ground Truth Simulator (like MITSIMLab). The two sources of

data may be implemented into two instances of DynaMIT running in parallel. Such a

provision can be an excellent study tool and can be of great help to the TMC operators

and researchers for comparison of multiple scenarios at the same time. The second

source can be an off-line Database, rather than the simulator data. The interface

should allow flexible switching to different server sources for this implementation to

be possible. Figure 2-2 shows that such an implementation requirement has been

planned for the evaluation of DynaMIT at UCI TMC testbed.

As previously pointed out, we cannot make an assumption of standardization or

uniformity across all TMCs. Individual TMCs would invariably require at least some

customization of the interface in order to comply with characteristics and features

that are specific only to themselves. At the same time we should not consider an

interface design that has to be changed completely for each TMC implementation.

Modularization can facilitate the development of a flexible design. Hence, the interface

will be implemented through multiple modules. This would require only one of these

modules to be customized to the individual TMC at hand. The rest of the modules

can be fairly generic and independent of the individual TMC implementation.

46

The interface is designed to be a real-time implementation tool as well as a

research tool operating on-line and off-line data. Further research advances and

practicalities of implementation would warrant inclusion of many more features and

utilities into the interface than what had originally been planned. This would require

the interface design to be sufficiently flexible for further additions. Also, the future

implementation of theinterface would involve much bigger networks and enormous

amount of data handling. Thus our interface should be scalable to bigger and more

advanced implementations.

In addition to these requirements Ruiz (2000), proposed the following key features

and requirements for an architecture that can support the operations of an integrated

DTMS within the TMC:

• Open: An architecture that is easily expandable and can be adapted to very
different applications.

• Anonymous: A system that has no hard-coded reference and an architecture in
which the identification is done in real-time to give additional flexibility.

• Distributed: An architecture that can support various TMC operations that can
located on any platform at any physical location.

• Concurrent: An architecture that allows different subsystems to run in parallel
performing concurrent tasks.

• Object-Oriented: An architecture that is object-oriented to reduce long-term
development costs and risks.

• Secure: An architecture that is secure against information leak and potential
hacks.

• Standard: An architecture that follows the current software standards to insure
widest possible applications and inter-operability.

2.3.2 Surveillance Interface

The surveillance system may consist of multiple sources. For example in the case of

UCI testbed, the surveillance might be received from either one of the three individual

47

TMCs.

The interface should be able to simultaneously process data received from

these varied sources. In addition, the interface should be able to map the field

sensor locations and local identification numbers (IDs) to the corresponding IDs in

DynaMIT.

Furthermore, the sensor data provided by the TMC may be at different levels

of aggregation. For example, the City of Irvine TMC provides aggregate data at 5

minute intervals, while the Caltrans TMC at 30 seconds intervals. Thus, the interface

should be able to provide the required aggregation capabilities, so that all sensor data

are consistent for the DynaMIT specification and requirements.

Finally, the data received may be in a very different format than that acceptable

by DynaMIT. The interface should be able to covert the data into DynaMIT-readable

format and only transmit data that is useful for DynaMIT. It thus needs to be able

to filter the information received from various sources.

2.3.3 Incident Detection Interface

Incident Detection usually can be a fairly non-uniform process and varies widely from

one case to another. Incidents can either be reported by moving patrols or through

drivers themselves. Such reports ultimately do end up with the TMC operators. In

some cases, incidents may be directly observed by TMC operators through video

cameras or other imaging devices. In some other cases they may be detected through

incident detection algorithm using information from the surveillance system. The

interface design should be able allow flexibility to incorporate all the above different

possible scenarios of incident detection. It should also be able to map the incident

location into the corresponding DynaMIT segment ID. It should also be able to

broadcast the incident start time and the expected end time (as perceived by the

traffic operators). The incident start time would usually be different from the reported

time (because of lag in detection). DynaMIT should also be notified through the

interface about the expected reduction in capacity.

48

2.3.4 Traffic Control and Route Guidance Interface

The Traffic Management Centers will use the predictions by DynaMIT to develop a

control strategy and translate it to status for the physical signals and other devices

(VMS, etc.).

The traffic control and route-guidance interface should be able to provide the

guidance and traffic prediction generated by DynaMIT, with a format consistent with

the one required by TMC. The predicted network state should be able to be visualized

using graphical displays. The predicted state of the network should be provided

through travel times and/or network flows, speeds, queues and density information.

The route guidance may be implemented through multiple remotely-located

control subsystems. The guidance information, in such a case, is required to be

broadcast to multiple clients over the network. Hence the interface should identify all

the users of DynaMIT output, and the part of the data they require. The interface

should then be able to broadcast the specific data to the respective clients.

49

Chapter 3

Interface: Architectural Design

As seen in chapter 2, the integration of DynaMIT within TMC requires an architecture

that is able to support multiple legacy information sources, distributed over multiple

hosts, operating in tandem and exchanging data with each other in real-time.

This chapter describes the architecture that has been implemented to meet the

requirements as outlined in the last chapter. The first part of the chapter describes the

design of the generic architecture that has been implemented for the interface. The

second part describes the implementation of this architecture for the MITSIMLab-

DynaMIT integration. The third part describes how this design can be used for the

Traffic Management Center at Orange County, California.

3.1 System Architecture

The architectural design that has been implemented for the interface strives to meet

the requirements as mentioned in the previous chapter.

Figure 3-1, shows the overall interface architecture that has been adopted for

the integration of DynaMIT with the TMC. The interface consists of three modules:

the Traffic Management Center Adaptor (TMCA), the Dynaic Traffic Management

Simulator (DTMS) and the DynaMIT Communicator. The DTMS and DynaMIT

Communicator are generic modules, which would remain the same in all the interface

implementations. The TMC adaptor would be specific to the TMC we would be

50

integrating DynMIT with. The surveillance, guidance and the incident detection

systems at the TMC communicate directly with the TMC adaptor. Through a

clientt/server implementation (described in the sections later in the chapter) the

TMCA communicates with the DTMS. The DynaMIT communicator has a similar

client/server implementation on the DynaMIT side. The communicator exchanges

the data with the DynaMIT modules. Xdta is the graphical interface for DynaMIT.

It displays the flows, speeds and densities as estimated and predicted by DynaMIT.

Xdta is instantiated by DynaMIT whenever it completes a prediction.

The following sections describe in detail the features and functionality of this

architecture and how they meet the requirements we have previously discussed. We

begin first by describing the software technologies that have been used for the interface

and follow that by describing the distribution mechanism that has been adopted. We

then describe in detail each of the separate elements of the interface (shown in Figure,

3-1), and follow that by a general description of the process.

T
M

C
 A

da
pt

er

Surveillance
System

Guidance &
Control

Incident
Management

D
yn

am
ic

 T
ra

ffi
c

M
an

ag
em

en
t S

im
ul

at
or

 (
D

T
M

S
)

D
yn

aM
IT

 C
om

m
un

ic
at

or DynaMIT

Xdta

Time Server

Figure 3-1: Overall Interface Architecture

51

3.1.1 Distributed Implementation

Orfali and Harkey (1998), studied various technologies available to implement

distributed systems: sockets, CGI scripts, CORBA, DCOM, RMI, etc. Ruiz (2000)

reviewed these technologies in order to select one that best fits the need of DTMS

architecture. He proposed the use of the extended Common Object Request Broker

Architecture (CORBA) as the object distribution implementation for use in Dynamic

Traffic Management Systems. He mentions the following advantages of using CORBA

as the distribution mechanism in DTMSs:

• Platform Independence: CORBA is hardware and software independent and

provides an abstraction layer for development of systems in multi-platform

environment. The different subsystems that would need to be integrated with

the TMC can be expected to include different platforms across an heterogenous

network.

• Legacy System Inclusion: CORBA can be implemented across different multi-

vendor legacy systems, without incurring significant reengineering costs.

• Security : CORBA standards define a security mechanism that is always

integrated in the implementations.

An extended CORBA implementation can include additional services like the

Event Service, Naming Service, and the Trading Service. The CORBA event service

provides a flexible model for asynchronous communication communication among

objects. The CORBA Naming Service is central to most CORBA applications. It

serves as a directory for CORBA objects, allowing objects on one host to locate

objects on another host through user-defined names. The CORBA Trading Service

can be seen as a generalization of the Naming Service; instead of merely providing

a way for clients to search for available servers by name, it provides for servers to

register their capabilities and clients to find them based on properties, specified via

a simple constraint language.

Figure 3-2, shows an example of a simple CORBA application. Subsequent

sections will present specific and more advanced implementations of this basic model.

52

Object Adapter

Object

IDL Server
Skeleton

ORB

Network

Server HostClient Host

Object Adapter

Client

IDL Client
Stub

ORB
Naming
Service

Figure 3-2: Overview of a CORBA Application

53

The client (e.g. the surveillance module in DynaMIT) seeks the services of a server

(e.g. the surveillance information module residing within the TMC). When the server

starts, it creates one or more objects and then publishes its object reference (the object

handle) in the naming service. The client obtains the object reference for the server it

wants to call from the naming service, and packages this information along with the

method’s name and its parameters, and sends it to the client stub as if it is making

a local call. The client stubs are automatically generated, in the target language of

the client (a feature that makes CORBA’s language-independent and cross-platform

implementation possible), when the server IDL was compiled. The client stub sends

this packet in the form of a request.

The Object Request Broker (ORB) enables the communication between the clients

and the servers through the physical network. ORB handles the language-independent

requests and replies for the clients. For this, it needs the object references for the

server it has to make the request call to. It gets this from the naming service.

ORB sends the message to the server’s Object Adaptor 1 via the Internet Inter-ORB

protocol (IIOP) 2. The server accesses ORB operations through the Object Adaptor.

The server skeleton then turns the request data into the server’s language-specific

method call and then performs the call on the servers object implementation. The

reverse process occurs while sending back the reply to the client.

3.1.2 Dynamic Traffic Management Simulator (DTMS)

As shown in Figure, 3-1, the DTMS layer instantiates the various servers to which

the TMC Adaptor and DynaMIT communicator clients bind to while exchanging the

data during the execution of the interface.

DTMS instantiates one server for each individual subsystem on the TMC side

that communicate with the subsystems on the DynaMIT side. In addition, it has a

Registry server (Figure 3-4) that keeps the names of all the servers belonging to a

1Object Adaptor is the entity that mediates between object implementations and the ORB.
2The standard mechanism by which communication takes place in between ORBs on TCP/IP

based networks

54

Surveillance

Incident

Guidance

T
M

C
 A

da
pt

er
 -

 M
IT

S
IM

Surveillance

T
M

C
 A

da
pt

er
 -

 R
ea

lit
y

D
T

M
S

D
yn

aM
IT

 C
om

m
un

ic
at

or
 -

 A
D

yn
aM

IT
 C

om
m

un
ic

at
or

 -
 B

DynaMIT

DynaMIT

Xdta

Xdta

Incident

Guidance

Figure 3-3: Simultaneous support of Multiple TMC-DynaMIT instances

55

specific system. DTMS can map simultaneously multiple TMC systems with their

corresponding instances of DynaMIT (shown in Figure, 3-3). For example, we may

require to run an instance of MITSIMLab and another instance of the TMC system

with the field collected real-time data, together running along with DynaMIT. We can

do this by instantiating two separate TMC adaptors (one for MITSIMLab and the

other for the field TMC data) and link them with two separate instances of DynaMIT.

Each TMC-DynaMIT mapping pair has its own Registry server that maintains

the names of the following servers:

• The Time Server,
• The Surveillance Information Server,
• The Incident Management Server, and
• The Guidance Server.

The Registry thus acts as a naming service that keeps the names of the object

references and locations. A Registry server is the first one to be instantiated. Each

Registry server has a unique name and its host location. All of the servers mentioned

above are than added to their respective registries at instantiation. Each of these

servers is instantiated by providing the server name, the registry name and their

locations (Figure, 3-4). Appendix A shows an example script file that instantiates

the above mentioned servers for the MITSIMLab-DynaMIT Interface.

Figure 3-5 shows what happens when a server is instantiated. All server instances

and its objects reside in a process. The process address remains constant as long

as the server is running. It will disappear or run as a new process, if the server is

killed or restarted. CORBA provides a component known as the location domain,

which tracks the current location of the server objects. The servers store their object

adapter information in a centralized repository called the Implementation Repository

(IMR).

IMR is itself managed by a locator daemon. When a server is instantiated, it

registers its object adapter and object information with the locator. It also registers

its host and port numbers (on which the Object Adaptor can be contacted), which

56

Name:
InterfaceA
Host ID:

xylophone.mit..edu

Registry Server

Name:
TimeSource_MITSIM

Registry:
InterfaceA
Host ID:

xylophone.mit..edu

Time Server

Name:
IncidentSource_MITSIM

Registry:
InterfaceA
Host ID:

xylophone.mit..edu

Incident Server

Name:
SensorSource_MITSIM

Registry:
InterfaceA
Host ID:

xylophone.mit..edu

Surveillance Server

Name:
GuidSource_DynaMIT

Registry:
InterfaceA
Host ID:

xylophone.mit..edu

Guidance Server

Figure 3-4: Multiple Server Instantiation for each TMC-DynaMIT pairing

Server Object

ORB

Host /ProcessHost /Process

Naming Service

Locator

IMR

Register

Object Reference

Publish

Figure 3-5: Registration of Server Information

57

may dynamically change. The locator in turn returns a modified reference that

contains the address of the locator. The server object then publishes the modified

object reference with the naming service like the DTMS Registry.

3.1.3 Traffic Management Center Adaptor (TMCA)

As seen in section 1.2, Traffic Management Centers have a widely varying system and

communication architectures. The data provided by these systems also varies widely

in format and resolution. The TMC Adaptors is a customization layer between the

DTMS and the TMCs which helps in the translation and communication of data in

a standard usable format. Broadly speaking TMC adaptors have two purposes:

• To establish a communication with the individual TMC subsystems, assimilate
the data, and then communicate the needed information to the DTMS and

subsequently to DynaMIT,

• To manipulate the data according to the required resolution and time interval
and convert it into the acceptable format.

TMC adaptors, thus, are specific and customized to the individual TMC systems.

Every TMC should have its own TMC Adaptor. Architecturally speaking, a TMC

adaptor has two sides to it. One side is very similar to the architecture of the

individual TMC subsystems and the other one resembles the architecture of the

DTMS layer. It retrieves data through one layer and sends it through the other.

Specific TMC adaptors are described more thoroughly in sections, 3.3 and 3.4.

A TMC Aadaptor acts as a client to the servers instantiated by the DTMS. It

finds a registry it wants to bind with. It then binds with the individual Surveillance,

Time, Incidence and Guidance servers. The TMC adaptor publishes information into

the Surveillance and Incidence servers and retrieves information from the Guidance

Server.

58

3.1.4 DynaMIT Communicator

The DynaMIT communicator is the interface between DTMS and DynaMIT.

DynaMIT is implemented as a distributed set of CORBA-based servers. Each server

represents a single-threaded process running on a single platform. Server processes are

created automatically by the Orbix runtime system in response to the instantiation

of the server assigned system objects. The number of servers and their platforms are

configured at runtime, and the inter-operability between objects is provided through

the CORBA interfaces tied to the system objects.

A different server, called the Server manager, keeps a dynamic-table of all the

object-server-platform assignments in the system. The server manager has a CORBA

interface that makes assignments, creates and destroys objects, creates and destroys

servers, and looks up the location of a given object or a server. Every server in the

server manager contains a single instance of an object called the Object Manager. The

Object Manager is responsible for all the system objects contained within a specific

server.

All objects in DynaMIT have a single instance 3. All method calls to an object are

handled by the same physical process and access the same object instantiation. Each

server and each object are assigned a unique name, which is used to reference the

system object whenever it is bound. Each system object contains the implementation

of a single element of the overall system. System objects are themselves grouped into

separate classes in the form of utilities, components, modules and processes, in the

increasing order of hierarchy.

The DynaMIT communicator binds with the objects in DynaMIT that deal

with surveillance collection, incident management and guidance generation. The

communicator has been designed to be launched as a separate server (along with

others) through DynaMIT’s Server Manager. Thus, the communicator is able to

obtain the object references of the system objects it needs to establish communication

from the DynaMIT side. The communicator can be launched on an entirely different

3All objects are instantiated in shared mode, unlike the un-shared or per-method mode of many
CORBA applications.

59

host than the rest of the system objects. The host configuration of the Communicator

can be established in the configuration file at run-time - just as it is being done for all

other server objects through the server manager. The DynaMIT side implementation

of the communicator can thus establish the data exchange with the different modules

of DynaMIT.

The DTMS side exchange is a little more involved process. DTMS (as pointed

out in section 3.1.2) can have multiple instances of TMC subsystems running

simultaneously. The DynaMIT communicator needs to establish the server names of

subsystems it wants to contact and the hosts they are running on. Also it needs the

reference to the Registry where these server locations are stored. This information

cannot be hard-coded and needs to be input for every instance of DynaMIT. The

subsystem servers which DynaMIT needs to contact and their host names can be

mentioned in a data file - which DynaMIT can read at execution and contact the

appropriate servers and host locations. A sample host and server name file is included

in Appendix A.

3.1.5 Software Environment

The interface has been implemented in C++ using the object-oriented paradigm. This

provides the flexibility to enhance and modify the code for future applications. The

entire system is implemented in distributed mode using the Common Object Request

Broker Architecture (CORBA). Section, 3.1.1 provides a more detailed explanation

of the distributed implementation.

FLEX++, a lexical analyzer generator (Levine et al. (1992)), and BISON++, a

parser generator (based on a GNU version of BISON (Donnelly and Stallman (1992)),

created by Alian Coetmeur), are used for developing the parsers for reading the

data files that provide the host and factory information. FLEX++ and BISON++

generate the C++ code that reads the data files. Much of the data structures have

been implemented using the Standard Template Library (STL) from C++.

The system has been compiled and run on SGI’s IRIX 6.x and Sun Solaris 5.6

platforms. The compilers used are GNU C++ and the standard SGI and Solaris

60

compilers. Orbix 2.0 by IONA Technologies is used for compiling the IDL files.

3.2 Process Description

The TMC-DynaMIT communication process gets instantiated by starting a registry

server. Once the TMC to which DynaMIT will provide traffic prediction and

assignment support is specified, a registry specific to that TMC is marked and started.

The registry is started by providing it a unique name and a host location. The time

server, surveillance information server, incident information server, and the guidance

information server, are instantiated next. They are started on specific hosts and their

location information is provided to the registry. More details on starting the DTMS

servers was provided in section 3.1.2.

The TMC adaptor and the DynaMIT communicator then, start up their own

clients - one each for time information, sensor information, incident information, and

guidance information. These clients then locate and bind to their corresponding

servers and send in their requests (as shown in Figure 3-6).

Server Object

ORB

Host /Process
Host /Process

Naming Service

Locator

IMR

Object
Adaptor

Host /Process

Client

ORB Register

Get Object Reference
/ locator address

Request

Serv Object
Reference

Communicate with Server's Object Adaptor

Publish

Startup

Figure 3-6: Client/Server Location and Communication Process

The clients retrieve the object reference of the server they want to bind to from

the registry. The object reference consists of the object adaptor, object name and

the locator address. The clients use the object reference obtained from the registry

to call an operation on the server. The client ORB then, uses the object reference

61

to send a request to the locator (described in section, 3.1.2). The locator 4 uses the

Object Adaptor name to find the object reference from its database and then passes

this back to the client.

The client starts using this object reference to establish communication with the

server and uses this for all subsequent functional calls. All the clients on the TMC

adaptor side and DynaMIT communicator side thus establish direct communications

with their corresponding servers.

The communication between the respective subsystems in TMC and DynaMIT

takes place through a push/pull mechanism. It is based on the Object Management

Group’s (OMG) Event Service model through the ”publish/subscribe” paradigm.

This model suggests inserting a third part between the client and the server in order

to provide a high degree of decoupling between the two. This helps in supporting

concurrent applications. Under the simple client/server model the server is blocked

when it provides information to the clients. This would not be a good option in our

case because, for instance the TMC subsystem operations cannot be blocked when

DynaMIT is reading surveillance or incident data. The very nature of our subsystem

requires a continuous operation with simultaneous publishing and retrieval. The

provision of a middle buffering layer between the clients and servers helps in avoiding

this kind of problem. Figure, 3-7, shows how the communication architecture is

implemented under the publisher-subscriber paradigm using the push/pull model.

Guidance
Server

Surveillance
Server

Incidence
Message
Server

TMCA Incidence
Source Client

TMCA Sensor
Source Cleint

TMCA Guidance
Listener Client

PUSH

PUSH

PULL

DynaMIT Incidence
Listener Client

DynaMIT Sensor
Listener Client

DynaMIT Guidance
Source Client

PUSH

PULL

PULL

Figure 3-7: Push/Pull model for providing asynchronous communication

4The locator keeps communicating with the server to verify its presence

62

As discussed above, through the registry service all the clients know their servers

and all the servers would know their clients. Whenever the client (for example, the

Surveillance generating client on the TMC adaptor side) receives data (new sensor

counts in this instance) it creates a message (by invoking the createMessage() call)

and publishes (pushes) it to the corresponding server (the Surveillance server in this

case) on DTMS. It enters the DTMS surveillance data base corresponding to that

particular TMC.

The corresponding client on the DynaMIT communicator side (the surveillance

reader in this case) invokes the getMessage() call and pulls the message whenever

it requires it. This push/pull mechanism allows simultaneous and asynchronous

operations on both the client and server (or publisher/subscriber) side without either

waiting for completion of each others events.

This inclusion of additional buffering data layer in between would not be the

most efficient in terms of memory management, but it is facilitates asynchronous

and concurrent operations which is a necessary requirement. The database can,

nevertheless, be periodically cleared after a sufficient elapse of time.

3.3 Architecture for MITSIMLab-DynaMIT

Interface

As previously mentioned, TMS (Traffic Management Simulator) within MITSIMLab

emulates the Traffic Management Center operations. The MITSIMLab architecture,

as we will see in this section, also has certain features that are similar to the subsystem

architectures found in many of the TMCs.

The DynaMIT-side (DTMS and DynaMIT communicator) implementation of the

interface does not depend on the specific TMC system and its architecture, and thus,

it is pretty much standard for all TMC instances. All the different types of TMC

systems, though, require a TMC Adaptor interface that is very much specific to

the TMC being used. Therefore, the MITSIMLab-DynaMIT interface needs its own

63

specific design of the TMC Adaptor layer.

MITSIMLab is implemented as a distributed system using the Parallel Virtual

Machine (PVM). The TMC Adaptor has to communicate between the PVM-based

MITSIMLab and the CORBA-based DTMS and DynaMIT Communicator. The

TMC adaptor thus, needs an architecture that supports both the PVM and CORBA

implementation.

PVM enables a collection of heterogenous systems to be used cooperatively for

concurrent and parallel computation. The computational tasks can be executed

on a configured host pool which may include multiple machines or hardware

multiprocessors. The unit of parallelism in PVM is a task and multiple tasks may be

executed on the same processor. An application can be considered to be composed of

multiple tasks, each responsible for a part of application’s computational workload.

The application can be parallelized along its functions (called functional parallelism

) or in the other case the function to be executed is the same, but each task operates

on a small part of the data. This is called data parallelism5.

MITSIMLab uses functional parallelism for its multiple processes. The MITSIM

and TMS components of MITSIMLab are distributed using PVM. This is to the

overall framework in which TMC subsystems operate. TMC subsystems (for instance

surveillance or control and guidance) are located on different remote hosts distributed

over the network. The data collected may be relayed to the TMC facility which may be

located elsewhere. The surveillance component of MITSIMLab (located in MITSIM)

and the control and guidance component (located in TMS) can similarly be located

on different hosts using PVM.

The TMC adaptor for MITSIMLab also needs to be integrated with the PVM

architecture to allow it to communicate with the TMS. Figure 3-8 shows the

communication architecture of the MITSIMLab-TMC Adaptor interface. MITSIM,

TMS and TMCA (TMC adaptor) are controlled together through a master controller

(called SMC - the Simlab Master Controller). All three can be located on separate

hosts. MITSIM (located on HostA) exchanges the surveillance and control and

5This is also referred to as single-program multiple-data (SPMD) model of computing.

64

PVM-based Inter-Process Communication CORBA

SIMLAB Master
Controller

TMCA
host C

MITSIM
host A

TMS
host B

Figure 3-8: Communication between TMC Adaptor and MITSIMLab

65

guidance data regularly with TMS (located on HostB). The TMC adaptor has

one part which uses the PVM communication and is instantiated as a part of the

MITSIMLab master controller. The other part which talks to DTMS uses CORBA for

communication. The TMC adaptor talks to TMS whenever it needs to get surveillance

or report prediction-based guidance.

3.4 Architecture for TMC-DynaMIT Interface

This part discusses the interface architecture for integration of DynaMIT with a TMC.

The discussion focuses on the UC Irvine Testbed, which in turn is interfaced with the

City of Anaheim, City of Irvine, and Caltrans District 12 TMCs.

As in the previous case with MITSIMLab, the modularization of the interface

allows us to maintain the DTMS and Dynamit Communicator part of the interface,

without making any changes. All the changes, specific to the TMC testbed, need to

be made only with the TMC Adaptor.

As specified in section, 2.3, the TMC-DynaMIT integration entails interfacing with

the real-world data as well as with the TMC maintained database at the testbed.

The integration of DynaMIT with the TMC testbed proceeds in two stages. The

first stage allows interfacing directly with the raw stream of data sent form the

surveillance stations. It includes the freeway stream data and the arterial stream

data. Figure 3-9 provides a schematic of the planned interface architecture. The first

stage does not have any interfacing with the Database server (although the CORBA

service will continuously feed the database client).

The interface architecture revolves around a CORBA-based Event Notification

Service. The individual TMCs or surveillance subsystems collect the sensor data

through various field-deployed sources and send them to a Memory Map File 6. Each

surveillance subsystem has its own event notification service.

The TMC adaptor instantiates clients for each of the surveillance subsystems.

These clients register with the event notification service. Whenever the surveillance

6A disk file that contains a dump of all the data being received from the surveillance stations

66

Freeway
Stream Data

ILD CMSRMSSIC

Memory File
Map

CORBA Service

DB
Client

DB
Server DB

Arterial Stream
Data

Memory File
Map

CORBA Service

DB
Client

DB
Server DB

Sensors/ Loop
Detectors

Event
Notification

Service

Event
Notification

Service

PULL

PUSH

PUSH

PULL

TMC Adaptor

Freeway
Stream
Clients

DTMS
Clients

Mapping

Conversion

Filtering

Aggregation

Arterial
Stream
Clients

Internal Processing
Algorithm

Figure 3-9: Integrated TMC architecture (Phase I)

67

subsystem’s CORBA service receives a request for data from the notification service,

it looks into the memory file and if there is new data it broadcasts it to the TMC

adaptor client bound to the notification service. The data is communicated through

a pull mechanism. The event notification service also pushes the data to a Database

client, which publishes it to the database. The data is still unprocessed as obtained

from the sensor stations.

The TMC adaptor once it receives the data, sends it to the internal algorithms

that process it further (explained in detail in section 4.2) as per the requirements of

DynaMIT. The adaptor then sends them to the respective DTMS servers, which

further broadcast it to the DynaMIT communicator in much the same way as

explained earlier in this chapter.

When the TMC adaptor receives the guidance information form DynaMIT, it

sends it through the CORBA services to the individual TMCs or guidance and control

subsystems.

The second stage of interfacing involves adding filters to the event notification

service so that clients only receive the specific data they request, rather than the

complete raw data stream. This will reduce the traffic between the TMC adaptor

clients and the data servers considerably. The second stage will also provide

interfacing with the off-line database being maintained at the TMCs. Figure 3-10

illustrates the TMC architecture in the second stage of implementation.

The TMCA clients send specific requests to the notification service. An example of

a request would be - for example to get sensor data in VDS (Vehicle Detection Station)

format (explained in section 4.2) for every 5 minute interval. The raw data is received

from the TMC and is pushed to the three intermediate algorithm implementations,

which then pushes it to the processed data notification service and ultimately to the

client making the request.

The TMC adaptor will still have internal processing algorithms (of the types

shown in Figure 3-9), in case any further processing is required. This will add

additional flexibility in testing DynaMIT under different scenarios. Under the most

basic application many of these internal algorithms will not be needed, as the clients

68

Processed
Data

Notification
Service

Internal Processing
Algorithms

Freeway
Stream
Clients

DTMS
Clients

Arterial
Stream
Clients

TMC AdaptorDB ServerDBDB Client

Raw Data
Notification

Service
- Freeway

Stream

PUSH
VDS Converter

Aggregator

SmootherPUSH
PUSH

PULL

Processed
Data

Notification
Service

DB ServerDBDB Client

Raw Data
Notification

Service
- Arterial
Stream

PUSH
VDS Converter

Aggregator

SmootherPUSH
PUSH

PULL

Request

Specific Data Request

Figure 3-10: Integrated TMC architecture (Phase II)

can directly request the data format they want. However, some of these algorithms

will still be required. For example, we may still require the sensor data mapping

algorithm to convert the sensor location into corresponding DynaMIT sensor ID.

69

Chapter 4

Implementation Framework

This chapter discusses in detail how the architecture we adopted in the last chapter

has been implemented for the off-line evaluation of DynaMIT, using MITSIMLab, and

for the TMC-DynaMIT integration. We also discuss the relay of relevant information

and data between the various subsystems, in order to achieve the requirements we

identified in chapter 2. More specifically, we first discuss the application framework for

the off-line evaluation version. Within the off-line evaluation description, we present

both the open-loop and closed-loop applications. The second part of the chapter

discusses the proposed interface implementation for integrating DynaMIT with the

Irvine Traffic Management Center. To make the implementation more generic, we

also discuss how this framework would comply with the requirements of the Interface

Compliance Document(ICD).

4.1 Off-line Evaluation

The off-line evaluation of DynaMIT is intended to serve as a guideline for the more

expensive field-operational tests. As mentioned in section 2.1.1, MITSIMLab can be

an excellent tool for evaluating the performance of DynaMIT. Using MITSIMLab

as an evaluation tool requires interfacing of DynaMIT with the Traffic Management

Simulator (which resides within MITSIMLab and emulates the operation of a TMC).

Section 3.3, had discussed the architectural design that was used for establishing the

70

integration of DynaMIT with the TMS.

Off-line evaluation aims at addressing the issues related to the system

functionality, accuracy, robustness, and applicability. It can also be used to evaluate

the quality of estimated and predicted traffic conditions generated by DynaMIT,

and how well they compare with the real data. Off-line evaluation of DynaMIT

with MITSIMLab therfore, requires calibration of DynaMIT models using data from

MITSIMLab. These include the route-choice, on the demand side and speed-density

relationships and capacities on the supply side. This thesis does not address the

calibration details. It focusses on the applicability and implementation of the system

to perform the required tests.

4.1.1 Off-line, Open-loop Implementation

The off-line, open-loop implementation of DynaMIT requires real-time sensor and

incident information fromMITSIMLab (acting as the ground-truth simulator). Figure

4-1 shows the open-loop evaluation framework. In addition to the sensor counts

and incident data, DynaMIT also requires (in order to perform the estimation and

prediction) the following information, which would be provided separately through

data files:

(a) Network topology, specifying the links, nodes, segments, lane groups, lanes and

their connections.

(b) Calibrated supply parameter file that includes free flow speed, jam density,

alpha 1, beta 2, capacity, and minimum speed, for each segment.

(c) Historical Demand file specifying the hourly flows between all the origin-

destination pairs.

(d) Socio-Economic data file specifying the characteristics of the population using

the network under investigation.

(e) A Behavioral Parameter file specifying the calibrated route-choice coefficients.

1Inner coefficient in the speed-density function
2Outer Coefficient in the speed-density function

71

Real World/ MITSIM

True Demand

MITSIM
En-route true behavior

Traffic Managment Center/
DynaMIT

S
u

rv
ei

lla
n

ce

Historical Demand

OD Estimation

Supply Simulation

Prediction

Performance Measures

Figure 4-1: Framework for Open-loop Evaluation

72

(f) A Historical link time file, specifying the normal travel times on each link as a

function of time (used by the drivers to make habitual route-choice decisions).

DynaMIT estimates the traffic conditions based on the sensor counts and incident

data it receives from MITSIMLab. The control being used by MITSIMLab would

remain fixed and DynaMIT would be emulating the same control as being used by

MITSIMLab (or TMC). In other words, the traffic control would not be based on the

prediction provided by DynaMIT. The DynaMIT-predicted traffic conditions can then

be compared with the actual traffic conditions on the network (or in MITSIMLab).

The open-loop implementation thus, involves concurrent transfer of sensor counts

and incident information data to DynaMIT. Figure 4-2 shows the overall framework

with which the open-loop, MITSIMLab-DynaMIT interface has been implemented

on the MITSIMLab side. Figure 4-3 shows a similar diagram of implementation on

the DynaMIT side. Both these diagrams show the interfacing of the surveillance

subsystem. The incident information subsystem interfacing is similar to the

surveillance subsystem interfacing, except for a few details which would be discussed

later in this section.

The system is instantiated by first starting the relevant servers and clients. The

DTMS servers started are the, (i) Registry, (ii) Surveillance Server, (iii) Time Message

Server, and the (iv) Incident Information server, Each of the servers is started on a

specific host (as shown in Appendix A).

MITSIMLab and the TMC Adaptor are initiated using the Simlab Master

Controller (SMC)3. The master controller initiates MITSIM, TMS and TMCA

concurrently. All the three applications can be located on separate hosts. All the

three subsystems read their master files at initiation. The master file of the TMC

adaptor mentions the server names and the host on which it would look for the specific

servers. The TMC Adaptor then initiates the clients corresponding to each of the

DTMS servers mentioned above.

3A controller implementation that runs the parallel processes through PVM. Referred to as SMC
in short.

73

Instantiate Parallel
MITSIMLab Processes

Bind to DTMS
Servers

TMCA
Load Master File

Advance Clock

DTMS
Time Server

Report
Current Time

Is Current Time
> End Time

Request Surveillance

Is New
Surveillance

Ready

NO

Get New Surveillance

YES

Accumalate Sensor Data

Filter Sensor Data

Is Current Time >
Sensor Dump Time

Report Sensor
Data

DTMS
Sensor Server

YES

NO

NO

Raise Sensor
Availability Flag

Reset Sensor data
/ Roll Over

Quit
YES

TMS
Load Master File

Receive TMCA
Surveillnace Request

Advance Clock

Are Sensors
Activatesd

NORequest
MITSIM for
Sensor Data

YES

MITSIM
Load Master File

Advance Clock

Recieve TMS
Surveillance Request

Notify Sensor
Availability

Is Current Time >
Sensor Reporting

Frequency

NO

YES

Recieve Sensor
Readings from

MITSIM

Send Sensor Readings
to TMS

Are Sensors
Readings
Available

YES

Notify Sensor
Availability

NO

Send Sensor
Readings to TMCA

Figure 4-2: Framework for Off-line, Open-loop, Implementation (MITSIMLab-side)

74

MITSIM is a time-based microscopic simulation model. The step sizes are

managed through an internal clock, which manages the time within all MITSIMLab

components. The car-following, lane changing, and event and signal response

functions are invoked for each vehicle at a specified interval, based on these step

sizes (which can be as small as 0.1 seconds). The simulation clock is also advanced

based on these step sizes. The clock time is transmitted to TMS and TMCA through

PVM. Every time the clock is advanced the TMC adaptor sends the new time message

to the DTMS Time Server.

The TMC adaptor, once it gets the new time, checks if it is within its intended

time limits. If not, it signals the various operations to close down and kills all the

instantiated servers. If it is with the time limits, it sends a message to TMS to request

surveillance. TMS looks up if sensors are activated. If they are activated, it sends a

message to MITSIM to start recording sesnor data.

Speeds and positions of the vehicles and the states of the sensors are updated

at a frequency specified by the user and they are accumulated internally at another

specified rate. This accumulation rate is generally based on the frequency at which

the controller module expects the sensor counts. Sensors of the same type at the same

longitudinal position in the segment are generally grouped into sensor stations. Each

sensor station has its sensor type, sensor task, length of detection zone, longitudinal

position, and the number of lanes that are equipped. Sensors also have a working

probability - to simulate malfunctions and errors (Yang (1997)).

Once the sensor data is accumulated at each reporting step size, TMS is notified

about the sensor data availability. TMS in turn notifies the sensor availability to TMC

adaptor, which then gets the data from MITSIM. The TMC adaptor then performs

the following operations on the data it receives from MITSIM:

(a) Filters the data based on the type of information that is required by DynaMIT.

DynaMIT only uses information from link-wide sensors whereas MITSIM

reports data from different sensor types (e.g. lane-wide, area-wide, link-wide,

etc.). The Filtering process extracts information only from the link-wide sensor

data. Further MITSIM sensors report information like the vehicle counts, speed,

75

etc. DynaMIT at this time only uses the vehicle counts data. Thus the filter

can extract only a specific attribute to transfer to the DTMS server.

(b) Accumulates the data based on the estimation time period. As previously

mentioned, MITSIM accumulates and reports data based on its internal

requirements. But DynaMIT requires aggregated sensor counts for its

estimation time period length. The TMC adaptor accomplishes this by

accumulating the data reported by MITSIM according to the estimation period

length.

Once the processed sensor count data is available to the TMC adaptor, it sends it

to the DTMS Surveillance server. It continues sending the data until all the network

sensors have reported. It keeps track of all the network sensors through an internal

counter mechanism. Once this cycle finishes, it resets all the counters and data values

to zero and starts a new cycle.

The DynaMIT communicator is instantiated as one of the DynaMIT server objects

(see section, 3.1.4 for more details). At initiation the DynaMIT communicator

launches the graphical user interface (Xdta). The DynaMIT communicator reads

the data file which mentions the name of the servers it wants to get the surveillance

data from and the server it would be providing the guidance to. The data file would

also provide the host location of the DTMS servers.

The communicator keeps pinging 4 the DTMS Time server and enquires if a new

time message is available. It updates its internal time whenever it finds a new time

message in the server. Similarly it continuously keeps enquiring if there is new data

on the DTMS surveillance server. It keeps a memory of the last data it had received

from the surveillance server and it compares it against available data on the server at

each time step. If there is no new data it advances the time clock and keeps waiting

for the next available data. If it gets the new data, it appends it to a data file which

it will send to DynaMIT at a later time. It continues to get the sensor data until it

covers all the registered sensors. Once it has covered all the sensors it initiates the

4A standard protocol to test whether the server is alive and available.

76

Start DynaMIT Object
Server

Start DynaMIT Server
Manager

Instantiate Server
Objects

Load Parameter
File

Instantiate
Communicator

Load Communicator
Data File

Bind to DTMS
Servers

Get New Time from
Time Server

DTMS
Time Server

Instantiate
Xdta

Check If there is new
sensor data

Get data for the next
Sensor

YES

NO

DTMS
Surveillance Server

Write to Sensor File /
Increment Sensor Count

Are counts available
for all sensors

NO

Broadcast DynaMIT
Execution Flag

Broadcast Surveillance

Disaggregate Packets

Update Behavior

Receive Surveillance

Reinitialize Sensor
Information

Estimation

Figure 4-3: Framework for Off-line, Open-loop,Implementation (DynaMIT-side)

77

estimation and prediction processes in DynaMIT and sends the recorded sensor data

to the surveillance component. It resets the internal counters once the data has been

sent to DyanMIT.

The incident detection and communication proceeds in much the same way as

sensor counts. MITSIM detects an incident (which is generally read through a data

file) and conveys it to TMS. Each incident may affect one of more lanes, and the

MITSIM incident information includes location, number of lanes affected, visibility

and equivalent reduction in capacity. The reduction in capacity has to be pre-

calibrated. Start time, expected duration and maximum speed with which the vehicles

can pass by on adjacent lanes are also reported. The start time of the incident may

differ from the time incident was detected by the traffic management system. The

clearance time of the incident would generally be the start time plus duration, but

it can be changed by the TMS. The incident information is conveyed to the TMC

adaptor at the detection time. The TMC adaptor converts the incident into the

DynaMIT format that contains, (i) start time, (ii) end time or expected end time,

(iii) location, and (iv) capacity reduction factor. As the simulation proceeds this

information can get modified (expected end time can change or the severity can

be different than anticipated). Thus, the TMC adaptor does not send the incident

message to the DTMS Incident Server, until the time DynaMIT is scheduled to start

estimation. At this time, it sends the latest available information on the incident

to the DTMS Incident server. DynaMIT looks up for this information just before

the scheduled estimation start time, and sends it to the Supply module to effectively

modify the capacity at the affected locations.

4.1.2 Off-line, Closed-Loop Implementation

The off-line closed-loop evaluation is the extension of the previously described open-

loop evaluation. Figure 4-4 shows the closed-loop evaluation framework. This

implementation supports the transfer of incident information from MITSIMLab to

DynaMIT and the provision of predictive guidance from DynaMIT to MITSIMLab.

Guidance generation in DynaMIT is an iterative process. An important

78

Real World/ MITSIM

Pre-Trip True
Behavior

MITSIM
En-route true behavior

Traffic Managment Center/
DynaMIT

S
u

rv
ei

lla
n

ce

Historical
Demand

OD Estimation

Supply
Simulation

Prediction-
Based

Guidance
Generation

Performance Measures

Historical Demand

A
T

IS
Pre-trip

Behavioral
Models

En-rout
Behavioral

Models

Figure 4-4: Framework for Closed-loop Evaluation

79

consideration while using DynaMIT for predictive route guidance generation is the

issue of consistency. The guidance generated should take into account the response

to information of the drivers using the guidance. The control and route-guidance

modules in DynaMIT have to be calibrated against the corresponding models in

MITSIMLab, to anticipate the response to information.

Closed-loop evaluation can be a very powerful tool for evaluating the system

performance before its actual deployment. This is because in many way it replicates

the intended end-use of the system. The system can be directly tested for its ability in

saving travel times and relieving congestion. Different scenarios can be examined and

the analyst can address issues of real-time operability, deployability and effectiveness

of guidance strategies.

The issues related to transfer of the surveillance and incident information have

already been discussed in section 4.1.1. This section discusses the issues related to

the transfer of guidance data from DynaMIT to MITSIMLab, and its deployability.

Figure 4-5, shows the overall framework with which the closed-loop, MITSIMLab-

DynaMIT interface has been implemented on the DynaMIT side. Figure 4-6, shows

a similar diagram of implementation on the MITSIMLab side. Both these diagrams

show the interfacing of the guidance subsystem.

After the network state is estimated (using the sensor and incident information

sent from MITSIMLab), DynaMIT begins its predictive cycle. Guidance is generated

using a iterative algorithm. At each iteration guidance is updated using time

smoothing :

gk
ij = λ ∗ gk−1

ij + (1− λ) ∗ sk
ij (4.1)

where:

gk
ij = current guidance travel times for iteration k, link i, and link entry time-

interval j;

sk
ij = simulator output travel times for iteration k, link i, and link entry time-

interval j;

80

Create New Guidance

Update Path Choice

Simulate Traffic

Aggregate Travel Times

Write Files for GUI

Is Consistency
achieved between

Supply Simulator output &
Current Guidance

YES

NO

Report Guidance Availability

Write Current Guidance File /
Broadcast Guidance

Get New Time from
Time Server

DTMS
Time Server

Check If there is new
Guidance data

Get the travel time
data for the next

link

YES

NO

DTMS
Guidance Server

Broadcast to Guidance
Server

Are travel times
available for all links &
for complete prediction

horizon

NO

Broadcast Guidance
Availability

Reset Guidance Count

Start Xdta
Display

YES

Figure 4-5: Framework for Off-line, Closed-loop, Implementation (DynaMIT-side)

81

h0
ij = historical travel times for link i, and link entry time-interval j;

λ = Smoothing Coefficient;

In the first iteration, historical travel times are used. At each iteration, DynaMIT

uses the current guidance for an en-route route choice, and simulates the traffic

again to obtain new link travel times. It compares these link travel times with the

corresponding travel times in the current guidance table. If the difference falls within

a pre-specified tolerance limit (or if the pre-specified number of maximum iterations

are met), it reports the guidance availability and sends the latest current guidance to

the DynaMIT communicator. Equation 4.2, shows the calculation of the consistency

measurement.

ε =
1

nLinks

√∑
i

∑
j

(gk
ij − sk

ij)
2 (4.2)

where:

ε = Consistency measurement;

nLinks = number of links;

If the consistency is not met, the same process is repeated again. Once the

consistency is met, DynaMIT writes speed, flow and density to files and sends them

to Xdta for display.

The DynaMIT communicator receives the travel time based guidance data and

sends it to the DTMS guidance information server. It keeps a counter on all the

links and the prediction horizon time intervals. Once all the links and time intervals

are processed, DTMS notifies TMC adaptor about guidance availability and the

communicator resets the internal counters.

The TMC adaptor starts the guidance dissemination process by broadcasting a

pre-specified computational delay factor. DynaMIT uses various computationally

intensive algorithm for OD-Estimation and guidance generation. Moreover these

models use multiple iterations to generate congruent estimates and consistent

predictions. Therefore, there might be significant computational delay before

guidance is generated and transmitted to MITSIMLab. Furthermore, DynaMIT

82

Advance Clock

DTMS
Time Server

Report
Current Time

Is Current Time
> End Time

Is New
Guidance

Ready

NO

YES

Send Guidance Data

Notify Guidance
Availability & Horizon

Length

Is Guidance
Available for all links
& Prediction Horizon

YES

NO

NO

Quit
YES

Calculate Guidance
Due Time

Advance Clock

Is Curr. Time >
Guid. Due Time

NO

Request
MITSIM to

Wait

YES

Advance Clock

Recieve TMS
Guidance Information

Udate Guides Travel
TimeTablefor Prediction

Length

Recieve Guidance
Information from

TMCA

Is Guidance
Reading
Available

YES

Set Prediction
Horizon Length

NO

Send Guidance
Readings to MITSIM

Get New Guidance

DTMS
Guidance Server

Write Guidance File /
Increment Guidance

Counter

Reset Guidance
Counter

Report Guidance
Frequency

Notify MITSIMto
Resume

Pause ?

NO

YES

Update Paths for guided
Vehicles En-Route

Assign Pre-trip paths for
new Vehicles

Figure 4-6: Framework for Off-line, Closed-loop, Implementation (MITSIMLab-side)

83

has various lever, to control computational time. The computational delay factor

facilitates the assessment of trade-offs for using various models and convergence

criterion for the various algorithm. The system has the option of defining either

the actual delay or a pre-specified delay.

Once the computational delay factor is conveyed to TMS, it calculates an internal

variable, guidance due time, which is equal to the time at which surveillance was

sent to DynaMIT and expected computational delay. As TMS advances its clock,

it continuously checks if the current time has exceeded the guidance due time. If

it has it directs MITSIM to pause and wait for the guidance. The TMC adaptor

continuously checks for new guidance availability on the DTMS guidance server. If

there is new data, it gets the new data and sends it to the TMS module. It continues

to seek data for all the links and for the entire prediction horizon length. Once it

gets the data for all the links, it notifies the TMS of guidance availability and resets

its own guidance recording counters. TMS gets the message of guidance availability

from TMCA and if MITSIM is paused, it directs it to resume. TMS further sends

the new guidance to MITSIM along with the prediction horizon length.

MITSIM uses to two distinct ways to provide route guidance. It can use a Static

Route Guidance methodology where it calculates an average of the travel times over

the entire prediction horizon for each link and then adds all the link travel times on

all the available paths.

The other model is the Dynamic Route Guidance, which takes into account the

drivers current position, destination and projected time-variant link travel times on

the alternate paths. The travel time for each link is equal to the travel time when

the driver is expected to arrive at that particular link. So the cost experienced by a

driver for travelling on a particular path would be:

Ci(t) = ci0(t) + ci1(t+ ci0(t)) + . . . (4.3)

where:

Ci(t) = Travel time on path i, for a vehicle departing at time t;

84

cij(t) = link travel time on link j, on path i, for a vehicle coming up at the

upstream node of that link at time t;

If the arrival time of a vehicle at a link does not coincide with the discrete intervals

which are used to store the time-dependent travel times, interpolation is used to

approximate the actual travel time. MITSIM can update the paths in between

the reported guidance step size. The update step in that case would be based on

Guidance Resolution- an input parameter that is provided in the master file Yang

(1997). Shortest paths can be recalculated if specified in the master file. Appendix

A provides a sample MITSIM master file used for the closed-loop.

MITSIM has two sets of drivers - Guided and Unguided. The information provided

by DynaMIT is only used on guided drivers. The unguided drivers continue to use

the historical travel times.

It then uses a Route Choice Model or a Route Switching Model to generate the

probability of a vehicle to chose a particular path (see Yang (1997)).

4.2 On-line Implementation

The on-line implementation of DynaMIT would be in congruence with its intended

role in the Traffic Management Centers, with the requirements as laid down in Chapter

2. The integration with the UC Irvine TMCs would provide an excellent opportunity

to evaluate the system against real-field data and against real-time implementation.

The overall system architecture for the integration of DynaMIT with the TMCs

and with the UC Irvine Testbed has already been specified in section 3.4. This

section would discuss the implementation of this architecture in order to achieve our

requirements as specified in section 2.3. The discussion would be divided into two

parts. The first part will discuss the on-line, open-loop implementation. At the

current state of infrastructure and guidance and control subsystem configurations,

at the test site, it would not be possible to exactly spell out the implementation

framework for the closed-loop. In the absence of a clear-cut knowledge and

implementation plan for the closed-loop, we would discuss the adherence of our system

85

configuration with the norms set out in the Interface Compliance Document (ICD).

ICD provides a set of common rules and protocols for the design of applications,

in order to ease their interfacing with other subsystems operating in the TMC

environment. An ICD compliance would ensure convenience in interfacing with

the guidance and control subsystems that may finally be installed in the TMCs.

The second part will discuss the compliance of the DynaMIT interface with the

specification of the ICD. We will discuss the levels on which the designed interface

would comply with the features spelled out in ICD. ICD spells out features and

requirements that go much beyond the scope of this work. WE would only be

concentrating with the issues that concern our study. We would also point out,

in the second part, what a possible closed loop implementation may look like.

4.2.1 On-line, Open-loop Implementation

Figure 4-7 shows the algorithmic implementation of the designed interface at the

Irvine TMC testbed. The figure represents the interface between the TMC and the

TMC adaptor.

The TMC adaptor at initiation registers its clients with the Event Notification

service at the Traffic Management Centers or at the UCI ATMS laboratories 5.

The real-time data is obtained from the physical devices (sensors) on the field

through an interface implemented on the TMCs Front End Processors (FEP).

The FEP system includes a dedicated computer that collects data from the traffic

controllers in the real world, via modems and interfaces embedded on the TCP/IP

network. The FEP acts as a small buffer to store the traffic data collected temporarily.

The data is continuously overwritten at regular intervals (depending on the storage

space in FEP). The FEP can continuously send out the data stored, if requested by

another client host. There is a RECEIVER program that runs on a remote host and

continuously requests for the data stored in FEP’s RAM. The RECEIVER program

converts the data into a human-readable form and dumps it’s memory into a disk file.

5The UCI ATMS laboratories have access to the TMCs through Orbix or other commercial or
public domain CORBA objects

86

YES

NO

YES

YES

NO

YES

NO

Bind to DTMS
Servers

Advance Clock

Receive New sensor
message

Is Current Time >
Sensor Dump Time

Load Master File for
TMCA

Instantiate TMC Clients/
Register withthe event
Management Service

Notification
Service

Read From TMC
Memory Map File

Is there New
Entry ?

Broadcast To the TMC
Adaptor

Broadcast To the
Database Client

Database

Instantiate CORBA-
based Sensor Servers

Get new message from
the Surveillance stations

Get new message from
the Surveillance stations

Is there New
Message ?

Wrte To Memory Map
File

Calculate Sensor Dump
Time

Map to DynaMIT Sensor
ID

Mapping
Information

Aggrgate Ssnsor
Readings

Cobert to DynaMIT
format

Filter unrequired
Sensors

Broadcast to DTMS
server

Reset Sensor
Information

DTMS
Sensor Server

Is data
requested real-

time

Request Database
 Data

Broadcast From
Database

Figure 4-7: Framework for On-line, Open-loop,Implementation of DynaMIT)

87

The CORBA EVENT Notification Service continuously pulls out the data written

to the file and pushes it to a Database Client and the TMCA clients registered to it.

the database clients puts it in a permanently maintained database (Microsoft Access

or Oracle).

The TMC Adaptor Clients can work on two modes. The clients can either be

initiated for the real-time data or for the data stored in the database. They bind

to the Database Server if they have to get the data from the database. Otherwise

they retrieve the data directly through the notification service (which gets it form

the memory dump file). The new data received is sent through a set of refining and

transformation algorithms.

Firstly the data is mapped from their physical location identifications DynaMIT

representations. A disk file keeps the mapping between the physical identifications

of each sensor with their corresponding IDs in DynaMIT notation. At the start of

the TMC adaptor this file is parsed and the one-to-one mappings are stored in the

memory. As the sensor readings come in, the DynaMIT ID for each sensor is identified

and the original identification of each sensor is replaced by this ID.

A converter algorithm, then converts the sensor data format into DynaMIT

notations. the sensor data would usually come in a VDS (Vehicle Detection Station)

format containing the following fields: (i) date time, (ii) VDS ID, (ii) Loop count,

(iv) lane count, (v) Volume, (vi) occupancy, and (vii) status. The converter puts

these data elements into the representative DynaMIT format for each data type. In

case the data is provided through some source other than the VDS (e.g. raw data or

Ramp Metering Station Data), the converter works in similarly to generate a unique

format for use by DynaMIT.

DynaMIT does not require all the information transmitted here for doing state

estimation. The filter algorithm only keeps the information that is relevant and

required by DynaMIT.

The vehicle detection station send in data at different intervals (usually 30 seconds,

but can be 5 minute, 15 minute or more). The aggregation algorithm cumulates these

data into DynaMIT-required intervals. For example if DynaMIT would be doing a 15-

88

minute state estimation, the data is aggregated for fifteen minutes. Once the fifteen

minute aggregation is complete, the data is sent to the DTMS sensor servers through

previously instantiated DTMS clients.

The DTMS and DynaMIT communicator from there onwards work in the same

manner as described in section 4.1.1.

4.2.2 Interface Compliance

The previous section described the open-loop implementation of DynaMIT within

the Traffic Management Centers. DynaMIT is principally envisioned as an ATMS

support system, residing within the TMCs. But the consistent guidance provided by

DynaMIT can be used by many ITS technologies currently being used by the service

providers. With such wide scope of applicability of the output of DynaMIT, it would

more useful to design a more generic interface for output-consumption (closed-loop)

of DynaMIT, rather than a more specific implementation designed to cater only to a

particular guidance and control subsystem.

FHWA produced a program plan for evaluation of DTA systems in 1997. This

plan contained a provision for an ICD (Interface Compliance Document). Oak Ridge

National Laboratories produced a version of this document (Summers and Crutchfield

(1999)) that spelled out the various functions that would need to be implemented in

a DynaMIT interface that would make the system compliant with the a protocol,

making different ITS applications able to access the results produced by DtynaMIT

in real-time. This section would discuss the provision of these functionalities in

DynaMIT.

Figure 4-8 represents the DTA system interfaces as provided by Summers and

Crutchfield (1999) in the ICD. The system architecture provided for interfacing

DynaMIT (shown in figure 3-1) has a very similar structure to what has been required

in the ICD (shown in figure 4-8).

The DynaMIT Communicator (described in section 3.1.4) would embed all the

functions mentioned in ICD, that would be required to achieve the compliance and

standardization. DynaMIT Communicator acts as a channel for retrieving and

89

DynaMIT

Traffic Estimation
System

Traffic prediction
System

SurveillanceSystemInfo
Interface

ScenarioInfo Interface
DTASystemInfo

Interface

Ground Truth Simulator / Real World

Surveillance System

Vehicle Mover

I/O
Subsystem

Signal Controller

Diversion Behavior

Origin-Destination
Demand Module DynaMIT Consumers

Traffic Management
Center

ATIS

Xdta

Figure 4-8: DynaMIT system interfaces as specified in ICD (from Summers and
Crutchfield (1999))

90

sending data to all the components and modules within DynaMIT. It has been

implemented as a CORBA object and hence has easy access to all the CORBA-

based services in the outside world. It will act as a server to which all the clients

can bind to retrieve all the required data through standard written functions. We

would describe here the standard functions that have been written (as per ICD) in

the DynaMIT communicator to retrieve the guidance information through the ICD’s

DTASystemInfo Interface.

(a) getComputation function gets the guidance information for the prediction

horizon specified. The calculated guidance information for each prediction

horizon is stored in a sequential order. The reference to a horizon would return

the dynamic (time interval based) travel times for each link in the network.

(b) getComputationInfo function would return the start time, horizon length,

interval durations and number of intervals for each specific computation.

(c) getEarliestRollingHorizonComputationID function would return the ID for

the first set of predicted guidance available.

(d) getLatestRollingHorizonComputationID function would return the ID for

the latest set of predicted guidance available.

(e) getODTravelTimeDataByInterval function would return the static travel time

for all the OD pairs in the network as recorded by a particular prediction

horizon.

These functional calls can also be used by the guidance and control subsystems

to enable a closed-loop implementation.

91

Chapter 5

Case Study

We have so far discussed the design and implementation of the interface that

was required to integrate DynaMIT with the Traffic Management Center and

MITSIMLab. We develop a set of requirements necessary for interfacing in

Chapter 2 while in Chapter 3 we proposed a system architecture for the interface

between DynaMIT and MITSIMLab, and with the TMCs. Chapter 4 discussed the

implementation framework for the proposed design. In this chapter we demonstrate

the application of our interface through a couple of case studies. The case studies

present the interface between DynaMIT and MITSIMLab.

In this section we present two case studies. The first is based on a relatively

smaller network for which the models in DynaMIT have been calibrated against the

corresponding models in MITSIMLab. This case study gives us the opportunity to

demonstrate the strength and viability of DynaMIT-MITSIMLab as a research and a

pre-installation evaluation tool. The second case study is on the much bigger Irvine

network, demonstrating the robustness of the interface in handling the exchange of

larger volumes of data and its scalability to larger applications. This case study is

also the first step in DynaMIT’s final installation at the Irvine TMC testbed.

92

5.1 Case Study I - Central Artery/Tunnel

Network

The first case study is a MITSIMLab-DynaMIT closed-loop implementation of the

Boston’s Central Artery/Tunnel (CA/T) Network.

5.1.1 The Network

The Central Artery/Tunnel (see Figure 5-2) is one of the largest construction projects

in the U.S. The objective is to provide a replacement for the highly congested elevated

Central Artery (I-93). The six-lane elevated highway is being replaced by an eight-

to-ten lane underground expressway with a new tunnel beneath the inner harbor

to improve access to Logan Airport. I-90 (Massachusetts Turnpike) is also being

extended from its current terminal position (south of downtown Boston). The project

spans 7.5 miles of highway, 161 lanes miles in all, half of which will be in tunnels.

Even with the expected doubling of capacity, the Central Artery is expected to remain

fairly congested because of projected high traffic volumes.

93

CHARLESTOWN

ROUTE 1

ROUTE 1A

TOLL
PLAZA

LOGAN
AIRPORT

THIRD
HARBOR
TUNNEL

SUMNER/
CALLAHAN
TUNNELS

EAST
BOSTON

MASS. PIKE

STORROW
DRIVE

SOUTH
BOSTON

BOSTON

Incident LocationIncident Location

Figure 5-1: The CA/T Network - Incident in Tunnel

Figure 5-2: The Central Artery / Tunnel Network (source:
http://www.bigdig.com)

94

The network also has four major highway interchanges connecting new roads to

the existing highway systems. The multiple interchanges and the circular geometry

with many on and off ramps, provide more than one route choices for almost all the

OD traffic on the network. The fact that all the latest ITS technologies and elaborate

surveillance and control devices are scheduled to be deployed on the network. Hence,

the CA/T network is a very useful choice for studying and evaluating dynamic traffic

assignment systems.

5.1.2 The Scenarios - Incident in Third Harbor/ Ted

Williams Tunnel

The Third Harbor/ Ted Williams tunnel segment of the network is a two-way, four-

lane, controlled access toll highway, approximately four miles in length connecting

the Massachusetts Turnpike (I-90), Southeast Expressway (I-93), and South Station

on the south of harbor, with Logan Airport and Route 1A on the north side. There

exist alternate routes for most of the O-D pairs served by the tunnel. This makes

this tunnel an ideal candidate to study the effectiveness and applicability of dynamic

traffic management systems.

Ben-Akiva et al. (1995) previously used a partial lane-blockage scenario inside

the Third Harbor/Ted Williams tunnel to study CO buildup inside the tunnel and

conditions that will require the its closure. In this section, we will generate and study

two similar scenarios of partial lane-blockage within the Tunnel (Figure 5-1), in order

to study the effectiveness of the guidance generation capabilities of DynaMIT, and

test its interface with MITSIMLab.

95

169

0

129

153

44

130

18

15

5

14

6

11

13

2126

19

23

24

33

30

29

Figure 5-3: The CA/T Network - Representative Sensor
Locations

169

0

129

153

44

130

Figure 5-4: OD pairs for the CA/T Network

96

The incident begins at 7:25 and lasts for 20 minutes. It blocks completely one of

the lanes in the tunnel and reduces the speed for the other from 55 mph to 10 mph.

We study the following two scenarios:

(a) No Guidance: This would be the base scenario when the drivers on the network

are provided with no real-tine information or guidance and they follow their

habitual routes based on the historical travel times.

(b) DynaMIT-generated Predictive Guidance: DynaMIT generates and provides

guidance in the form of predicted travel times. The guided drivers chose their

routes based on these predicted travel times. The route choice can be both pre-

trip as well as enroute. The unguided drivers continue to use their historical

routes. The guidance being provided by DynaMIT is in a rolling horizon form,

with the horizon length of 30 minutes and guidance updated every 15 minutes.

The computational delay is set to 2 minutes.

The simulation starts at 7:15 am and continues in a rolling horizon manner with

15 minute roll-overs (new prediction arrive every 15 minutes). All the other data files

and inputs are the same for both the scenarios. Ninety percent of drivers are assumed

to be guided and provided with the information (predicted travel times). The high

number of guided drivers provides a good test for the importance of prediction. Other

studies, usually not based on predictive guidance, indicate that benefits due to ATIS

are greatest when informed drivers are around 50% of the total driver population.

5.1.3 Measures of Effectiveness (MOE)

We use the average trip travel times as the measure of effectiveness in this case study.

The average trip travel times are compared for a fixed number of vehicles in the

network that complete their trips. The travel times are also compared in accordance

with the departure times of vehicles. The average trip travel times are also compared

between the guidance and no-guidance case for all the OD pairs in the network.

97

5.1.4 Historical Data and Inputs

The two scenarios had a common set of historical data and common parameter files.

The data files used are explained below.

Network File: The network had been coded using the RNE (Road Network

Editor), based on the data obtained from the CA/T project management office. The

network had 184 nodes, 209 links, 636 segments, 1259 lanes, and 35 sensors.

Historical Link Travel Times: Both MITSIMLab and DynaMIT use time-

dependent link travel time to implement the route-choice. The historical travel times

are used by the unguided drivers to generate their habitual routes and by the guided

drivers for the period in which there is no guidance available. Sam historical travel

times were used by both MITSIMLab and DynaMIT in this case study. The historical

travel times were generated by running MITSIM in a stand alone mode and recording

the travel times experienced by the users.

OD Flow: MITSIMLab, which acts as a representation of the ”reality” requires

time-dependent OD trip tables file, based on which the vehicles are generated.

DynaMIT uses a seed OD-flow file which may be different from the actual OD-flow

in the network at the time of simulation. DynaMIT would use the sensor counts

generated by the surveillance components in MITSIMLab (which would have the

true OD-flow) and the seed OD-matrix to estimate the true OD flow at the time it

is called to do the prediction. The historical OD file used in MITSIMLab was an

abstract approximation (derived from informal discussions with the researchers and

preliminary data assumed by traffic planners) of what might be the true OD flow. The

OD trip table used is shown in table 5.1. Figure 5-4 shows the locations of these OD

pairs in the network. The correctness of the historical OD-flow would not matter in

this study. The closed loop implementation and the respective roles of DynaMIT and

MITSIMLab would remain the same. The numerical values of savings in travel times

would be more if the ODs which have paths passing through through the blocked link

have higher values and the savings would be less if the OD-flow is less than what has

been assumed.

98

Table 5.1: Origin-Destination Flows and Paths for CA/T Network

Origin Node Destination Node Hourly Flows Paths
0 44 1950 S, T
0 130 300 S, T
129 44 135 S, T
129 130 135 S, T
153 44 120 S
153 130 120 S
169 44 15 T
169 130 15 T

S represents a path that goes through the Sumner/Callahan Tunnel;
T represents a path that goes through the Ted Williams Tunnel;

Path Table: It is important that both DynaMIT and MITSIMLab have the

same set of paths between all the OD pairs. This would ensure consistency between

MITSIMLab and DynaMIT on the number of vehicles choosing a particular path,

given the same route choice parameters and link travel times. DynaMIT path

topology module was used to generate all the paths between all the simulated OD

pairs. The same path table file was used by MITSIMLab.

Supply Parameter File: The DynaMIT uses a mesoscopic supply simulator

which needs to be calibrated against MITSIM. The calibrated parameters are

stored in the supply parameter file that is used by DynaMIT at execution. The

main parameters of interest are capacities and the parameters in the speed-density

relationships that capture traffic dynamics. The speed-density relationship used by

DynaMIT is of the form:

ν = min [νmin, νmax[1− (k

kjam

)β]α] (5.1)

where:

ν = the speed in the segment;

νmax = the calibrated free flow speed;

k = the segment density;

99

kmax = the calibrated jam density of the segment;

α and β = the calibrated coefficients;

νmax = the calibrated minimum speed;

The parameters were calibrated by recording the speeds, densities and flows from

MITSIM for each segment. Segments were grouped into the following categories: (i)

Single-lane ramp, (ii) Multiple-lane ramp, (iii) Freeway with on-ramp, (iv) Freeway

with off-ramp, (v) Mainline, and (vi) Weaving section.

Socio-Economic Characteristics File: This file stores the characteristics of

drivers on the network which are used by the route-choice models. This file does not

play any role of importance in our evaluation process.

5.1.5 Route-Choice and Control

Drivers in both DynaMIT and MITSIM have the same set of paths to choose from.

The route choice models in DynaMIT and MITSIMLab are discussed next.

The vehicles with paths in MITSIM use a route switching model to make route

choice. The utility, Vi(t), for a vehicle of choosing path i at time t is given by a

multinomial logit model:

Vi(t) = β
Ci(t) + Zi

C0(t) + Z0

+ γli (5.2)

where:

β = parameter;

Ci(t) = the expected travel time on path i, at time t ;

Zi = diversion penalty ;

γ = the commonality factor parameter;

li = the commonality factor;

The subscript 0 represents the corresponding values for the shortest path.

The diversion penalty is the additional cost imposed for switching from the current

route to an alternate route. The freeway bias is a penalty against taking the off and

100

on-ramp paths. The commonality factor captures the bias generated as a result of

overlap between alternate paths. DynaMIT, at this time, only considers the travel

times for making route-choice decisions. Thus the parameter for commonality factor,

freeway bias and diversion penalty in MITSIM were set to minimize their influence

in route-choice decisions.

5.1.6 Results

The results in this section intend to serve two purposes. Firstly they are used

to demonstrate the successful working of the interface between MITSIMLab and

DynaMIT with real-time exchange of data in a rolling-horizon. Then they show

the potential benefits that can be experienced by the integration of dynamic traffic

assignment systems like DynaMIT, in Traffic Management Centers.

DynaMIT operates in a step of 15 minutes. It receives the first set of sensor

readings at 7:30 and performs a state estimation from 7:15 to 7:30. The sensor

readings are from 35 link-wide sensors on the CA/T network. Based on the sensor

readings, DynaMIT performs (i) an estimate of congruent OD flows, and (ii) an

estimate of the network state at 7:30. Based on the network state, it predicts the

traffic conditions from 7:30 to 8:00, and generates link travel times (guidance) which

takes into account drivers response. The best guidance (in terms of consistency)

are sent to MITSIMLab as time-dependent link travel times. Figure 5-5 shows the

measure of consistency as a function of the number of iterations. As shown the

consistency generally increases with the number of iterations.

MITSIMLab moves vehicles based on this guidance and reports another set of

link sensor counts from 7:30 to 7:45. Table 5.2 shows the sensor counts as reported

by MITSIMLab for the two scenarios. Under the no-guidance scenario drivers make

route choices based on historical travel times. Under the guided scenario and during

the period 7:30-7:45, when the guidance that is generated takes into account the

occurrence of the incident, the guided vehicles make route choice based on the

predicted travel times obtained from DynaMIT. The sensor counts observed are now

very different. For example, we observe a decrease in sensor counts as reported by

101

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

Iterations

M
ea

su
re

 o
f

C
o

n
si

st
en

cy

Figure 5-5: Measure of Consistency for Route-Guidance

102

Sensor ID 6 (placed on the Ted Williams route) and increase in the count on the

Sumner/ Callahan tunnel route, as reported by sensor ID 5.

For the first estimation time interval (between 7:15 and 7:30) very little difference

between the sensor counts of the two scenarios is observed. This is because during

this time conditions are are similar to the historical conditions. The differences are

due to the randomly generated departure times and random allocation of paths to

the vehicles and the impact of the incident that started at 7:25. The columns of table

5.2 show the observed sensor counts for representative sensors for time interval 7:30

to 7:45. The representative sensor locations are marked in Figure 5-3.

103

Table 5.2: Comparison of Sensor Counts for No-Guidance and Guidance Scenarios

Sensor ID No Guidance Guidance Change (%)
0 565 559 -1.06
2 65 68 4.62
3 58 59 1.72
4 8 7 -12.50
5 47 184 291.49
6 519 377 -27.36
7 60 95 58.33
8 62 30 -51.61
9 62 95 53.23
11 507 375 -26.04
12 61 32 -47.54
13 265 114 -56.98
14 55 190 245.45
15 121 280 131.40
16 123 284 130.89
17 123 282 129.27
18 123 275 123.58
19 81 160 97.53
20 54 96 77.78
21 219 81 -63.01
22 37 13 -64.86
23 85 161 89.41
24 87 146 67.82
25 53 98 84.91
26 229 95 -58.52
27 40 15 -62.50
28 42 22 -47.62
29 85 143 68.24
30 239 104 -56.49
31 52 89 71.15
32 41 26 -36.59
33 323 251 -22.29
34 96 110 14.58

104

Travel Times for Unguided Vehicles

0

200

400

600

800

1000

1200

1400

1600

1800

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

Departure Time

T
ra

ve
l T

im
e

Figure 5-6: Scatter Plot of Travel Times for UnGuided Vehicles

Travel Times for Guided Vehicles

0

200

400

600

800

1000

1200

1400

1600

1800

7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00

Deaprture time

T
ra

ve
l t

im
e

Figure 5-7: Scatter Plot of Travel Times for Guided Vehicles

105

DynaMIT generates guidance assuming a 30 minutes time horizon. Since the time

resolution of the predicted travel times is 1 minute, DynaMIT, through the interface,

sends to MITSIMLab a travel-time table of size 208links x 30 minutes. Figures 5-6

and 5-7 illustrate the travel times for vehicles departing between 7:15 and 8:00 for

the base case (no-guidance) and guidance scenarios. The travel times increase at 7:25

because of the 20-minute incident. We can see that the unguided scenario has more

vehicles which are excessively delayed because of the incident. On the other hand,

vehicles the guided scenario experience lower travel times in comparison.

The average travel times for all vehicles (guided and unguided) for the base case

and guidance scenarios are shown in figure 5-8. The travel times are compared with

the no-incident case. The drivers on the CA/T network take on an average of 6.15

minutes to travel to their destinations without the incident. The travel time increases

by 81% to 11.14 minutes because of the 20 minute incident in the Ted Williams

Tunnel, if no guidance is provided to the drivers. However, with the predictive

guidance from DynaMIT the travel time only increases by 45% to 8.9 minutes. The

predictive guidance from DynaMIT produces a savings of about 20%.

Comprison of Average Travel Times

0

2

4

6

8

10

12

No Incident Guidance No Guidance

Scenario

A
ve

ra
g

e
T

ra
ve

l T
im

es
 (

m
in

s.
)

Figure 5-8: Comparison of Average Travel Times for All Vehicles

Figure 5-9 compares the average travel times for the guided and no-guidance

scenarios, as a function of departure times. The incident begins at 7:25 and ends at

7:45. We see that travel times are comparable for vehicles departing before 7:20 (note

106

Average Travel Time

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

Departure Time (hrs)

A
ve

ra
g

e
T

ra
ve

l T
im

e
(S

ec
o

n
d

s)

Unguided

Guided

Figure 5-9: Comparison of Average Travel Times as a function of Departure Times

107

Table 5.3: Comparison of Average Travel Times for OD Pairs

OD Pair No Guidance Guidance Change (%)
0 - 44 684.97 536.3 -21.6
0 - 130 783.76 609.58 -22.2
129 - 44 638.9 590.32 -7.6
129 - 130 862.2 551.35 -36.05
153 - 44 362.02 385.51 6.4
153 - 130 369.8 382.6 3.4
169 - 44 384.1 371.5 -3.2
169 - 130 403.37 401.37 -0.49

that it takes about 5 minutes for vehicles to reach the incident location from the main

origin). The vehicles departing later than this time get caught in the incident before

they reach their destinations. The no-guidance scenario shows a steeper slope than

the guidance scenario. Also the average travel times remain higher for all departure

times during the incident time. Even after the incident is cleared (at 7:45), the

vehicles, caught up on the Ted Williams tunnel route, delay the vehicles departing at

later time periods and hence average travel times in the base case are higher.

Table 5.3 gives the average travel times for all the OD pairs, for the two scenarios.

Although, on average there are travel time savings when guidance is provided, the

savings are not uniform across all OD pairs. For some of the OD pairs actually the

travel time increases. OD pairs 153 - 44 and 153- 130, for example, only have one

path that goes through the Sumner/ Callahan Tunnel. We observe an increase in

their travel times (see Table 5.3). This can be explained by the increase in congestion

on the Callahan Tunnel route because a number of guided drivers, who previously

used the Ted Williams Tunnel route, are now diverted to this route as a result of the

predictive guidance from DynaMIT. OD pairs 0 - 130 and 129 - 130 experience the

biggest gains, 22% and 36% respectively. These pairs have paths that use the Ted

Williams tunnel and the incident directly affects them. As a result, the guided drivers

gain significant savings by taking the other routes. Unguided drivers and those of the

guided drivers who remain on their original paths through the tunnel also benefit,

since due to the reduced demand, the impact of the incident is minimized.

108

5.2 Case Study II - The Irvine Network

This case study demonstrates the successful applicability of the interface and its

robustness for larger networks. The Irvine network is currently being calibrated, and

hence it would be futile to evaluate state estimation and traffic prediction results.

Nevertheless, this demonstration shows the applicability and ability of the system to

tackle large-scale, real-life problems.

5.2.1 The Network

The Irvine network is shown in figure 5-11. It consists of two major interstates I-5

and I -405, which intersect on the south end and diverge towards the north. The two

interstates are crossed by three state highways - 55, 261 and 133. Anaheim is located

further north. The network also includes numerous arterials and local streets, some

of which (like Baranca) carry significant amount of traffic. The network contains

many traffic actuated signals and is equipped with multiple surveillance stations and

information sources. The network experiences significant traffic delays during the

morning and evening peak hours as people travel to the central business districts

of Irvine and Anaheim. The University of California, Irvine which coordinates

the surveillance collection and dispersion efforts for the testbed, is located in close

proximity towards the west side.

109

Figure 5-10: The Coded Irvine Network Figure 5-11: The Irvine Network (source:
http://www.mapquest.com)

110

The network consists of 296 nodes, 618 links, 1373 segments, and 3524 lanes.

There are about 219 link-wide sensors which are used for the collection of traffic

counts, besides other lane specific sensors that are used to time the signals at the

intersections. The coded network is shown in figure 5-10. The network consists of

622 OD pairs.

5.2.2 The Interface

The MITSIMLab-DynaMIT interface was tested on the Irvine network. A 15-minute

estimation period and a 30-minute prediction horizon were used for the test. In

addition to the various functionalities tested with the case study using the CA/T

network, several additional features of the interface were tested using the Irvine

network. The most important of these are related to the sensors and their operations.

Sensors in the Irvine network are used, either for counts, or for activating traffic

lights at intersections. Because of the traffic actuated signals, MITSIM needs sensor

readings every 1-second. MITSIMLab was thus reporting signal readings for about 500

sensors every 1-second. Hence, the aggregation algorithm, in the TMC adaptor was

used to accumulate the sensor data for 15-minute intervals, as needed by DynaMIT.

Also DynaMIT, only used information from the sensors providing link-wide counts.

Thus the filtering algorithm was used to extract information from link-wide sensors.

In this case study, there was no need to use the sensor mapping or conversion utilities,

since both DynaMIT and MITSIMLab use the same sensor IDs and data format.

DynaMIT supplied the guidance information for a period of 30 minutes. The

guidance consisted of the dynamic link travel times in one minute intervals. The

guidance data thus had a size of 618 x 30 which was transmitted through the CORBA-

based communication architecture to the TMC adaptor which further sent it to the

appropriate MITSIMLab module using the PVM communication infrastructure of

MITSIMLab. Figure 5-12 gives a snapshot of the operation of DynaMIT within the

Traffic Management Center Simulator of MITSIMLab, for the Irvine case study.

111

Figure 5-12: A snapshot of the DynaMIT-MITSIMLab closed-loop implementation
on the Irvine Network

112

Chapter 6

Conclusions

6.1 Research Contribution

The contribution of this research spans across four basic areas: (a) design of

a generic interface that integrates DynaMIT in Traffic Management Centers, (b)

implementation of the interface design for integrating DynaMIT with the Traffic

Management Simulator (TMS) within MITSIMLab and the application of the design

for integrating DynaMIT with the Irvine TMC, (c) design and implementation of

DynaMIT-Communicator, an open Communication Interface for DynaMIT, making

it accessible to various ITS applications and making it ICD compliant, and

(d)demonstration of the functionality of the interface and the associated system with

two different transportation networks.

The interface design extends, modifies and improves the architecture suggested

by Ruiz (2000). It has been designed as a client-server application, using a basic

push/pull model. The exchange of data takes place between two subsystem clients

which bind to the same server. The application has been distributed using the

Common Object Request Broker Architecture. The interface has been designed in

multiple modules in order to provide a more generic design that is flexible enough to

be adopted to different TMCs with minimal changes which would be concentrated on

only one of the modules. The other modules remain unaltered. The design supports

application and execution of multiple systems in parallel, and allows concurrent

113

execution of different processes in DynaMIT as well TMC subsystems, without

stopping or waiting for the completion of the other. Finally, the interface design

leaves ample flexibility to further enhance the functionality of the system by adding

more utilities and applications.

The proposed architecture was used to implement the interface for the offline

evaluation system (DynaMIT-MITSIMLab) as well as for the online integration of

DynMIT with the Traffic Management Center at Irvine. The offline evaluation system

can be a very powerful tool for analyzing the effectiveness of DynaMIT and other

dynamic traffic assignment systems. The evaluation tool also provides numerous

methods for studying the different characteristics of traffic networks and observing

results form applying different routing and control strategies. The offline closed-

loop system also provides a tool for evaluating and observing the computational

performance of various algorithms and models that have been applied for the first

time in DynaMIT. The implementation framework for integrating DynaMIT with the

Irvine TMC provides opportunity to evaluate the system with data received from the

network in real-time. Moreover, it provides useful insights into the final deployability

of the system within TMCs.

Since the deployment of systems like DynaMIT can potentially be useful to

many other ITS technologies and functions within TMCs, FHWA has proposed some

form of standardization in the interface implementation of DynaMIT, through the

Interface Compliance Document (ICD). ICD provides a common set of function calls

that various technologies can use to obtain prediction data from DynaMIT. The

DynaMIT communicator interface acts as a channel for any outside communication

to and from DynaMIT. These function calls have been implemented in the DynaMIT

communicator which makes DynaMIT ICD compliant from the DTASystemInfo

(Summers and Crutchfield (1999)) point of view.

Finally, the MITSIMLab-DynaMIT system was applied on two case studies

involving two different networks - the CA/T network and the Irvine network. In

the CA/T case study, we obtained results for two scenarios under incident conditions

- no-guidance and predictive guidance. The results indicated the potential benefits

114

of real-time application of DynaMIT within a TMC, and the use of the interface in

evaluating the performance of DynaMIT. The second case study on the Irvine network

showed the robustness of the system to operate with large networks, under realistic

operating conditions.

6.2 Future Work

The research presented in this thesis can in future be extended in the following

directions:

Detailed Methodology for the Evaluation of DynaMIT

Ben-Akiva et al. (1995) had previously presented a framework for the evaluation

of dynamic traffic management systems. The interface implementation provides an

opportunity to extend this framework into a detailed evaluation methodology for on-

line and off-line evaluation of DynaMIT. The evaluation methodology can make use

of the several features and attributes of the interface, as presented in this thesis.

Design Refinement and optimization of DynaMIT algorithms

and models

DynaMIT models can be tested for their efficacy and efficiency using alternate

scenarios (one example of which was presented in case study I in the last chapter). The

interface provides an opportunity to immediately observe (through MITSIMLab) the

results of the application of these scenarios. Researchers can analyze the relationships

between the systems input parameters and the observed outputs or response from

drivers in MITSIMLab. The input-response relationships can be studied to identify

optimal design parameters. These relationships can also give the sensitivity of the

results to change in the value of these parameters. Various design refinements and

model optimization can be pursued in DynaMIT based on these results.

115

Application of the Interface to multiple TMC configurations

The interface can be further applied to different TMC configurations. The TMC

configuration can be in the form of a centralized system covering single region

or a centralized system covering multiple regions.It can also be of the form of a

decentralized region (Ruiz (2000); Ben-Akiva et al. (1994b)). The interface can be

extended to the different TMC designs by implementing the appropriate refinements

in the TMC adaptor.

Interfacing with other ITS technologies in the TMCs

The ICD-compliance of DynaMIT achieved by implementing the appropriate

functions in the DynaMIT communicator part of the interface, can allow DynaMIT

integration with other ITS technologies and functions within the TMCs, which may

require information on the predicted traffic conditions. Therefore, integration of

DynaMIT with these technologies can be a logical next step in the near future.

Interfacing for Parallel Simulation

Various researchers (Jha et al. (1995); Yang (1997); Junchaya et al. (1992)) have

talked about the possibility of parallelizing traffic simulation. Parallel simulation

would decompose a large network into several smaller subnetworks, and simulate

simultaneously on multiple processors. This can decrease the computational time

tremendously, when simulating larger networks. The interfacing of DynaMIT would

have to modified to incorporate parallel simulation. The exchange of data in this case

would be between numerous subsystems and small-network simulations. The interface

would be require to associate each data-type with the subsystem and simulation it

belongs to. The interfacing of for parallel simulation, though, can still be built on

the concepts introduced and implemented in this thesis.

116

Bibliography

Jaime Barcelo and Jaime L. Ferrer. A simulation study for an area of Dublin using
the AIMSUN2 traffic simulator. Technical report, Department of Statistics and
Operation Research, Universitat Politecnica de Catalunya, Spain, 1995.

M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis: Theory and Application
to Travel Demand. MIT Press, 1985.

M. E. Ben-Akiva, M. Bierlaire, J. Bottom, H. N. Koutsopoulos, and R. G. Mishalani.
Development of a route guidance generation system for real-time application, 1997.
Presented at 8th IFAC Symposium on Transportation Systems.

M. E. Ben-Akiva, M. Bierlaire, H. N. Koutsopoulos, and R. G. Mishalani. DynaMIT:
Dynamic network assignment for the management of information to travelers. In
Proceedings of the 4th Meeting of the EURO Working Group on Transportation,
Newcastle, 1996a.

M. E. Ben-Akiva, H. N. Koutsopoulos, R. G. Mishalani, and Q. Yang. Integrated
simulation framework for evaluating dynamic traffic management systems. In
Proceedings of the First World Congress on Applications of Transport Telematics
and Intelligent Transportation Systems, Paris, 1994a.

Moshe E. Ben-Akiva, Anthony F. Hotz, Rabi. G. Mishalani, and Nageswar R. V.
Jonnalagadda. A design-evaluation framework for dynamic traffic management
systems using simulation. In WCTR Proceedings, Sydney, Australia, 1995.

Moshe E. Ben-Akiva, Haris N. Koutsopoulos, Rabi G. Mishalani, and Qi Yang.
Simulation laboratory for evaluating dynamic traffic management systems. ASCE
Journal in Transportation Engineering, 1996b. Accepted for publication.

Moshe E. Ben-Akiva, Haris N. Koutsopoulos, and Anil Mukandan. A dynamic traffic
model system for ATMS/ATIS operations. IVHS Journal, 1(4), 1994b.

J. Bottom, M. Ben-Akiva, M. Bierlaire, and Chabini I. Generation of consistent
anticipatory route guidance, 1998. Presented at TRISTAN III Symposium.

Syd Bowcott. The ADVANCE project. In Sam Yagar and Alberto Santiago,
editors, Large Urban Systems – Proceedings of the Advanced Traffic Management
Conference, pages 59–70, St. Peterburg, Florida, 1993.

117

Ennio Cascetta, Domenico Inaudi, and Gerald Marquis. Dynamic estimators of origin-
destination matrices using traffic counts. Transportation Science, 27(4):363–373,
1993.

Huey Kuo Chen and Che Fu Hsueh. Combining signal timing plan and dynamic
traffic assignment. 76th Transportation Research Board Annual Meeting, 1997.

Charles Donnelly and Richard Stallman. Bison – The YACC-compatible parser
generator. the Free Software Foundation, Cambridge, MA, 1992.

DYNA. DYNA – A dynamic traffic model for real-time applications – DRIVE II
project. Annual review reports and deliverables, Commision of the European
Communities - R&D programme telematics system in the area of transport, 1992-
1995.

FHWA. DTA RFP. Technical report, Federal Highway Administration, US-DOT,
McLean, Virginia, 1995.

FHWA. CORSIM User Guide. Technical Report Version 1.0, Federal Highway
Administration, US-DOT, McLean, Virginia, 1996.

FHWA. A roadmap for the research, development and deployment of traffic estimation
and prediction systems for real-time and off-line applications. Technical report,
Federal Highway Administration, US-DOT, McLean, Virginia, 2000.

Loral AeroSys FHWA. Traffic management center - the state-of-the-practice. Task A:
Final Working Paper for Design of Support Systems for ATMS DTFH61-92C-00073,
U.S. Department of Transportation - Federal Highway Administration, 1993.

Nathan H. Gartner and Chronis Stamatiadis. Integration of dynamic traffic
assignment with real time traffic adaptive control. 76th Transportation Research
Board Annual Meeting, 1997.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine – A users’ guide and tutorial for networked parallel
computing. The MIT Press, Cambridge, MA, 1994.

Hague Consulting Group. What happens: European trials of anticipatory traffic
control. Traffic Technology International, 8:64–68, 1997.

Kevin A. Haboian. A case for freeway mainline metering. 74th Transportation
Research Board Annual Meeting, Washington, D.C., 1995.

Masroor Hasan. Evaluation of ramp control algorithms using a microscopic
traffic simulation laboratory, mitsim. Master’s thesis, Massachusetts Institute of
Technology, 1999.

Mithilesh Jha, Anupam Joshi, and Kumares Sinha. A framework for dynamic traffic
simulation on distributed systems. In Proceedings of applications of advanced
technologies in transportation, Capri, Italy, 1995.

118

T. Junchaya, G.L. Chang, and A. Santiago. ATMS: Real-time network traffic
simulation methodology with a massively parallel computing architecture. In
Proceedings of 71st TRB Annual Meeting, Washington, D.C., 1992.

Ashok Kalidas. Estimation and prediction of time-dependent origin-destination flows.
PhD thesis, Massachusetts Inst. of Tech., Cambridge, MA, 1996.

Ashok Kalidas, M. Ben-Akiva, M. Bierlaire, A. Chachich, A. Hotz, H.N.
Koutsopoulos, R. Mishalani, and Q. Yang. Tools for design and operation of
dynamic traffic management systems. Third Annual World Congress on Intelligent
Transport Systems, 1997.

I. Kaysi, Moshe E. Ben-Akiva, and Haris N. Koutsopoulos. Integrated approach
to vehicle routing and congestion prediction for real-time driver guidance.
Transporation Research Record, 1408, 1993.

H.N. Koutsopoulos, T. Lotan, and Q. Yang. A driver simulator for data collection
and ITS application to the route choice problem. Transportation Research C, 2C
(2), 1994.

John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly & Assoc,
Cambridge, MA, 2nd edition, 1992.

Hani S. Mahmassani, Ta-Yin Hu, Sriniva Peeta, and Athanasios Ziliaskopoulos.
Development and testing of dynamic traffic assignment and simulation procedures
for ATIS/ATMS applications. Report DTFH61-90-R-00074-FG, U.S. DOT, Federal
Highway Administration, McLean, Virgina, 1994.

M. McNally. Evaluation of the anaheim advanced traffic control system field
operational test. Technical Report UCB-ITS-PRR-99-18, University of California,
Berkeley, 1999.

F. Middelham, W. J. Schouten, J. Chrisoulakis, M. Papageorgiou, and H. Haj-Salem.
Eurocor and a10-west – coordinated ramp metering near amsterdam. In Proceedings
of the First World Congress on Applications of Transport Telematics & Intelligent
Vehicle-Highway Systems, pages 1158–1165, Paris, France, 1994.

M. Miller. Travinfo evaluation traveler information ceneter study. Technical Report
UCB-ITS-PWP-98-21, University of California, Berkeley, 1998.

MIT. Development of a deployable real-time dynamic traffic assignment system.
Technical Report Task B-C, Massachusetts Inst. of Tech., Intelligent Transportation
Systems Program and Center for Transportation Studies, Cambridge, MA, 1996.
Interim reports submitted to the Oak Ridge National Laboratory.

Robert Orfali and Dan Harkey. Client/Server Programming with Java and CORBA.
Wiley, John & Sons, 1998.

119

Harold J. Payne. Freeway traffic control and surveillance model. Trasportation
Engineering Journal, 99(TE4):767–783, 1973.

Karl Petty, Hisham Noeimi, Kumud Sanwal, Dan Rydzewski, Alexander
Skabardonis, Pravin Varaiya, and Haitham Al-Deek. The freeway service
patrol evaluation project: database, support programs, and accessibility.
http://www.path.berkeley.edu/FSP/, 1996.

Robert A Reiss and Nathan H. Gartner. Dynamic control and traffic performance
in a freeway corridor: A simulation study. Transportation Research, Vol. 25A(5):
267–276, 1991.

Bruno M. Fernandez Ruiz. Architecture for the integration of dynamic traffic
management systems. Master’s thesis, Massachusetts Institute of Technology, 2000.

Christopher L. Saricks, Joseph L. Schofer, Siim Soot, and Paul A. Belella. Evaluating
effectiveness of a real-time ATIS using a small test vehicle fleet. In Proceeding TRB
76th Annual Meeting, 1997. Paper No: 970585.

Joseph L. Schofer, Frank S. Koppelman, Regina G. Webster, Stanislaw Berka, and
Tsia shiou Peng. Field test of the effectiveness of ADVANCE dynamic route
guidance on a suburban arterial street network. ADVANCE Project Document
#8463.01, Northwest University, Transportation Center, 1996.

Scott W. Sibley. NETSIM for microcomputers – simulates microscopic traffic flow on
urban streets). Public Roads, 49, 1985.

S. A. Smith and C. Perez. Evaluation of inform: Lessons learned and application to
other systems. Transportation Research Record, TRR 1360, 1992.

Y. J. Stephanedes, E. Kwon, and P. G Michalopoulos. Demand diversion for vehicle
guidance, simulation and control in freeway corridors. Transportation Research
Record, TRR 1220, 1989.

Michael Summers and James Crutchfield. Treps interface version 0.1. Technical
report, Oak Ridge National Laboratory, 1999.

C. Sun. Dynamic origin/destination estimation using true section densities. Technical
Report D99-49, PATH, 1999.

Philip J. Tarnoff and Nathan Gartner. Real-time, traffic adaptive signal control. In
Sam Yagar and Alberto Santiago, editors, Large Urban Systems – Proceedings of the
Advanced Traffic Management Conference, pages 157–168, St. Peterburg, Florida,
1993.

Qi Yang. A Simulation Laboratory for Evaluation of Dynamic Traffic Management
Systems. PhD thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1997.

120

Qi Yang and Haris N. Koutsopoulos. A microscopic traffic simulator for evaluation
of dynamic traffic management systems. Transportation Research C, 4(3):113–129,
1996.

Peter J. Yauch, James C. Gray, and William A. Lewis. Using NETSIM to evaluate the
effects of drawbridge openings on adjacent signalized intersections. ITE Journal,
58(3):35–44, 1988.

121

Appendix A

Sample Data Files

— Start of files/master.smc —

Simlab master file

[Title] = "An example of using simulation master controller"

[Input Directory] = "/users/manishm/cloop"

[Output Directory] = "/users/manishm/cloop/Output"

Microscopic traffic simulator

[MITSIM] = {

"master.mitsim" # master file

"$HOST" # host

"$DISPLAY" # display

}

Traffic management simulator

[TMS] = {

"master.tms" # master file

"$HOST" # host

"" # display

}

122

Traffic Management Center Adaptor

[TMCA] = {

"master.tmca" # master file

"$HOST" # host

"" # display

}

[Break Points] = {

}

[Randomize] = 0

[Verbose] = 1

[Nice] = 1

— End of files/master.smc —

— Start of files/master.mitsim —

/*

* MITSIM master file

*/

[Title] = "Local Ramp Control 100%"

[Default Parameter Directory] = "/users/manishm/view/data/Common"

[Input Directory] = "/users/manishm/cloop"

[Output Directory] = "/users/manishm/cloop/Output"

[Working Directory] = "/users/manishm/cloop/Output"

[Parameter File] = "paralib.dat"

[Network Database File] = "network_test.dat"

123

[Trip Table File] = "/users/manishm/cloop/demand0.dat"

[Vehicle Table File] = ""

[State Dump File] = ""

[GDS Files] = {

% Filename MinScale MaxScale

}

[Link Travel Times Input File] = {

"cloop_test3new.txt" # Historical travel time

"cloop_test3new.txt" # Updated travel time

0x105 # SP flags

% 0x001 Time variant path calculation

% 0x002 Calulate shortest path peridically

% 0x004 Update path table travel time peridically

% 0x008 Use existing (cached) shortest path table

% 0x100 Updated travel time used for pretrip plan

% 0x200 Receives updated travel time at beacon

}

[Incident File] = "incident.dat"

[Path Table File] = "newpath.out"

[MOE Specification File] = ""

[MOE Output File] = "moe.out"

[Network State Tag] = "i3d"

[Segment Statistics File] = "segstats.out"

[Segment Travel Times File] = "segtime.out"

[LinkFlowTravelTimes Output File] = "lft_i.out"

[Link Travel Times Output File] = "linktime.out"

[Vehicle File] = "vehicle.out"

[Vehicle Trajectory File] = "trajectory.out"

[Vehicle Path Record File] = "pathrec.out"

[Departure Record File] = "dep.out"

[Queue File] = "queue.out"

[Point Sensor File] = "sensor.out"

124

[VRC Sensor File] = "vrc.out"

[Assignment Matrix File] = "assignment_matrix.out"

[Start Time] = 07:15:00

[Stop Time] = 08:15:00

[Step Size] = 0.1

[Segment Data Sampling Step Size] = 30

[Segment Data Report Step Size] = 300

[Point Sensor Step Size] = 900

[Sensor Dump Size] = 900

[Area Sensor Step Size] = 60

[Animatiion Step Size] = 0.1

[Segment Color Step Size] = 15

[Console Message Step Size] = 60

[MOE Step Size] = 60

[MOE OD Pairs] = {

}

[Output] = 0x03351

% 0x00001 = Vehicle log

% 0x00002 = Sensor readings

% 0x00004 = VRC readings

% 0x00008 = Assignment matrix output

% 0x00010 = Link travel times

% 0x00020 = Segment travel times

% 0x00040 = Segment statistics

% 0x00080 = Queue statistics

% 0x00100 = Travel time tables

% 0x00200 = Vehicle path records

% 0x00400 = Vehicle departure record

125

% 0x00800 = Vehicle trajectories

% 0x01000 = Output rectangular text

% 0x02000 = No comments

% 0x10000 = State 3D

[Segments] = 2

% 0 = Link type

% 1 = Density

% 2 = Speed

% 3 = Flow

[Signals] = 0x20

% 0x01 = Traffic signals

% 0x02 = Portal signals

% 0x04 = Variable speed limit signs

% 0x08 = Variable message signs

% 0x10 = Lane use signs

% 0x20 = Ramp meters

[Sensor Types] = 0x1

% 0x1 = Loop detectors

% 0x2 = VRC sensors

% 0x4 = Area sensors

[Sensor Color Code] = 3

% 0 = Count

% 1 = Flow

% 2 = Speed

% 3 = Occupancy

[Vehicles] = 5

% 0 = None

126

% 1 = Vehicle type

% 2 = Information availability

% 3 = Turning movement

% 4 = Driver behavior group

% 5 = Lane use

[Vehicle Shade Params] = {

0 # Shade

86400 # Outstanding time in a segment

86400 # Outstanding time in the network

}

[View Markers] = {

Label Position Scale Angle Tool ViewType Segment

SensorType/Label/Color SignalType Map Legend

"Map view" 0.5 0.5 0.112069 0 0 0 2 1 0 3 50 1 0

"I90 / I93 Interchange" 0.332886 0.284409 1.34483 0 0 0 2 1 0 3 50 0 1

"Incident" 0.400879 0.373999 1.34483 0 1 0 2 1 0 3 50 0 0

"Sensors" 0.400879 0.373999 5.13012 0 1 0 2 1 2 3 50 0 0

"Ramp Metring" 0.393233 0.356719 4.2751 5.59596 6 0 2 1 0 3 50 0 0

"Toll Plaza" 0.948412 0.68546 1.92619 0 0 0 2 1 0 3 50 0 1

"Ramp Metering 2" 0.347848 0.28101 4.1041 0 1 0 2 1 0 3 50 0 0

"Ramp Metering 3" 0.263239 0.146937 4.1041 0 1 0 2 1 0 3 50 0 0

}

[Verbose] = 1

[Nice] = 1

— End of files/master.mitsim —

— Start of files/master.tms —

/*

127

* TMS master file

*/

[Title] = "Local Ramp Design"

[Default Parameter Directory] = "/users/manishm/view/data/Common"

[Input Directory] = "/users/manishm/cloop"

[Output Directory] = "/users/manishm/cloop/Output"

[Working Directory] = "/users/manishm/cloop/Output"

[Network Database File] = "network_test.dat"

[GDS Files] = {

% Filename MinScale MaxScale

}

[Parameter File] = "ctrlpara.dat"

[Control Logic File] = "ctrllogic.dat"

[Signal Plan File] = ""

[Control Logic] = 0

% 0 = None

% 1 = A1 incident response

% 2 = Gating logic

[Information] = 2

% 0 = Historical data

% 1 = Real time measurement

% 2 = Prediction

[Start Time] = 07:15:00

[Stop Time] = 08:15:00

[Step Size] = 1

[Console Message Step Size] = 60

[RollingStepSize] = 120

128

[RollingLength] = 1800

[NumOfDTAInterations] = 2

[DTAComputationalDelay] = 110

[Segments] = 1

% 0 = Direction

% 1 = Link type

% 2 = Density

% 3 = Speed

% 4 = Flow

[Signals] = 0x20

% 0x01 = Traffic signals

% 0x02 = Portal signals

% 0x04 = Variable speed limit signs

% 0x08 = Variable message signs

% 0x10 = Lane use signs

% 0x20 = Ramp meters

[Sensor Types] = 0x1

% 0x1 = Loop detectors

% 0x2 = AVI sensors

% 0x4 = Area sensors

[Sensor Color Code] = 3

% 0 = Count

% 1 = Flow

% 2 = Speed

% 3 = Occupancy

[Randomize] = 0

129

[Verbose] = 1

[Nice] = 1

— End of files/master.tms —

— Start of files/master.tmca —

/*

* TMCA master file

*/

[Title] = "Local Ramp Design"

[Default Parameter Directory] = "/users/manishm/view/data/Common"

[Input Directory] = "/users/manishm/cloop"

[Output Directory] = "/users/manishm/cloop/Output"

[Working Directory] = "/users/manishm/cloop/Output"

The marker needs to be a Orbix marker:

object:server

[Registry Marker] = "Registry:PROXIMIT"

[Registry HostName] = "xylophone.mit.edu"

The names can be up to 64 characters

By convention

object_system

Character ’:’ cannot be used in the names

[Factory Name] = "Factory_MITSIM"

[Time Message Factory Name] = "TimeMessageFactory_MITSIM"

130

[Sensor Reading Message Factory Name] = "SensorReadingMessageFactory_MITSIM"

[Incident Message Factory] = "IncidentMessageFactory_MITSIM"

[Guidance Listener Name] = "GuidanceMessageFactory_MITSIM"

Set the frequency at which TMCA will process the available guidance and

send it to TMS. Set to zero for real-time broadcast.

Value in seconds

[Guidance Frequency] = 120

— End of files/master.tmca —

— Start of files/dtaparam.dat —

[Files]

InputDirectory = "/users/manishm/cloop"

OutputDirectory = "/users/manishm/cloop/output"

TmpDirectory = "/users/manishm/cloop/temp100p"

// MITSIM is the only recognized value for

// now

InputFormat = "MITSIM"

// If no path is provided, InputDirectory

// is assumed

// If the character ’/’ appears in the

// file name, InputDirectory is ignored.

NetworkFile = "network_test.dat"

HistODFile = "demand0.dat"

SupplyParamFile = "newsupplyparam_test.txt"

HistTTFile = "linktime-new.dat"

SocioEcoFile = "socioEco_test0.dat"

BehParamFile = "BehavioralParameters.dat"

131

IncidentFile = "incdyna.dat"

MitsimOdFile = "demand0.dat"

MitsimSensorsFile = "sensor_test.dat"

[Simulation]

StartSimulation = 07:15:00

StopSimulation = 08:30:00

OdInterval = 15 // in minutes

HorizonLength = 30 // in minutes

UpdateInterval = 60 // in seconds

AdvanceInterval = 5 // in seconds

SupplyEpsilon = 0.01

[Default]

// Default output capacity per lane

OutputCapacity = 0.55 // Unit: veh/lane . sec

FreeFlowSpeed = 90.0 // Unit: km/hour

JamDensity = 0.075 // Unit: vehicles/lane-group . meter

132

// 0.075 ~= 120 veh/lane-mile

SpeedDensityAlpha = 1.1

SpeedDensityBeta = 1.5

LoaderInputCapacity = 3.611 // Unit: veh/sec

// 2200veh/hour

LoaderOutputCapacity = 3.611 // Unit: veh/sec

// 2200 veh/hour

MaxEstIter = 3

MaxPredIter = 5

— End of files/dtaparam.dat —

— Start of files/configuration.dat —

PLATFORMS

xylophone.mit.edu

SERVERS

dtaPlanning xylophone.mit.edu

OBJECTS

GuidanceModule 2 dtaPlanning

StoppingCriteriaModule 3 dtaPlanning

PreTripDemand 4 dtaPlanning

SupplyModule 6 dtaPlanning

133

AssignmentMatrixList 8 dtaPlanning

ListOfImpTable 10 dtaPlanning

BehaviorModels 12 dtaPlanning

ListOfPackets 13 dtaPlanning

NetTopo 19 dtaPlanning

PathTopoTbl 20 dtaPlanning

Clock 21 dtaPlanning

EstimationProcess 22 dtaPlanning

PredictionAndGuidanceProcess 23 dtaPlanning

SimulatedDensity 24 dtaPlanning

SimulatedQueueLength 25 dtaPlanning

SimulatedSpeed 26 dtaPlanning

SimulatedSegmentSpeed 26 dtaPlanning

SimulatedFlow 27 dtaPlanning

SimulatedSegmentFlow 27 dtaPlanning

SimulatedTravelTime 28 dtaPlanning

SocioEcoData 29 dtaPlanning

ODFactory 30 dtaPlanning

Surveillance 31 dtaPlanning

Parameters 32 dtaPlanning

MitsimDemandProcess 33 dtaPlanning

StatusManager 34 dtaPlanning

AggregateOutput 35 dtaPlanning

Logger 36 dtaPlanning

Report 37 dtaPlanning

Communicator 38 dtaPlanning

— End of files/configuration.dat —

— Start of files/runit.dat —

#!/bin/sh

134

#Run orbixd

orbixd -u &

orbixd_pid=$!

sleep 4

#Run the Registry server

/users/manishm/DTMS/bin/DTMS_Registry Registry PROXIMIT &

registry_pid=$!

sleep 4

#Run the factory server

/users/manishm/DTMS/bin/DTMS_Factory Factory_MITSIM Registry:PROXIMIT

xylophone.mit.edu &

factory_pid=$!

sleep 2

#Run the time message factory server

/users/manishm/DTMS/bin/DTMS_TimeMessageFactory TimeMessageFactory_MITSIM

Registry:PROXIMIT xylophone.mit.edu &

tmfactory_pid=$!

sleep 2

#Run the Incident message factory server

/users/manishm/DTMS/bin/DTMS_IncidentMessageFactory

IncidentMessageFactory_MITSIM Registry:PROXIMIT xylophone.mit.edu

& infactory_pid=$! sleep 2

#Run the sensor reading factory server

/users/manishm/DTMS/bin/DTMS_SensorReadingMessageFactory

SensorReadingMessageFactory_MITSIM Registry:PROXIMIT xylophone.mit.edu &

srfactory_pid=$!

sleep 2

135

#Run the guidance factory server

/users/manishm/DTMS/bin/DTMS_GuidanceMessageFactory

GuidanceMessageFactory_MITSIM Registry:PROXIMIT xylophone.mit.edu &

gdfactory_pid=$!

sleep 2

trap "kill $orbixd_pid $registry_pid $factory_pid

$tmfactory_pid $infactory_pid $srfactory_pid $gdfactory_pid" 0

#smc -debugger 1 -m master.smc

smc -m master.smc

— End of files/runit.dat —

— Start of files/communicator.dat —

[HostInfo]

RegistryName = "Registry:PROXIMIT"

HostName = "xylophone.mit.edu"

FactoryName = "Factory_MITSIM"

[Factory]

GuidanceFactoryName = "GuidanceMessageFactory_MITSIM"

[Listener]

IncidentListener = "IncidentMessageFactory_MITSIM"

136

TimeListener = "TimeMessageFactory_MITSIM"

SensorListener = "SensorReadingMessageFactory_MITSIM"

— End of files/communicator.dat —

137

