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Abstract 

 
Case studies are conducted to evaluate DynaMIT, a dynamic traffic assignment system 
developed at MIT.  Two main areas are examined.  Demand estimation accuracy is 
judged by observing how closely estimated origin-destination (O-D) flows match actual 
O-D flows.  The impact of traveler information is assessed by looking at DynaMIT's 
ability to accurately predict traffic conditions, then observing the effect that information 
distributed to travelers has on user travel times. 
 
Demand estimation in DynaMIT is conducted by a Kalman Filter algorithm, which uses 
transition and measurement equations based on the concept of estimating deviations from 
historical values.  Results indicate that the algorithm is an extremely effective method of 
estimating O-D flows when inputs are of high to moderate quality.  Estimation errors in 
percentage terms are generally kept within a range smaller than the percent error 
contained within the input data. 
 
Operation of the DynaMIT system in a simulation environment was shown to improve 
mean vehicle travel times in situations of non-recurrent congestion.  DynaMIT  predicted 
travel conditions to a reasonable degree of accuracy, and provided travelers with a 
beneficial information strategy that was unbiased with respect to its predictions.  The 
supply simulator had slow queue dissipation and difficulties with complex weaving 
sections.  The user optimality objective was affected by behavior model parameters 
regarding the treatment of descriptive information.   
 

The rolling step size, rolling length, and number of system iterations all impacted 
DynaMIT system performance in an intuitive fashion.  As the number of informed and 
compliant drivers increased, system performance improved while the marginal benefit of 
information for such informed travelers diminished in some cases.  Prescriptive, as 
opposed to descriptive, information had some advantages.  The results overall are 
promising from both a performance and a research standpoint. 
 

Thesis Jointly Supervised by: 
Moshe Ben-Akiva    Professor, Department of Civil and Environmental Engineering 
Michel Bierlaire       Maitre D'enseignement et de Recherche, Ecole Polytechnique 

Federale de Lausanne 
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Chapter 1 

 

Introduction 

1.1  Background 

Traffic congestion is faced by millions of travelers each day, resulting in lost time and 

added stress among other negative impacts.  As auto ownership levels are rising, land use 

patterns are decentralizing, and the population is growing throughout the world, the 

problem of traffic congestion will continue to get worse unless effective solutions can be 

developed and implemented.  Market measures, improved transit, and roadway expansion 

are all possibilities that have been used previously and will remain as options.  However, 

the reality of political, financial, and environmental concerns requires that serious 

attention must be given to other strategies. 

 

Interest in the broadcasting of accurate real-time network information to travelers is 

building rapidly among transportation professionals.  Locations and severity of 

congestion within a transportation network change continuously, and the travel decisions 

that users of a network habitually make may not be ideal with respect to travel times.  By 

having accurate real-time information, some travelers may choose to switch mode, cancel 

their trip, or begin their trip at another time.  Others may be able to choose a different 

route within the network to reach their particular destination. 
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A major benefit of providing accurate information to travelers is faster travel times in the 

network.  Improved safety, lower fuel consumption, and better air quality are other 

potential effects stemming directly from reduced congestion.  In addition, travelers will 

be more comfortable with their own travel decisions.  DynaMIT (Dynamic Network 

Assignment for the Management of Information to Travelers) is a real time dynamic 

traffic assignment system developed at MIT specifically to attain such benefits.  

DynaMIT is also designed to be a powerful tool for transportation research. 

 
This thesis will evaluate the DynaMIT system in a systematic and rigorous fashion.  The 

demand estimation component will first be evaluated on the basis of quality and 

robustness.  The existing DynaMIT system in its entirety, in operation within a simulation 

environment, will then be evaluated.  Criteria for evaluation will be the consistency of 

predicted link travel times and impacts of the distributed travel information on both a user 

and system level. 

1.2  Overview of DynaMIT 

1.2.1  DynaMIT Objectives 

The eventual role of the DynaMIT system is to serve as an advanced traveler information 

system, or ATIS, to improve the travel decisions that users of a transportation network 

make.  DynaMIT would reside in a transportation management center and generate traffic 

information to be distributed to travelers who are in or plan to enter the network.  This 

travel information is developed and distributed according to two main objectives: 

unbiasedness and consistency. 

 

Unbiasedness means that the system information provided is based on the best knowledge 

of future network conditions that are available, rather than desired conditions according to 

some system objective.  All travelers who are in or plan to use the network and are able to 

receive information must receive information that is unbiased, rather than just some 
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travelers.  Consistency means that the network conditions that travelers experience 

coincide with the predicted conditions on which the information was based. 

 

Input errors to DynaMIT can exist, and the models used by DynaMIT are not a perfect 

reflection of reality.  Within these limitations, if the properties of unbiasedness and 

consistency hold, then no other information about anticipated travel conditions could be 

provided to users that would enable them to make better travel decisions. This principle is 

called user optimal information.  It takes into account two user criteria: travel time in the 

network and schedule delay, or the acceptable absolute value of the difference between 

the traveler’s desired and actual arrival time at the destination of interest. 

 

Another concept that exists is system optimal information.  This is based on some global 

criteria such as minimizing the total travel time experienced or fuel consumed in the 

network.  While DynaMIT is anticipated to assist in achieving such objectives, they are 

not the primary purposes on which the system was developed.  Information distributed to 

satisfy system-level objectives may result in some travelers being sent to paths that are 

not optimal from their individual point of view.  In the long-term, travelers will ignore 

such information and system performance will deteriorate. 

 

1.2.2  Inputs 

The overall structure of DynaMIT is illustrated in Figure 1.  The first box contains the 

inputs that DynaMIT requires.  A database has historical information with traveler 

soceioeconomic characteristics (age, gender, income, auto ownership, trip purpose) by 

zone obtained from census data and surveys.  The database also contains the network 

description: node and segment locations, segment capacities, and free-flow segment 

travel times.  Time-dependent origin-destination (O-D) matrix flows obtained from 

external surveys and off-line estimation are another part of the database.  A richer 

historical database leads to more accurate results.  However, DynaMIT can begin 

operation with a limited database and build it up over time. 
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Figure 1:  Structure of DynaMIT 

 

Segment-level traffic counts from a surveillance system and logic of the traffic control 

system (traffic lights, ramp meters, toll booths) are the source of real-time inputs to 

DynaMIT.  These inputs help describe the current conditions in the network.  Traffic 

counts serve as partial measurements of the actual unknown origin-destination (O-D) 

flows.  The surveillance system data is combined with historical O-D flows updated by 

traveler behavior models to obtain the O-D flow estimate. 
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1.2.3  State Estimation 

The purpose of the state estimation process is to estimate demand levels and traffic 

conditions in the network given the set of inputs.  Two separate but interacting parts are 

used here: the demand simulator and the supply simulator.  The demand simulator, shown 

in Figure 2, estimates O-D flows and traveler behavior decisions based on historical O-D 

flows and surveillance system information.  Each network trip is individually represented 

so that this can be translated into detailed vehicle movements on the network. 

 

Historical Aggregate Demand (O-D Flows)
Surveillance System Data

Advanced Traveler Information System (ATIS)

Demand Simulation
Habitual Behavior
Pre-Trip Decisions

OD Estimation and Prediction
En-route Decisions

Actual Demand

Population of Individual Drivers
 

 

Figure 2:  Demand Simulator 

 

The O-D estimation process is based on a Kalman Filter algorithm formulated by Ashok 

and Ben-Akiva (1996), and is described in section 1.3.  The behavior model developed by 

Antoniou, Ben-Akiva, Bierlaire, and Mishalani (1997) estimates traveler decisions, 

including departure time, mode, and route choices, for each trip in order to complete the 

trip characteristics for drivers that are currently in the network.  An important part of this 

model is how real-time information distributed to travelers affects their travel decisions.  

This model is summarized in section 1.4. 
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The supply simulator, given in Figure 3, was developed by Heiler and Koutsopoulos 

(1997).  Its role is to simulate the movement of vehicles in the network.  Inputs include a 

list of drivers produced by the demand simulator, control strategies for traffic lights and 

ramp meters, and knowledge of any incidents.  An incident is a temporary reduction of 

capacity at some network location.  Incidents can occur due to an auto breakdown, a 

traffic accident, weather, objects in the roadway, or some other random event. 

 

Output from the supply simulator contains a wide range of network performance 

indicators including travel time, flows, and densities.  The supply simulator combines a 

microscopic representation of traffic with macroscopic models capturing the traffic 

dynamics.  The decision of using macroscopic traffic dynamics models is mainly based 

on the real-time operational requirement. 

 

Inputs
Population of  Drivers

Information
Control

Incidents

Mesoscopic Simulator
Macroscopic Link Performance

Queues and Spillbacks
Congestion

Network Conditions
Flows, Queues

Travel Times, Speed, Densities

En-route
Demand

Simulation

 
 

Figure 3:  Supply Simulator 

 

The network representation consists of a set of links, nodes, and loading elements.  The 

nodes correspond to intersections of the actual network, while links represent 
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unidirectional pathways between them.  The loading elements represent locations where 

traffic is generated or attracted.  Each link is divided into segments that each have a 

capacity constraint at its downstream end.  Each segment has a moving part and a queuing 

part.  The moving part represents the portion of the segment where vehicles can move 

with some speed.  The queuing part represents vehicles that are queued up.  

 

Traffic dynamics are captured by two major models: a deterministic queuing model and a 

speed model.  Each specific queue status (formation, dissipation, blockage, etc.) is 

captured by a different model.  As an example, the position q(t) of a given vehicle joining 

a dissipating queue at time t is given by 

q(t) = q(0) + l(ct-m) 

where q(0) is the position of the end of the queue at time 0, l is the average length of 

vehicles, c is the output capacity (i.e. the dissipation rate) and m is the number of moving 

vehicles between the considered vehicle and the end of the queue at time 0. 

 

The speed model is based on the following assumptions.  For a given moving part of a 

segment, two speeds are computed.  The speed at the upstream end of a segment is a 

function of the average density on the moving part of the segment.  The speed at the 

downstream end is the speed at the upstream end of the next segment.  An 

acceleration/deceleration zone is defined at the end of the moving part.  Before that zone, 

each vehicle is moving at a constant speed.  Within the zone, the speed of vehicles varies 

linearly as a function of the position. 

 

Several iterations may be needed between demand and supply in order to converge 

towards a state estimation.  This is because feedback exists between demand and supply.  

Most notably, the fraction of traffic from each O-D pair and departure time interval that 

passes over a particular sequence of network links during the estimation interval depends 

on supply parameters.  In other words, driver route choices and travel times must be 

approximated in order to estimate time-dependent O-D flows, and such factors depend on 

prevailing traffic conditions. 



 20

 

1.2.4  Prediction 

The role of the prediction process is to predict the traffic conditions in the network for 

some future time period ahead of the current time.  For prediction, the demand and supply 

components described in the previous section are used in much the same way as they 

were for estimation.  The demand simulator predicts future O-D flows and future traveler 

decisions.  The supply simulator predicts the movements of vehicles in the network in the 

future time period of interest. 

 

An iterative process between demand and supply is needed for prediction as well.  

However, in prediction there is one additional component that must be included in the 

iterative process.  This is the information generation function, whose role is to generate 

unbiased and consistent network information for distribution to travelers.  Basing the 

information on predicted network conditions, which is anticipatory, is likely to be more 

effective than information based only on current traffic conditions because it accounts for 

the evolution of traffic conditions over time. 

 

Anticipatory information is derived from predictions of future conditions, but these 

conditions will themselves be affected by travelers’ reactions to the information.  An 

iterative process that involves demand, supply, and information generation has to take 

place in order to identify an information strategy that will lead to a fixed point of 

predicted network conditions and experienced network conditions.  One iteration consists 

of a trial information strategy, the state prediction (supply and demand) under the trial 

strategy, and an evaluation of the predicted state. 

 

A time smoothing algorithm, developed by Ben-Akiva and Bottom (1997), based on a 

method of successive averages is used for information generation.  The progress of the 

computation is measured in terms of the “inconsistency norm”: || c – S*D*G(c) ||, where c 

is the vector of time-dependent link times, G is the guidance mapping, D is the demand 

model, and S is the network loading model.  Because of the time-dependent nature of 
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real-time information computation, the least inconsistent solution encountered during the 

iterations is kept track of and used as the information strategy if time runs out. 

 

1.2.5  Rolling Horizon Implementation 

8:007:53 9:00

Prediction
Running

time

8:007:53 9:00

PredictionRunning
time

8:07

8:07 9:07

At 8:00

At 8:07

Estimation

Estimation

 
Figure 4:  Rolling Horizon Implementation 

 

DynaMIT operates continuously in real-time via a rolling horizon implementation, shown 

in Figure 4.  In the top half of the figure, the current time is 8:00.  DynaMIT estimates the 

current conditions in the network based on a historical database and surveillance system 

data collected in some recent time period.  This previous time is called the estimation 

period, shown from 7:53 to 8:00.  Based on a historical database, the probable evolution 

of network flows, and the anticipated response of travelers to information, DynaMIT then 

predicts network conditions for some future period of time.  This future time is referred to 

as the prediction period or rolling horizon, shown from 8:00 to 9:00. 

 

In this example, DynaMIT takes seven minutes to conduct its iterative estimation and 

prediction processes.  The information strategy that DynaMIT generated is available for 
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distribution to travelers in the network.  DynaMIT is now ready to begin the iterative 

processes again, as shown in the bottom half of the figure.  The time is 8:07, and actual 

traveler demand and traffic conditions in the network have changed.  DynaMIT must be 

aware of changes that actually took place in the network so that its prediction process can 

be using the most current information available.  Therefore, the estimation period is now 

set to 8:00-8:07, while the prediction period is set to 8:07-9:07. 

 

1.2.6  Real-Time System Requirement 

Network conditions can change rapidly, and information can quickly become outdated.  

Therefore, DynaMIT must generate information for distribution to travelers on a fairly 

regular basis.  It is important for DynaMIT to keep up fairly closely with the actual 

network time rather than spending too long on one calculation cycle.  This is known as 

the real-time system requirement.  To accomplish this, available computational power 

must be sufficient for the specific network size and traveler demand pattern.  In addition, 

two DynaMIT system parameters can be calibrated in advance for optimal system 

performance: the rolling horizon and the number of iterations. 

 

The rolling horizon, or prediction period, is the amount of time in the future for which 

DynaMIT predicts traffic conditions.  A long rolling horizon is generally viewed as 

desirable for improving DynaMIT’s information strategy.  However, as the rolling 

horizon is extended, there is likely to be a higher level of uncertainty associated with the 

prediction accuracy at the most distant end of the period.  This is illustrated in Figure 5.  

Moreover, predictions made well into the future may not be particularly relevant to 

travelers who are in or are planning to enter the network at the present time.  Identifying 

the ideal rolling horizon for a given scenario is an interesting issue. 
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Figure 5:  Prediction Quality 

 

The number of iterations is the maximum number of system iterations that are allowed in 

either the estimation or the prediction process.  If the number of iterations is too small, 

DynaMIT may have difficulties estimating and/or predicting network conditions.  If the 

number of iterations is too large, the real-time system requirement may be violated.  Note 

that it is possible for DynaMIT to stop either its estimation or prediction process before 

the maximum number of iterations allowable is reached.  This is more likely when traffic 

conditions have been fairly stable over time, as opposed to rapidly changing conditions. 

 

Sections 1.3 and 1.4 describe in greater detail the most relevant aspects of DynaMIT, in 

the context of the evaluation conducted in this thesis. 

1.3  Behavior Models 

1.3.1  Role of Models 

Behavior models are used in DynaMIT to predict the impacts that travel information will 

have on traveler behavior.  This is critical for an accurate estimation and prediction 

process, and therefore plays an important role in generating an unbiased and consistent 

information strategy.  A number of different model structures have been developed in 

DynaMIT to enhance flexibility with respect to data requirements and the type of 

information distributed within the network of interest. 
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Travel information can be provided in various ways, including the radio, in-vehicle 

equipment, and variable message signs (VMS).  When information is given to travelers 

who have not yet entered the network, this is referred to as pre-trip information.  Such 

information may cause some travelers to cancel their trip or select another mode, which 

removes them from the driver population.  Pre-trip information may also lead to traveler 

departure time changes or route changes.  When information is made available to 

travelers who are already in the network, this is referred to as en-route information.  Such 

information can only change route decisions. 

 

The following sections focus specifically on what was used for the evaluation conducted 

in this thesis.  The evaluation used en-route traveler information provided by VMS.  If 

desired, drivers can change routes from their habitual pattern in response to the messages.  

The VMS were placed near entrance points to the network so that drivers are able to 

adjust their behavior before they must commit to a particular route.  Note that the terms 

route and path are used interchangeably here. 

 

1.3.2  Habitual Path Assignment 

A historical database of O-D flows is disaggregated by DynaMIT into individual 

travelers.  Habitual paths are then assigned to each traveler.  This is done through Monte 

Carlo simulation based on the following equation: 

P(p) = eV(p) / ∑
=

n

i 1
eV(p(i)) 

where: 

P(p) = the probability that a traveler will choose path p as the habitual path from 

the set of available paths connecting a particular origin and destination. 

e = the number 2.71828… 

V(p) = the systematic utility of path p. 

n = the total number of available paths in the network for the O-D pair of interest. 

 



 25

This is the multinomial logit model formulation.  V(p) is calculated as follows: 

 

V(p) = (ββββ1)*ttH
p + (ββββ2)*CFp + ββββ3 

 

H refers to historical path-level travel times. 

p refers to some particular path among the set of paths connecting the origin and 

desired destination for a certain driver. 

 ttH
p = historical travel time for path p in minutes. 

            CFp = ln ∑
j

ωjp Nj, the commonality factor for path p. 

j is a link contained in the path p.  The summation is done for all links that make up the 

path p.  ωjp is the fraction of the path p total length attributed to link j.  Nj is the number 

of paths between the same O-D pair that share link j.  This factor is described in more 

detail by Cascetta (1996).  Its role in the route choice process is to deal with the well-

known independence for irrelevant alternatives (IIA) property. 

 

ββββ1, ββββ2, and ββββ3 are coefficients that can be calibrated by maximum likelihood estimation 

from an off-line dataset of travelers.  Such a dataset would contain the ttH
p and CFp 

values for each available path, as well as the actual path selection that was made, for 

every traveler with their respective O-D pair.  ββββ3 is an alternative specific constant 

associated with a particular path.  ββββ3 can appear in the utility of no more than n-1 paths. 

 

For this evaluation, ββββ1 is set to -5.0 and ββββ2 is set to -1.0.  These are arbitrary values, 

assigned as negative numbers since a route with high travel time and greater commonality 

should be less likely to be selected by a particular driver.  The value of ββββ3 is set to 0 for 

all paths, indicating an assumption that there is no a priori preference for a particular path 

outside of the historical travel times and commonality factor. 
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1.3.3  Structure of Models 

In this evaluation, distinctions are made among drivers with respect to their information 

access and compliance.  Drivers who cannot read the VMS are called uninformed.  

Drivers who do read the VMS are called informed, and are divided into two groups.  

Those who use the information for their route decision are called guided.  Those who 

disregard the information are combined with uninformed drivers and together are referred 

to as unguided.  Such unguided drivers are assumed to follow habitual travel choices.  

Note that since each driver views the VMS only once, it is not possible for an unguided 

driver to become guided later in the trip. 

 

Two separate en-route models were used for the behavior of guided drivers: descriptive 

and prescriptive.  With descriptive information, a full description of predicted travel time 

conditions is provided.  Guided drivers then decide which route to select.  With 

prescriptive information, only the final recommendation from DynaMIT is provided.  

Guided drivers comply with this recommendation. 

 

The descriptive model is shown in Figure 6.  Uninformed drivers disregard the 

information and do not change from their habitual path, shown in the left branch.  Guided 

drivers use the information to choose which path to select from the set of available paths, 

shown in the right branch. 

 

Habitual Travel Path

Do Not Change Path Change Path

Set of Feasible Paths
 

Figure 6:  En-route Descriptive Choice Tree 
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The path chosen by guided drivers is modeled by the following equation.  

P(p) = eV(p) / ∑
=

n

i 1
eV(p(i)) 

where: 

V(p) = (ββββ1)*ttI
p + (ββββ2)*CFp + ββββ3 

 

The notation used is the same as for the habitual path section, with one addition: 

 

ttI
p = travel time provided by the information system for path p in minutes.  The 

superscript I refers to the information strategy as generated by the 

DynaMIT system. 

 

The DynaMIT prescriptive en-route behavior model is shown in Figure 7.  Unguided 

drivers do not change from their habitual path, shown in the left branch.  Guided drivers 

select the path recommended by DynaMIT. 

  

Habitual Travel Path

Do Not Change Path Change Path
 

Figure 7:  En-route Prescriptive Choice Tree 

 

Note that for simplicity, socioeconomic and other path-level characteristics are not 

included in this evaluation.  However, such characteristics can be important with respect 

to how travelers interpret information, as discussed in Chapter 2, and could be an area of 

future research. 
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1.4  Kalman Filter Algorithm 

1.4.1  Inputs to Estimation Process 

Figure 8 is a simplified diagram of how the O-D flow estimation and prediction processes 

in DynaMIT works, as developed by Ashok (1996) and Antoniou (1997).  The estimation 

process, which will be discussed first, is based on a Kalman Filter algorithm.  The 

approach is based on estimating a vector of deviations between the true O-D flows in 

real-time and historical estimates.  This is done primarily in order to use the wealth of 

information gained over previous estimations regarding relationships of travel demand 

and their variations over time. 

 

Surveillance
System Data

Updated O-D
Flows

Assignment
Matrices

Kalman Filter Algorithm

Estimated O-D
Flows

 
Figure 8:  O-D Flow Estimation 

 

Surveillance system data consists of real-time traffic counts from sensors placed in the 

network.  Improving the quantity and/or quality of this data will improve the estimation 

process.  This could be done by adding more sensors in the network or by using sensors 

with a lower malfunction rate. 

 

The pre-trip behavioral model, described in section 1.3, is applied to each historical 

traveler disaggregated from flows contained in the historical database.  This is done to 

explicitly incorporate the impact of real-time information that has been generated thus far.  



 29

Updated travel decisions for each traveler are then aggregated into updated O-D flows, 

which serve as an input to the Kalman Filter algorithm. The translated of historical flows 

to updated flows was evaluated by Antoniou (1997). 

 

An assignment matrix gives the fraction of traffic from each O-D pair and departure time 

interval that passes over each sensor in the network during some time period of interest.  

For example, one line in an assignment matrix might look like this: 

7:30-7:45  H  #10003  0.5  7:15-7:30 

This means that 0.5, or 50%, of the vehicles from the O-D pair #10003 during the 7:15-

7:30 departure time interval passed over sensor H from 7:30-7:45.  Multiple assignment 

matrices are needed as inputs to the Kalman Filter algorithm.  This is because some 

travelers who entered the network in earlier time intervals are still in the network during 

the estimation interval and continue to cross sensors. 

 

In the future, vehicle transponders may be able to track the movements and intended 

destinations of individual vehicles.  This would allow for true assignment matrices to be 

computed from real-time surveillance system data.  However, sensor counts that are 

typically available now do not allow for such direct computation.  Therefore, an a priori 

set of assignment matrices must be generated using the traffic simulator and appropriate 

historical demand by tracking the movement of vehicles in the network. 

 

The traffic simulator keeps track of the departure time, origin, and destination of each 

vehicle that crosses each sensor in the network.  In other words, the assignment matrices 

generated through scenario simulation are assumed to represent the true assignment 

matrices in reality.  As an iterative process between demand and supply occurs within 

DynaMIT, the assignment matrices are adjusted at each iteration to better represent an 

estimate of what the true O-D flows are.  This is done as knowledge of network 

conditions and the impact of real-time information on traveler behavior improves. 
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1.4.2  Algorithm Components 

A brief description of the Kalman Filter algorithm used in DynaMIT is provided in this 

section.  Note that this description does not fully represent how the algorithm has actually 

been implemented in DynaMIT; it serves only to explain the basic concepts.  A more 

complete discussion of the algorithm and implementation is provided by Ashok (1996) 

and Antoniou (1997).  The algorithm has three interacting components: the measurement 

equation, the transition equation, and the state vector.  The purpose of each is 

summarized here. 

 

The current time interval for which an O-D flow estimate is desired is taken into account 

for all components.  Note also that some components must take into account some set of 

time intervals previous to the current estimation interval.  This again relates to the fact 

that some travelers who entered the network in earlier time intervals are still in the 

network during the estimation interval and continue to cross sensors.  Some notation is 

presented here to assist in explanation of the algorithm. 

 

h = the current time interval for which an O-D flow estimate is desired. 

q = the maximum number of time intervals needed to travel in the network for 

vehicles from any O-D pair. 

p = the earliest previous time interval that must be considered.  This is calculated 

back from the time interval h by subtracting q. 

h-1 = the time interval that immediately precedes the time interval h. 

c = the number of sensors placed in the network. 

n = the number of O-D pairs to be estimated. 

1 = the number one. 

 

The measurement equation relates actual observed indicators to the unknown network 

state.  The assignment matrices and link counts, as the sources of real-time network 

information, serve as inputs.  The basic idea is that: 
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∑
h

p
A ∑

h

p
F = L 

 

where: A = a c by n assignment matrix. 

F = an n by 1 vector of O-D flows. 

L = a c by 1 vector of observed sensor counts, corresponding to the interval h.  It 

is the summation of A*F for all time intervals considered. 

 

The set of current and previous time intervals from p to h takes into account the entire 

period of time that needs to be considered by the algorithm. 

 

Because of network topology and driver path choices, it is extremely rare for a unique 

value of F to be identified from the measurement equation for the time interval h.  Also, 

because of possible errors in either A or L, the equation will typically not be exact.  This 

is exactly why additional components of the Kalman Filter must be used to obtain a good 

estimate of O-D flows. 

 

The measurement equation error covariance matrix gives the level of reliability that the 

sensor measurements are believed to have.  This is a c by c matrix.  Each diagonal term is 

the variance associated with a link count.  The off-diagonal terms are the covariances 

between two link counts. 

 

The transition equation relates to the evolution of the network state over time.  This 

equation can be thought of as: 

∑
−1h

p
F ∑

−1h

p
X = V 

 

where: F = an n by n matrix that captures the temporal relationship between the vector X 

and the vector V.  Diagonal terms relate one O-D pair to itself over time, 

while off-diagonal terms relate one O-D pair to another over time. 
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X = an n by 1 vector of deviations between the historical O-D flows and the 

estimated O-D flows for a previous time interval. 

V = an n by 1 vector of deviations between the historical O-D flows and the 

estimated O-D flows for the time interval h.  It is the summation of F*X for 

all time intervals considered. 

 

The transition equation error covariance matrix is an n by n matrix that gives the 

reliability that the transition inputs are believed to have.  There is one such matrix 

corresponding to each time interval from p to h-1.  The diagonal terms are variances that 

relate O-D pair to itself over time.  The off-diagonal terms are covariances between two 

different O-D pairs over time. 

 

The state vector is the size n by 1, and represents the updated O-D flows input.  The state 

variance matrix gives the reliability that the state vector input is believed to have.  This is 

an n by n matrix.  The diagonal terms are variances for the same O-D pair.  The off-

diagonal terms are covariances between two O-D pairs. 

 

Note that values for the measurement equation error covariance matrix, the transition 

equation error covariance matrix, and the state variance matrix can be assumed or can be 

calibrated by observing the empirical relationships in such deviations over some historical 

time period.  The same is true for values in each matrix F.  The three components work 

together through an autoregressive process described by Antoniou (1997).  

 

1.4.3  O-D Flow Prediction 

An autoregressive process is also used by the Kalman Filter algorithm for O-D flow 

prediction.  Deviations between historical O-D flows and predicted O-D flows are 

modeled.  This is done for each future time interval that a prediction is desired, using the 

transition equation formulation described in the previous section.  The notation changes 

as follows. 
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h = the future time interval for which an O-D flow prediction is desired. 

 

Similar to estimation, values for each matrix F and the error covariance matrices can be 

assumed or calibrated off-line.  A historical database must be available for future time 

periods.  One additional feature of the prediction process is the effect of the anticipated 

distribution of real-time traveler information on future O-D flows.  This is done, similar 

to estimation, by using behavior models to update historical flows for future time 

intervals.  Updated flows are subsequently used as an algorithm input. 

1.5  Thesis Contribution 

A literature review is provided in Chapter 2 that reviews some of the previous research 

work related to dynamic traffic assignment.  Chapter 3 provides a detailed methodology 

for how the evaluation will be conducted.  This also serves as a useful framework for 

future evaluation work. 

 

Chapter 4 identifies how successful the Kalman Filter algorithm used in DynaMIT can 

estimate unknown origin-destination pair demands given some set of inputs.  The 

algorithm is first applied to estimate the unknown O-D pairs assuming no errors in the 

inputs were present.  This is set as the base, a scenario that has the most ideal conditions 

possible.  Successful results from this test would demonstrate that the algorithm is a 

capable method for conducting an O-D flow estimation. 

 

It is unlikely in reality that Kalman Filter algorithm inputs will not contain any errors.  

Therefore, the algorithm is reapplied for different scenarios, assuming that one or more 

input errors are present.  This is done as a check for robustness, or to observe how close 

the estimated O-D flows are to the true O-D flows despite the presence of the input errors.  

Results here will indicate if the algorithm is working as it intuitively should, and if the 

algorithm is able to yield useful results under different types of input conditions. 
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Chapters 5, 6, 7, and 8 demonstrates the capabilities of the DynaMIT system in improving 

network performance for a wide range of scenarios.  While an extensive amount of 

previous evaluation work of DynaMIT has been accomplished, including the material 

presented in Chapter 4 of this thesis, much of it dealt with testing individual components 

as opposed to the entire system operation.  The following objectives of this work have 

been identified and are discussed based on an examination of the evaluation results. 

 

1) Determine the level of system accuracy.  DynaMIT should be able to accurately 

estimate and predict actual traffic conditions. 

 

2) Evaluate improvements in network performance achieved by distributing 

DynaMIT information to travelers.  The travel times that travelers experience 

should be reduced by providing them with unbiased and consistent information. 

 

3) Demonstrate the applicability of DynaMIT, as demonstrated by low stochasticity 

levels in DynaMIT’s predictions. 

 

4) Identify the refinements necessary to improve system performance. 

 

A summary of evaluation results, proposed refinements to the DynaMIT system, and 

areas for future research are presented in Chapter 9, the conclusion. 
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Chapter 2 

 

Literature Review 

2.1  Demand Estimation 

Most work in origin-destination (O-D) flow estimation has dealt with the static case.  For 

real-time applications, dynamic O-D estimation that takes the time-dependent nature of 

traffic flow into account is necessary.  Ashok and Ben-Akiva (1993) developed a dynamic 

Kalman Filter algorithm that estimates and predicts the deviations of real-time O-D flows 

from a historical database.  This algorithm is structured to explicitly take into account all 

the experience gained from prior estimations through the use of this database.  Another 

key advantage is that this algorithm does not need all the entry and exit counts within the 

network for an estimate to be obtained. 

 

The demand estimation algorithm evaluated in this thesis was developed by Antoniou, 

Ben-Akiva, Bierlaire, and Mishalani (1997).  Antoniou et. al developed a Kalman Filter 

algorithm that has predictive capabilities but is less computationally intensive than Ashok 

and Ben-Akiva’s work.  Antoniou ran an evaluation of this Kalman Filter algorithm using 

a simulation laboratory.  What is needed for an extension of this evaluation is additional 

sensitivity analysis with respect to various algorithm inputs and scenarios. 

 



 36

2.2  Benefits of Information 

Several papers have been written regarding the benefits of traveler information over the 

past few years.  Results from these studies vary because of differences in the type of 

network, demand levels, and assumptions made regarding the information system.  A 

simulation-based study by Mahmassani (1991) stated that system-wide benefits of 5% or 

less are possible when using ATIS in situations of recurrent congestion.  ATIS reassures 

travelers of their projected travel times, but does not actually affect travel times 

significantly.  Many of the studies done therefore have focused on the application of 

ATIS under situations of non-recurrent congestion, or incident conditions. 

 

A simulation of the Santa Monica, CA freeway corridor (1989) found that a 25% system-

wide travel time benefit is possible when incidents are present.  Koutsopoulos and Xu 

(1993) found that ATIS travel time benefits of about 8% under incident conditions were 

obtained using simulation on a fictitious network.  Al-Deck and Kanafani (1993) studied 

the impacts of ATIS analytically using one origin-destination (O-D) pair and two route 

choices.  They found an upper bound of time savings to travelers to be about 40% under 

incident conditions.  The magnitude of this benefit depends greatly on the capacity of 

alternative routes that are not typically used. 

 

Emmerick, Axhausen, Nijkamp, and Rietveld (1995) conducted a simulation-based study 

using one O-D pair, 25 possible routes, and nine decision points.  Under incident 

conditions on a particular link, the highest possible system-wide travel time benefits was 

about 25%.  This maximum is reached at a market penetration rate (MPR), or percent of 

informed drivers, of roughly 75%.  At a lower MPR such as 20%, informed drivers can 

benefit by more than 25% but the benefits to uninformed drivers are less than 10%. 

 

While a low MPR in this study makes the information system more beneficial for its 

users, a high MPR may be better for all travelers in the system as a whole.  An MPR of 

greater than 75% presumably led to some over-reaction, or a shifting of congestion.  This 

is a distinct possibility with ATIS when a very high MPR is present unless the system is 
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capable of giving different information to drivers with the same O-D pair and departure 

time.  Such an action though would be active manipulation by the system that goes 

against the principles of consistency described in Chapter 1. 

2.3  Traveler Response to Information 

An important consideration of ATIS is how travelers perceive and respond to the 

information that is provided.  Bovy (1996) discusses the fact that drivers have different 

perceptions and preferences with respect to route characteristics that leads to different 

route choices, all of which may be optimal from the perspective of the driver.  Ben-Akiva 

and Bierlaire (1998) state that value of time, access to traffic information, and trip 

purpose could be significant influences in route choice and departure time behavior. 

 

Polydoropoulou (1993) analyzed survey data for 898 commuters to the Massachusetts 

Institute of Technology who made a total of 3,218 commute trips in a five-day period.  

She determined that 37% of the respondents often listened to radio traffic reports.  

Women, those who travel longer distances, and those with less arrival time flexibility 

were more likely to listen.  25% of the total respondents considered traffic reports to be 

reliable.  36% of respondents trust their own judgement more than traffic reports, while 

22% trust traffic reports more.  Those who considered traffic reports to be reliable were 

generally more likely to listen to and respond to the information. 

 

81% of the respondents are very familiar with two or more alternative routes.  Over the 

five-day period, 5% of the total trips involved a route switching.  Of those who switched, 

12% did so because of radio reports while 62% switched because of their own visual 

observation.  For 41% of the trips involving a switch, the respondents were confident in 

their decision on the basis of saving travel time.  38%, however, were not confident.  

These results illustrate that a reliable information system is likely to have considerably 

more impact, effectiveness, and positive perception than a system that is not reliable. 
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Many travelers are restricted in terms of their departure time choice based on time 

restrictions in their activities.  Mahmassani and Liu (1997) collected diary data from 

forty-five workers.  They found that for the morning commute, 13.7 minutes before the 

scheduled work starting time was the average preferred arrival time for the travelers.  

Travelers were significantly more likely to switch routes, as opposed to switch departure 

time, in response to improved traveler information. 

 

Barfield, Haselkorn, Spyridakis, and Conquest (1991) conducted a survey of 3,893 

motorists in the Seattle, WA area.  They found that travelers who made pre-trip route 

choice adjustments occasionally were more common than those who occasionally made 

departure time adjustments (50% to 44%).  For departure time switching, commuters had 

more flexibility leaving work than when leaving home.  Males and those with higher 

incomes were generally less likely to switch departure time or mode.  Females were more 

likely to make pre-trip travel changes but less likely to make en-route changes. 

 

91% of travelers in the Barfield et al. study found information from commercial radio to 

be somewhat or very helpful.  36% found variable message signs to be helpful, and 18% 

found TV information to be helpful.  55% prefer to receive traffic information pre-trip, 

while 44% prefer to receive traffic information en-route.  Most travelers (90%) had access 

to a radio in their homes and cars, and 45% had access to a radio in their office.  92% 

stated they would use a radio station dedicated to traffic information, while 34% stated 

they would use a phone hotline. 

 

Wardman, Bonsall, and Shires (1997) found that variable message signs vary widely in 

terms of effectiveness.  Providing the magnitude and cause of the traffic delay was found 

to be helpful for travelers.  Compliance to VMS was significantly lower if no cause was 

provided.  Lotan (1997) conducted a hypothetical case study for the MIT area, and found 

that travelers who were unfamiliar with a particular area were more likely to depend on 

information for route choices. 

 



 39

Abdel-Aty, Kitamura, and Jovanis (1997) conducted a stated preference survey of 

morning commuters in the Los Angeles, CA area.  The survey contained questions with a 

fictitious route choice set and travel times.  They found that females and the elderly were 

less likely to switch to a route that they are personally unfamiliar with.  Travelers based 

their route decisions more heavily on travel time variability than on mean travel time 

alone.  However, an actual application of ATIS would likely have difficulties stating its 

predicted route travel times in the form of a confidence interval.  Travelers may also have 

problems interpreting such an interval. 

 

While findings from the studies differ, one overall point is the importance of behavioral 

considerations with respect to travel choice.  DynaMIT can take into account the 

heterogenous response of travelers to information in its prediction and information 

generation processes.  This is done through the use of behavior-based models that could 

include socioeconomic characteristics such as schedule delay, value of time, trip purpose, 

and access to ATIS.  Route level features such as signalized intersections and the number 

of left turns can also be included.  This thesis does not examine behavior aspects in detail 

due to the unavailability of actual travel data.  This is an area of ongoing research. 
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Chapter 3 

 

Evaluation Methodology 

3.1  Simulation Laboratory 

The evaluation in this thesis will be carried out using the MITSIM Simulation Laboratory, 

as has been used successfully for previous work.  MITSIM is a microscopic traffic 

simulator developed at MIT.  A complete description is provided by Yang (1997); a brief 

overview is provided here.  MITSIM moves individual vehicles in a traffic network based 

on desired speed, car-following, and lane changing models.  The structure of the network 

is known for each lane on every segment.  Specialized network features such as traffic 

signals, ramp meters, and toll booths can be represented.  MITSIM also explicitly 

simulates drivers’ response to real-time information. 

 

The MITSIM laboratory has been specifically designed for the evaluation of Dynamic 

Traffic Management Systems, and is an excellent way to evaluate the capabilities of 

DynaMIT.  The laboratory is a convenient and flexible alternative as compared to 

obtaining traffic data from the field.  Numerous scenarios can be tested rapidly, and 

output such as sensor counts, vehicle travel times, and points of congestion can be 

generated and stored. 
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Figure 9:  Simulation Laboratory 

 

DynaMIT is assumed to be residing in a traffic management center (TMC), while 

MITSIM represents the real world.  The interactions between the two are shown in Figure 

9.  MITSIM provides various types of sensor data to DynaMIT similar to how a TMC 

would receive data from the real world.  Meanwhile, DynaMIT provides information to 

travelers in MITSIM in the same way that a TMC would communicate with travelers in 

reality.  This sensor data comprises one of the inputs to the DynaMIT components. 

3.2  Behavior of Drivers in MITSIM 

MITSIM maintains two sets of travel time information: historical and real-time.  

Historical travel times remain static during the simulation and do not take into account 

incident impacts.  Unguided drivers select routes based only on historical travel times.  

Real-time travel times are updated periodically by DynaMIT at each rolling step size or 

update interval.  Guided drivers in MITSIM make route decisions based on the real-time 

travel times in the case of descriptive information.  With prescriptive information, guided 

drivers in MITSIM follow the recommendation from DynaMIT. 
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The DynaMIT system evaluation is affected by the treatment of driver behavior in the 

MITSIM representation of reality.  For this evaluation, the behavioral model structure and 

parameters used in DynaMIT and MITSIM are identical.  Therefore, the results provided 

are not affected by differences in traveler behavior representation.  This is done to allow 

for greater control with respect to identifying the performance of the various components 

and making sense of the results. 

 

It would be an interesting exercise to make the behavioral models in the MITSIM reality 

more complicated and assume that DynaMIT operates with a more limited model.  This is 

left for future research. 

3.3  Scenarios 

Each scenario considered in the evaluation is a combination of several dimensions.  

Dimensions are referred to by a capital letter, while the specific dimension value that a 

particular scenario uses is referenced by an index number. 

 

For the demand estimation analysis provided in Chapter 4, the following dimensions are 

relevant:  A-B-C-D-E-F-G-H-I 

 

For the impact of information analysis provided in Chapters 5, 6, and 7, the following 

dimensions are relevant:  A-B-D-J-K-L-M-N 

 

3.3.1  Network (A-1) 

The network used for evaluation is the Central Artery/Tunnel (CA/T) Network in Boston, 

as it will appear in 2004.  The CA/T network, shown in Figure 10, has 185 nodes and 214 

links.  The network connects Route 1A and Logan Airport in the east with I-93, Storrow 

Drive, Route 1, and the Massachusetts Turnpike in the west.  This is done by two 

underwater tunnels, the Sumner/Callahan Tunnel in the north and the Third Harbor 
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Tunnel in the south.  This network is realistic and is sufficiently complex to address the 

multiple evaluation criteria that were described in Section 1.5. 

 

This evaluation process involved using a slightly modified Central Artery network.  Some 

links and nodes were added in the network to provide for greater route choice flexibility 

in the network.  More specifically, the additions make it possible for drivers to turn freely 

from/to the Third Harbor Tunnel, the Sumner/Callahan Tunnel, and I-93 at interchange 

points in any direction except for a U-turn.  In some cases, these additional links allow for 

a representation of drivers who leave the freeway network, use local streets, and return to 

the network shortly thereafter. 

 

I-93 North

Route 1

Route 1A

Logan
Airport

Third
Harbor
Tunnel

Sumner/
Callahan
Tunnels

Mass. Pike

Storrow

BOSTON

Drive

I-93 South
 

 

Figure 10:  Central Artery Network 

 
3.3.2  Actual Demand (B) 

•  B-1:  Ten origin-destination pairs. 

 

For the demand estimation evaluation, there are five origins and two destinations for a 

total of ten origin-destination pairs.  The locations are shown in Figure 11. 
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Figure 11:  Origin and Destination Locations 

 

The demand pattern to be simulated goes from 7:00 am to 7:45 am.  The simulation 

period is divided into three fifteen-minute time intervals.  The demand for each interval, 

listed by OD pair, is shown in Table 1.  This evaluation uses the Kalman Filter algorithm 

off-line for estimation of O-D demand levels in the third time interval of the simulation 

(7:30-7:45), based on sensor counts from the simulation and a historical database. 

 

OD pair # 7:00 - 7:15 7:15 - 7:30 7:30 - 7:45 
    

1  (A-F) 240 270 300 
2  (A-G) 240 270 300 
3  (B-F) 120 135 150 
4  (B-G) 120 135 150 
5  (C-F) 180 202.5 225 
6  (C-G) 180 202.5 225 
7  (D-F) 60 67.5 75 
8  (D-G) 60 67.5 75 
9  (E-F) 120 135 150 

10  (E-G) 120 135 150 
 

Table 1:  Actual O-D Pair Demand 
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•  B-2:  Fifty-six origin-destination pairs. 

 

For the DynaMIT system evaluation, there are eight origin and destination locations as 

shown in Figure 12.  No vehicles are assumed to have a destination at the same place as 

the origin, but vehicles move between any two different locations.  As such, there are a 

total of fifty-six O-D pairs (8*8 - 8).  This demand pattern is representative of actual peak 

hour conditions. 

 

The case study is interested in travelers that enter the network during some typical 

weekday between 7:00 AM and 8:30 AM.  It is necessary to run the simulation for longer 

than this, such that all the drivers that enter the network at 8:30 AM are able to exit the 

network during the simulation period.  Therefore, the simulation begins at 7:00 AM and 

ends at 9:30 AM.  The analysis to be described does not consider vehicles that entered the 

network after 8:30 AM, particularly because many of these vehicles were not able to 

complete their trip when the simulated ended. 

 

A: I-93 North F: Route 1A

G: Logan
Airport

D: Mass.
Pike

B: Storrow
Drive

C: Downtown
Boston

E: I-93 South

H: Third
Harbor
Tunnel

 
 

Figure 12:  Origin-Destination Pairs 
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The base demand level for each of the fifty-six O-D pairs is 400 vehicles per hour.  This 

base demand is scaled, as given in Table 2.  This is done to provide for some natural 

peaking within the morning period, centered from 7:30 AM to 8:00 AM. 

 

Time 
Period 

7:00-7:15 7:15-7:30 7:30-7:45 7:45-8:00 8:00-8:15 8:15-8:30 

Demand at 
each O-D 
Pair in 
vehicles/hr 

320 360 400 400 360 320 

 

Table 2:  Demand Peaking 
 
 
For purposes of analyzing stochasticity, an additional scenario is used that reduces the 

demand levels shown in Table 2 by 30%. 

 

•  B-3:  Fifty-six origin-destination pairs, reduced demand. 

 
3.3.3  Historical Demand (C) 

For the base scenario, the historical demand used as input to the Kalman Filter is exactly 

equal to the true demand.  In reality, since historical demand may not reflect traffic 

conditions in real-time, other values are tested as well.  The set of values are given here: 

 

•  C-1:  Historical demand equals true demand. 

•  C-2:  Historical demand is 5% higher than true demand. 

•  C-3:  Historical demand is 5% lower than true demand. 

•  C-4:  Historical demand is 10% higher than true demand. 

•  C-5:  Historical demand is 10% lower than true demand. 

•  C-6:  Historical demand is 20% higher than true demand. 

•  C-7:  Historical demand is 20% lower than true demand. 

•  C-8:  Historical demand is unknown and is arbitrarily set to zero. 
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The C-8 value assumes that the Kalman Filter algorithm operates without the assistance 

of any historical information.  This is a rather extreme case, used to test the limits of the 

algorithm performance. 

 

3.3.4  Incident Conditions (D) 

•  D-1:  No incident. 

•  D-2:  Fifteen-minute incident in Third Harbor Tunnel. 

•  D-3:  Thirty-minute incident in Sumner/Callahan Tunnel. 

•  D-4:  Thirty-minute incident in Third Harbor Tunnel. 

 

In D-2, the incident affects two lanes in the Third Harbor Tunnel from 7:15 to 7:30, 

closing off one lane completely and restricting vehicle movement in the other lane to 15 

miles an hour.  This incident condition is used for the demand estimation analysis.  Note 

that values for the dimensions E and F to follow vary depending on which incident 

condition was simulated.  The E and F values used in the evaluation process pertain 

specifically to the value of the D dimension that was simulated.  

 

D-3 and D-4 are used for the impact of information analysis.  The incident reduces 

vehicle speeds for all lanes in both directions to 10 mph from 7:15 to 7:45.  In D-3, the 

incident occurs in the Sumner/Callahan Tunnel.  In D-4, the location is the Third Harbor 

Tunnel.  DynaMIT is assumed to be aware of an incident one minute after its occurrence, 

and the system has good knowledge with respect to the severity and duration. 

 

3.3.5  Sensor Counts (E) 

Consistent with the concept of the simulated laboratory, the surveillance system data 

needed for the O-D estimation process in DynaMIT are made available from the MITSIM 

traffic simulator.  MITSIM provides link counts for each network traffic sensor, where 

link counts refer to the cumulative number of vehicles that traversed a link during a given 
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time interval.  In this laboratory, one sensor can count multiple lanes of traffic but only in 

one direction of movement. 

 

For this evaluation, a total of thirty-five sensors were spaced fairly evenly throughout the 

network.  The simulation was conducted in MITSIM and sensor counts were obtained.  

The set of sensor count values used in this evaluation are as follows: 

 

•  E-1:  Actual sensor counts. 

•  E-2:  Sensor counts have systematically high errors of 5%. 

•  E-3:  Sensor counts have systematically low errors of 5%. 

•  E-4:  Sensor counts have systematically high errors of 10%. 

•  E-5:  Sensor counts have systematically low errors of 10%. 

•  E-6:  Sensor counts have systematically high errors of 20%. 

•  E-7:  Sensor counts have systematically low errors of 20%. 

•  E-8:  Counts for four sensors omitted. 

•  E-9:  Systematically high 10% errors, counts for four sensors omitted. 

•  E-10:  Systematically low 10% errors, counts for four sensors omitted. 

 

In reality, sensor counts may have errors associated with them.  It is important to observe 

how well the Kalman Filter algorithm can estimate demand despite the presence of sensor 

count errors.  Dimensions E-8, E-9, and E-10 are used for further investigation of 

estimation quality with respect to incident conditions.  Information from four sensors 

located just upstream of the incident were not taken into account for these dimensions. 

 

3.3.6  Assignment Matrices (F) 

DynaMIT will ultimately compute its own estimate of assignment matrices in real-time 

by matching estimated O-D flows with updated O-D flows, as described in section 1.4.1.  

For this evaluation, actual assignment matrices are computed using the MITSIM traffic 

simulator and are used as inputs to the Kalman Filter algorithm.  One assignment matrix 
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relates to the estimation interval of interest (7:30-7:45).  Another corresponds to the 

previous time interval (7:15-7:30), while a third corresponds to the pre-previous time 

interval (7:00-7:15). 

 

The set of assignment matrix values used are as follows: 

 

•  F-1:  True assignment matrices used. 

•  F-2:  Assignment matrices randomly perturbed to a maximum error of 5%. 

•  F-3:  Assignment matrices randomly perturbed to a maximum error of 10%. 

•  F-4:  Assignment matrices randomly perturbed to a maximum error of 20%. 

 

The random perturbations are linearly distributed.  For example, in F-2, every matrix 

value between -5% of the true value and +5% of the true value is equally likely to be 

selected during the perturbation process.  These perturbations are introduced to evaluate 

how the Kalman Filter algorithm performs when assignment matrix errors are present. 

 

3.3.7  Flow Estimates for Earlier Intervals (G) 

The Kalman Filter algorithm uses O-D flow estimates from the previous and pre-previous 

time intervals as an input for the current time interval estimation.  This is done through 

the transition equation, as described in section 1.4.  The set of values used here are: 

 

•  G-1:  Estimated demand for previous and pre-previous intervals are equal to the 

true demand for those intervals. 

•  G-2:  Estimated demand for previous interval has a 10% error (too high). 

•  G-3:  Estimated demand for previous interval has a 10% error (too low). 

•  G-4:  Estimated demand for pre-previous interval has a 10% error (too high). 

•  G-5:  Estimated demand for pre-previous interval has a 10% error (too low). 

•  G-6:  Estimated demand for previous interval has a 20% error (too high). 

•  G-7:  Estimated demand for previous interval has a 20% error (too low). 



 51

 

The values G-2 through G-7 are used in order to determine how the performance of the 

Kalman Filter algorithm is affected by errors in earlier estimates. 

 

3.3.8  Transition Matrices (H) 

Two transition matrices are used.  One relates the temporal deviations between the 

historical and updated flows between the estimation time interval and the previous time 

interval, and another does the same for the estimation interval and the pre-previous time 

interval.  The following transition matrix values are evaluated: 

 

•  H-1:  Transition matrices have diagonal values equal to one, and off-diagonal 

values equal to zero. 

•  H-2:  All matrix values are equal to zero.  

 

The value H-1 assumes that deviations between historical and estimated O-D flows for 

the two previous time intervals are expected to carry over to the current estimation 

interval in exactly the same magnitude with respect to the same O-D pair value.  The 

value H-2 assumes that deviations for previous time intervals have no relationship with 

the current time.  No deviation between historical and estimated O-D flows is expected 

for the current time interval, regardless of what happened in the past. 

 

3.3.9  Error Covariance Matrices (I) 

As mentioned in Section 1.4, three error covariance matrices are used by the Kalman 

Filter algorithm.  One is for the transition equation, one is for the measurement equation, 

and one is for the state matrix.  Recall that the role of these matrices is to account for the 

fact that errors in algorithm inputs may be present, and that relationships between the 

inputs and the state variables to be estimated are not perfectly deterministic. 

 

•  I-1:  Error covariance matrices as specified below. 
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For I-1, the values for these error covariance matrices were selected as follows.  No 

covariance is assumed between the values for any matrix; the off-diagonal terms all have 

values of zero.  This is done for simplicity.  For the measurement equation error 

covariance matrix, the variance of each link count is assumed to be equal to the value of 

the count itself times 1.  This is a Poisson distribution assumption, that the variance 

associated with each sensor value over some period of time is equal to the mean. 

 

There are two transition error covariance matrices needed, one for each transition matrix.  

For these matrices, the variance associated with flow relationships over time may be 

expected to be roughly proportional to the historical O-D pair values.  These historical 

values were multiplied by a factor of 1.5, which is larger than the factor of 1 used for the 

measurement equation variances.  This takes into account that current information is 

generally assumed to be of greater relevance and accuracy to real-time flow estimation 

than information that reflects only a historical average. 

 

For the variance of the state vector, the diagonal terms are set equal to the value of the 

historical flows for the time interval of interest, times a factor of 1.5.  This factor was 

selected for the same reason as described for the transition variances. 

 

•  I-2:  Error covariance matrices with values close to zero. 

 

An additional scenario was evaluated that involved setting all the diagonal values for the 

error covariance matrices close to zero.  The algorithm will not operate if matrix values 

are all zero, so diagonal values of one were used.  This is not a realistic assumption, and 

is done solely in order to verify that the Kalman Filter algorithm is able to attain a perfect 

estimate when given perfect inputs.  In other words, if the algorithm inputs are known to 

have no errors, then setting the error covariance matrices close to zero should eliminate 

the possibility that noise could be added during the estimation process. 
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For reasons to be described in Chapter 4, it became valuable to test additional variance 

values for the state vector.  For the scenarios I-3 through I-7 below, the measurement and 

transition variance matrices are kept the same as in I-1.  The state vector variance is set to 

the following values. 

 

•  I-3:  Variance of state vector set to twice the historical flows. 

•  I-4:  Variance of state vector set to three times the historical flows. 

•  I-5:  Variance of state vector set to values of 1,000. 

•  I-6:  Variance of state vector set to values of 5,000. 

•  I-7:  Variance of state vector set to values of 10,000. 

 

3.3.10  Percent of Informed and Compliant Travelers (J) 

The percent of travelers using the network who comply with information provided by 

DynaMIT is likely to be an important consideration with respect to network performance.  

The following values of this parameter are evaluated.  J-3, J-5, and J-7 are used for 

descriptive information.  J-1, J-2, J-4, J-6, and J-8 are used for prescriptive information. 

 

•  J-1:  10% of travelers informed and compliant. 

•  J-2:  20% of travelers informed and compliant. 

•  J-3:  25% of travelers informed and compliant. 

•  J-4:  40% of travelers informed and compliant. 

•  J-5:  50% of travelers informed and compliant. 

•  J-6:  70% of travelers informed and compliant. 

•  J-7:  75% of travelers informed and compliant. 

•  J-8:  95% of travelers informed and compliant. 

 

3.3.11  Type of Information Provided (K) 

As described in section 1.3, there are two types of information that can be provided to 

drivers.  With descriptive information, drivers are provided with travel times for a set of 
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alternative routes.  With prescriptive information, drivers are provided with a single route 

recommendation. 

 

Prescriptive information can in turn be divided into two groups.  The first is called naive, 

which simply directs all informed travelers to choose the route that does not contain the 

incident.  This means the VMS displays the same message to all travelers who view it, 

regardless of their eventual network destination.  The second type is termed specific.  

This type recognizes that for travelers from certain O-D pairs, it makes sense to choose 

the Sumner/Callahan Tunnel regardless of the incident occurrence.  Therefore, the 

messages displayed on the VMS are destination-specific.  This is described in greater 

detail in Chapter 8. 

 

•  K-1:  En-route descriptive information is provided. 

•  K-2:  En-route specific prescriptive information is provided. 

•  K-3:  En-route naïve prescriptive information is provided. 

 

3.3.12  Rolling Step Size (L) 

The actual DynaMIT information operates continuously, as described in Chapter 1.  

Information is not necessarily generated and released to travelers at set times, but is done 

intermittently whenever the information is ready.  However, for the purposes of this 

evaluation, a parameter referred to as the rolling step size, or the update interval, can be 

set.  At frequencies equal to the rolling step size, DynaMIT releases the latest information 

that is available to travelers.  A more frequent rolling step size is assumed to be 

preferable assuming that the real-time system requirement is not violated. 

 

•  L-1:  Ten minute rolling step size. 

•  L-2:  Twenty minute rolling step size. 

•  L-3:  Thirty minute rolling step size. 

•  L-4:  Sixty minute rolling step size. 
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3.3.13  Rolling Horizon (M) 

As described in Section 1.2.5, the rolling horizon refers to how far into the future 

DynaMIT predicts beyond the current estimation time.  The following values are 

evaluated. 

 

•  M-1:  Fifteen minute rolling horizon. 

•  M-2:  Thirty minute rolling horizon. 

•  M-3:  Forty-five minute rolling horizon. 

•  M-4:  Sixty minute rolling horizon. 

 

3.3.14  Number of Iterations (N) 

As mentioned in Section 1.2.5, the number of iterations represents the maximum number 

of times that DynaMIT will iterate between demand, supply, and information generation 

in its prediction process before the information strategy is distributed.  The following 

values are evaluated. 

 

•  N-1:  One iteration. 

•  N-2:  Three iterations. 

•  N-3:  Five iterations. 

 

Note that at the time this evaluation work was conducted, the Kalman Filter algorithm 

had not yet been integrated with the rest of the DynaMIT system.  It is assumed in this 

evaluation process that DynaMIT knows what the actual demand levels are. 
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3.4  Performance Measures 

3.4.1  System Accuracy 

This involves determining how closely the link travel times that are estimated and 

predicted by DynaMIT match the true conditions that actually take place as the simulation 

proceeds.  Travelers in the network who comply with the information provided by 

DynaMIT should encounter traffic conditions as predicted by DynaMIT. 

 

3.4.2  Network Performance 

A comparison of travelers’ route choices with and without DynaMIT in operation is 

provided.  The information provided by DynaMIT in general should influence travelers to 

stay away from incident locations in the network.  However, the information should not 

influence so many travelers to change travel patterns such that the travel times they 

experience are worse than if they would have passed through the incident locations.  In 

other words, DynaMIT should be able to avoid over-reaction. 

 

Another important measure is to determine the travel times that travelers experienced in 

the network for each test.  Travelers who comply with DynaMIT information should not 

have been able to select a faster route than the one recommended by the system.  The total 

system travel time with and without DynaMIT will also be compared. 

 

3.4.3  System Applicability 

There is expected to be some variance in the results between multiple replications of the 

same scenario.  An actual traffic management center does not have the luxury of running 

multiple replications of a particular traffic condition.  Therefore, it is ideal for the 

stochasticity of DynaMIT to be kept low.  The operation of DynaMIT should improve 

traffic conditions for each replication in a similar, effective fashion. 
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Chapter 4 

 

Evaluation of O-D Flow Estimation 

4.1  Set-Up 

The results from the analysis are provided in the following set of figures.  Note that each 

figure has a different scale on the vertical axis, so they are not directly comparable 

visually.  One number provided for each scenario is the maximum percent error 

associated with the Kalman Filter estimate from any one of the ten O-D flows.  The 

second number given for each scenario is the average percent error associated with the 

Kalman Filter estimate from all ten O-D flows.  The scenarios are listed first, followed by 

the corresponding figure with the estimation results for each scenario.  The same base 

scenario is listed in multiple figures for comparison purposes. 

4.2  No Incident Results 

For Figure 13 

Base:  Base conditions, perfect inputs. 

(A-1, B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1) 

Cou+10:  Sensor counts have systematically high errors of 10%. 

 (A-1, B-1, C-1, D-1, E-2, F-1, G-1, H-1, I-1) 
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Cou-10:  Sensor counts have systematically low errors of 10%. 

 (A-1, B-1, C-1, D-1, E-3, F-1, G-1, H-1, I-1) 

Hist+10:  Historical demand is higher than the true demand by 10%. 

 (A-1, B-1, C-2, D-1, E-1, F-1, G-1, H-1, I-1) 

Hist-10:  Historical demand is lower than the true demand by 10%. 

(A-1, B-1, C-3, D-1, E-1, F-1, G-1, H-1, I-1) 
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Figure 13:  Estimation Results #1 

 

•  The results from the base scenario (Base) are good.  No estimate varies from the 

actual O-D flow loaded on the network by more than 0.6%.  The noise that is added to 

the estimate results from the error-covariance matrices.  When these error-covariance 

matrix values are all set to values near zero, estimate errors are reduced to zero (not 

shown in the figure). 

 

•  A 10% systematic error in sensor counts (Cou+10, Cou-10) resulted in about an 11% 

error in each O-D flow estimate.  The magnitude of the estimate error is thus roughly 

proportional to errors in the sensor counts.  This makes sense, given that the 
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measurement equation error covariance matrix values assumes that the real-time link 

counts are highly reliable. 

 

•  Changing the historical counts from the true O-D flows by 10% (Hist+10, Hist-10) 

resulted in an average O-D flow estimate error of 1%.  This shows that with the error 

covariance matrices that were specified, the historical counts do not have much 

influence on the results relative to other factors.  This is good, assuming that this is 

believed to be true.  However, if actual day-to-day flows are believed to not vary 

much from historical levels, then the variance of the state matrix should be reduced. 

 

For Figure 14 

Base:  Base conditions, perfect inputs. 

(A-1, B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1) 

Prev+10:  Estimated demand for previous interval has a 10% error (too high). 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-2, H-1, I-1) 

Prev-10:  Estimated demand for previous interval has a 10% error (too low). 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-3, H-1, I-1) 

Zer+10:  Transition matrices of zero, systematically high sensor count errors by 10%. 

  (A-1, B-1, C-1, D-1, E-2, F-1, G-1, H-2, I-1) 

Zer-10:  Transition matrices of zero, systematically low sensor count errors by 10%. 

  (A-1, B-1, C-1, D-1, E-3, F-1, G-1, H-2, I-1) 

 



 60

0

2

4

6

8

10

12

14

16

Base Prev+10 Prev-10 Zer+10 Zer-10

Scenario

Pe
rc

en
t E

rr
or

Max Error
Mean Error

 
Figure 14:  Estimation Results #2 

 

•  Increasing the estimated O-D flows for the previous interval by 10% as compared to 

the true O-D flows for that interval (Prev+10, Prev-10) resulted in O-D flow estimates 

for the current interval that were all somewhat low.  The converse also holds.  The 

reason for this is as follows. 

 

The Kalman Filter algorithm comes up with its estimate by adding up the products of 

each assignment matrix with the estimated O-D flows from each interval.  As the 

estimated flows for the previous interval increase, the assignment matrix is allocating 

greater emphasis of its estimate on that previous interval, rather than on the current 

interval.  The algorithm wants to keep its estimate close to the obtained link counts, 

which have remained constant.  In order to do this, the estimated O-D flows for the 

current interval must decrease. 

 

Note that this outweighs a competing effect, which should be caused since in these 

scenarios the transition matrices are equal to one.  The algorithm should be expecting 
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that the deviation of the estimated O-D flows from the historical O-D flows for the 

previous interval will remain constant for the current time interval. 

 

•  Introducing a 10% error in the estimated O-D flows for the pre-previous time interval 

had virtually no effect on the O-D pair flow estimates for the current interval (this is 

not shown in the figure).  This is reasonable since the Kalman Filter does not use this 

information heavily.  Most vehicles that entered the network during the pre-previous 

time interval have left the network before the current interval begins, and the 

assignment matrix reflects this. 

 

•  Setting the transition matrices equal to zero in addition to having sensor count errors 

(Zer+10, Zer-10) yielded O-D flow estimation errors that were somewhat greater than 

what occurred when sensor count errors were present with transition matrices equal to 

one.  This is expected, given that having transition matrices equal to one should have 

a stabilizing effect on the amount of error. 

 

This stabilizing effect occurs because demand estimates for the previous and pre-

previous time intervals are equal to the historical O-D flow values for those intervals.  

There is no deviation between historical flows and estimated flows for previous time 

intervals.  Transition matrix values of one thus pulls the estimated O-D flows for the 

current interval closer to its historical values. 

 

 

For Figure 15 

Base:  Base conditions, perfect inputs. 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1) 

HistZer:  Historical demand unknown; historical matrix set to zero. 

  (A-1, B-1, C-4, D-1, E-1, F-1, G-1, H-1, I-1) 

HZC+10:  Historical matrix of zero, systematically high sensor count errors by 10%. 

  (A-1, B-1, C-4, D-1, E-2, F-1, G-1, H-1, I-1) 
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HZC-10:  Historical matrix of zero, systematically low sensor count errors by 10%. 

  (A-1, B-1, C-4, D-1, E-3, F-1, G-1, H-1, I-1) 

HZZer:  Historical matrix of zero, transition matrices set equal to zero. 

  (A-1, B-1, C-4, D-1, E-1, F-1, G-1, H-2, I-1) 

 

•  Setting the historical matrices equal to zero for the current interval (HistZer), a 

significant input error, weakened the estimate quality as expected.  The estimate is 

low since the historical flow values are much lower than the true flow values.  For the 

first two O-D pairs (from Logan Airport), there was about an 11% error between the 

estimate and the true demand.  The next two OD pairs (from South Boston) had their 

estimates affected more substantially, with a reduction of about 24% from the true 

demand being observed.  Effects on the other six OD pairs were not as great, with 

errors of about 10%. 
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Figure 15:  Estimation Results #3 
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The first four O-D pairs were affected downwards more heavily than the other pairs 

because the vehicles entered the network into a queue caused by toll booths.  This 

reduces the number of link counts measurements that were available for these O-D 

pairs, and hence the stabilization role that is played by the historical matrix is more 

important for these estimates. 

 

•  Combining a poor historical matrix with sensor count errors (HZC+10, HZC-10) 

yielded intuitive results.  When sensor count readings are erroneously low, estimation 

errors become worse since the historical matrix is erroneously low also.  When the 

sensor count readings are erroneously high, this partially balances out the erroneously 

low historical matrix and errors are reduced as compared to the HistZer scenario. 

 

•  Combining a poor historical matrix with a transition matrix set to zero (HZZer) 

increased errors in the O-D flow estimates.  This is because with the effects of the 

transition equations eliminated, the algorithm places greater emphasis on the 

measurement and state equations.  While the measurement equation inputs have no 

errors in this scenario, the state equation inputs (the historical matrix) are poor. 

 

For Figure 16 

Base:  Base conditions, perfect inputs. 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1) 

AsP5:  Assignment matrix randomly perturbed to a maximum error of 5%. 

  (A-1, B-1, C-1, D-1, E-1, F-2, G-1, H-1, I-1) 

AsP10:  Assignment matrix randomly perturbed to a maximum error of 10%. 

  (A-1, B-1, C-1, D-1, E-1, F-3, G-1, H-1, I-1) 

AsP20:  Assignment matrix randomly perturbed to a maximum error of 20%. 

  (A-1, B-1, C-1, D-1, E-1, F-4, G-1, H-1, I-1) 
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Figure 16:  Estimation Results #4 

 

•  The mean O-D flow estimate errors obtained from introducing errors in the 

assignment matrix were rather moderate (1.1% for a 5% perturbation, 4.0% for a 10% 

perturbation, 6.0% for a 20% perturbation).  This indicates that the algorithm is rather 

robust with respect to the assignment matrix input, which is promising given that in 

reality the true assignment matrix is likely to not be known perfectly in the absence of 

specialized in-vehicle tracking devices. 

4.3  With Incident Results 

For Figure 17 

Incid:  Fifteen-minute incident in Third Harbor Tunnel. 

  (A-1, B-1, C-1, D-2, E-1, F-1, G-1, H-1, I-1) 

ICou+10:  Incident with 10% high systematic sensor count errors. 

  (A-1, B-1, C-1, D-2, E-2, F-1, G-1, H-1, I-1) 

ICou-10:  Incident with 10% low systematic sensor count errors. 

  (A-1, B-1, C-1, D-2, E-3, F-1, G-1, H-1, I-1) 
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IHist+10:  Incident with 10% high historical demand compared to true. 

  (A-1, B-1, C-2, D-2, E-1, F-1, G-1, H-1, I-1) 

IHist-10:  Incident with 10% low historical demand compared to true. 

  (A-1, B-1, C-3, D-2, E-1, F-1, G-1, H-1, I-1) 

IPrev+10:  Incident with 10% error in previous interval estimate (too high). 

  (A-1, B-1, C-1, D-2, E-1, F-1, G-2, H-1, I-1) 

IPrev-10:  Incident with 10% error in previous interval estimate (too low). 

  (A-1, B-1, C-1, D-2, E-1, F-1, G-3, H-1, I-1) 
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Figure 17:  Estimation Results #5 

 

•  For the base incident scenario (Incid), the estimate is very good again with no O-D 

pair estimate off by more than 0.5%.  This makes sense given the lack of input errors. 

 

•  Errors in the sensor counts by 10% in either direction (ICou+10, ICou-10) had a 

somewhat greater effect in the incident case (by about 2%) on errors present in the 

four O-D pair estimates from the Logan Airport / South Boston area.  Errors in the 
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estimates of the previous time interval also had a slightly greater impact (about 1%) 

on errors in the Logan Airport O-D pair estimates. 

 

•  A 10% difference between the historical and the true O-D flows (IHist+10, IHist-10) 

results in errors in the Airport O-D estimates that are about a factor of three greater 

than the no incident case.  With a reduced number of inputs in the measurement 

equation, the historical matrix plays an important stabilizing role.  Only a minor 

increase in estimation errors between the incident and the non-incident case were 

observed when previously estimated flows contained errors (IPrev+10, IPrev-10). 

 

For Figure 18 

Incid: Fifteen-minute incident in Third Harbor Tunnel. 

  (A-1, B-1, C-1, D-2, E-1, F-1, G-1, H-1, I-1) 

IHistZer:  Incident with historical matrix set to zero. 

  (A-1, B-1, C-4, D-2, E-1, F-1, G-1, H-1, I-1) 

IHZC+10:  Incident with historical matrix of zero, sensor count errors (high by 10%). 

  (A-1, B-1, C-4, D-2, E-2, F-1, G-1, H-1, I-1) 

IHZC-10:  Incident with historical matrix of zero, sensor count errors (low by 10%). 

  (A-1, B-1, C-4, D-2, E-3, F-1, G-1, H-1, I-1) 

IHZZer:  Incident with historical matrix of zero, transition matrices set to zero. 

  (A-1, B-1, C-4, D-2, E-1, F-1, G-1, H-2, I-1) 
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Figure 18:  Estimation Results #6 

 

•  With historical matrices set to zero (IHistZer), the effect on errors for the four O-D 

pairs from Logan Airport was far more severe with the incident case than with the no 

incident case.  The estimated O-D pair flows were brought down from the actual 

demand by as much as 78.5%.  A historical matrix of zero in addition to sensor count 

errors or a transition matrix of zero (IHZC+10, IHZC-10, IHZZer) also yielded greater 

estimation errors in the incident case. 

 

•  Perturbations in the assignment matrix in addition to the incident occurrence (not 

shown in the figure) yielded results similar to the no incident case. 

 

For this incident scenario, information contained in the measurement equation (sensor 

reading) inputs was reduced because vehicles for certain O-D pairs were not able to 
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proceed particularly far within the network during the estimation time period.  With the 

lack of input errors, the estimation quality for the incident scenario remained high.  This 

gives an indication that if accurate real-time sensor counts and a historical database are 

used, the Kalman Filter algorithm will be effective during incident conditions. 

 

However, the impacts of any input errors on the estimation accuracy of the algorithm are 

magnified in this incident case.  This was particularly true when errors are present in the 

historical matrix.  Given a reduction of real-time surveillance system information that can 

occur during incident situations, having a good historical matrix becomes more critical.  

The results also indicate that the allocation of sensors within the network could be an 

important issue. 

 

Out of the thirty-five sensors placed throughout the network in this case study, four of 

them are located in the area just upstream of the incident.  These four sensors are the only 

source of real-time information that is capable of detecting origin B vehicles from the 

current estimation interval when the incident has occurred (origin B location shown in 

Figure 11).  Note that due to network geometry, vehicles that enter the network from 

origin B must use the Third Harbor Tunnel. 

 

The Kalman Filter algorithm during incident conditions was applied assuming that these 

four upstream sensors do not exist.  Surveillance system data therefore is used from only 

thirty-one sensors. Results are highlighted in Figure 19. 

 

For Figure 19 

IncidRev: Fifteen-minute incident, fewer sensors. 

  (A-1, B-1, C-1, D-2, E-4, F-1, G-1, H-1, I-1) 

IRCou+10:  Incident, fewer sensors, sensor count errors (high by 10%). 

  (A-1, B-1, C-1, D-2, E-5, F-1, G-1, H-1, I-1) 

IRCou-10:  Incident, fewer sensors, sensor count errors (high by 10%). 

  (A-1, B-1, C-1, D-2, E-6, F-1, G-1, H-1, I-1) 
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IRHist+10:  Incident, fewer sensors, 10% high historical demand compared to true. 

  (A-1, B-1, C-2, D-2, E-4, F-1, G-1, H-1, I-1) 

IRHist-10:  Incident, fewer sensors, 10% low historical demand compared to true. 

  (A-1, B-1, C-3, D-2, E-4, F-1, G-1, H-1, I-1) 

IRHistZer:  Incident, fewer sensors, historical matrix of zero. 

  (A-1, B-1, C-4, D-2, E-4, F-1, G-1, H-1, I-1) 

 

Figure 19: Estimation Results #7 

 

When inputs are free from errors (IncidRev), the loss of sensor information has no 

measurable impact on the estimation quality.  When the loss of sensor information is 

combined with errors in the sensor counts (IRCou+10, IRCou-10), the estimate quality 

actually improves slightly as compared to the full sensor information case. 

 

However, when input errors in the historical matrix are combined with a loss of sensor 

information (IRHist+10, IRHist-10, IRHistZer), estimation errors increase as compared to 
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full surveillance data.  This increase was most notable for O-D pairs from origin B.  

Because no real-time information at all is available for such O-D pairs without these four 

sensors, the algorithm sets the demand estimate close to historical matrix values.  

Therefore, when the historical values are set to zero, the estimated demand for these O-D 

pairs are fairly close to zero.  The effect of the transition equation, using O-D pair 

estimates from previous intervals, is most likely what keeps the estimates above zero. 

4.4  Prediction Results 

As described in Chapter 1, the full O-D demand prediction process requires interaction 

between the demand, supply, and information generation components of DynaMIT.  This 

is because the anticipatory information produced by DynaMIT for distribution to travelers 

will change network demand patterns.  These tests deal only with an examination of the 

Kalman Filter algorithm in isolation from the other components, so a complete 

investigation of O-D prediction is not contained here.  This section therefore describes 

some small tests run for off-line prediction. 

 

Continuing with the scenario description given for estimation, described in the earlier 

sections of this chapter, a follow-up exercise is to determine what the algorithm predicts 

for O-D demand levels of the next fifteen-minute interval.  The historical demand levels 

of the ten O-D pairs for this future interval were set to be 300-300-150-150-225-225-75-

75-150-150, which are reasonable values for this study.  Off-line prediction was then run 

for the following scenarios: 

 

 

PBase: Base conditions, perfect inputs. 

(A-1, B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1) 

PEst+10: Current interval estimate 10% higher than historical demand. 

(A-1, B-1, C-1, D-1, E-1, F-1, G-2, H-1, I-1) 

PEst-10: Current interval estimate 10% lower than historical demand. 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-3, H-1, I-1) 
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PEst+20: Current interval estimate 20% higher than historical demand. 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-6, H-1, I-1)  

PEst-20: Current interval estimate 20% lower than historical demand. 

  (A-1, B-1, C-1, D-1, E-1, F-1, G-7, H-1, I-1) 

Figure 20: Prediction Results 

 

The column Max Diff gives the maximum difference, in percent, between the historical 

demand and the predicted demand for any O-D pair.  The column Mean Diff gives the 

mean difference across all ten O-D pairs. 

 

Recall that the algorithm works with deviations; it predicts how deviations between the 

historical demand and the estimated demand will evolve over time.  Under the base 

conditions (PBase), the predicted demand for the future interval was equal to the 

historical demand for that interval.  This makes sense given that the deviation in the 

current interval between the historical and the estimated demand is close to zero. 
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However, when deviations between the two for the estimation interval are introduced 

(PEst+10, PEst-10, PEst+20, PEst-20), deviations also show up for the future time 

interval.  These predicted deviations are of the same sign and roughly the same magnitude 

as for the estimation interval.  The predicted deviations are not entirely consistent across 

the O-D pairs.  In general though, such deviations were smaller than for the estimation 

interval, which indicates a tendency for the algorithm to slightly pull its predictions in 

towards historical levels. 
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Chapter 5 

 

System Accuracy 
 

This base scenario has the following set of values for the ten dimensions. 

 

  (J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-1) 

 

5.1.1  Congestion Locations 

As a result of the Sumner/Callahan Tunnel incident, congestion occurs on many links in 

the upper part of the network.  Eight primary regions of congestion were defined.  These 

regions are shown in Figure 21.  E stands for East (right side of network), while W stands 

for West (left part of network).  Congestion occurs within all four lanes of the 

Sumner/Callahan Tunnel since the incident affects both directions.  Congestion also 

occurs on both the on-ramps and off-ramps leading to and from the tunnel in both 

directions, and adjacent freeway mainlines.  A brief explanation for this is as follows. 

 

Once capacity in the main tunnel starts to saturate due to the incident, queues push out 

onto the tunnel on-ramps.  Off-ramp congestion begins to develop once the incident is 

cleared and the queue in the main tunnel starts to dissipate.  When this occurs, the 

vehicles overflow the off-ramps as they exit the tunnel.  Congestion near the off-ramps, 

or the weaving sections, is caused by the high level of lane changing that must occur for 
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vehicles to make their exit from the tunnel successfully.  Lane changing can cause huge 

delays in congested conditions as some vehicles must wait for a suitable gap.  Most of 

these on- and off-ramps are a single lane with low capacities. 

 

Figure 21:  Regions of Congestion 

 

If queues in the on-ramps are severe, they start to push back to the adjoining freeway 

mainlines.  Off-ramp queues are less likely than on-ramp queues to result in mainline 

congestion on adjacent freeways, because in this situation a low capacity region of the 

network merges into a high capacity region.  Mainline congestion slows down travel 

times for many drivers regardless of their route choice, whereas tunnel and on-/off-ramp 

congestion only affects drivers that actually select to use the Sumner/Callahan Tunnel. 

 

5.1.2  Congestion Severity 

When DynaMIT is not in operation, the congestion caused by the incident within the 

network is extreme.  This is true both for severity and duration.  Critical zones in the 

network are identified as follows. 

 

Zone #1 - Sumner/Callahan Tunnel Westbound  (East to West) 

Zone #2 - Sumner/Callahan Tunnel Eastbound (West to East) 

Zone #3 - On-ramps Westbound 

Zone #4 - On-ramps Eastbound 

Zone #5 - Off-ramps Eastbound 

Zone #6 - Mainline, Interstate 93 

Zone #7 - Mainline, Third Harbor Tunnel near Airport 

 

Note that off-ramps Westbound are not included among the zones.  In none of the 

scenarios were these off-ramps found to be significantly congested (more than 1.5 times 

greater than free-flow speed).  This is because these westbound off-ramps lead directly 

into the high capacity I-93, so once queues begin to discharge from the Sumner/Callahan 
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Tunnel they can flow freely into the mainline.  The off-ramps Eastbound do have 

congestion, since they lead into the relatively low capacity Third Harbor Tunnel area near 

the airport which cannot fully handle all of the traffic from the queue dissipation. 

 

Figure 22 shows the congestion severity in the network that occurs without DynaMIT in 

operation, what occurs with DynaMIT in operation, and what is predicted to occur by 

DynaMIT.  The horizontal axis refers to the zones listed previously, and the vertical axis 

gives the travel times through those zones as a multiple of the free-flow travel time.  

Travel times are time-dependent; the vertical axis value represents the maximum travel 

time encountered by drivers of any time interval.  Note that zones #6 and #7 do not 

include the entire mainlines of I-93 and the Third Harbor Tunnel, but only the 1,000 feet 

that are closest to the on- and off-ramps to/from the Sumner/Callahan Tunnel.  Note also 

that results represent an average of five replications. 

 

Figure 22:  Congestion Severity 

 

Without DynaMIT in operation, all of the zones listed are affected by congestion.  The 

most severe congestion during the simulation occurs in zones #5 and #6.  The Eastbound 

off-ramps suffer due to low capacity, while the queue that backs up into the I-93 Mainline 

area, a major weaving section, has severe impacts on speeds.  In both of these locations, 

any queues that begin to develop there grow extremely rapidly; these are high-risk zones.  

The DynaMIT system is effective in reducing congestion for most zones, particularly the 

high-risk locations. 

 

Comparing the DynaMIT-Actual and DynaMIT-Predicted bars gives the quality of 

DynaMIT’s prediction.  For zones #1, #3, and #7, the predictions made by DynaMIT of 

the congestion severity is quite good.  However, for zones #2, #4, and #5, DynaMIT’s 

prediction of the congestion is low.  All of these zones relate to the Eastbound direction. 
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Based at least partially on the inaccuracy of the Eastbound prediction, DynaMIT is not as 

effective in reducing congestion in this direction.  The information provided by DynaMIT 

to Eastbound drivers underpredicts the amount of congestion that will develop.  

Therefore, a larger number of Eastbound drivers stay with their habitual route choice and 

end up being affected by the congestion that does occur. 

 

DynaMIT has difficulty predicting congestion severity in Zone #6, the mainline I-93 area.  

The predicted congestion severity is consistent with the no DynaMIT case, but is not 

consistent with what happens when DynaMIT is in operation.  This area is a major 

weaving section with many lane changes taking place.  The prediction inaccuracy here 

probably stems from the complicated traffic patterns associated with the fairly special 

characteristics of this zone. 

 

6.2.1  Predictive Quality 

Predictive quality did not appear to be significantly affected by the rolling step size.  Yet 

the rolling step size definitely had an effect on user and system performance, to be 

described in the following sections.  The question arises then as to how this could be the 

case.  Graphing a congestion profile for a particular zone will assist here.  A congestion 

profile is a graph that shows the actual and predicted congestion levels over the course of 

the simulation. 
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Figure 23:  Zone #4 Congestion Profile 

 

This is shown in Figure 23 for Zone #4, the Eastbound on-ramps.  The figure indicates 

that in all scenarios, the actual congestion level spikes upwards at about 7:30, but comes 

back down again rapidly just past 7:45.  Congestion does not build up until a few minutes 

after the incident has started, and ends quickly once the incident has ended (the incident 

lasts from 7:15 until 7:45). 

 

For each of the three rolling step sizes, the predicted congestion lasts longer than the true 

congestion levels.  For a 10 minute step size, the primary error is that the predicted 

severity peak at about 7:37 is 48.5% lower than the actual peak.  The timing of queue 

formation and dissipation is quite good.  For a 30 minute step size however, the timing of 

queue formation is not predicted until 7:30.  For a 60 minute step size, the timing of 

queue formation is not predicted until 8:00 when a sharp spike occurs. 
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The danger of using a longer step size is that DynaMIT may not be able to adequately 

keep up with changing traffic conditions in the network.  For a 30 minute step size, 

information is only generated and released to travelers every 30 minutes starting in this 

case at 7:30.  By the time 7:30 comes around, network conditions have already changed 

substantially from 7:00. 

 

6.3.1  Predictive Quality 

A lower quality of congestion prediction was found when a shorter rolling length was 

used.  Once again, plotting a congestion profile will be useful to identify what is taking 

place.  This is shown in Figure 24 for zone #1, the Westbound Sumner/Callahan tunnel. 
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Figure 24:  Zone #1 Congestion Profile 

 

From 7:00 to 7:30, actual congestion levels in each scenario gradually build up in the 

tunnel faster than what is predicted by DynaMIT.  Beyond 7:30, the rolling length 

scenarios of 15 and 30 minutes begin to underpredict the congestion levels to a greater 

extent than for the longer rolling length of 60 minutes.  As DynaMIT information reaches 
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the travelers, a greater number of travelers choose to use the Sumner/Callahan Tunnel for 

the shorter rolling length cases since less congestion is being reported.  This in turn builds 

up congestion in the tunnel further, which widens the disparity in predicted and actual 

congestion up until 8:00. 

 

During the incident periods, congestion severity is underpredicted in all cases.  However, 

the magnitude of underprediction appears to be greater for shorter rolling lengths.  Why 

this occurs is not certain and requires further investigation, but this may have something 

to do with the treatment of unfinished trips in the supply simulator.  In DynaMIT, no 

output is recorded for such unfinished trips.  Thus, travel time data related to these 

unfinished trips are not included in the information generation process. 

 

For example, for vehicles from certain O-D pairs, the travel times in the network during 

incident conditions in reality can exceed fifteen minutes.  If a rolling length of only 

fifteen minutes is used, many vehicles (particularly those which enter the network near 

the end of the simulation period) fail to complete their trip by the end of the rolling 

length.  There are certainly going to be uncompleted trips at the end of the rolling length 

period regardless of what duration is simulated.  However, as the rolling length period is 

reduced, the ratio of unfinished trips to finished trips goes up. 

 

To maintain good network performance during incident conditions, prevention of queue 

buildup is crucial.  Thus, in this case study, the time period from 7:15 to 7:45 when 

vehicle queues begin to develop is when accurate information provision to travelers 

regarding network congestion is most critical.  During this time, unfinished trips on 

average are likely to have longer travel times than finished trips for two reasons.  One is 

that trips that take a long time by definition are more likely to not be completed at the end 

of the simulation period.  The other is that travel times in the network as a whole are 

getting longer due to queue buildup.  It is hypothesized that these reasons are the source 

of greater congestion underprediction for shorter rolling lengths early in the simulation. 
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6.4.1  Predictive Quality 

The predictive quality of DynaMIT when only one iteration was used instead of three was 

worse.  Congestion severity was underpredicted for all zones, particularly #3 (on-ramps 

westbound) and #5 (off-ramps eastbound).  The duration results indicated that when only 

one iteration was used, a time lag between the actual congestion and when DynaMIT 

predicted congestion occurred.  DynaMIT with one iteration generally did not predict 

congestion until at least 15 minutes after it had already started.  These are the results of 

poorer identification of a fixed point between demand, supply, and information. 

 

The difference in predictive quality between three iterations and five iterations was 

extremely minimal. 

 

7.2.2  Predictive Quality 

No clear predictive quality patterns as a function of the number of guided travelers were 

found.  This is a surprise, as predictions would be expected to improve if the percent of 

guided travelers that DynaMIT assumes is equal to the percent of guided travelers in the 

MITSIM reality.  This result is probably more a by-product of the particular scenario 

being investigated as opposed to a general finding.  The fact that, for this scenario, the 

actual percent of guided travelers has such a substantial impact on experienced 

congestion levels complicates the relationships and makes them harder to discern. 

 

5.1.3  Congestion Duration 

Figure 25 provides similar information for congestion duration, where the vertical axis 

indicates the number of minutes during the simulation that zonal travel times are 

predicted to be more than 1.5 times greater than the free-flow travel time.  DynaMIT is 

successful in reducing the duration of congestion for all zones except #2.  Congestion is 

virtually eliminated for zones #3 and #7; the Westbound on-ramps and Third Harbor 

Tunnel mainline respectively.  DynaMIT also predicted that this elimination would occur. 
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DynaMIT tended to err on the side of slow queue dissipation.  This is most evident for 

zones #4 and #5, the Eastbound on- and off-ramps.  While the predicted severity of 

congestion in these zones was low, the predicted duration was high. 
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Figure 25:  Congestion Duration 

 

A topic related to duration is the predicted starting and ending time of the queues, shown 

in Table 3 averaged over five replications.  The times listed are when the vehicle travel 

times through those zones exceed 1.5 times the free-flow speed.  The Without DynaMIT-

Actual row gives the congestion times without DynaMIT in operation.  Soon after the 

incident begins, congestion starts to occur within the Sumner/ Callahan Tunnel.  On-ramp 

congestion does not occur until some minutes after tunnel congestion has started, as the 

queue works its way back.  Off-ramp Eastbound congestion does not occur until after the 

incident has cleared; the backlog of vehicles from the tunnel queue begins to advance. 

 

A comparison of the first two rows of numbers gives the effects that DynaMIT has on 

changing the temporal patterns of congestion in reality.  As mentioned previously, 

DynaMIT is more effective in reducing the Westbound congestion than the Eastbound 
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congestion.  The congestion start times generally do not change much when DynaMIT is 

in operation as compared to the congestion end times.  This makes sense given that 

DynaMIT can take the incident into account only after it has already started. 

 

A comparison of the With DynaMIT-Actual and With DynaMIT-Predicted rows gives the 

quality of the start and end time predictions.  The bottom two rows of the table gives the 

error in minutes between the predicted start/end times and the actual start/end times of 

congestion in the with DynaMIT situation.  A positive value indicates that DynaMIT 

predicted congestion before it actually happened, while a negative value indicates that 

DynaMIT predicted congestion after it actually happened. 

 

 Zone #1: 
Tunnel 
Westbd 

Zone #2: 
Tunnel 
Eastbd 

Zone #3: 
On-ramps 
Westbd 

Zone #4: 
On-ramps 
Eastbd 

Zone #5: 
Offramps 
Eastbd 

Zone #6: 
Mainline 
I-93 

Zone #7: 
Mainline 
T Harbor 

Without 
DynaMIT- 
Actual 

7:21-
8:41 

7:16-
7:54 

8:04-
8:34 

7:31-
7:52 

7:47-
8:40 

7:35-
8:38 

8:01-
8:06 

With 
DynaMIT- 
Actual 

7:21-
7:38 

7:16-
7:53 

none 7:35-
7:49 

7:47-
8:03 

7:45-
7:48 

none 

Minutes 
Reduction 

62 -1 30 6 37 58 10 

With 
DynaMIT-
Predicted 

7:43-
8:16 

8:02-
8:28 

none 7:19-
8:41 

7:41-
8:19 

7:29-
8:39 

none 

Start Time 
Error 

-22 -46 0 +16 +6 +16 0 

End Time 
Error 

-38 -35 0 -52 -16 -49 0 

 

Table 3:  Congestion Start and End Times 

 

For the Sumner/Callahan Tunnel itself, DynaMIT had negative start time errors.  In 

contrast, DynaMIT had positive start time errors for the on- and off-ramps.  Indeed, 

DynaMIT predicts that congestion occurs on these ramps before it occurs in the main 
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tunnel.  The end time errors are all negative, which is again indicating that queue 

dissipation in the DynaMIT supply simulator occurs at a slower rate than in reality.  This 

is more notable for the low capacity ramps than the main tunnel. 

 

5.1.4  Non-Incident Locations 

The prediction quality results given in the previous sections are only for the areas at or 

near the occurrence of the incident.  These are the areas where an accurate prediction 

process was expected to be more difficult.  For the rest of the network, which covers 

about 70% of the total network links, DynaMIT travel time prediction had good accuracy 

and never differed from reality by more than 20%.  Vehicle movements in these other 

links were predicted and actually were generally at or near free-flow speeds. 
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Chapter 6 

 

Network Performance 

6.2  Rolling Step Size 

In this case study, three rolling step sizes were used and compared. 

•  Ten minute rolling step size (base). 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-1) 

•  Thirty minute rolling step size. 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-2, R-1, S-1) 

•  Sixty minute rolling step size. 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-3, R-1, S-1) 

6.3  Rolling Length 

The scenarios of rolling length that were evaluated are: 

•  Sixty minute rolling length (base). 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-1) 

•  Fifteen minute rolling length. 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-2, S-1) 

•  Thirty minute rolling length. 
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(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-3, S-1) 

6.4  Number of Iterations 

The scenarios investigated for the number of iterations were as follows. 

•  Three iterations (base). 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-1) 

•  One iteration. 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-2) 

•  Five iterations. 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-3) 

 

5.2  Network Performance 

5.2.1  Traveler Behavior 

The link travel time predictions made by the DynaMIT system are released to travelers in 

the network and affect their route choices accordingly.  This section highlights these 

effects, which is useful for understanding the rest of the analysis. 

 

It is most useful to focus on travelers from O-D pairs with high flexibility with respect to 

feasible route choices.  Due to the network layout, certain origin and destination locations 

lie on either side of a freeway.  Drivers with an origin and/or destination at these locations 

are committed to only one route choice because they must enter or exit the network on 

one particular side of the freeway.  For other O-D pairs, one route choice is extremely 

circuitous and would only make sense in the case of an extremely severe incident or 

complete blockage.  An example of this is from G: Logan Airport to F: Route 1A. 

 

Figure 26 shows origins and destinations for two specific groups of travelers, A and B.  

Each group is made up of the O-D pairs listed here. 
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Group A     Group B 

I-93 North to Route 1A   Mass Pike to Route 1A 

Route 1A to I-93 North   Route 1A to Mass Pike 

Storrow Drive to Route 1A 

Route 1A to Storrow Drive 

 

Most travelers in Group A habitually use the Sumner/Callahan Tunnel.  The origins and 

destinations for travelers in Group A all are located in the upper portion of the network, 

and so the use of the Third Harbor Tunnel would be rather circuitous.  In order for 

travelers in Group B to use the Sumner/Callahan Tunnel, they must exit the freeway 

portion of the Central Artery network and use local streets (added to the network for 

completeness) for part of the trip.  Thus, the Third Harbor Tunnel is the logical habitual 

route choice for Group B travelers.  Figure 27 shows the route choices made by travelers 

in the two groups during the simulation. 

 

I-93 North Route 1A

Mass.
Pike

Storrow
Drive

Third
Harbor
Tunnel

Sumner/
Callahan
Tunnels

 
Figure 26:  O-D Locations for Groups A and B 
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Figure 27:  Route Choices With No DynaMIT 

 

Figure 28 shows the travel time results from the simulation for the two groups.  The 

vertical axis indicates the time savings experienced by drivers who chose the 

Sumner/Callahan tunnel as opposed to those who chose the other tunnel.  A negative 

travel time savings indicates a travel time cost.  Beyond 7:15, because of the incident, 

travelers who used the Sumner/Callahan Tunnel began to suffer. 

 

Note that despite the presence of the incident, travelers in Group A who selected the 

Sumner/Callahan Tunnel still generally saved travel time as compared to those who used 

the other route.  This is a critical point that will be highlighted later in this chapter. 
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Figure 28:  Travel Times With No DynaMIT 

 

Traveler route choices made with DynaMIT in operation are shown in Figure 29.  Many 

drivers avoid using the Sumner/Callahan Tunnel because of the information. 
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Figure 29:  Route Choices With DynaMIT 
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Figure 30:  Route Choices, Guided and Unguided 

 

Recall that in this scenario, half of the travelers (guided-G) are able to receive the 

information from DynaMIT while the other half (unguided-U) are not.  Figure 30 shows 

the route choices for the two traveler groups, split into guided and unguided travelers.  As 

expected, the route choices for unguided travelers remain at habitual levels while the 

route choices for guided travelers are greatly affected beyond 7:30. 

 

The travel times of travelers in the two groups with the presence of DynaMIT under 

incident conditions are shown in Figure 31.  The effects of the incident on travel times in 

the Sumner/Callahan Tunnel are greatly reduced in this case. 
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Figure 31:  Travel Times With DynaMIT 

 

5.2.2  User Optimality 

Section 5.1 looked at the issue of accuracy with respect to the information generated by 

DynaMIT.  The purpose of this section is to examine whether the release of this 

information led to an optimal outcome with respect to user travel times.  Recall that a 

user-optimal outcome is when no traveler could have selected a better route on the basis 

of travel time than the one recommended by the DynaMIT system. 
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Figure 32:  Mean Travel Times for all Travelers 

 

Figure 32 shows the mean travel time in seconds for all travelers in the network under 

incident conditions, averaged over five replications.  One bar series shows travel times 

when DynaMIT is not in operation (all travelers are unguided).  The other bar series 

shows travel times for guided and unguided travelers separately when DynaMIT is in 

operation.  It is clear from the figure that the information provided by DynaMIT helps all 

network travelers in terms of saving travel time.  It is also evident that unguided and 

guided travelers do not differ much with respect to their mean travel times. 

 

These results initially appear to be surprising.  One would expect guided drivers to have 

lower average travel times than unguided drivers as a result of complying to information 

provided by DynaMIT.  This calls into question whether the information provided by 

DynaMIT is informing drivers to select a user-optimal outcome.  While inconsistency 

between DynaMIT’s predicted link travel times and reality may contribute to this, there is 

another issue taking place.  To determine what this is requires examining again the travel 



 92

times for specific O-D pairs.  This is shown in Figure 33 for the same two groups A and 

B used in the previous section. 
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Figure 33:  Mean Travel Times for Specific O-D Pairs 

 

For travelers in Group B, guided travelers generally experience lower travel times than 

unguided drivers.  However, for travelers in Group A, the reverse is true.  Recall from 

Section 5.2 that guided travelers from both groups A and B were less likely to use the 

Sumner/ Callahan Tunnel as a result of DynaMIT information.  Recall also that despite 

the presence of the incident, travel times via the Sumner/Callahan Tunnel remained lower 

than via the Third Harbor Tunnel for travelers in Group A. 

 

5.2.3  Explanation of Findings 

In the MITSIM reality, informed and compliant drivers make their route choice decisions 

using a logit model based on the updated travel times from the information system.  

Therefore, the provision of descriptive information regarding an incident affects the route 

choices of guided drivers in a similar fashion regardless of what O-D pair they belong to. 
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More specifically, if the updated link travel time tables indicate that travel times are 

longer in the Sumner/Callahan Tunnel, then more drivers from all O-D pairs will avoid 

using the tunnel.  However, this occurs even if alternative routes still have longer travel 

times than the habitual route.  This means that for certain O-D pairs, informed drivers end 

up making worse route decisions than uninformed drivers who stay on habitual paths. 

 

For Group B, a greater percent of guided drivers are avoiding the Sumner/Callahan 

Tunnel than unguided drivers, and this avoidance makes sense from a travel time 

standpoint.  For Group A, guided drivers are also avoiding the Sumner/Callahan Tunnel 

more than unguided drivers.  However, guided drivers in Group A have longer travel 

times than unguided drivers since the Sumner/Callahan Tunnel remains faster than the 

other route despite the incident occurrence. 

 

6.2.2  User Optimality 
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Figure 34:  User Optimality, Rolling Step Size 
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Figure 34 shows the mean travel times experienced in the network for guided and 

unguided drivers during the course of the simulation for the three rolling step sizes.  

Results are averaged over five replications for each scenario.  The overall benefits of the 

information are substantially greater when the 10 minute rolling step size is used.  This 

becomes evident for travelers that enter the network beyond 7:30, when the effects of 

outdated network condition information on traveler behavior becomes more significant. 

 

6.3.2  User Optimality 

Because of differences in DynaMIT’s predictions and information strategy, fewer 

travelers divert away from the incident when shorter rolling lengths are used.  Figure 35 

shows the mean travel times experienced in the network for guided and unguided drivers 

for the three rolling lengths, averaged over five replications.  Benefits of information 

provision in these scenarios begin to differ beyond 7:30, and the gap closes somewhat 

only after 8:15. 
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Figure 35:  User Optimality, Rolling Length 

 

6.4.2  User Optimality 

Because of differences in DynaMIT’s predictions and information strategy, fewer 

travelers divert away from the incident when a lower number of iterations is used.  Figure 

36 shows the mean travel times experienced in the network for guided and unguided 

drivers as a function of the number of iterations used.  Performance between the three and 

five iterations scenarios remain about the same throughout.  The benefits of information 

provision for the one iteration scenario become visibly worse beyond 7:30. 
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Figure 36:  User Optimality, Number of Iterations 

 

7.2.3  User Optimality 

Fewer travelers divert away from the incident when the percent of guided travelers is 

smaller, as expected.  The experienced travel times for the two groups A and B are shown 
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in Figure 37 and Figure 38 for the 25% and 75% scenarios.  In the 75% guided case, 

experienced travel times in the two tunnels stabilize much more rapidly to historical 

levels than in the 25% guided case. 
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Figure 37:  Travel Times, 25% Guided 
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Figure 38:  Travel Times, 75% Guided 

 

Figure 39 and Figure 40 show how unguided, or uninformed, travelers compared to 

guided, or informed, travelers for the two O-D pair groups A and B during the simulation.  

Results are averaged over five replications for each.  When 25% of travelers are guided, 

travelers in group A who are unguided experience lower travel times than guided 

travelers beyond 7:30.  For group B, the opposite holds.  This pattern is similar to what 

was determined in the Chapter 4 base scenario. 
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Figure 39:  Unguided vs. Guided, 25% Guided 

 

However, when 75% of travelers are guided, the pattern comes out somewhat differently.  

The difference in experienced travel times between unguided and guided travelers in 

Group A is quite large for those who enter the network between 7:45 and 8:15.  For 

travelers in Group B, the time savings experienced by guided versus unguided travelers is 

virtually eliminated during the simulation period. 
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Figure 40:  Unguided vs. Guided, 75% Guided 

 

Figure 41 combines these findings for all travelers in the network during the simulation 

period.  Beyond 7:15, all travelers in general experience shorter travel times when 75% of 

travelers are informed  and compliant as compared to when 25% of travelers are informed 

/ compliant.  However, guided travelers in the 75% scenario have no time savings as 

compared to unguided travelers.  In the 25% scenario, although overall travel time 

savings compared to the no DynaMIT case are small, guided travelers really benefit from 

the information in terms of travel time as compared to unguided travelers. 
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Figure 41:  User Optimality, Information Levels 

 

This discussion is important when thinking about user optimality vs. system optimality.  

When the percent of travelers provided with real-time information is fairly small and a 

severe incident occurs, informed travelers can benefit substantially in terms of travel time 

compared to uninformed travelers.  Benefits to the system as a whole may be quite 

limited however since so few travelers are involved with respect to this information. 

 

When the percent of travelers who are provided with real-time information is high, 

benefits to the system as a whole when a severe incident occurs can be quite large.  This 

is assuming that information is consistent and that alternative routes exist with sufficient 

capacity to handle diverted traffic.  However, the benefits of informed travelers relative to 

uninformed travelers will be reduced.  If over-reaction occurs, informed travelers can face 

longer travel times than uninformed travelers even if system-wide benefits are impressive. 
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5.2.4  System Travel Times 

The overall mean travel times and standard deviations across all fifty-six O-D pairs are 

provided in Table 4 and Table 5 as a measure of the system-level effectiveness of 

DynaMIT.  The results reflect average values of five replications for the no DynaMIT and 

with DynaMIT cases. 

 

The “standard deviation across vehicles” column applies to the travel times experienced 

by drivers from all O-D pairs within the indicated time period.  The value is rather high 

since vehicles from different O-D pairs need to travel varying distances.  The “standard 

deviation across replications” column applies to the mean travel time experienced by 

drivers for the indicated time period across the five replications that were run.  The value 

is rather low since each replication simulates the same scenario.  The standard deviation 

values in this column represents stochasticity of the MITSIM simulator. 

 

 Mean (in seconds) Std Dev Across 
Vehicles (in seconds) 

Std Dev Across 
Replics. (in seconds) 

All Vehicles 446.9 315.3 10.91 
7:00-7:15 291.7 152.5 2.97 
7:15-7:30 326.7 189.0 1.25 
7:30-7:45 417.0 267.6 8.47 
7:45-8:00 520.9 336.3 13.27 
8:00-8:15 565.3 381.5 22.69 
8:15-8:30 548.9 371.4 27.85 

 

Table 4:  System Performance - No DynaMIT 

 

 Mean (in seconds) Std Dev Across 
Vehicles (in seconds) 

Std Dev Across 
Replics (in seconds) 

All Vehicles 315.4 176.4 1.90 
7:00-7:15 293.3 153.3 3.17 
7:15-7:30 318.5 178.6 4.51 
7:30-7:45 336.5 200.1 4.03 
7:45-8:00 326.5 183.0 3.75 
8:00-8:15 311.3 170.2 6.50 
8:15-8:30 297.9 156.2 1.92 
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Table 5:  System Performance - With DynaMIT 

 

With the use of DynaMIT, mean travel times in the network for all vehicles is lower by 

29%.  For the 7:00-7:15 time period, the travel time impact of DynaMIT is negligible as 

the incident has not yet started.  For the 7:15-7:30 time period, the travel time impact is 

small.  For the other four time periods, DynaMIT has a big effect on travel times due to 

the prevention of huge queue buildups in the network. 

 

Travel time standard deviations across vehicles are significantly decreased from the no 

DynaMIT case.  This is because the effects of the incident are mitigated, and prevailing 

traffic conditions are more free-flow and equitable for a larger number of vehicles.  

Travel time standard deviations across replications also are reduced when DynaMIT is in 

operation.  The unstable traffic conditions and queues that occur within the MITSIM 

simulator without the presence of real-time information are avoided when the DynaMIT 

system is in operation. 
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Chapter 7 

 

System Applicability 

7.2  Percent of Informed Travelers 

7.2.1  Background 

Knowing how many travelers receive and comply with DynaMIT information is an 

important issue with respect to achieving consistency.  It is hypothesized that a user-

optimal outcome with respect to the distribution of real-time information is easier to 

accomplish when the percentage of informed travelers is smaller.  This is because the 

response of travelers to the information, which is uncertain, has a greater effect on overall 

network conditions when the percent of informed travelers is higher. 

 

The approach used here is to keep the assumed percentage of informed and compliant 

drivers within DynaMIT fixed at 50%, but to have conditions in the real world vary.  The 

following percentages of informed and compliant travelers, also referred to as guided 

travelers, in reality will be investigated. 

 

•  50% of travelers guided (base). 

(J-1, K-1, L-1, M-1, N-1, O-1, P-1, Q-1, R-1, S-1) 
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•  25% of travelers guided. 

(J-1, K-1, L-1, M-1, N-1, O-2, P-1, Q-1, R-1, S-1) 

•  75% of travelers guided. 

(J-1, K-1, L-1, M-1, N-1, O-3, P-1, Q-1, R-1, S-1) 

 

5.3  System Applicability 

5.3.1  Presence of Stochasticity 

The stochasticity of the DynaMIT system was tested by running multiple replications of 

the same base scenario.  The first item to examine is prediction quality.  This is shown in 

Figure 42 for five separate replications. 

 

Figure 42:  Predictions of Severity 

 

The vertical axis shows the number of indices of the predicted severity of congestion in 

each zone for each replication from the mean of the five replications.  One index is equal 

to one multiple of the free-flow travel time.  As travel time is a time-dependent function, 

the measure is taken when congestion is predicted to be most severe.  The horizontal axis 

refers to the same seven zones of the network that were identified in Section 5.1.2. 

 

Figure 43:  Predictions of Duration 

 

Figure 43 provides a similar figure that examines the predicted duration of congested 

conditions (when travel times exceed free-flow conditions by a factor of 1.5 or more).  

The vertical axis shows the difference in minutes from the predicted zonal congestion 

duration of each replication to the mean of the five replications. 

 

From these figures, it is clear that stochasticity of DynaMIT’s predictions of congestion in 

the network is indeed present.  For zones #3, #4, and #7 (the mainlines and on-ramps), 
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this stochasticity is kept within a fairly small band of plus or minus 10%.  There is zero 

stochasticity associated with the congestion duration of zones #3 and #7, since the 

duration is predicted to be zero in all cases. 

 

For zones #1 and #2 (the main Sumner/Callahan Tunnel), the stochasticity is somewhat 

larger.  Why this occurs is unclear, but the somewhat larger zone size may have 

something to do with the increased stochasticity.  For the eastbound off-ramps (zone #5), 

the stochasticity is greatest. 

 

One likely hypothesis for the presence of stochasticity in the predicted link travel times by 

DynaMIT is that the actual link travel times in the real world are also stochastic.  In other 

words, the stochasticity of the prediction simply reflects differing conditions in the real 

world.  Figure 44 and Figure 45 show the actual severity and duration of congestion that 

were experienced by drivers in five separate replications. 

 

Figure 44:  Actual Severity, With DynaMIT 

 

The severity results in reality exhibited less stochasticity than the predictions in the main 

Sumner/Callahan Tunnel but more stochasticity than the predictions in the ramps and 

adjoining mainlines.  Zones #5 and #6 in particular were extremely stochastic in reality. 

 

Figure 45:  Actual Duration, With DynaMIT 

 

5.3.2  Stochasticity Relationships 

The next issue is to observe whether these levels of stochasticity between DynaMIT and 

reality were correlated.  If DynaMIT did provide perfectly consistent information, then 

the level of correlation should be high. 

 

This section shows the resulting tests conducted on this basis, first for severity and then 

for duration.  With seven zones and five replications, there are a total of 35 data points for 
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each of the two measures.  Linear regressions were run to determine if there is either a 

positive or negative relationship between the congestion conditions in the real world 

(used as the independent variable) and the predicted congestion by DynaMIT (used as the 

dependent variable).  Confidence interval values and the t-statistics of the regression 

results are provided for severity in Table 6. 

 

Table 6:  Severity Regression Results 

 

There is found to be a significant positive relationship between high congestion in the real 

world and high predicted congestion.  The confidence interval is quite large.  The 

adjusted R-square value for this regression was 0.175.  The duration results given in 

Table 7 indicate again that a significant positive relationship exists for duration as well.  

The adjusted R-square value for this regression is 0.106. 

 

Table 7:  Duration Regression Results 

 
6.2.3  Stochasticity Analysis 

The stochasticity of the predictions in general was found to be greater as the rolling step 

size increased.  The likely cause of this is the higher levels of stochasticity in reality.  For 

longer rolling step sizes of 30 minutes and 60 minutes, the frequency of information 

update is low enough such that long queues are able to develop in the network near the 

incident location.  This queue formation and dissipation in the real world was found to 

have greater stochasticity as the queue severity increased. 
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Figure 46:  Severity Prediction Stochasticity, Step Size 

 

Figure 46 shows, for each scenario, the standard deviation across five replications for 

predicted severity in the seven zones.  For zones #1 and #5 (Sumner/Callahan Tunnel 

Westbound and the Eastbound off-ramps), the increase in prediction stochasticity going 

from a 30 minute to a 60 minute rolling step size was most evident. 
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Figure 47:  Duration Prediction Stochasticity, Step Size 

 
Figure 47 shows, for each scenario, the standard deviation across five replications for 

predicted duration in the seven zones.  For most of the zones, a fairly clear increase in 

stochasticity was observed in going from a 10 minute to a 30 minute rolling step size.  

One exception was zone #7, where no congestion was predicted in any scenario.  Another 

exception was zone #3, where only the 60 minute rolling step size predicted any 

congestion in any replication and hence had any stochasticity. 

 

6.3.3  Stochasticity Analysis 

The stochasticity of the predictive quality with respect to rolling length was found to 

decrease as the rolling length increased.  This is hypothesized to be the case since the 

total number of completed trips during the rolling length is higher as the rolling length 

increases.  A higher number of completed trips is not only a more accurate reflection of 

what conditions in the network are likely to be, but also is more robust with respect to the 

output of predicted vehicle movements.  In addition, as traffic conditions in the real world 
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become more stochastic in the low rolling length scenarios, this affects the stochasticity 

of prediction.  A feedback process of stochasticity thus ensues. 
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Figure 48:  Severity Prediction Stochasticity, Rolling Length 

 

Figure 48 shows, for each scenario, the standard deviation across five replications for 

predicted severity in the seven zones.  The figure indicates a fairly clear trend of 

decreasing stochasticity with respect to predicted severity for zone #1, the Sumner/ 

Callahan Tunnel Westbound.  For the other zones, the relationship is not as clear but is 

still found to be present. 
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Figure 49:  Duration Prediction Stochasticity, Rolling Length 

 

Figure 49 shows, for each scenario, the standard deviation across five replications for 

predicted duration in the seven zones.  Stochasticity in predicted duration decreases as the 

rolling length increases for all five zones in which congestion is predicted. 

 

6.4.3  Stochasticity Analysis 

Stochasticity of the prediction quality is expected to be reduced as the number of 

iterations run increases.  The iterative process used by DynaMIT in its information 

generation function is intended to hone in on some fixed point.  The exact fixed point 

may not be the same in each replication, particularly due to stochastic real-world inputs.  

However, conducting fewer iterations would not be thought of as favorable in this regard. 

 

Figure 50 shows, for each scenario, the standard deviation across five replications for 

predicted severity in the seven zones.  For zones #1 and #5, a clear relationship is found 

between a higher number of iterations and lower prediction stochasticity.  For the other 
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zones, particularly #6, the relationship is not as clear.  The stochasticity results for 

duration are shown in Figure 51.  Zones #1, #5, and #6 show the hypothesized 

relationship, while zones #2 and #4 do not. 
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Figure 50:  Severity Prediction Stochasticity, Iterations 



 112

0

5

10

15

20

25

Zone #1 Zone #2 Zone #3 Zone #4 Zone #5 Zone #6 Zone #7

Network Region

St
d 

D
ev

 in
 M

in
ut

es

Dur,  1 iteration
Dur,  3 iterations
Dur,  5 iterations

 
Figure 51:  Duration Prediction Stochasticity, Iterations 

 

7.2.4  Stochasticity Analysis 

Traffic conditions occurring in the real world were more stochastic in the real world when 

25% of travelers were guided because of higher levels of queue formation in the 

Sumner/Callahan Tunnel.  In the following three tables, A refers to Group A drivers and 

B refers to group B drivers. 

 

Percent of Drivers Chose Sumner/Callahan Tunnel 

 A, 25% g A, 50% g A, 75% g B, 25% g B, 50% g B, 75% g 

Mean 88.7 % 81.9 % 76.0 % 34.4 % 31.3 % 26.8 % 

Std Dev 0.8 % 0.4 % 1.2 % 1.2 % 1.5 % 2.1 % 

 

Table 8:  Route Choices - Function of % Guided 
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Travel Times for Sumner/Callahan Tunnel Route 

 A, 25% g A, 50% g A, 75% g B, 25% g B, 50% g B, 75% g 

Mean 566.3 433.4 415.7 575.0 485.6 462.2 

Std Dev 26.8 5.4 5.9 33.6 15.3 7.6 

 

Table 9:  S/C Travel Times - Function of % Guided 

 

Travel Times for Third Harbor Tunnel Route 

 A, 25% g A, 50% g A, 75% g B, 25% g B, 50% g B, 75% g 

Mean 662.4 602.6 607.8 343.2 343.6 348.6 

Std Dev 9.1 4.4 6.5 2.7 2.8 3.1 

 

Table 10:  TH Travel Times - Function of % Guided 
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Chapter 8 

 

Special Topics 

8.1  Purpose 

The purpose of this chapter is to examine two special topics, supply parameter sensitivity 

and prescriptive information, that are of interest from a research standpoint. 

 

As highlighted from results in Chapter 5, the supply simulator could benefit from the 

adjustment of certain parameters.  While an extensive calibration of the supply 

component is outside the scope of this thesis, a more limited sensitivity analysis 

demonstrates the impact that various parameters have on system results.  With additional 

effort, it appears possible to significantly reduce the prediction quality errors that were 

observed from the scenario testing. 

 

With prescriptive information, a single route recommendation from the DynaMIT system 

is provided to travelers rather than a full description of route travel times.  The advantage 

of this from a user standpoint is the ease of comprehension.  This could be particularly 

important for VMS, since only limited time may be available for travelers to interpret the 

information.  The disadvantage from a user standpoint is a less complete picture of what 

conditions are actually taking place in the network. 
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The prescriptive information analysis presented here is not particularly rigorous.  The 

results are not intended to be indicative of DynaMIT's capabilities.  These tests instead 

were conducted primarily to address the user benefit potential related to different types of 

information provision, to be expanded upon by future research.  With some further model 

development in the simulation laboratory, a more complete analysis of prescriptive 

information could be readily conducted. 

8.2  Supply Sensitivity 

8.3  Prescriptive Information 

8.3.1  Naive vs. Specific 

The following scenarios of prescriptive information are evaluated in this section.  Each 

scenario consists of the following three dimensions: 

 

•  Percent of guided, or both informed and compliant, travelers (Guid), 

•  Duration of information provision (Dur), and 

•  Recommendations provided to travelers (Rec). 

 

Figure 52 shows the Central Artery network with origins and destinations.  There is a 

recognition that the incident, while severe, does not delay travelers excessively enough 

such that it makes sense for travelers moving in the upper portions of the network, shown 

above the curved line, to use the Third Harbor (lower) tunnel.  Therefore, with specific 

information, travelers from O-D pairs A-F, B-F, F-A, and F-B are instructed to use the 

Sumner/Callahan (upper) tunnel despite the incident occurrence.  Other travelers with two 

feasible route choices are instructed to use the Third Harbor tunnel.  There is still a net 

diversion of travelers away from the incident location. 

 

Figure 52: Specific Prescriptive Information 
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Naive information should reduce congestion in the incident location more significantly, 

but at the possible cost of over-reaction for travelers from certain O-D pairs. 

 

8.3.2  User Benefit 

With prescriptive information, user optimal criteria are more adequately met as compared 

to descriptive information.  Travelers who are informed and compliant (guided) are more 

consistently selecting the most optimal path available in the network with respect to time-

dependent travel times.  Therefore, guided travelers are found to generally experience 

shorter travel times as compared to unguided travelers from each O-D pair in the network.  

However, the magnitude of this result varies considerably depending on the scenario. 

 

For comparison purposes, the analysis concentrates again on the two groups of travelers 

defined in Chapter 6 that have considerable flexibility with respect to available route 

choices in the network.  These groups are shown again for convenience, with locations 

for the origins and destinations referenced in Figure 11. 

 

Group A     Group B 

I-93 North to Route 1A   Mass Pike to Route 1A 

Route 1A to I-93 North   Route 1A to Mass Pike 

Storrow Drive to Route 1A 

Route 1A to Storrow Drive 

 

With naive recommendations, travelers from both groups are instructed to use the Third 

Harbor tunnel during the time that the information is distributed.  For specific 

recommendations, travelers from Group A are instructed to use the Sumner/Callahan 

Tunnel (despite the incident occurrence) while travelers from Group B are instructed to 

use the Third Harbor Tunnel.  Therefore, examining travel time results from these two 

groups will highlight differences between the two types of information. 
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Figure 53 shows the mean travel times experienced by travelers from Groups A and B, 

split into unguided and guided, for scenarios BPres and Naive.  In the horizontal axis 

labels, the letter U stands for unguided, G stands for guided, S stands for specified, and N 

stands for naive.  The time periods listed refer to departure time intervals. 

Figure 53:  User Optimality for BPres, Naive (40% Guided) 

 

For travelers in Group A, guided travelers with naive information experience significantly 

longer mean travel times than unguided travelers.  They are being informed to take the 

circuitous Third Harbor Tunnel even though the Sumner/Callahan Tunnel is faster despite 

the incident occurrence.  When specific information is provided, travelers in Group A 

experience roughly the same mean travel times regardless of whether they are unguided 

or guided.  The vast majority of unguided Group A travelers habitually select the 

Sumner/Callahan Tunnel, while Group A travelers who comply with the specific 

information are choosing the same tunnel as well. 
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Note that with specific guidance, unguided travelers are hurt somewhat as compared with 

naive guidance since fewer travelers have been diverted away from the incident location.  

Thus, system-wide benefits of specific versus naive information is questionable for Group 

A travelers.  However, the user benefits of specific information for travelers who are 

informed and compliant are clearly superior to the user benefits of naive information. 

 

For Group B travelers, the user benefits for guided travelers are positive in both the 

specific and naive information scenarios.  This makes sense, since the recommendation 

for both scenarios for such travelers is to avoid the incident location.  Such a diversion, 

however, is slightly more effective in the specific case as opposed to the naive.  This is 

because in the naive case, a greater number of total travelers were diverted to the Third 

Harbor Tunnel, and travel time is a function of use. 

 

Figure 54 plots the same travel time results for the scenarios in which just 10% of 

travelers were guided as opposed to 40%.  The mean travel times that travelers 

experienced overall were greater, which makes sense since fewer travelers were diverted 

away from the incident location.  In addition, the difference between the specific and the 

naive information cases was more evident. 
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Figure 54:  User Optimality for 10%, 10%N (10% Guided) 

 

In the naive case, guided Group A travelers suffered from larger mean travel times than 

unguided travelers.  This is similar to the 40% guided scenarios, but the magnitude of this 

was less particularly as the simulation proceeded.  Since a smaller total number of 

travelers was diverting to the Third Harbor tunnel in the 10% guided case, the extra travel 

time from choosing the circuitous route becomes less significant relative to the delays 

encountered at the incident location. 

 

For Group B travelers in the 10% case, informed travelers benefited more as compared to 

the 40% guided case.  This is again a result of fewer overall vehicles, and thus lower 

travel times, for travelers using the Third Harbor Tunnel.  This supports the general 

finding proposed by other researchers that the benefit of traveler information for 

individual users often diminishes as a greater number of travelers are informed.  Travel 

time results from the 20% and 20%N scenarios were found to lie in-between the 10% 

guided and 40% guided cases. 
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Figure 55:  User Optimality for 70%, 70%N (70% Guided) 

 

Figure 55 shows user optimality results associated with the scenarios where 70% of 

travelers were guided.  In the specific case, over-reaction does not materialize; overall 

travel times are reduced as compared to the 40% guided scenarios.  Indeed, mean travel 

times between the four departure time intervals are quite similar for both Group A and 

Group B travelers, which indicates that the effects of the incident have been stabilized.  

This, however, diminishes the benefit of the information for guided travelers as compared 

to unguided travelers. 

 

In the naive case, over-reaction is severe since a high number of travelers have been 

diverted to the Third Harbor tunnel.  Guided group A travelers in the naive case 

experience increased travel times as compared to previous scenarios.  For Group B, 

guided travelers benefit in terms of travel time earlier in the simulation.  But as the 
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simulation proceeds and effects of the incident dissipate, guided travelers begin to 

experience longer mean travel times than unguided travelers. 

 

For the scenarios 95% and 95%N, the findings were similar to those given for 70% and 

70%N except for more extreme.  For specific information, travel times are up slightly as 

compared to the 70% case as some over-reaction occurs.  For naive information, the vast 

majority of travelers are selecting the Third Harbor tunnel in the 95% case, and 

congestion has simply shifted from one tunnel to the other.  Mean travel times for guided 

Group A and all Group B travelers are up significantly from the 70%N case. 

 

For the Delay and Del30 scenarios, overall mean travel times have gone up since the 

incident is allowed to have a greater impact.  The user benefit, however, of providing 

information to guided travelers has increased during the time that information is 

distributed.  Diverting away from the incident becomes more important as the effects of 

the incident worsen. 

 

The key finding from the other scenarios that were run is as follows.  For scenarios where 

the effects of the incident are high because of a delay in information release, naive 

information becomes an increasingly powerful method of reducing mean overall travel 

times as compared to specific information.  Shifting certain guided travelers away from 

the incident to a more circuitous route may be poor for them from a user-optimal 

perspective, but user benefits enjoyed by unguided travelers (and overall system benefits) 

increase.  In other words, the tension between satisfying user-optimal and system-optimal 

criteria increases as congestion goes from mild to severe. 

 

Of course, if congestion is extremely severe, both individual users and the system could 

benefit from having travelers divert to circuitous routes.  This is true if the circuitous 

routes in question have shorter travel times than habitual routes because of the incident 

occurrence.  Therefore, at some point of high congestion severity, tension between 

meeting user-optimal and system-optimal criteria may start to lessen. 
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Chapter 9 

 

Summary and Conclusions 

 
This thesis conducted a number of simulation-based case studies related to dynamic 

traffic assignment.  The two main areas that were examined were network demand 

estimation using the Kalman Filter algorithm and the impact of en-route traveler 

information on travel times at both the user and the system level.  Results from the case 

studies serve the following main purposes: 

 

•  They assess the performance of the existing DynaMIT system, a dynamic traffic 

assignment system developed at MIT, and 

•  They yield interesting research findings in the field of ATIS that are useful on their 

own and provide many ideas for additional research as well. 

 

Results provided in this thesis are a subset of the evaluation work that has been conducted 

for the DynaMIT system.  A detailed description of methodology and results for other 

components of DynaMIT (effect of pre-trip behavior update, supply simulator model 

validation, simulation computational efficiency, and the testing of different information 

generation strategies) are contained in other documents.  A smaller case study related to 
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the impact of traveler information on network performance, described in the DynaMIT 

Task G report, yielded results similar to those in Chapters 5, 6, and 7. 

 

For each of the two areas covered in this thesis (demand estimation and impact of traveler 

information), this concluding chapter will be presented in the following manner. 

 

•  DynaMIT system performance is summarized, 

•  Research findings are presented, 

•  Possible system enhancements to DynaMIT are proposed, and 

•  Future case studies and directions for ongoing research are provided. 

9.1  Demand Estimation 

9.1.1  System Performance 

Chapter 4 validated the performance of the Kalman Filter algorithm off-line through 

inputs generated from a simulated demand scenario on the Central Artery network.  The 

Kalman Filter algorithm is shown to be a highly effective method of demand estimation 

when no errors are present in the algorithm inputs.  As the lack of inputs errors is not 

expected to be common in reality, the Kalman Filter has been designed specifically for 

robustness with respect to input quality.  This made the testing of the algorithm given a 

variety of input errors an important step of the evaluation process. 

 

Estimation results with input errors were intuitive.  For the no incident scenario, errors in 

the O-D estimation process were kept within a range roughly proportional to the amount 

of input error.  Drastic input errors, such as a historical matrix of zero in combination 

with other problems, yielded O-D flow estimates with errors of up to about 40%.  Such a 

scenario was designed to be extreme and test the limits of the algorithm performance.  

Given the magnitude of the error, the algorithm performance is quite reasonable. 
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9.1.2  Research Findings 

The specification of the error-covariance matrices was found to have a significant impact 

on estimation results. If values in the associated error-covariance matrix of a particular 

input source are small, this has the following implications: 

 

•  Errors in that input source have a more severe effect on estimation quality, 

•  Errors in other input sources have less of an effect on the estimation.  Small error-

covariance matrix values in conjunction with high quality for the corresponding 

input serves as a stabilizing force for estimation accuracy. 

 

Large error-covariance matrix values for a particular input source has these implications: 

 

•  Errors in that input source have less of an effect on estimation quality, 

•  Errors in other input sources have a greater effect on the estimation. 

 

An accurate off-line calibration of the error-covariance matrices before the Kalman Filter 

algorithm is used in real-time applications therefore is an important task.  Similarly, an 

accurate calibration of transition matrices is valuable since the transition equation input 

can also serve as a stabilizing force for estimation quality. 

 

Network incidents have the effect of reducing the amount of measurement equation 

inputs available in real-time.  If input quality for all sources is high, this appears to not be 

a severe problem in terms of estimation accuracy.  Input errors in combination with 

incident conditions, however, yield higher estimation errors.  

 

This highlights the importance of adequate sensor allocation in the network.  In general, 

sensors placed near network origins are probably more useful for demand estimation than 

sensors placed near network destinations.  Counts from sensors near origins are more 

current and are less likely to be impacted by incident occurrences in the network.  

Developing strategies for sensor allocation is an interesting area for future research. 
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9.1.3  System Enhancements 

The case study indicates that the Kalman Filter algorithm is an effective and robust 

method of demand estimation.  The next step for enhancement involves validating 

algorithm performance in operation with the complete DynaMIT system. 

 

9.1.4  Future Research 

Areas for future research related to demand estimation include the following: 

 

•  Additional case studies with more complex demand patterns, 

•  A more complete investigation of demand prediction, 

•  Development and testing of methods for error-covariance matrix calibration, 

•  Strategies to optimally allocate network sensors for real-time demand estimation. 

9.2  Impact of Traveler Information 

9.2.1  System Performance 

Operation of the DynaMIT system in a simulation environment was shown to be highly 

effective in terms of improving mean vehicle travel times in a situation of non-recurrent 

congestion.  DynaMIT has been shown to predict travel conditions to a reasonable degree 

of accuracy, and provide travelers with a beneficial information strategy based on its 

predictions.  Overall, the results are quite strong and encouraging.  The system functions 

well in a simulation environment, and closely meets its primary objectives of 

unbiasedness and consistency.  Some results indicate that system refinement in certain 

areas would be desirable.  These findings are summarized here. 
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•  Supply simulator: For certain links, DynaMIT predicted less congestion that what 

was actually observed.  A more careful investigation is required to determine what 

link conditions lead to this outcome. The result indicates that speed-density 

function parameters in DynaMIT may benefit from adjustment. 

 

For large complex weaving sections, DynaMIT encounters more difficulty with its 

prediction quality.  Some model adjustments could assist with this problem, but 

some discrepancy is probably unavoidable stemming from inherent differences 

between mesoscopic and microscopic representations with respect to the treatment 

of lane changing, merging, yielding, nosing, etc. 

 

In the MITSIM reality, congestion begins at the incident location and then starts 

working its way back.  This seems to be logical.  However, within DynaMIT, in 

certain cases congestion started upstream of the incident instead.  This probably 

has to do with segment-level acceptance capacity parameters. 

 

DynaMIT tends to err on the side of slow queue dissipation.  This outcome can 

likely be overcome easily by adjustments to the queuing model. 

 

Some stochasticity was associated with DynaMIT's prediction across replications.  

The magnitude was relatively small, and was partially influenced by stochasticity 

that took place in the real world independent of DynaMIT.  Stochasticity of actual 

network performance was reduced when DynaMIT was in operation versus when 

DynaMIT was not present. 

 

•  Demand simulator: The route choices and experienced travel times of drivers in 

reality raised a key question of whether information provided by DynaMIT is 

actually leading towards a user-optimal outcome.  However, such results do not 

appear to relate specifically to DynaMIT's prediction quality and information 
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strategy.  Rather, results are more a function of the treatment of traveler behavior 

in the MITSIM reality. 

 

Chapter 6 contained a discussion of this issue.  To recap, the issue is whether the 

provision of en-route descriptive information would actually lead informed 

travelers to select a non-habitual route that the information system states is 

inferior to their habitual route.  In the case study, this occurred regularly because 

the stated travel times given to informed travelers by the information system were 

closer together than the habitual travel time values were. 

 

If this outcome is deemed to be realistic, this is an indication that descriptive 

information is potentially dangerous for travelers.  The provision can lead to 

informed decisions by users that are worse than their habitual decisions would 

have been, even if the information is consistent with what occurs in reality. 

 

If this outcome is not realistic, than the traveler processing of descriptive 

information in MITSIM should be adjusted.  This can be done in two ways:  

 

1) Include a travel time threshold that gives a preference for the habitual route.  

Most travelers will not be induced to switch routes unless informed travel 

times on one or more non-habitual route(s) is lower than the habitual route 

informed travel time by some threshold. 

 

2) Use a nested logit model for informed travelers who respond to descriptive 

information.  The decision to switch routes should be made first, followed by 

the selection of which non-habitual route to switch to. 

 

With either of these options, the goal is to have a behavior model where most 

drivers do not switch paths until doing so would save them travel time, as 

indicated by the information system. 
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•  Information Generation: When provided with information regarding an incident 

occurrence, DynaMIT generated an en-route information strategy that successfully 

diverted a number of travelers away from the incident location.  DynaMIT was 

able to avoid over-reaction, and as the incident area began to clear travelers were 

increasingly informed to return back to their habitual route choices. 

 

The time smoothing algorithm currently used by the DynaMIT system performed 

well for this set of case studies, and is deemed to be adequate for use in future 

evaluations.  Work in the development and implementation of additional 

algorithm strategies is ongoing, to be compared with the current algorithm. 

 

9.2.2  Research Findings 

Results presented in Chapters 5, 6, 7, and 8 were instrumental in identifying key dynamic 

traffic assignment research findings.  The a priori expectation that DynaMIT performance 

depends partially on a set of system parameters were confirmed. 

 

•  A reduction in the rolling step size, or information update interval, increases 

DynaMIT effectiveness.  If information is distributed less frequently than roughly 

every fifteen minutes, there is great danger that incident occurrences will not be 

taken into account until it is too late to provide benefit for many affected travelers. 

 

It is useful to note again that the rolling step size is a feature used only for 

research purposes in a simulation environment.  When the DynaMIT system is 

operated in real-time for an actual traffic management center, the rolling step size 

will not exist.  Reducing the information update interval in this case will be 

primarily a function of computational power and system operational efficiency. 

 

•  An increase in the rolling length improves the effectiveness of DynaMIT.  A short 

rolling length results in predictions that tend to underestimate the amount of 
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congestion.  This could be a function of how the DynaMIT network simulator 

treats unfinished trips that are left in the network as the simulation ends. 

 

•  An increase in the number of iterations improves the effectiveness of DynaMIT.  

The use of a single iteration fails to properly close the loop between demand, 

supply, and information.  This results in the distribution of information based on 

erroneous predictions. 

 

•  An increase in the percent of informed drivers generally improves the 

effectiveness of DynaMIT.  More travelers can be diverted away from incident 

locations to reduce the incident's impact.  Benefits for unguided travelers typically 

increase as the percent of informed travelers go up.  However, the benefits for 

guided travelers from increasing the distribution of information can vary.  The 

effect differs across O-D pairs. 

 

•  Studies run regarding the provision of prescriptive information showed that when 

using recommendations that are specific to O-D pairs, user criteria for all travelers 

can be achieved in addition to system criteria.   

 

9.2.3  System Refinements 

Chapter 5 highlighted the need for additional calibration work for the supply simulator to 

address the predictive quality of congested links and slow queue dissipation.  The case 

studies use demand estimates as given rather than as an unknown to be estimated.  

Testing of the DynaMIT system with O-D estimation and prediction included is a high 

priority for future evaluation work. 

 

Another priority for future system evaluation involves the development of comprehensive 

pre-trip traveler behavior models in the MITSIM reality.  The main addition that pre-trip 

information provides is the inclusion of departure time activity, where congestion can be 

alleviated through the shifting of traveler demand in time as well as space. 
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An additional area in the demand simulation area is the implementation of a route 

switching model in the MITSIM reality that utilizes a nested structure or a threshold 

value.  While such a model would need to be calibrated, it seems reasonable to assume 

that route switching would be minimal until the point where the informed travel time for 

a habitual route exceeds the informed travel time for one or more non-habitual route(s). 

 

Ongoing work in the testing of new or improved strategies for information generation will 

continue.  Refined algorithms may potentially improve the consistency check process 

and/or locate a fixed point solution more rapidly. 

 

9.2.4  Future Research 

Additional case studies could be conducted that would further assess levels of DynaMIT 

accuracy and stochasticity.  Relationships between system performance and key 

parameters including the rolling horizon, rolling length, and number of iterations that 

were proposed in this thesis could be studied in more detail.  MITSIM laboratory 

enhancements would allow for an improved study of various types of information, 

particularly those to be distributed at the pre-trip stage. 

 

Additional areas of future research include: 

 

•  The installation and evaluation of the prototype DynaMIT system at a traffic 

management center location.  This would begin by acquiring relevant data from 

the network of interest in order to calibrate DynaMIT models.  Off-line testing can 

be conducted by using the network and associated demand pattern in a simulation 

environment.  Ultimately, actual real-time data could be fed into the DynaMIT 

system.  Another key area here involves assessing computational efficiency. 

 

•  The development of a framework and modeling approach that integrates the 

control logic of traffic lights and ramp meters with real-time information.  This 
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means thinking of control logic not just as an input, but as an element that could 

possibly be changed in an integrated fashion to work with traveler information. 

 

•  The inclusion of incident detection strategies with dynamic traffic assignment. 

 

•  The use of DynaMIT as a planning tool.  This involves conducting simulation-

based studies to assess the impacts of demand and/or supply planning alternatives 

(congestion pricing, road expansion, etc.) on traveler behavior and network 

performance.  A dynamic traffic assignment system has tremendous potential to 

improve transportation investment decisions through realistic traveler behavior 

models and vehicle simulation. 
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