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Abstract

Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway
operations.  A number of algorithms have been developed in recent years to ensure an effective
use of ramp metering.  As the performance of ramp metering depends on various factors (e.g.
traffic volume, downstream traffic conditions, queue override policy etc), these algorithms
should be evaluated under a wide range of traffic conditions to check their applicability and
performance and to ensure their successful implementation.  In view of the expenses of and
confounding effects in field testing, simulation plays an important role in the evaluation of such
algorithms.

This thesis presents an evaluation study of two ramp metering algorithms: ALINEA and FLOW.
ALINEA is a local control algorithm and FLOW is an area wide coordinated algorithm.  The
purpose of the study is to use microscopic simulation to evaluate systematically how the level of
traffic demand, queue spillback handling policy and downstream bottleneck conditions affect the
performance of the algorithms.  It is believed that these variables have complex interactions with
ramp metering.  MITSIM microscopic traffic simulator is used to perform the empirical study.  It
is argued that an explicit modeling of merging behavior is necessary for an appropriate
evaluation of ramp control algorithms and therefore, a microscopic simulation model should be
used.

The study consists of two stages.  In the first stage, key input parameters for the algorithms were
identified and calibrated.  The calibrated parameters were then used for the second stage, where
the performance of the algorithms were compared with respect to three traffic variables
mentioned above using an orthogonal fraction of experiments.  It was observed that for many of
the scenarios, particularly at low demands, metering significantly increased system travel time.
However, with proper calibration, the algorithms improved mainline as well as ramp conditions
at high demands.  A ramp queue storage length smaller than the physical length of the ramp was
found to produce better performance.  Regression analysis was used to identify the impacts of
some of the interactions among experimental factors on the algorithms' performance, which is
not otherwise possible with a tabular analysis.  These results provide insights which may be
helpful for design and calibration of more efficient ramp control algorithms.

Thesis Jointly Supervised by:

Moshe E. Ben-Akiva Professor, Department of Civil and Environmental Engineering
Mithilesh Jha Research Associate, Center for Transportation Studies
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Chapter 1

Introduction

In recent years, significant emphasis has been given to the applications of advanced information

and communication technologies in transportation.  This has motivated researchers to develop

new freeway control methodologies.  These methodologies have been used in different parts of

the world under the context of Intelligent Transportation Systems (ITS).  One of the most

popular and effective freeway control measures is ramp metering.  This thesis presents an

evaluation study of two ramp metering algorithms.

The study uses microscopic traffic simulation to evaluate the performance of ramp control

algorithms with respect to key input parameters for the Central Artery/Tunnel (CA/T) network in

Boston.  This chapter provides a motivation for this research by first reviewing the traffic

congestion problem and then discussing the remedial measures.  The research objective is then

outlined and the organization of the thesis presented.

The use of private automobile has grown consistently in the United States and throughout the

world in the recent years.  When many drivers want to take advantage of increased mobility

simultaneously, it may produce undesirable effects such as congestion, pollution etc.  Freeway

congestion has been increasing substantially for the past few decades.  According to Highway

Statistics (Federal Highway Administration, 1990), the annual urban freeway delay in the United

States is estimated at 2 billion vehicle hours.  The value of lost productivity due to congestion is

$100 billion a year in the United States alone (ITS America, 1995).  Approximately, 66% of all

carbon monoxide (CO) emissions are generated by automobiles.  Increasing congestion also

reduces highway safety.  Each year, there are on an average, 41,000 deaths and 5 million injuries

on U.S. freeways.  Additionally, traffic accidents cost the U.S. an estimated $70 billion in lost
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wages and other direct costs annually (ITS America, 1995).  All of these concerns make

congestion alleviation a major transportation priority.

1.1  Causes of Congestion

Traffic congestion is a common phenomenon during peak periods, even without any incident.

The phenomenon can be explained with the help of the underlying relationship between

fundamental traffic variables.  Traffic density, ρ is defined as the number of cars per unit length

of the roadway, and traffic volume, q as the number of cars passing a given section in a unit time.

Under steady-state conditions, these two traffic variables are related to each other as described

by the fundamental diagram (Fig 1.1) of traffic engineering.  The maximum volume that can pass

through a roadway section is called capacity and is denoted by qmax. The density corresponding

to the capacity is ρcr and is called critical density.

The area under this curve can be divided into two regions.  The region to the left of the critical

density, ρcr represents non-congested traffic, while the region to the right represents a congested

condition.  Ideally, we would like traffic to operate in the left region.  The freeway is best

utilized at ρcr, when traffic volume achieves a maximum value qmax.  Figure 1.1 shows that

increase of density above the value ρcr on a freeway stretch leads to a corresponding decrease of

Traffic volume

Traffic densityρcr

qmax

Fig 1.1.  The Fundamental Diagram
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traffic volume that reaches zero for ρ = ρjam (the jam density at which traffic is stopped).  This

type of congestion due to excessive demand, i.e. ρ > ρcr, is called recurrent congestion.  The

precise values of qmax, ρcr, and ρjam depend on the freeway geometry (slope, number of lanes

etc.), vehicles’ characteristics, and driver behavior.  The other type of congestion caused by the

capacity reducing incidents is called non-recurrent congestion.

1.2 Possible Control Measures

The traditional approach of building new roads to solve the congestion problem is expensive,

disruptive to existing traffic, opposed by numerous environmental groups, and constrained by

scarce land availability.  Consequently, alternative solutions aimed at effective utilization of

existing systems have gained much attention in last few decades.  It has been realized that many

traffic problems can be resolved by influencing (controlling) traffic flow by using various traffic

control measures.  The underlying idea is to try to “move with finesse instead of brute force”.

There have been several attempts both on theoretical and practical levels towards development of

freeway traffic control systems.  Several studies (Newman et. al., 1969, Moscowitz, 1973,

Klijnhout, 1985) have indicated a high potential for cost-effective amelioration of traffic

congestion, if control measures are applied suitably.

The possible control measures can be divided into two classes (Papageorgiou, 1983):

1) Control measures affecting density – Congestion can be avoided if density is maintained

below ρcr.  Thus traffic density can be affected -

• by metering the entering traffic volumes, and/or

• by diverting traffic upstream of the congestion.

2)   Control measures affecting the fundamental diagram – Variable message signs such as

speed limit signs, “keep your lane” signs etc. are known to increase the capacity in the

fundamental diagram, if applied appropriately.

In this thesis, we will be concerned exclusively with ramp metering for freeway traffic.
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1.3 Ramp Metering

Ramp control, or ramp metering, has been recognized as one of the most effective ways for

combating freeway congestion.  The entering traffic to the freeway from on-ramps is regulated

so that the flow on the freeway does not exceed the capacity.  The ramp meter also helps break

the “platoon”  of entering vehicles, resulting in an efficient merging operation.

Ramp control can potentially be used to –

• Utilize freeway capacity.

• Reduce extent and duration of recurrent congestion.

• Reduce the occurrence of non-recurrent congestion.

• Reduce average travel times.

• Divert traffic.

Ramp metering can also be used as a component of incident management system.  According to

the Minnesota Department of Transportation (MnDOT), “the use of ramp metering is an ITS

development which provides the single greatest boost to freeway capacity and safety” (ITS

International, 1997).

Several attempts have been made in the past toward the development of efficient ramp control

strategies.  Different methods have been proposed to calculate the metering rate that determines

the rate of vehicles allowed to enter the freeway from the on-ramps.  These strategies can be

broadly divided into two categories: local control and area wide control.

Fig 1.2.  A Freeway On-Ramp with Meter.
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• Local Control (Isolated): In this case, the metering plan is based on locally measured traffic

conditions.  Metering rate for one controller is not affected by that for others nor by traffic

conditions elsewhere.  So, this type of control is most suitable when there is local congestion

in the vicinity of the metered ramp.  But in case of multiple congestion spots in different

parts of the network, this type of control will not be able to identify them and as a result may

not be effective.

• Area Wide Control (Coordinated): For this type of control, there is a coordination in

metering rate calculation among different controllers in the network.  The control parameters

for a set of controllers in the area are estimated in order to achieve a system-level objective.

Another similar ramp control system that combines both local and area wide strategy is known as

hierarchical control.  In this approach, there is a system-wide model at the upper level that

calculates the desired network states, and a local controller at the lower level that adjusts the

metering rate to minimize the difference between actual and desired network states (Chen et al.

1997).

Based on traffic responsiveness, ramp metering can be classified as :

• Fixed Time Metering: The metering rate for ramp meters is fixed for different times of the

day.  It is usually calculated based on historic traffic data.

• Traffic Responsive Metering: The metering rate is calculated based on real time traffic

conditions in the network.

The concept of ramp metering is not new.  Its use dates back to the 1960s.  It was first

implemented on the Congress Street (now Eisenhower) Expressway in Chicago in September

1961.  Since then a number of states in North America namely – California, Texas, New York

and Minnesota have been using ramp metering as a freeway control measure, albeit without any

standard practice.  The lack of standards may be due to the fact that a wide variety of practices

are effective (ITS International, 1997).  More recently, ramp metering is also gaining popularity

in Europe.  It is successfully used in Amsterdam, Paris and Glasgow (Papageorgiou, 1983).
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1.4 Objective

This thesis presents a detailed simulation evaluation of the following two algorithms: a local

ramp metering algorithm called ALINEA (Papageorgiou et al. 1991) and an area-wide heuristic

algorithm called FLOW (Jacobson et al. 1989).  The performance of ramp metering depends on

various factors such as traffic volume, downstream traffic conditions, and policy of handling

queue spillbacks.  These variables have complex interactions with ramp metering.  To the best of

our knowledge, there has been no study that has identified the effect of downstream bottleneck or

queue spillback policy on metering performance till date.  In this study, we systematically

investigate the performance of the ramp metering algorithms with respect to all these variables.

In order to identify these effects, one has to perform either field tests or simulation experiments.

Considering that it may not be possible to control the above mentioned variables (for example

downstream condition) in the field, simulation provides an ideal alternative approach to evaluate

the performance of ramp control algorithms over a range of values for those variables.

A significant contribution of this thesis lies in a detailed and elaborate experimental design of

ramp metering evaluation with respect to several key variables that have not been tested before.

Furthermore, the majority of the simulation based evaluation studies have been performed with

macroscopic traffic simulators.  Field data has strongly demonstrated a complex nature of traffic

pattern in and around merging areas (Cassidy et al. 1998, Hall et al. 1990).  Traffic flow in

merging areas is emergent from a complex interaction between mainline and ramp traffic and

depends on several factors including directional demand, driver behavior, road geometry and

such. Macroscopic simulators are based on a coarse representation of traffic flow that fails to

represent the said interactions.  Thus, macroscopic simulators may not be adequate to evaluate

the performance of ramp control algorithms.  We use a microscopic simulation laboratory, called

MITSIM laboratory, for evaluating ramp control algorithms.  Our motivation to use MITSIM

laboratory lies in an explicit modeling of merging behavior, which is critical for evaluation of

ramp metering strategies.

MITSIM laboratory consists of a microscopic simulator that is responsible for moving traffic,

and a traffic management simulator that is responsible for simulating control operations.  It is
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designed for the evaluation of Dynamic Traffic Management Systems.  A brief description of the

MITSIM laboratory is presented in Chapter 3 (see Ben-Akiva et al. 1997 for details).  In the

simulator, vehicles are moved based on car following and lane changing behavior that have been

calibrated and validated with a large amount of data from various sites (Ahmed, 1998).  MITSIM

laboratory is used to evaluate how the level of traffic demand, queue handling policy and

downstream bottleneck conditions affect the performance of ramp metering and derive insights

from the evaluation results.

1.5 Organization of Thesis

This chapter provided the basic concept of ramp metering as a freeway control measure.  It

described the motivation and the objective of our evaluation study.  A literature review of

existing ramp metering studies is presented in Chapter 2.  Chapter 3 describes the evaluation

methodology and provides a brief description of the two algorithms, the calibration of the input

parameters and the experimental design adopted in this study.  The fourth chapter summarizes

the results and findings of the evaluation study.  Finally, Chapter 5 presents a summary,

conclusion and future work in this area.
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Chapter 2

Literature Review

A literature review of the major works in the field of ramp metering is presented in this chapter.

Local ramp control systems are reviewed in the first section followed by a review of area wide

ramp control.  Finally, evaluation methods and results of different ramp control strategies are

discussed.

2.1 Local Ramp Control

A local ramp control system considers an isolated section of the network and the controller

responds only to the changes in the local conditions.  Figure 2.1 depicts schematically a local

traffic control system for a freeway section.  The following traffic flow variables can be used to

represent a typical local ramp control system:

(a) Oout and Oin are the occupancy rates downstream and upstream of the on-ramp respectively,

(b) qout and qin are the traffic volumes downstream and upstream of the on-ramp respectively,

(c) r is the on-ramp traffic volume,

(d) rmin is the minimum on-ramp traffic volume that is to be allowed to enter, and

(e) qcap is the capacity of the downstream section.

Fig 2.1.  Local Ramp Metering Variables.

qin qout

r
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Local control strategies can be classified into following categories :

2.1.1 Fixed Time Control

Fixed time controls are static in nature.  They do not depend on real time surveillance data.  In

this method, the cycle lengths are based on “time of day” and are usually calculated based on

historic traffic data (Blosseville, 1985).

2.1.2 Demand-Capacity Strategy

This strategy, extensively used in the United States (Masher et al., 1975, Koble et al., 1980), is

based on measuring the volume (qin) upstream of the merge area and comparing this with the

capacity (qcap) of the downstream section of the merge area.  Occupancy, Oout from the

downstream detector stations is used to identify the congestion on the freeway.  If the occupancy

is above a preset threshold, congested condition is assumed to exist and the minimum metering

rate rmin is used.  If occupancy is below the threshold value, the upstream volume is compared

with the capacity and the metering rate is determined by –

2.1.3 Percent-Occupancy Strategy

This strategy (Masher et al., 1975, Koble et al., 1980) recognizes that there is no need to specify

freeway capacity, as occupancy is a sufficient measure to identify congestion.  Only upstream (of

the on-ramp) occupancy measurements are used.  The final form of the percent-occupancy

strategy is shown in Figure 2.2.  The critical value of the upstream occupancy is typically based



 ≤−

=
otherwiser

OOifrqqMax
r

croutincap

,

),(

min

min
(2.1)
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on historical data and the transition value is found by trial and error in accordance with the

historical on-ramp demand (Hadj Salem et al., 1988).

2.1.4 Closed Loop Control

Ramp control systems can also be categorized as open-loop or closed-loop.  In an open-loop

ramp control system, the control input (for example, metering rate) is independent of the system

output i.e. the existing traffic conditions (for example, volume, occupancy etc.).  Demand-

capacity strategy is an example of typical open-loop ramp control systems.  In contrast, the

control input is a function of the system output in a closed loop ramp control system.  Figure 2.3

illustrates a closed loop ramp control system.  In this system, the surveillance devices provide

real time traffic data to the ramp controllers.  The ramp control plans are then computed based on

the surveillance data.  The implemented control plan influences the traffic conditions.  The

controller receives the updated traffic information and the cycle continues.

Computed metering rate

maximum

minimum

transition
    value

critical
 value

Occupancy upstream, Oin

Fig. 2.2.  Percent-Occupancy Strategy.
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Closed-loop controls are also known as feedback control.  Feedback control methods in traffic

control were introduced in the early 70s (Payne, et al., 1973, Isaksen and Payne, 1973).  One of

the most popular local control strategies is derived from the linear quadratic (LQ) feedback

control method.  Several ramp control algorithms have been proposed on the basis of this law

(Papageorgiou et al., 1991, Zhang et al., 1994).

The LQ (Linear Quadratic) regulator is a linear feedback control law that is based on minimizing

a quadratic performance index subject to a system of linear equations which represent the traffic

dynamics.  In this method, first the dynamic traffic process is represented by the following

nonlinear equation - xt+1 = f (xt, ut)

where xt and ut are state and control variables at time t respectively.  Traffic flow equations are

linearized (Equation 2.2) around a set of steady-state conditions, and the control law is obtained

as a linear function of observed traffic deviations from the steady-state conditions.  The objective

of the local feedback control is to minimize the deviations from the steady states (x′, u′).  It leads

to the following feedback control law: ut = u′ - L(x′, u′)(xt - x′)

where L(x′, u′) is the control gain matrix (see Athans et al., 1975, Papageorgiou et al., 1991 for

details).  The control law of (2.3) is called a LQ regulator.  If there is congestion (i.e. the

(2.2)

(2.3)

Traffic System

Ramp Controller

Disturbances

Output

Surveillance
Data

Control

Input

Fig. 2.3.  A Closed-Loop Ramp Control System
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measured state xt is higher than the desired value x′), the last term in the right hand side of (2.3)

is negative and control variable is decreased relative to the steady-state value.  Similarly, if there

is no congestion, the control input is increased above the steady-state value.  In the context of

ramp metering, the control variables in Equation 2.3 are the metering rates and the state variables

are traffic measurements (for example occupancy).

2.2 Area-Wide Ramp Control

The area-wide ramp control problem can be broadly divided into three categories based on their

formulation.  They are – optimal control methods, feedback control methods and heuristic

methods.  There is another class of control method that uses the combinations of the above three

methods and is known as hierarchical control.

2.2.1 Optimal Control

The area-wide optimal ramp control problem was first formulated by Wattleworth and Berry

(1965) as a linear programming problem.  Since then, many researchers have used optimization

techniques for designing efficient ramp control strategies. The problem includes the following

three main components: a) A traffic flow model, b) Control variables, and c) A performance

index or objective function.  Existing area-wide optimal control models can be divided into three

categories: static, sequential and dynamic models.

2.2.1.1 Static Control

The static optimal control strategies are derived from historic traffic data, e.g. historic demands.

The static control model can produce fixed-time or time-of-day control policies.  An early

mathematical formulation of the static optimal control problem was proposed by Wattleworth
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and Berry (1965) and Wattleworth (1967).  In this formulation, a freeway corridor is divided into

several homogeneous sections in such a way that each section has no more than one on-ramp and

one off-ramp.  The ramp demand is assumed as known.  The problem is to find admissible ramp

volumes that maximize a performance index (e.g. sum of input flows or outputs) subject to

capacity constraints.  Most ramp meters implemented in the United States (either fixed-time or

time-of-day) are not traffic responsive and assume a steady-state traffic condition.  In those

implementations, the vehicle movement or flow propagation over the network is not considered.

2.2.1.2 Sequential Control

The sequential approach overcomes one weakness of static control models by including real time

traffic demand and ramp queue information (Isaksen and Payne, 1973, Papageorgiou, 1980 &

1983, and Chang, et al., 1994). The time horizon is divided into a sequence of equal time

intervals.  The metering rate for each time interval is calculated by the linear programming

approach of the static model.  Performance index is optimized over all time periods subject to the

capacity constraints and ramp queue constraints.  The model uses a modified ramp demand in

each time interval by adding the on-ramp queue in the previous time period to the current

demand.  The real time input requirements for this type of approach are - demand at each entry

ramp for each time interval and the number of vehicles waiting at each entry ramp for each time

period.

2.2.1.3 Dynamic Model

Although sequential models include demand and queuing dynamics, the representation of traffic

flow remains static, since in each time period the mainline flow is assumed to be in a steady state

condition.  Consequently, the flow propagation from one section to the next is ignored.  Since

frequent state transitions and rapid flow variations are observed in the real life traffic systems,

the control strategies determined through steady-state models are of limited use (Stephanedes

and Chang, 1993).
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To overcome this shortcoming, various dynamic models have been developed that are based on

mathematical programming approach (Ritchie, et al., 1995, Stephanedes and Chang, 1993, and

Chang, et al., 1994).  These dynamic models differ from sequential models in their treatment of

mainline traffic flows as they represent the evolution of traffic (or flow propagation) unlike the

sequential models.  All dynamic models are based on the macroscopic traffic flow model.  The

basic two equations of a macroscopic traffic flow model are the conservation of flow equation

and the flow-density relationship.  These two equations together with the kinematic wave

propagation theory developed by Lighthill and Whitham (1955) and Richards (1956) constitute a

complete dynamic traffic flow model.

A dynamic optimal ramp control problem optimizes the performance index or control objective

(e.g., total travel time, total delay, total output volume, total input volume, total travel distance,

ramp queue etc.) subject to the dynamic traffic flow model, ramp queue constraints and capacity

constraint.  The resulting problem can be formulated either as a linear program (Chang, et al.,

1994) or a non-linear one (Stephanedes and Chang, 1993), depending on the whether the traffic

flow relationship is linearized or not.

2.2.2 Feedback Control

A coordinated feedback control strategy for ramp metering can be derived by the application of

linear-quadratic methodology.  The control law in this case has multiple variables as opposed to

single variable for a local feedback control.  Existing theories do not provide theoretical tools for

the derivation of multivariable feedback control laws for large-scale nonlinear systems like the

freeway traffic system.  On the other hand, a powerful tool for designing multivariable feedback

control laws for linear systems is the linear quadratic (LQ) optimization theory.  With a proper

linearization around a desired steady state, this technique can be applied to traffic systems.

Similar to the local feedback control, a quadratic performance criterion is used as the objective

function to penalize deviations of the problem variables from their steady states.  This
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methodology for deriving coordinated ramp metering strategies was applied by Papageorgiou, et

al. (1990).

2.2.3 Hierarchical Control

A typical hierarchical traffic control system (Chen, et al., 1997, Isaksen and Payne, 1973,

Athans, et al., 1975, Papageorgiou, 1983, Hotz, et al., 1992) combines both local and area-wide

strategies. Chen et al. (1997) used a hierarchical feedback control system for ramp metering

which is schematically shown in Figure 2.4.

The hierarchical feedback system shown in Figure 2.4 has two feedback loops.  The inner loop is

employed at the local level while an outer loop is used for the area-wide traffic management.

This hierarchical system consists of four modules: state estimation, OD prediction, local control

and area-wide control.  The state estimation module obtains the best estimates of current

network state based on the surveillance data.  The OD prediction module takes the input from

state estimation and predicts future origin destination demand.  Based on estimated state

variables and predicted OD demand, the area-wide control module optimizes the control values

(metering rate) to obtain a system objective.  The distributed local control module then locally

adjusts the values set by the area-wide control to compensate for the exogenous disturbances and

system errors (such as errors in state estimation and OD prediction).  The inner loop is
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distributed over the network with little or no communication and computation effort while the

outer loop is centralized for the entire network with more intensive communications and

computational requirement.

2.2.4 Heuristic Approach

Heuristic approaches for ramp metering are usually not based on a theoretical framework.  One

such approach was adopted to develop FLOW (Jacobson, et al., 1989).  FLOW is a real-time,

coordinated, traffic-responsive ramp metering algorithm.  The algorithm has two components: a

local metering rate (LMR) which is based on local conditions, and a bottleneck metering rate

(BMR) which is based on system capacity constraints.  Predetermined metering rates are selected

on the basis of occupancy level upstream of the metered ramp.  The local metering rate is

obtained from an occupancy-metering rate table that provides the number of vehicles that should

be allowed to enter the mainline.  Coordinated BMR accounts for the interdependencies among

ramps and is calculated based on demand-capacity relationships.  The more restrictive of the

local and bottleneck metering rate is selected for implementation.  The algorithm is simple in its

approach but effective in practice.  A detailed description of FLOW is provided in Chapter 3.

2.2.5 Summary of Area-Wide of Ramp Controls

The three types of area-wide optimal ramp control models (static, sequential and dynamic)

described above have many similarities in the sense that they all use mathematical programming

approach to optimize the overall control objective and thus coordination of all on-ramps is

considered.  The main difference among these models lies in their treatment of traffic flow.  In

the static model, all traffic flows are assumed to be in steady-state.  In the sequential model, the

ramp queuing phenomenon is modeled but the mainline traffic flow is still assumed to be in

steady-state.  In the dynamic model, both mainline and ramp traffic flows are modeled

dynamically.  Feedback control law has also been applied in the field of area-wide ramp control.
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Multivariable control law can be obtained with the help of linear quadratic optimization theory

by linearizing the relationship among fundamental traffic variables around desired steady state.

Another type of area-wide ramp control is the hierarchical control, which combines both local

and network level control.  This approach is based on the application of any of the following

methods or their combinations - optimal control, feedback control and heuristics.  Heuristic

methods have also been used to design area-wide ramp control models.

2.3 Ramp Control Evaluations

Despite theoretical advances in the development of ramp metering, their implementations have

been slow.  Most existing ramp meters in the field today use either fixed control or demand-

capacity control (Papageorgiou et al., 1991).  There have been a number of evaluation studies of

various ramp control methods.  The two methods used in the evaluation of ramp control systems

are field operational tests and computer simulations. Different simulation studies have been

conducted to test various ramp control strategies, most of which are performed under

hypothetical networks and traffic demand.  Only a few field studies have been undertaken.  In the

following sections, a brief description of some of the ramp metering evaluations is presented.  It

should be mentioned here that for all the evaluation studies described below and elsewhere in

this thesis, travel time savings are with respect to the no control scenario unless otherwise

specified.

2.3.1 Field Operational Tests

Ramp metering application in the Minneapolis-St Paul metro area has resulted in 30% increase in

throughput (ITS International, 1997). Peak hour speeds on the freeway have increased from an

average of 48km/h to 77km/h.  Lanes on metered freeways typically carry 2,200 to 2,400

vehicles per hour per lane.  MnDOT claims that ramp metering reduces rear end collisions

associated with stop-and-go conditions and side collisions at merge points.  The INFORM



29

(Information for Motorist) evaluation in Long Island, New York used ramp metering, traffic

signal control, and route diversion.  This system was found to increase speeds by 13% and VMT

(Vehicle miles traveled) by 5% (Smith, 1992).  Proper and Cheslow (1997) reported speed

increases in the range of 16% to 62% and travel times savings up to 48% for North American

traffic management centers using ramp metering.

A number of local ramp metering strategies (ALINEA, demand-capacity, percent-occupancy)

were applied in the field at a single ramp of Boulevard Peripherique in Paris (Papageorgiou et al.,

1997).  The evaluation criteria included: Total travel time (TTT) on the mainline, Total waiting

time (TWT) at the ramp, Total time spent (TTS = TTT + TWT), Vehicle miles traveled (VMT),

Mean speed (MS) and Mean congestion duration (MCD).  It was found that the ALINEA

strategy lead to a maximum improvement of all evaluation criteria compared to the other

strategies.  It produced 16% reduction in TTS, 3% increase in VMT, 23% increase in MS and

51% reduction in MCD compared to the no control case.  Another field test was conducted at the

same ramp where ALINEA and the WJC strategy (similar to demand-capacity strategy) were

compared (Papageorgiou et al., 1997).  The WJC strategy was developed by the UK Department

of Transport.  It was found that ALINEA decreased TTS by 7% and increased VMT and MS by

0.4% and 8% respectively, compared to the WJC strategy.  The second implementation of

ALINEA and a demand-capacity strategy at a single ramp was done at the A10 West Motorway

in Amsterdam where ALINEA was found to result in a travel time savings of 6.3% with respect

to the demand capacity strategy (Papageorgiou et al., 1997).

ALINEA was applied at multiple on-ramps of the westbound Boulevard Peripherique.  The

coordinated feedback control algorithm, METALINE was also applied at the same site

(Papageorgiou et al., 1997).  The field tests showed that ALINEA improved TTS, VMT and MS

by 5.2%, 1.4% and 6.8% respectively; the corresponding improvements for METALINE were

4.8%, 0% and 4.8% respectively, compared to the no control case.  So, both feedback control

strategies lead to roughly the same results.  This was perhaps due to the reason that the gradual

building up of congestion proceeded slowly enough for local control to adapt to changing traffic

conditions in a similar manner as coordinated control.
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ALINEA was also used as a component of integrated control in an urban corridor network

(Corridor Peripherique in Paris) that included a freeway, a parallel arterial, and connecting radial

streets (Papageorgiou, et al., 1997).  The impact of ramp metering on corridor traffic was studied

by comparative evaluation of several performance indices for with and without control.  The

main findings of this study was that application of an efficient ramp metering strategy can

considerably improve traffic conditions not only on the freeway but also on the parallel arterial

and the entire network.  ALINEA resulted in improvements of 8.1%, –6.9% and 20% in total

time spent for the freeway (including the ramps), the arterial, and the radial streets respectively.

The reduction in travel time for the entire network was 5.9%.  The benefits were even higher if

non-recurrent congestion caused by incidents were included in the evaluation.

An evaluation study was undertaken to determine the effectiveness of a heuristic coordinated

algorithm (FLOW) in the Seattle metropolitan area (Jacobson, et al., 1989).  The 22 meters on I-

5 reduced the waiting time on the metered ramps from an average of 5-8 minutes per vehicle to

an average of less than 2 minutes.  Since metering began, the travel times have remained fairly

stable although mainline volumes during the morning peak have increased 49%.  In other words,

the mainline travel times improved while traffic demands in the region increased, indicating a

better utilization of the capacity.  From the pre-metering period (October 1976 through

September 1981) to the evaluation period (March 1985 through May 1987), the northbound

accident rate during the afternoon peak period dropped form 1.49 to 0.92 accidents per million

vehicle-miles.  The southbound accident rate, during the morning peak period, dropped from

1.31 to 0.79 per million vehicle-miles.  Although there might be other factors contributing to a

reduction in the accident rate, it appeared that the metering system is a significant cause of the

reduced accident rates.

2.3.2 Simulation Based Evaluations

Although field operational tests are ideal for the evaluation of any traffic control system, they

tend to be prohibitively expensive, time consuming, and sometimes infeasible.  In addition, the

test results depend on uncontrollable elements (e.g. weather conditions, travel demand, incidents)
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and an accurate analysis of the impacts of ramp control is often not possible due to confounding

effects.  In recent years, simulation has emerged as an alternate tool to evaluate the performance

of traffic controls and to select an appropriate design.  Simulation studies can also be used to

analyze the robustness of a design by evaluating a range of scenarios, and to calibrate control

parameters.  A number of studies have simulated ramp metering for different transportation

networks.

Hellinga and Van Aerde, (1995), used INTEGRATION, a macroscopic traffic simulator, to

evaluate a time-of-day ramp control for a test network, and found a slight reduction (0.39%) in

total network travel time.  Based on a sensitivity analysis, they discovered that the traffic

conditions were influenced by the timing of ramp metering implementations, suggesting benefit

from metering strategies that use real-time traffic data.  The CORSIM (CORridor SIMulation)

microscopic simulator was used for the evaluation of time-of-day, fixed time metering in the

Atlanta metropolitan area (Matson, et al., 1998).  Before and after travel times for the I-75

northbound corridor indicated a 16.5% decrease in total travel time and a 19.7% increase in

average speed for the freeway sections.  Papageorgiou (1980) used a dynamic traffic model to

simulate time-of-day ramp control.  The model takes into account the time delay of a volume

change at a ramp and its impact at downstream locations.  For a hypothetical freeway traffic

situation, travel time improvements of 24% and 14% with respect to the case of earlier time-of-

day control procedures were reported.  A dynamic traffic model was used by Papageorgiou

(1983) to study the efficiency of a hierarchical ramp control system.  He simulated the no control

and the hierarchical control case on a hypothetical freeway stretch and showed the improvements

by the hierarchical control.

The local feedback control algorithm (ALINEA) and the coordinated feedback control algorithm

(METALINE) were tested in simulation studies by Papageorgiou et el. (1990 & 1991).  They

simulated these algorithms for the Boulevard Peripherique in Paris using METANET

macroscopic traffic simulator.  Both feedback control strategies were found to decrease the total

travel time (they led to roughly the same results under normal conditions) with METALINE

resulting in slightly better performance for non-recurrent congestion.  During non-recurrent

congestion, bottlenecks may form at unexpected locations which may be better identified and
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incorporated by a coordinated algorithm.  The Statistical Traffic Model (STM) simulation

(Whittaker et al., 1997) was used to test the NMSS feedback control (a multivariable feedback

control law) algorithm for the A10 West Motorway in Amsterdam (Young et al., 1994).

Simulation results showed that the multivariable control algorithm was able to prevent the

congestion that was otherwise present in an identical no control scenario.  A simulation test of

optimal ramp metering control with the TRAF simulation software in the I-94 freeway corridor

in St Paul, Minneapolis showed travel time reductions (Stephanedes, et al., 1993).  Ritchie et al.

(1995) used INTRAS (INtegrated TRAffic Simulation) microscopic traffic simulator to

empirically validate theoretical results of an area-wide optimal ramp control strategy for a stretch

of freeway in Pasadena, California.  Five different predetermined metering rates were used for

the simulation.  This non traffic responsive, fixed time control strategy had little impact on the

mainline, but potentially negative impacts on ramps and surface streets.  Another simulation

study of an integrated control system was performed by Gardes et al. (1993), investigating ATIS

and ATMS control for the Smart Corridor in Los Angeles.  Three types of ATMS/ATIS controls

were used: ramp metering, traffic signal control, and route diversion.  A no control case and five

combinations of controls were simulated for the base condition using the INTEGRATION

macroscopic model.  The results showed marginal travel time improvements.

Chen et al. (1997), used MITSIM microscopic traffic simulator to test three control algorithms -

local control, area control and bilevel control that combined both local and area controls.  The

network used was the Central Artery/Tunnel (CA/T) network in Boston.  The study showed that

the bilevel control outperformed other control strategies.  The improvements in total throughput

for the local, area-wide, and bilevel controls were 4.9%, 5.1% and 8.4% respectively.  The travel

time savings for the three control strategies were 9.4%, 8.8% and 12.6% respectively.

2.4 Observations

Based on the literature review presented in this chapter, we have seen that there have been

significant theoretical developments in the area of ramp metering.  Various studies have been

undertaken to evaluate the performance of different ramp control models.  Scope of these
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evaluation studies is limited as they do not consider the effect of a wide range of traffic variables

(e.g. traffic demands, downstream condition, queue override strategies) that may have significant

impact on the performance of any ramp control model.  These effects should be evaluated using

systematic experimental designs which are also lacking in the existing studies.  Besides, many of

these evaluation studies were performed using macroscopic simulators which may not be

adequate for such evaluations as a result of their coarse representation of traffic flow.  This may

suggest the use of microscopic simulations because of the more accurate modeling of merging

behavior.    Therefore, it can be concluded that there is a need for such studies that identify these

variables and systematically quantify their effects on the ramp control models with proper

simulation technique.   This might lead to a better understanding of the applicability and

effectiveness of different ramp metering approaches over a wide range of values for these

variables.  The motivation to undertake the evaluation study presented in this thesis was derived

from the above observations.

In the next chapter, the evaluation framework used for this research will be presented in details.
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Chapter 3

Evaluation Framework

Evaluation of ramp metering algorithms with MITSIM laboratory is carried out to check their

performance and test the sensitivity with respect to key variables.  Evaluation also helps identify

the shortcomings of the algorithms and the conditions under which the algorithms do not perform

satisfactorily.  The evaluation study comprises of two stages: The first stage presents the

calibration of input parameters in order to obtain algorithms’ best performance for the network

under consideration.  The second stage performs a comparative study of the algorithms with

respect to key inputs, described in details in the following sections.  An orthogonal fractional

factorial design is selected to reduce the number of experiments.  The purpose of the design is to

systematically evaluate and compare the effects of the experimental factors on the performance

of the algorithms.  It should be mentioned here that the values of the calibrated input parameters

obtained from the first stage of the study are used for the experimental scenarios in the second

stage.  This chapter describes the MITSIM laboratory, the algorithms used for evaluation, the

calibration of the input parameters and the experimental design.

3.1 MITSIM Laboratory

The evaluation study is performed using a microscopic traffic simulation laboratory called

MITSIM Laboratory.  The laboratory has two components: a MIcroscopic Traffic SIMulator

(MITSIM) and a Traffic Management Simulator (TMS).  MITSIM is responsible for generating

vehicles and simulating their movements in the network.  The vehicle movements are based on

their desired speeds, lane changing and car following behavior, and responses to control.

MITSIM also simulates the road network and the surveillance system.  The core of the

simulation laboratory is the dynamic interaction between individual vehicles with other vehicles
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and traffic control.  Besides, the graphical interface of MITSIM laboratory offers the added

advantage by providing animation of vehicles.  This can provide additional insights into the

impact of ramp metering.  A brief description of the two components of MITSIM laboratory is

given in the next sections.  Further information about MITSIM laboratory can be found in Ben-

Akiva et. al. (1997).

3.1.1 MIcroscopic Traffic SIMulator (MITSIM)

The main elements of MITSIM and their characteristics are outlined below.

Network Components The road network consists of nodes, links, segments, and lanes.  The

surveillance system consists of various detectors that collect traffic data including volume, speed,

occupancy etc.  Traffic control devices (e.g. ramp meters) are also represented.  Their states are

dynamically updated by the traffic management simulator.

Travel Demand The traffic simulator accepts time dependent origin to destination (OD) tables

as input.

Vehicle Movement and Driving Behavior The OD tables specified in a scenario are translated

into individual vehicle.  Behavioral parameters (e.g. desired speed, aggressiveness, critical gaps

for changing lane, compliance rates to control devices etc.), information accessibility, and

vehicle characteristic parameters (e.g. size, acceleration/deceleration capabilities etc.) are

assigned to each vehicle/driver combination based on input distribution.  The simulator moves

vehicles according to car-following and lane-changing models.  MITSIM models drivers’

responses to traffic control devices.  Vehicles are moved at a fixed step size along their paths in

accordance with various constraints.

3.1.2 Traffic Management Simulator (TMS)

TMS is responsible for simulating the operations of a traffic management center.  It uses real-

time traffic measurements as input from the surveillance systems in MITSIM.  Based on the
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surveillance data, TMS generates control and route guidance according to the implemented logic

and updates the states of traffic control devices in the network.  For example, a ramp metering

algorithm may use occupancy data from the sensors to determine the metering rate, which is

implemented in MITSIM.

3.2 Algorithms Evaluated

As mentioned before, the algorithms used for this evaluation study are a local feedback control

algorithm ALINEA, and an area-wide heuristic algorithm FLOW.  These algorithms were

selected on the basis of their traffic responsiveness, demonstration of their previous applications

and simplicity.  ALINEA is a representative of local control algorithms and FLOW is a

representative of the heuristic coordinated algorithms.  Both algorithms use real time traffic

surveillance data as input.  The algorithms are briefly described in the following sections.

3.2.1 ALINEA

ALINEA is a local ramp control algorithm that is based on a feedback principle.  The basic idea

is to maintain an optimal occupancy on the mainline that will maximize the throughput.  The

closed loop feedback control strategy for ALINEA can be illustrated with the help of Figure 3.1.

As shown in Figure 3.1, the control law of ALINEA can be stated (see Papageorgiou et. al.,

1989) as :

[ ])()1()( kooKkrkr outR −+−= (3.1)

where o is the desired occupancy, oout(k)is the measured occupancy in the mainline section

during time interval k, r(k) is the metering rate for time interval k, and KR is a regulator

parameter.  In field experiments, it was found that ALINEA is not very sensitive with respect to

KR.  Therefore, we used the KR value (70 veh/hr) as recommended by Papageorgiou et al. (1990).



38

This feedback law is simpler than other local metering strategies.  If the measured occupancy

oout(k) at cycle k is found to be lower (higher) than the desired occupancy o, the term o-oout(k) of

the right hand side of equation 3.1 becomes positive (negative) and the ordered on-ramp volume

r(k) is increased (decreased) as compared to its last value r(k-1).  Since, the feedback law acts in

the same way for both congested and light traffic, no switchings are necessary.  The algorithm

has been found (Papageorgiou et al., 1997) to react smoothly for small values of “o - oout(k)”  and

to stabilize traffic flow at a higher throughput level.

ALINEA requires only one detector station in the desired location where occupancy oout is

measured.  The location should be such that the congestion due to on-ramp volumes should be

visible in the measurements.  Regardless of the upstream traffic volume, the feedback law in

ALINEA attempts to obtain desired occupancy.  The input parameters for ALINEA are the

desired occupancy (o in equation 3.1) and the mainline detector location where the desired

occupancy is maintained.

Fig 3.1. ALINEA Feedback Control Strategy
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The main reason for regulating occupancy, rather than volume, is that traffic volume may have

the same values for both light and congested traffic (Fig 1.1).  An additional advantage is that the

critical occupancy ocr seems to be less sensitive with respect to exogenous variables (e.g. weather

conditions) than the capacity flow.  Excessive queue lengths may be detected by suitably placing

detectors on the ramp and heuristically accounting for that in the metering rate.

3.2.2 FLOW

In response to growing freeway congestion problems in the Seattle area, the Washington State

Department of Transportation (WSDOT) initiated a ramp control program in 1981.  The ramp

control system is a part of a region-wide transportation system management effort called FLOW.

It is an integrated, traffic-responsive metering algorithm in which metering rates are calculated in

real time based on system as well as local capacity conditions.  In addition, queuing conditions

on the ramps are also considered in the final calculation of metering rates. The metering

algorithm has three components: calculation of metering rates based on local conditions,

calculation of metering rates based on system capacity constraints, and adjustment to the

metering rates based on queue lengths on the ramps.  A generalized flow diagram of the

algorithm is presented in Figure 3.2.

Bottleneck Control Algorithm Local Control Algorithm
Calculates a metering rate on

basis of volume through
downstream bottleneck

Calculates a metering rate on
basis of adjacent mainline

occupancy
Bottleneck Local

Metering Rate (BMR) Metering Rate (LMR)

Fig 3.2. FLOW Ramp Metering Algorithm

System MR = Min (LMR, BMR)

To Controllers

Queue Adjustment

Advance Queue Adjustment

Convert to Cycle Length
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Local Metering Rate One widely used method for calculating metering rates based on local

conditions is traffic-responsive metering using occupancy data.  Predetermined metering rates

are selected on the basis of occupancy level upstream of the given metered ramp.  Historical data

are collected from the given location and are used to determine approximate volume-occupancy

relationship.  Based on volume-occupancy relationship, a look-up table is developed for each

metered ramp that provides the metering rate for a given occupancy level.  The metering rate is

basically equal to the difference between volume and capacity.

System, or Bottleneck, Metering Rate One significant aspect of FLOW is the calculation of

metering rates on the basis of system capacity constraints.  A coordinated ramp control system is

distinguished from a local control by the application of ramp control to a series of entrance

ramps where the interdependencies among entrance ramps is taken into account.  System-wide

conditions and capacity constraints drive the calculation of metering rates at all metered ramps in

the system. The resulting metering rate is then subject to adjustment on the basis of ramp queues,

minimum metering rate, and potentially other conditions.

The entire freeway is divided into several sections for the calculation of bottleneck metering rate

(BMR).  A freeway section is defined by a stretch of the road between two mainline detector

stations.  If the downstream detector station detects an occupancy above a threshold, then the

section is said to be operating near capacity.  If the section is operating near capacity and the

total volume entering the section exceeds the total volume exiting the section, then the section is

said to be storing vehicles.  In any generalized freeway section i such as the one depicted in

Figure 3.3, these conditions for any time period t can be described as follows:

1. Capacity Condition

o ≥ oth,     (3.2)

where

o = average occupancy at the downstream detector, and

oth = the occupancy threshold for the downstream detector station.
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2. Vehicle Storage Condition

qin  +  qon  ≥ qout  + qoff                            (3.3)

where

qin = inflow from mainline,

qon = inflow from on-ramp,

qout = outflow to mainline, and

qoff = outflow to off-ramp.

If conditions 3.2 and 3.3 are met, the system calculates the upstream ramp volume reduction as

the number of vehicles being stored in the freeway section during the said time period t.  This

value becomes the total by which upstream ramp volumes must be reduced.  The upstream ramp

volume reduction is calculated as

Ui  =  (qin  +  qon)  -  (qout  + qoff)                           (3.4)

where Ui = upstream ramp volume reduction for section i to be implemented in the next interval.

Based on historical data and field experience, a control area consisting of several on and off

ramps is identified for each freeway section.  The control area is defined based on the location of

potential bottlenecks in the network.  It is assumed that the congestion in a freeway section can

be mitigated by controlling entering traffic in the corresponding control area.  This control area is

called influence zone.  Thus, at least one influence zone is assigned to each freeway section in

the network and the total volume reduction for a section is distributed among the upstream ramps

in the influence zone on the basis of a set of weighting factors.  Each metered ramp in the system

qin qout

qon qoff

Fig. 3.3. A Generalized Freeway Section
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is assigned a weighting factor according to its distance from the downstream boundary of the

influence zone and the average demand level on the ramp.  The value of weighting factor usually

increases with decrease in distance between on-ramp and the downstream boundary of the

influence zone because vehicles using these ramps are more likely to go through the bottleneck.

The bottleneck metering rate reduction (BMRR) for on-ramps in section i is given by

where

n  = number of ramps in the influence zone.

The system calculates the bottleneck metering rate for each ramp by subtracting the bottleneck

metering rate reduction from the ramp’s volume during the last interval.  The calculation

becomes

where

Areas of influence may overlap; therefore, any given ramp may have several bottleneck metering

rates.  The most restrictive of these rates is selected as the final bottleneck metering rate for that

ramp.

Adjustments to the Calculated Metering Rate After both the local and the bottleneck metering

rates are calculated for a given ramp, the system selects the more restrictive of the two as System

( )∑
×=+ n

j
j

j

ttj

WF

WF
UBMRR )1(

)1( +tjBMRR = bottleneck metering rate reduction for ramp j for the time interval (t+1),

tU = upstream ramp volume reduction calculated at time interval t,

jWF = weighting factor for ramp j, and

)1()1( ++ −= tjontj BMRRqBMR
jt

(3.6)

)1( +tjBMR = bottleneck metering rate for ramp j for the time interval (t+1),

jtonq = measured volume on ramp j during time interval t.

(3.5)
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Metering Rate (SMR).  Then, SMR is subject to two further adjustments called queue adjustment

and advance queue adjustment.

Two queue detectors are needed on on-ramps for adjustment purposes.  The adjustments are

implemented primarily to avoid an unacceptable delay for on-ramp vehicles and subsequent

interference of ramp traffic with urban roads.  One queue detector is placed at a point such that

any spillback beyond this point is unacceptable.  The other detector is placed downstream of the

first one.  If ramp queue reaches the second detector (downstream location), SMR is slightly

increased to reduce excessive delay to the ramp traffic.  This increase is known as queue

override.  If ramp queue reaches the first detector (upstream location), SMR is increased further

to avoid any operational difficulties.  This increase is known as advance queue override.  For this

study, value of queue override is 3 additional vehicles per minute; advance queue override

requires ramp metering to be suspended when the queue reaches upstream queue detector.

The algorithm is well suited to real-time control and capacities do not have to be calculated off-

line.  Control strategies and metering plans do not have to be updated. The system automatically

adjusts for incidents and weather conditions.  When an incident occurs, the system operates

under the same algorithm but reacts to the reduced capacity caused by the incident.  Also,

relatively few parameters need to be monitored.

3.3 Application to the Central Artery/Tunnel Project

A part of the Central Artery/Tunnel (CA/T) Project in Boston is used as the test network (Figure

3.5) for this evaluation study.  The project will replace the existing Central Artery (I-93) and

connect the Massachusetts Turnpike (I-90) to Logan International Airport.  It is a 7.5 mile

Interstate highway, approximately half of which will be built as a tunnel.  The tunnel design

makes the CA/T network unique and poses a number of challenges to drivers and designers of

the network.  The network is expected to carry a large demand of 250,000 daily trips through the

Central Artery and 100,000 daily trips through the Ted Williams Tunnel by the year 2010.
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3.4 Experimental Setup

MITSIM is a stochastic simulator and as a result, outputs from MITSIM are also stochastic.

Therefore, each experiment had to be run multiple times in order to get statistically significant

results.  It was found that fifteen replications of each experiment produced results with error

percentages within acceptable limits.  Errors associated with origin-destination travel times

varied from 0.5% to 6% (increasing with increasing demand).  The lowest error percentage –

0.5% was associated with 80% OD demand level, whereas the highest error percentage – 6% was

associated with 120% demand.  OD travel times were collected for vehicles which departed

between minutes 15 and 30.  Simulation experiments were performed for a sufficient duration so

that all vehicles departing between minutes 15 and 30 reached their destinations. The total

number of scenarios that were tested for this study is 100.  15 Replications were used for each

scenario.  Thus, the total number of replications performed was 1500, consuming approximately

5000 computer hours.

3.4.1 Test Network

Interstate-93 North of the CA/T Project in Boston is used as the test network for this evaluation

study.  The network is expected to experience a high traffic demand beginning from the year

2004 when it is expected to be operational.  Projected evening peak hourly volumes for 2004 are

shown in Figure 3.4.
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The number of on and off-ramps in this network are six and five respectively. However, only

three on-ramps –Ramp II, Ramp LL, and Ramp C, are meterable.  It should be mentioned that

the CA/T project terminology for on and off-ramps is used throughout this thesis.  The locations

of these on-ramps in the CA/T network are shown in Figure 3.5.  The on-ramps that are not

metered are located downstream of Ramp CN-SA (Figure 3.4).  Ramp II and Ramp LL consist of

acceleration lanes of approximately 150 ft length, while Ramp C merges with the mainline as an

add lane.  Figure 3.6 presents lane-level geometry of the network.

3.4.2 Calibration of Input Parameters

A brief description of the input parameters for ALINEA and FLOW that are used for calibration

will be presented in this section.  The calibration results will be presented in the next chapter.

3.4.2.1 Input Parameters for ALINEA

ALINEA attempts to maximize the mainline throughput by maintaining an optimal occupancy,

called target occupancy.  Conceptually, target occupancy should be maintained at a location

I-90

I-93
N

Fig 3.5. Locations of the Ramps used for Metering
in the CA/T Network

Ramp II

Ramp LL

Ramp C

Ramp CN-SA
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where congestion due to merging traffic is first visible.  Thus there are two key parameters for

the implementation of ALINEA: the target occupancy value, and the location of mainline

detector where target occupancy should be maintained.  A brief description of these input

parameters is given below.

Target Occupancy The performance of the algorithm depends on the value used as target

occupancy.  Flow-occupancy diagrams for different sections, obtained from preliminary

investigations, suggested a critical occupancy value in the vicinity of 20%.  Therefore, we

decided to use four levels of target occupancy: 15%, 19%, 21%, and 23%, for calibration.

Mainline Detector Location The target occupancy should be maintained at a location such that

mainline congestion can most quickly and easily be identified in the best possible manner.

Preliminary simulations indicated that Ramp LL is the most critical ramp to be metered because

of the congestion created downstream of this ramp.  Further consideration of the network

geometry revealed that the performance of ALINEA would be sensitive to detector location for

this ramp.  It is important to observe that the length of the acceleration lane for Ramp LL is very

short and the demand is very high, giving rise to a complex merging pattern.  Therefore, we

evaluate the performance of three mainline detector locations downstream of Ramp LL to

identify the most critical location to maintain target occupancy and select the best location for

the second stage of this study.  Ramp C merges as an add lane and therefore, does not represent a

potential case for studying the impact of detector location.  Although Ramp II has a similar

geometry to Ramp LL, the hourly volume on Ramp II is relatively low and the congestion from

this ramp is not critical.  As a result, only one detector location on mainline for each of these

ramps is considered.

The three detector locations for Ramp LL are:- approximately 30 ft upstream of the acceleration

lane drop (location L1 in Figure 3.6), approximately 40 ft downstream of the acceleration lane

drop (location L2 in Figure 3.6), and approximately 300 ft downstream of the acceleration lane

drop (location L3 in Figure 3.6).  For Ramp II, the detector location is approximately 35 ft

upstream of the acceleration lane drop; whereas, for Ramp C, it is approximately 40 ft

downstream of the merge area.
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3.4.2.2 Input Parameters for FLOW

Influence zone configurations are found to be highly sensitive to network geometry and demand

pattern (Jacobson et al. 1989) and therefore, we decided to calibrate this parameter for the CA/T

network.  Two influence zones are evaluated for this purpose.

Influence Zone Preliminary simulations were conducted to identify the sections where vehicle

storage was likely to take place.  Based on these results, two influence zones were selected for

calibration.  The locations of the influence zones in the test network are shown in Figure 3.7.

For influence zone 1, the weighting factors for Ramp C, Ramp LL and Ramp II are 0.5, 0.3, and

0.2 respectively, whereas, those for Ramp C and Ramp LL for influence zone 2 are 0.6 and 0.4

respectively.  The weighting factor for an on-ramp is selected based on the distance of that ramp

Influence Zone 1

Ramp CN-
SARamp CRamp LL

Fig. 3.7. Locations of Influence Zone 1 & 2

Influence Zone 2

Ramp II

Ramp LL

Ramp C

Ramp CN-SA

Fig. 3.6. Mainline Detector Locations for the Metered Ramps

Weaving section

L1 L2 L3Ramp II
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from the downstream boundary of the influence zone and the relative traffic volume of the ramp

with respect to other on-ramps within the influence zone.

3.4.3 Experimental Design

3.4.3.1 Experimental Factors

Three variables are used in designing experiments for the evaluation of ALINEA and FLOW.

They are – Origin Destination (OD) demand, downstream traffic condition, and queue override

strategy.  These variables are discussed in details in the following subsections.

Traffic Demand Traffic demand is typically specified in the form of origin-destination (OD)

matrices, which vary depending on the time of day and vehicle class.  Demand for transportation

systems are typically determined for the peak and off-peak periods.  The demand for a scenario

can be specified as a fraction of the peak or off-peak period demand.  For example, a 50% of the

PM peak period demand level represents 50% of the number of trips for the PM peak.  The

projected PM peak OD demand for the year 2004 is used as the base demand for this research.

Five levels of OD demand – 80%, 90%, 100%, 110%, and 120% of the base demand are used for

the evaluation.  The time dependent variation in demand within the peak hour is assumed as

given in Figure 3.8.

0 min 15 min 45 min 60 min
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Fig.3.8.Hourly Variations in OD Demand
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Downstream Bottleneck Scenario An ideal implementation of a local feedback control

algorithm assumes no downstream bottleneck.  But this is seldom the case in the real world.  So,

we evaluate the performance of ALINEA in the presence and absence of a downstream

bottleneck.  To compare the performance of FLOW and ALINEA under these downstream

conditions, FLOW is also evaluated with respect to these two conditions.  The two downstream

bottleneck conditions are termed as “Condition 1” (presence of downstream bottleneck) and

“Condition 2” (absence of downstream bottleneck).

There is a weaving section in the network between Ramp C and Ramp CN-SA (Figure 3.6).  As a

result of a large number of lane changings in this area, a bottleneck usually forms upstream of

Ramp CN-SA.  The performance of ALINEA and FLOW is evaluated with respect to two

downstream bottleneck conditions.  “Condition 1” is simulated by not metering the downstream

ramp C and  “Condition 2” is simulated by metering Ramp C.

Queue Override Strategy It is believed that the strategy, based on which the queue override

(disabling the meter) action on the ramp is implemented, may have an impact on the performance

of the algorithm; though its effect has not been tested before.  In this research, this effect is

studied by varying the position of ramp queue detector(s).  Four queue override strategies are

used.  One of them is not using any queue override.  In this hypothetical case, the ramp queue is

allowed to build up infinitely and metering is never suspended.  In the other three cases, 100%,

75% and 62.5% of the physical ramp length are used for queue override.  For example, in the

75% case, metering is suspended when the ramp queue occupies 75% of the physical ramp

length.

3.4.3.2 Factorial Design

For the experimental factors and their levels discussed earlier, the number of scenarios for a full

factorial design for each algorithm is equal to (5 levels of OD demand) * (2 downstream

bottleneck conditions) * (4 queue override strategies) = 40.  Thus, the number of replications for

the two algorithms would be 2*15*40 = 1200.  Considering the computational requirements, it is
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not practical to use the full factorial design for this evaluation study.  Therefore, we decide to use

a fractional factorial experimental plan.

A half orthogonal fraction is selected for our study.  This is done to reduce the number of

simulations to a feasible number and at the same time retain all the effects of the experimental

factors on the algorithms.  An orthogonal plan is selected because it permits the estimation of all

relevant effects with no correlation and it is also simple to analyze (For detailed information

about experimental design, see reference).  The experimental design chosen for this study is

shown in Table 3.1.

OD Demand : 80%   =1 Queue Override: No Override =1
90%   =2 100%            =2
100% =3 75%              =3
110% =4 62.5%           =4
120% =5 D/S Condition: With D/S Bottleneck (Condition 1)         =1

Without D/S Bottleneck (Condition 2)    =2

Scenario OD Demand D/S Condition Queue Override
1 1 1 1
2 1 2 2
3 1 2 3
4 1 1 4
5 2 2 1
6 2 1 2
7 2 1 3
8 2 2 4
9 3 1 1
10 3 2 2
11 3 2 3
12 3 1 4
13 4 2 1
14 4 1 2
15 4 1 3
16 4 2 4
17 5 1 1
18 5 2 2
19 5 2 3
20 5 1 4

Table 3.1. Fractional Experimental Plan
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3.4.4 Measures of Effectiveness

The measures of effectiveness (MOEs) used to evaluate the performance of different ramp

control algorithms are:

Total System Travel Time This measure considers the total amount of time experienced by all

vehicles in the network.  Thus, it is a good measure to evaluate system performance for the entire

network.

OD Travel Time This MOE considers travel time for vehicles between specific OD pairs.  We

selected OD travel time as one of the MOEs in order to find the distribution of travel time

savings/delays across OD pairs.  This measure can be used to consider the effect of control on

certain groups of vehicles.  For instance, it can consider a group which includes all vehicles that

originate from a metered ramp and can demonstrate the impact of ramp metering on ramp

vehicles only.

In the next chapter, the results of the calibration of input parameters for FLOW and ALINEA

will be presented followed by the results of the comparison study based on the experimental

design.
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Chapter 4

Simulation Results

In Chapter 3, key input parameters for the algorithms ALINEA and FLOW were selected for

calibration in the first stage of our evaluation study.  This was done to use the calibrated

parameters in the second stage.  This chapter will present results for two stage evaluation i.e.

calibration and comparison of the algorithms using fractional experiments.

4.1 Calibration Results

The calibration results are presented in Tables 4.1 through 4.8.  These tables present the percent

travel time savings1 for different scenarios for ramps and mainline vehicles departing from their

origins between minutes 15 and 30.  A positive or a negative sign associated with percent travel

time savings indicates travel time reduction and increase respectively.  Calibration results for

ALINEA and FLOW are presented in the following sections.

4.1.1 Calibration Results for ALINEA

The input parameters of ALINEA selected for calibration are target occupancy and mainline

detector locations.  Results of the calibration of target occupancy are presented first followed by

those of mainline detector locations.  Three traffic demand levels - 80%, 90%, 100% of the base

demand (the year 2004 PM peak OD demand) were used in the calibration of input parameters

for ALINEA.

                                                          
1Throughout this thesis, unless otherwise specified, travel time savings are always reported as savings compared to
the no control case.
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4.1.1.1 Target occupancy

The calibration results for target occupancy are presented in Table 4.1 through Table 4.3.  Table

4.1 presents reduction in travel time for 80% demand.  Clearly, there was no improvement from

ramp metering at this demand level.  The demand seems to be too low to warrant ramp metering.

It should be pointed out that 21% occupancy level was not tried for this demand level, because it

is believed that it would not provide any further insight for such a low level of demand.  It was

concluded that a target occupancy value of 15% caused considerable deterioration in system

performance, and did not represent a potential candidate in further experiments.

Table 4.1. Percent Travel Time Savings for 80% Demand

(Calibration of target occupancy for ALINEA)

Detector Location Occupancy Mainline Ramps Total

23% -0.2 -4.3 -2.6
19% 0.2 -0.2 0.0L1

15% 0.3 -17.7 -10.1
23% 0.5 -1.4 -0.6
19% 0.2 -0.5 -0.2L2

15% 0.5 -15.6 -8.8
23% 0.2 -0.5 -0.3
19% -0.1 -0.2 -0.2L3

15% 1.8 -13.4 -7.0

Table 4.2 illustrates the results for the calibration of target occupancy for 90% demand.  It is

clear that ALINEA performed best for the target occupancy value of 19%.  For this occupancy

level, the percentage travel time savings were the largest.  Similar results are illustrated in Table

4.3 for OD demand level of 100% where 19% target occupancy outperformed other occupancy

levels for all the detector locations.  It should be noted that although system travel time increased

for all occupancy levels at 80% demand, 19% target occupancy caused the minimum additional

delay.  Thus, it is evident that 19% occupancy produced best performances of ALINEA.

Therefore, it was decided to use the target occupancy value of 19% for further simulation

experiments.
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Table 4.2. Percent Travel Time Savings for 90% Demand

(Calibration of target occupancy for ALINEA)

Detector Location Scenario Mainline Ramps Total

15% 2.3 -16.9 -8.6
19% 8.4 -3.4 1.7
21% 6.4 -3.9 0.5L1

23% 7.3 -5.1 0.2
15% 1.8 -18.3 -9.7
19% 9.3 -4.2 1.6
21% 6.1 -3.5 0.6

L2

23% 7.9 -6.2 -0.1
15% 3.0 -16.4 -8.1
19% 8.0 -4.0 1.2
21% 5.2 -2.6 0.8

L3

23% 5.4 -3.9 0.1

Table 4.3. Percent Travel Time Savings for 100% Demand

(Calibration of target occupancy for ALINEA)

Detector Location Scenario Mainline Ramps Total

15% 6.1 -10.3 -3.4
19% 11.8 0.1 5.0
21% 12.4 -0.5 4.9

L1

23% 8.1 -6.1 -0.1
15% 1.2 -16.3 -8.9
19% 11.0 -2.4 3.2
21% 6.1 -11.5 -4.1

L2

23% 5.2 -11.3 -4.4
15% 1.1 -18.2 -10.1
19% 10.3 -3.7 2.2
21% 8.1 -3.8 1.2

L3

23% 6.2 -7.9 -2.0

Furthermore, the trend in the results for 90% and 100% demand clearly demonstrates the

superiority of 19% occupancy.  It was believed that the same trend would continue for higher
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demand levels.  Therefore, calibration of occupancy was not carried out for 110% and 120%

demand.  During the calibration of target occupancy, the downstream condition was bottleneck-

free.  This was done in order to represent an ideal condition for ALINEA that assumes no

downstream bottleneck.

4.1.1.2 Mainline detector location

As described earlier, three mainline detector locations were tested for Ramp LL.  Since there was

no improvement caused by metering for 80% demand case, it was decided not to use this demand

level for this part of the study.  19% target occupancy was used for all experiments.  The

implementation of ALINEA assumes no downstream bottleneck.  However, the situation in the

real world is frequently different.  Therefore, based on our discussions in Chapter 3, we identify

the "best" mainline detector location for two downstream conditions - "Condition 1" and

"Condition 2" .

Table 4.4. Percent Travel Time Savings for 90% Demand (19% Target Occupancy)

(Calibration of mainline detector location for ALINEA)

Detector Location D/S Condition Mainline Ramps Total

L1 Condition 1 7.7 -2.4 2.0
L2 Condition 1 8.4 -1.5 2.8
L3 Condition 1 4.6 -4.5 -0.6
L1 Condition 2 8.4 -3.4 1.7
L2 Condition 2 9.3 -4.2 1.6
L3 Condition 2 8.0 -4.0 1.2

The results for 90% and 100% OD demand are shown in Tables 4.4 and 4.5 respectively.  It can

be seen from the tables that in the absence of downstream bottleneck, it was better to maintain

target occupancy at L1 for both 90% and 100% demand.  Due to the improved downstream

condition, the congestion was primarily due to the merging traffic from Ramp LL (as contrast to

the other case where the congestion was possibly due to the downstream bottleneck) and
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therefore, it made sense to maintain target occupancy at the merge.  However, when there was a

downstream bottleneck, the results suggest that target occupancy should be maintained at L2 for

both demand levels.  The location L3 produced the worst result for both the downstream

conditions.  This was perhaps because of unstable traffic conditions at L3.  Due to rapid queue

formations and dissipations at L3, (as L3 was located very close to the downstream bottleneck)

the measurement at this location was not reliable.  For the comparison study in the second stage,

we decided to use L1 when there is no downstream bottleneck and L2 when there is a

downstream bottleneck.  For the reasons described during calibration of target occupancy, we

decided not to simulate higher demand levels for calibration of detector location.

Table 4.5. Percent Travel Time Savings for 100% Demand (19% Target Occupancy)

(Calibration of mainline detector location for ALINEA)

Detector Location D/S Condition Mainline Ramps Total

L1 Condition 1 6.9 -3.8 0.7
L2 Condition 1 8.8 -1.9 2.6
L3 Condition 1 0.7 -13.8 -7.7
L1 Condition 2 11.8 0.1 5.0
L2 Condition 2 11.0 -2.4 3.2
L3 Condition 2 10.3 -3.7 2.2

4.1.2 Calibration Results for FLOW

Two influence zones (Figure. 3.7) were used for calibrating FLOW.  We obtained conclusive

results regarding the calibration of input parameters for ALINEA with 90% and 100% demand.

But, that was not the case for calibrating the influence zone for FLOW.  Therefore, three levels

of OD demand - 90%, 100% and 110%, and two downstream conditions - bottleneck and no

bottleneck, were simulated.  80% demand level was not used for this case for reasons described

earlier.  Tables 4.6 through 4.8 present the result of the calibration study.
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For all demand levels, it can be seen that influence zone 1 outperformed influence zone 2 when

there was a downstream bottleneck.  This was because the location of the downstream bottleneck

was within the influence zone 1 but outside the area of influence zone 2.  As a result, the

bottleneck was identified and taken into account in metering rate calculation more efficiently by

influence zone 1 than influence zone 2.  It should be mentioned here that we decided to use the

same influence zone for a particular downstream condition for all the demand levels.  We see a

reverse trend in the results when there was no downstream bottleneck (Condition 2).  Although,

influence zone 1 resulted in marginal improvement compared to influence zone 2 at 110%

demand, influence zone 2 considerably outperformed influence zone 1 at 90% and 100% demand

level.  Furthermore, even though travel time increased for all cases when metering was used

compared to the no control case, the travel time increase was significantly smaller for influence

zone 2.  In case of no downstream bottleneck, the critical disturbance was created in the merging

area of Ramp LL which was incorporated in the metering rate calculation more efficiently by the

influence zone 2.  This led us to select influence zone 2 for further use, when there was no

downstream bottleneck.

Table 4.6. Percent Travel Time Savings for 90% Demand

(Calibration of influence zone for FLOW)

Downstream Condition Influence Zone Mainline Ramps Total
Condition 2 Influence Zone 1 3.3 -14.2 -6.6
Condition 2 Influence Zone 2 4.2 -13.4 -5.8
Condition 1 Influence Zone 1 3.6 -7.3 -2.6
Condition 1 Influence Zone 2 3.4 -8.4 -3.3

Table 4.7. Percent Travel Time Savings for 100% Demand

(Calibration of influence zone for FLOW)

Downstream Condition Influence Zone Mainline Ramps Total
Condition 2 Influence Zone 1 -2.1 -24.5 -15.1
Condition 2 Influence Zone 2 5.9 -11.0 -3.9
Condition 1 Influence Zone 1 8.1 -0.7 3.0
Condition 1 Influence Zone 2 3.1 -8.6 -3.7
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Table 4.8. Percent Travel Time Savings for 110% Demand

(Calibration of influence zone for FLOW)

Downstream Condition Influence Zone Mainline Ramps Total
Condition 2 Influence Zone 1 18.8 15.6 16.7
Condition 2 Influence Zone 2 16.3 12.2 15.6
Condition 1 Influence Zone 1 7.4 5.6 6.2
Condition 1 Influence Zone 2 9.3 1.4 4.2

Based on the above findings, it was decided to use influence zone 1 in presence of downstream

bottleneck and influence zone 2 when there was no bottleneck downstream, for the second stage

(comparison of the algorithms using fractional experimental design) of our evaluation study.

The "best" values of the parameters obtained form the calibration results which are used for the

comparative study in the next section are presented in Table 4.9.

Table 4.9. Summary of Calibration Results

Downstream Condition
Algorithm Condition 1 Condition 2
ALINEA L2, 19% L1, 19%
FLOW Influence Zone 1 Influence Zone 2

4.2 Results of the Comparison Study

The comparison of the two algorithms was done with respect to three experimental factors:

traffic demands, downstream conditions, and queue override policies.  The experimental factors

and their levels were discussed in Chapter 3.  In this section, the results from the comparative

study of the algorithms are presented in the form of percentage travel time savings in Tables 10

through 17.  As mentioned in Section 4.1, a positive or a negative sign associated with percent

travel time savings indicates travel time reduction and increase respectively.  The results are

organized in three parts.  The first part describes the effect of the downstream bottleneck whereas
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the second and third parts describe the effects of demand and queue override strategy

respectively.

4.2.1 Effect of Downstream Bottleneck

First we compare the performance of ALINEA and FLOW in the presence and absence of

downstream bottleneck when no queue override was in place (Tables 4.10 and 4.11).  ALINEA

performed better than FLOW when Ramp C was metered and there was no queue override

(Table 4.10).  This is because ALINEA is a local control algorithm and this situation was ideal

for its implementation.  However, FLOW performed better than ALINEA (Table 4.11) when

Ramp C was not metered (except for 80% demand).  Considering that ALINEA does not account

for the downstream bottleneck, this result is self-explanatory.  Also, FLOW has an additional

queue override condition.  As a result, the delay for Ramp LL traffic was much larger for

ALINEA than that for FLOW.

Tables 4.12 and 4.13 represent the performance of the algorithms for both downstream

conditions in case of 100% queue override policy.  With this policy in use and in presence of the

downstream bottleneck (Table 4.12), ALINEA was better at low demand (90%), whereas FLOW

showed more improvements at high demand (110%).  At low demand, the effect of the

downstream bottleneck was not pronounced and therefore local control strategy of ALINEA was

able to maintain the desired level of occupancy on the mainline, without severely penalizing

Ramp LL traffic.  But, similar to our findings from Table 4.10, ALINEA performed better than

FLOW (Table 4.13) in the absence of any downstream bottleneck for 100% queue override

strategy.

ALINEA was better (downstream bottleneck and 75% queue override strategy) at low demand

(90%), whereas FLOW showed more improvement for high demand (110%) (Table 4.14).  This

was due to the same reason that we explained for the 100% queue override strategy case.  Tables

4.15 through 4.17 further substantiate the previous finding that ALINEA was more effective at

moderate/high demand with no bottleneck, whereas, FLOW performed better at high demand
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levels with bottleneck, disregarding the queue override strategies.  The only exception was for

110% demand (no D/S bottleneck and 62.5% queue override), where the performance of

ALINEA and FLOW was comparable.

Table 4.10. Percent Travel Time Savings (No D/S Bottleneck, No Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
90% 10.9 9.7 -38.3 -7.6 -3.7
110% 53.8 69.9 -76.4 -170.7 -6.7

FLOW
90% 14.5 7.4 -34.3 -46.4 -8.3
110% 55.8 63.3 -7.4 -370.2 -16.9

Table 4.11. Percent Travel Time Savings (D/S Bottleneck, No Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
80% 0.1 -1.5 -4.1 -1.0 -1.4
100% 23.6 25.4 -133.4 6.6 -18.5
120% 45.7 35.5 -170.5 5.3 -20.9

FLOW
80% 0.5 -5.1 -18.8 -0.1 -5.0
100% 18.3 1.2 -93.8 3.0 -15.5
120% 43.8 16.2 -77.0 11.6 -0.6

Table 4.12. Percent Travel Time Savings (D/S Bottleneck, 100% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
90% 8.4 8.0 -12.4 3.8 2.8
110% 8.3 13.5 -10.4 4.9 4.3

FLOW
90% 3.6 1.0 -20.5 2.0 -2.6
110% 7.4 15.6 -5.7 8.9 6.2
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Table 4.13. Percent Travel Time Savings (No D/S Bottleneck, 100% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
80% 0.2 0.0 -0.8 0.3 0.0
100% 11.8 14.6 -2.8 -11.4 5.0
120% 14.5 19.8 5.9 -5.5 10.5

FLOW
80% 0.8 -1.1 -22.0 -20.4 -8.5
100% 5.9 4.4 -18.2 -16.5 -3.9
120% 10.9 17.0 1.4 -11.1 6.5

Table 4.14. Percent Travel Time Savings (D/S Bottleneck, 75% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
90% 6.0 5.1 -8.5 1.8 1.8
110% 13.5 23.3 4.7 12.4 13.5

FLOW
90% 3.4 -0.2 -13.2 1.1 -1.4
110% 14.4 26.6 7.1 17.4 16.0

Table 4.15. Percent Travel Time Savings (No D/S Bottleneck, 75% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
80% -0.2 -0.1 -5.7 -1.2 -1.6
100% 9.0 11.2 -2.8 -7.9 3.8
120% 12.0 18.3 5.9 6.7 11.2

FLOW
80% -0.1 -2.2 -16.1 -15.2 -6.8
100% 3.8 4.2 -10.8 -11.1 -2.1
120% 17.3 18.2 5.1 -1.2 11.4
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Table 4.16. Percent Travel Time Savings (D/S Bottleneck, 62.5% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
80% -0.7 -1.5 -3.3 -0.9 -1.5
100% 5.1 5.8 -5.3 0.9 1.9
120% 6.1 9.8 0.7 6.7 5.7

FLOW
80% -0.4 -2.2 -12.0 -0.7 -3.4
100% -2.6 -9.7 -15.2 -7.0 -7.7
120% 8.5 8.5 2.5 8.4 6.9

Table 4.17. Percent Travel Time Savings (No D/S Bottleneck, 62.5% Queue Override)

Demand Mainline Ramp II Ramp LL Ramp C Total

ALINEA
90% 5.8 4.8 -4.5 -4.9 1.5
110% 12.0 21.4 7.6 -5.6 10.8

FLOW
90% 0.2 -2.5 -11.6 -14.9 -5.5
110% 10.6 18.7 7.3 -3.8 9.8

4.2.2 Effect of Demand

It was observed (Tables 4.11, 4.13, 4.15, and 4.16) that at 80% OD demand, ramp metering did

not produce any improvement for any of the experimental scenarios tested in this study.  On the

contrary, traffic condition deteriorated in all these scenarios as a consequence of metering.  At

this level, the demand was too low to warrant any metering.  As a result, vehicles were

unnecessarily held back on the ramps due to metering.  This additional penalty to the ramp

vehicles caused deterioration in system performance.

For both downstream conditions, when the queue override strategy was not in place, it can be

noted (Tables 4.10 and 4.11) that for all levels of demand, metering caused significant
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deterioration in system travel time for both the algorithms.  This deterioration increased with

increasing level of demand.  It can be concluded that the overall system performance at higher

demands is more severely affected by the absence of queue override strategy than at lower

demands.

Except for the hypothetical scenario of “no queue override”, both algorithms produced higher

travel time savings for higher demand levels.  This may suggest testing the algorithms for

demand levels higher than 120%.  However, it should be noted that at 120% demand, the delay

in the entire network is unrealistically large.  Therefore, it was not practical to test demands over

120%.  In case of ALINEA, there was always an improvement (increasing with higher level of

demand) due to ramp metering for all demand levels except 80%.  It suggests that ALINEA is an

efficient ramp control strategy for moderately high demand and above.  On the other hand,

FLOW did not show (Tables 4.12-4.17) any system wide improvement for 90% and 100%.

However, there was a significant improvement in network performance for higher levels (110%

and 120%) of demand.  FLOW is an area wide metering algorithm.  It takes the system wide

bottleneck effects into consideration.  At 110% and 120% demand levels, the entire system was

very congested and as a result, bottleneck could have formed at other locations.  It seems that

FLOW, being a coordinated algorithm, could account for these bottlenecks at unexpected

locations.

4.2.3 Effect of Queue Override Strategy

For both algorithms, when the queue override strategy was not employed, the system was

adversely affected by ramp metering (Tables 4.10 and 4.11).  In no queue override scenario,

ramp vehicles were highly penalized by metering.  This caused significant improvement on the

mainline.  However, it was found that the deterioration in the ramp traffic conditions, by far,

outweighed the improvement on the mainline, causing an increase in total travel time.  Also, it

may not be feasible, both from an operational as well as equity standpoint, to adopt this strategy.

Thus, it is concluded that the queue override strategy should always be implemented.  It should

be mentioned that the no queue override strategy caused significant deterioration in the
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performance of the metered ramps because of very high ramp demands for the CA/T network.  It

may not show similar effects for other networks where on-ramp demands are relatively low.

The other three queue override strategies for ALINEA caused overall improvement in the system

for traffic demand of 90% or higher (Tables 4.12-4.17).  It is interesting to note that for very high

traffic demand (110% and 120%), the 75% queue override strategy performed better than the

100% strategy for both algorithms.  Although such impacts of queue override strategy are not

clear and further investigations are strongly recommended, we propose the following conjecture

to explain the phenomenon.  At very high demand levels, mainline was congested due to its own

demand and therefore, any attempt to maintain an optimal occupancy would not be successful.

Furthermore, in the process of a futile attempt to maintain an optimal occupancy, ramp meters

might have caused more delay to the ramp traffic than the savings to the mainline traffic.  When

100% strategy was used, ramp meters were allowed to operate for a larger duration than the 75%

strategy.  Given that ramp meters were not able to achieve desired flow, a strategy with shorter

duration of operation, i.e. 75%, resulted in a better performance.

Results for 62.5% strategy were similar to the 100% case.  It performed better than no control

and no queue override but worse than 75%.  It seems that the use of 62.5% of the physical ramp

length for queue override might have caused more frequent suspension of metering operations

than necessary.  Therefore, based on our results, the 75% queue override strategy appeared to be

a good compromise.

4.3 Regression Results

While the tabular analysis of the previous sections implicitly demonstrated the effect of

experimental factors on the performance of the algorithms, a regression analysis of the results

explicitly quantifies the impact of different variables.  Also, it is possible to get the interaction

effect of the experimental variables using regression.  Next we present and analyze results from a

linear regression analysis performed on data presented in the last section.
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Percent travel time savings were used as the dependent variable.  Dummy variables were used to

represent different levels of different experimental factors.  We included an intercept term in the

regression equation to represent the base case.  In all the regressions, the base case was selected

as 100% demand, no downstream bottleneck and no queue override.

4.3.1 Regression Analysis of ALINEA

We first ran a regression to check only the main effects of the experimental variables.  There

were eight dummy variables (four for traffic demand, one for downstream condition, and three

for queue override strategy) and an intercept.  The regression equation is –

y = β0+β1X1+β2X2+β3X3+β4X4+β5X5+β6X6+β7X7+β8X8+ε   where,

x1= 1 if 80% Demand x5= 1 if D/S Bottleneck x6= 1 if 62.5% Queue Override
x1= 0 if otherwise x5= 0 if otherwise x6= 0 if otherwise
x2= 1 if 90% Demand x7= 1 if 75% Queue Override
x2= 0 if otherwise x7= 0 if otherwise
x3= 1 if 110% Demand x8= 1 if 100% Queue Override
x3= 0 if otherwise x8= 0 if otherwise
x4= 1 if 120% Demand
x4= 0 if otherwise

Coefficients Standard Errors t Statistics

β0 -11.468 4.453 -2.575
β1 0.830 4.569 0.181
β2 1.529 4.569 0.335
β3 7.443 4.569 1.629
β4 3.570 4.569 0.781
β5 -2.729 2.949 -0.925
β6 13.931 4.086 3.408
β7 15.434 4.129 3.737
β8 14.198 4.129 3.438

Adjusted R Square = 0.461

Table 4.18. Main Effects for ALINEA
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The regression results are presented in Table 4.18.  The intercept term (β0) is statistically

significant as evident from its very high t statistics.  Its value is also very high which indicates

that there is almost 11.5% total travel time increase for the combination of 100% demand, no

downstream bottleneck and no queue override.  The coefficients (β1, β2) corresponding to the

demand levels 80% and 90% are statistically not significant at any reasonable level and their

magnitudes are also low.  This indicates that the performance of ALINEA is not very sensitive to

low demands (80% and 90%).  However, if we look at the magnitude of the coefficient (β3), it

seems that there is a significant improvement in percent travel time savings for 110% demand

compared to the 100% case and its t statistics is also significant. The coefficient (β4)

corresponding to 120% demand is not statistically significant but its magnitude indicates

considerable travel time savings.  Perhaps, this high demand level is causing other effects in the

network, e.g. formation of downstream bottleneck, that could be better explained with the help of

interaction variables.  The downstream bottleneck coefficient (β5) is statistically not significant,

but has intuitive sign.  As ALINEA assumes a bottleneck-free downstream, the presence of a

downstream bottleneck should adversely affect its performance.  All the queue override

coefficients (β6, β7, β8) are statistically significant and their magnitudes are also large, indicating

significant travel time savings compared to the base case.  It can be seen (from Table 4.18 and

Figure 4.1) that the travel time savings are highest for 75% queue override strategy followed by

100% and then 62.5%.  This result is consistent with our earlier findings in the previous section

where a possible explanation for this observation was also provided.  From Table 4.18, it can be

Fig. 4.1. Effect of Queue Override Strategy for ALINEA
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noticed that the values of standard errors for all/some coefficients of different experimental

factors are equal.  This is due to the orthogonal fractional design that was used to capture the

relevant effects of the variables with no correlation.

For our next regression model formulation, we retained all the main effect variables and tried

some interaction variables in our model.  The interaction variables were constructed based on our

judgement and understanding of their impacts.  We tried interactions with the 120% demand

variable to examine the effect of very high demand in combination with a downstream bottleneck

and with no queue override. The 120% demand and downstream bottleneck interaction is

expected to have detrimental effect on ALINEA.  Since, ALINEA can not incorporate the

presence of downstream bottleneck, a combination of higher demand and downstream bottleneck

is expected to magnify the detrimental effect.  The interaction of 120% demand and no queue

override is expected to cause severe deterioration in the system performance.  From our first

regression model and from our analysis in the previous section, it was observed that no queue

override had significant detrimental effect on the system.  So, its combination with very high

level of demand should further worsen the situation.  The other interaction variable tried was

80% demand and downstream bottleneck.  In case of 80% demand alone, the demand was too

low to warrant any metering.  However, a downstream bottleneck may cause propagation of

congestion from downstream which may give rise to a situation when an improvement in system

performance could be obtained by the metering.  But it was found that the coefficient

corresponding to this interaction was statistically not significant and its value was also found to

be low.  Therefore, even in the presence of downstream bottleneck, ramp metering with

ALINEA does not have any significant impact on the system performance in case of low

demand.  This further confirmed our earlier finding about the insensitivity of ALINEA to low

demand levels.

The final regression equation is given by

y = β’ 0+β’ 1X1+β’ 2X2+β’ 3X3 +β’ 4X4+β’ 5X5+β’ 6X6+β’ 7X7+β’ 8X8

+β’ 9 (X4X5)+β’ 10 (X4 (1-X6-X7-X8))+ε

where the variables are defined as before.  The regression results are presented in Table 4.19.
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Coefficients Standard Errors t Statistics

β’ 0 -9.881 3.846 -2.569
β’ 1 0.830 3.846 0.216
β’ 2 1.530 3.846 0.398
β’ 3 7.443 3.846 1.935
β’ 4 9.453 5.088 1.858
β’ 5 -0.769 2.719 -0.283
β’ 6 10.757 3.846 2.797
β’ 7 11.886 3.748 3.171
β’ 8 10.651 3.748 2.841
β’ 9 -3.830 7.928 -0.483
β’ 10 -15.873 8.600 -1.846

Adjusted R Square =  0.62

Table 4.19. Main and Interaction

Effects for ALINEA

The effects of variables X1, X2, X3, X5, X6, X7, X8 on the performance of ALINEA show the same

trend as before as indicated by the sign and magnitude of their coefficients.  It is interesting to

note that, in this model, the inclusion of interaction variables significantly increased the

magnitude and the significance of the coefficient (β’ 4) of 120% demand.  So, it confirmed our a

priori belief that at this high demand level, interactions among demand and other variables (such

as bottleneck) may have significant impact on system performance.  The signs and the

magnitudes of the coefficients (β’ 9 and β’ 10) for the interaction variables also conform to our a

priori expectations.  The results indicate that the combination of 120% demand and downstream

bottleneck considerably worsened the system performance.  The variable 120% demand and no

queue override caused severe system deterioration as expected.  It should be noted that the

increase in travel time due to this interaction is significantly higher than that caused by no queue

override in the base case.  These results are interesting in the sense that 120% demand alone did

not have these significant effects on the performance of ALINEA, but in combination with other

variables it was found to affect the performance of ALINEA considerably.  Also, the adjusted R2

value for this regression model indicates that this model had a better fit than the previous model.
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4.3.2 Regression Analysis of FLOW

We also performed similar regression analysis on the results obtained for FLOW.  For the first

regression model, we used the same main effect variables and intercept, as in ALINEA.  The

base case is also the same.  The regression results for this model are presented in Table 4.20.

Coefficients Standard Errors t Statistics

β0 -16.805 3.934 -4.271
β1 1.353 4.036 0.335
β2 1.846 4.036 0.457
β3 11.078 4.036 2.745
β4 13.342 4.036 3.306
β5 3.062 2.605 1.175
β6 9.253 3.610 2.563
β7 13.269 3.648 3.638
β8 9.400 3.648 2.577

Adjusted R Square: 0.566

Table 4.20. Main Effects for FLOW.

The intercept term (β0) is very significant and its sign and magnitude indicate that the

combination of 100% demand, no downstream bottleneck and no queue override causes

significant deterioration of the performance of the algorithm.  The coefficients (β1 and β2) for

80% and 90% demand are statistically not significant and their magnitudes are also low.  It

suggests that, everything else being same, performance of FLOW is not affected at low demand

(less than 100%).  However, the effect of higher demand levels (110% and 120%) on the

performance of FLOW is very significant with more system-wide improvement at higher

demand, as evident by the coefficients’ (β3 and β4) magnitudes and their statistical significance.

At these demand levels, congestion is likely to be created at many locations.  FLOW, being a

coordinated algorithm, seems to react to them effectively.  This confirms our observation from

the tabular analysis in the previous section.  The magnitude and the statistical significance of

downstream bottleneck coefficient (β5) are not very high.  This is understandable, because the
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presence/absence of a downstream bottleneck should not affect the performance of FLOW (An

ideal coordinated algorithm is supposed to be equally effective for all bottleneck locations within

the influence zone).  The sign of β5 is also intuitive.  It indicates that, unlike ALINEA, there is an

improvement in system performance in the presence of downstream bottleneck because of the

coordinated nature of FLOW.  The statistical significance and the magnitude of all the queue

override coefficients (β6, β7, β8) are very high, indicating that FLOW is also very sensitive to

queue override policy.  Also, its performance is best for 75% queue override similar to ALINEA.

This result is again consistent with our prior findings in Section 4.2.3.

For the next regression models, we kept all the main effect variables and also tried the same

interaction variables for FLOW, as were used for ALINEA.  It is interesting to note that one of

the interaction variables that was found to be very significant in case of ALINEA was

statistically insignificant in this case and its coefficients was also small in magnitude.  The

variable was 120% demand and downstream bottleneck.  At a demand level of 120%, the

network is very congested and the interaction with bottleneck may further deteriorate the system.

However, most of this effect of high congestion is explained by the demand variable alone in

case of FLOW.  Besides, FLOW, being a coordinated algorithm, takes into account the presence

of downstream bottleneck during its metering rate calculation.  As a result, this interaction term

is not significant.  The results for the 80% demand and downstream bottleneck interaction

variable were similar to ALINEA, indicating the insensitivity of FLOW to low demands.

Although, its coefficient was not statistically significant, the interaction term that considerably

affected the performance of FLOW in terms of coefficient value, was 120% demand and no

queue override.  Therefore, it was decided to keep this interaction term in our final regression

model.

So, the new regression equation is –

y = β’’ 0+β’’ 1X1+β’’ 2X2+β’’ 3X3 +β’’ 4X4+β’’ 5X5+β’’ 6X6+β’’ 7X7+β’’ 8X8

+β’’ 9 (X4 (1-X6-X7-X8))+ε

The regression results are presented in Table 4.21.
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Coefficients Standard Errors t Statistics

β’’ 0 -16.769 4.202 -3.991
β’’ 1 1.353 4.233 0.320
β’’ 2 1.846 4.233 0.436
β’’ 3 11.078 4.233 2.617
β’’ 4 13.432 4.677 2.872
β’’ 5 3.092 2.812 1.100
β’’ 6 9.181 4.107 2.236
β’’ 7 13.203 4.094 3.225
β’’ 8 9.334 4.094 2.280
β’’ 9 -4.360 7.952 -0.548

Adjusted R Square = 0.638

Table 4.21. Main and Interaction

Effects for FLOW.

The intercept term and all the main effect variables show the same trend in results as before

(Table 4.20). The sign and magnitude of the coefficient β’’ 9 indicate that the combination of

120% demand and no queue override caused considerable system travel time increase.  But, it is

interesting to note that this deterioration in system performance due to the combined effect is

significantly milder compared to that of ALINEA which is evident from its coefficient

magnitude for this interaction variable (Table 4.19).  This is because of our earlier observation

that FLOW performs better than ALINEA in a very congested situation and the ramps are

severely congested due to the combination of 120% demand and no queue override policy.  The

second model in this case also had a better fit than the first one.

In this chapter, results from the evaluation study were presented in the following order.  First, the

results of the calibration study of the input parameters were illustrated.  Then, the tabular and the

regression analysis of the results of the fractional experiments were presented.   In the next

chapter, we will summarize the research, list the findings and provide scopes for future work.
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Chapter 5

Summary, Findings and Future Research

5.1 Summary

Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway

operations.  A number of algorithms have been developed in recent years to ensure an effective

use of ramp metering for better traffic management.  As the performance of ramp metering

depends on various factors (e.g. traffic volume, downstream traffic conditions, queue override

policy etc), these algorithms should be evaluated over a wide range of traffic conditions to check

their applicability and performance.  In view of the expense of and confounding effects in field

testing, simulation plays an important role in the evaluation of such algorithms.

This research presented the two stage evaluation of two ramp metering algorithms: a local

control algorithm (ALINEA) and a coordinated algorithm (FLOW) using MITSIM laboratory

with respect to a wide variety of traffic conditions.  It demonstrated the usefulness of the proper

calibration of the algorithms, the impact of different traffic variables on the performance of these

algorithms and their complex interactions with ramp metering and the use of a systematic

experimental design and microscopic simulation for ramp metering evaluations.  The evaluations

were performed for the Central Artery/Tunnel network in Boston.  In the first stage, key input

parameters for the algorithms (target occupancy and mainline detector location for ALINEA and

influence zone for FLOW) were identified and calibrated.  The calibrated parameters were then

used for the second stage, where the algorithms were compared using an orthogonal fraction of

experiments.  In the comparative study, the performance of the algorithms with respect to three

traffic variables (traffic volume, downstream traffic conditions, queue override policy) were

evaluated to study their impacts on ramp metering and to derive insights.
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5.2 Findings

A number of conclusions can be drawn based upon this research.  This research was a successful

demonstration of the evaluation of ramp metering algorithms with a microscopic simulation

laboratory.  To the best of our knowledge, this is the first study to use microscopic simulator to

evaluate ramp control algorithms for such a large number of variables.  Findings from this study

can be summarized as follows:

1) Ramp metering significantly increased the system travel time for a large number of scenarios,

particularly at low demand levels.  For ALINEA, the deterioration in system performance

was observed at 80% demand, whereas, for FLOW it was observed at demand levels lower

than 110% indicating the usefulness of FLOW only at very high demands.

2) In almost all the scenarios (except 80% demand) ramp metering understandably improved

mainline traffic conditions for both algorithms.  In addition to these improvements, the

algorithms with properly calibrated input parameters caused no penalties to the ramp traffic

or even decreased the total travel time of ramp traffic for high demands when a queue

override strategy was implemented.

3) When ramp queue was allowed to build up infinitely, substantial increase in ramp travel time

was observed for both the algorithms.  This deterioration increased with increasing level of

demand.  This observation suggests that queue override should always be used.

4) When there was no bottleneck downstream of the metered ramps, the performance of

ALINEA, as expected, was satisfactory.  However, under a downstream bottleneck scenario,

it was found that FLOW outperformed ALINEA because of the coordinated nature of

FLOW.

5) At very high demand levels (110% and 120%), the travel time improvements in FLOW were

higher than those in ALINEA.  At those demand levels, congestion could have occurred at

unexpected locations.  FLOW, being a coordinated algorithm, could account for unspecified

congestion spots.

6) It was found that when ramp queues were allowed to build up to 75% of the physical length

of the on-ramp (before metering was suspended), the algorithms’ performance was better

than that in the scenario in which queue was allowed on the entire length of the on-ramp.
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Although, we do not clearly understand the reasons behind this phenomenon, we believe that

it is happening due to a possible overuse of ramp metering when the mainline is congested

due to a high demand on the mainline itself.

7) Regression was used to analyze the evaluation results.  It helped identify the previously

unexplored impacts of some of the interactions among the experimental factors on the

performance of the algorithms, which was not otherwise possible with a tabular analysis.

5.3 Future Research

Although this research presented a detailed evaluation of ramp control algorithms, further efforts

are needed to understand the impacts of and interactions between different variables that affect

the ramp metering performance.  The scopes for future research include:

• It was found that at lower demand levels, ramp metering significantly deteriorated overall

system performance.  This suggests the need for future research to develop a real-time

procedure to suspend metering operations when they are not warranted.

• One of the significant findings of this research was the improved performance produced by

the scenarios at which 75% of the physical ramp length was used for queue storage compared

to the total length.  A conjecture was provided to explain this phenomenon.  Further studies

are strongly recommended to understand and analyze this impact in order to substantiate this

finding.

• The following findings of this research – improvements in ramp traffic conditions by

metering and the effect of ramp queue storage length may depend on the very high ramp

demands for this test network.  Jha and Bierlaire (1998) has expressed the downstream (of an

on-ramp) mainline throughput as a function of mainline and ramp demand.  They have

shown that for a given mainline demand, if the ramp demand is kept increasing, a point will

be reached for which the mainline throughput will be maximum.  Increasing the ramp

demand above this point will cause traffic to break down due to the disturbance created by

the friction between two (mainline and ramp) traffic streams and mainline throughput will

eventually decrease to a constant value when the network will be saturated.  This suggests
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that the performance of ramp metering may significantly depend on the ramp demands.  But,

the impacts of traffic demand were evaluated in this study by varying the mainline and the

ramp demands simultaneously.  Therefore, future studies should check the effects of different

combinations of mainline and ramp demands on ramp metering.

• The urban road network was not simulated in this study.  As a result, drivers’ diversion

behavior at the on-ramps was not modeled.  For future studies, the diversion strategy should

be modeled to study the impact of route diversion on the performance of ramp metering.

• In case of traffic signals upstream of an on-ramp, the arrival pattern of the vehicles may

depend on the phasing and timing of the signals.  The arrival pattern of vehicles at on-ramps

may have significant impact (Cuneo, 1998) in merging operations.  Thus, evaluation of ramp

metering should account for the impact of upstream traffic signals.

• A field study is desirable to validate the findings of this evaluation study.
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