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gion in California. The feasibility and robustness of the approach are indicated by
promising results from validation tests.
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Chapter 1

Introduction

Physical and economic constraints are causing urban and suburban congestion re-

lief solutions to move away from building more roads. Increasing attention is being

focused on Advanced Traffic Management Systems (ATMS) and Intelligent Trans-

portation Systems (ITS). Emerging Dynamic Traffic Management Systems (DTMS)

attempt to optimize the utilization of existing system capacity by performing two

basic functions. Firstly, such systems provide pre-trip and en-route information to

drivers about anticipated network conditions for the duration of the proposed trip.

In addition, the systems assist traffic control systems to adapt and adjust in real-time

to dynamic traffic conditions.

A desirable feature of such systems is the ability to predict future traffic. Lack of

knowledge about projected traffic conditions could render guidance or control initia-

tives irrelevant or outdated by the time they take effect. Dynamic Traffic Assignment

(DTA) is a critical component of such traffic prediction systems.

A DTA system models complex interactions between supply and demand in a

transportation network. While the supply component captures traffic dynamics through

the movement of packets on the road network according to aggregate traffic relation-

ships, the demand component estimates and predicts point-to-point network demand

and models driver behavior with respect to choice of departure time, mode and route.

The demand simulator also models drivers’ response to information. The DTA sys-

tem is designed to reside within a Traffic Management Center (TMC), and aid the
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operator in locating congestion before it happens. This information will be valu-

able in initiating preventive measures through a wide range of control strategies that

include modifications to signal operations, diversion of traffic, and dissemination of

route guidance information.

1.1 Motivation for Demand Calibration

Real-time applications of a Dynamic Traffic Assignment system typically utilize inputs

from a traffic surveillance system to estimate and predict O-D flows (Figure 1-1).

These predicted flows are then used as a basis to generate route guidance that may

be disseminated to equipped drivers as traveler information. It is important to note

that driver reaction to this guidance could merely cause spatial and temporal shifts

in the predicted congestion, thereby invalidating the very prediction that influenced

the guidance. The credibility of such systems therefore relies heavily on their ability

to accurately estimate and predict traffic conditions under congested regimes, and to

generate consistent route guidance. Consistency indicates that the predicted network

state (in terms of congestion and travel times) matches that actually experienced by

the drivers on the network.

Driver behavior and the underlying trip patterns are typically characteristic of

the demographical and geographic section under study. Decisions regarding choice of

route or departure time can depend on a host of observable variables (such as socio-

economic characteristics, route attributes and value of time) and latent variables (like

network knowledge and “aggressiveness”) that capture local conditions. The origin-

destination flow patterns might be a function of the spatial distribution of residential

and commercial zones. Accurate estimation and prediction of O-D flows and driver

behavior therefore play key roles in the evaluation of driver response to guidance in

the context of real-time traffic management. In order to ensure that the system reacts

and behaves in a realistic manner when deployed at site, it is critical to calibrate these

models against field data collected from the site of actual deployment. The calibration

of the O-D estimation/prediction and route choice models is therefore critical to

16



Surveillance System
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Generation
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Traffic Conditions
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Figure 1-1: Dynamic Traffic Assignment
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establishing the credibility of the guidance system. Further, the close linkage between

the route choice model and the O-D estimation and prediction model necessitates

a joint calibration approach that will yield a consistent set of parameters across

both models. This thesis focuses on the joint calibration of the demand simulator,

comprised of the driver route choice and O-D estimation and prediction models.

1.2 Problem Definition and Thesis Objective

Figure 1-2 summarizes the input and output requirements of the calibration process.

For the present, the calibration process can be visualized as a black box that uses

available O-D flow estimates and several days of surveillance data as inputs. The

outputs from the black box are the parameters in the route choice and O-D estimation

and prediction models.

Offline Calibration
a priori O-D
Flows (From

Surveys/Models)

'N' days of sensor
data

Route Choice Parameters
Time-Varying Historical O-D Flows

Error Covariance Matrices
Autoregressive Factors

Figure 1-2: The Calibration Problem

Initial O-D flow estimates may be obtained through surveys, planning studies,

or demand forecasting models. The quality of these estimates can vary significantly

based on the methods used to generate them. Often, a good set of initial flow es-

timates is not available, and has to be extracted from the surveillance data. The

real-time data collected by the surveillance system can include time-dependent traf-

fic counts, occupancies (a proxy for densities), speeds and queue lengths on links

equipped with sensors. While the counts are typically used by the O-D estimation
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and prediction model, the speeds, occupancies and queue lengths will be used to en-

sure the accuracy of the supply-side model parameters that govern the movement of

vehicles on the network.

The parameters in the route choice model are theoretically estimated from de-

tailed disaggregate data obtained through travel surveys. Ideally, such surveys yield

data pertaining to a host of attributes and socio-economic characteristics that might

help explain individual route choice decisions. However, such a rich data set is seldom

available. In most cases, we need to identify alternative methods of calibrating the

route choice model parameters from available aggregate data. This data is often a

manifestation of individual discrete choice decisions. The calibration approach should

be able to accurately reproduce the observed aggregate data by adjusting the parame-

ters in the individual driver behavior models. In this thesis, we propose a calibration

methodology to jointly calibrate the parameters in the O-D estimation/prediction

and route choice models using aggregate sensor data.

Each additional day of data contains valuable information about O-D flow patterns

and driver behavior. The calibration framework takes advantage of the availability

of several days of sensor data to generate the best parameter estimates. Various

alternative approaches to using the available data are discussed. Demand patterns

might also vary by day of the week, weather conditions, special events and incidents.

Given data collected over an extended period of time, we would like to generate

stratified O-D flow databases that cover such a wide range of demand conditions.

Finally, recalling the real-time nature of the DTA system, we require a convenient

means of updating the historical database as each additional day of observations are

recorded.

1.3 Literature Review

Literature on the calibration of DTA systems is limited, and often relates to simple

networks under uncongested traffic flow regimes. He, Miaou, Ran and Lan (1999)

attempt to list the major sources of error in a DTA system, and lay out frame-
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works for the offline and online calibration of the system. The proposed frameworks

treat the calibration of the dynamic travel time, route choice, flow propagation and

O-D estimation models sequentially. The authors consider a modified Greenshields

model to explain dynamic travel time variations on freeway links, and split the travel

times on arterials into a cruise time component and a delay component1. The sug-

gested calibration approach aims to minimize the “distance” between the analytically

computed travel times and those measured by detectors. Further, the maximum like-

lihood estimation procedure suggested for the calibration of the route choice model

relies heavily on the availability of adequate survey or detector data about travelers’

route choices. This assumption would fail in several real cases, where only aggre-

gate network performance measures (such as link counts) are available. A procedure

similar to that adopted for the dynamic travel time models is applied for the flow

propagation model, where link inflows and outflows are matched against detector

data. While such a detailed level of model calibration might be preferred, the lack of

such a rich disaggregate detector data set would often render the approach infeasible.

In addition, the paper does not include the O-D estimation module, which constitutes

a critical part of the demand simulator within a DTA system.

In a subsequent paper, He and Ran (2000) suggest a calibration and validation

approach that focuses on the route choice and flow propagation components of a DTA

system. This paper again assumes prior knowledge of time-dependent O-D matrices,

and further simplifies the demand process by imposing the temporal independence of

O-D flows between all O-D pairs. Also, the assumption of discrete data availability to

allow a Maximum Likelihood Estimation of the route choice model is still a restriction

on the practical applicability of the proposed approach. The two approaches reviewed

thus far fail to address the overall problem of jointly calibrating the O-D estimation

and route choice models.

An approach by Hawas (2000) uses an ad hoc ranking of DTA system components

to determine the order in which these components must be calibrated. However, a

linear relationship between components is inherently assumed, and cyclic data ex-

1Delays on arterial links are attributed to queuing at intersections.
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change through feedback between components (as in the demand-supply interaction

within a DTA system) is ignored. Further, the paper uses the components of a traffic

simulator, and not a DTA system, as a case study.

The problem of O-D estimation itself has been the focus of several theoretical

studies. Cascetta (1984) and Cascetta, Inaudi and Marquis (1993) extend a GLS-

based static O-D estimation approach to the dynamic context2. The tests, however,

were performed on a linear network with no route choice. Also, no guidelines were

provided for estimating the error covariance matrices that are critical estimation

inputs.

Subsequent work by Ashok (1996), Ashok and Ben-Akiva (1993) and Ashok and

Ben-Akiva (2000a) outlines a real-time O-D estimation and prediction framework

based on a Kalman Filtering algorithm working with deviations of O-D flows from

their historical values3. The approach is flexible so as to allow the explicit handling

of measurement errors and stochasticity in the assignment matrices. However, the

theoretical development is tested on small scale networks with minimal or no route

choice. Moreover, the initialization of the Kalman Filter requires historical flows,

error covariances and autoregressive matrices, that are unknown at the beginning of

the calibration process. While some approaches to estimating these quantities are

suggested, they have neither been tested on real-sized networks, nor studied in detail.

Van der Zijpp and Lindveld (2001) present a framework for O-D estimation that

attempts to capture the phenomenon of peak-spreading in congested traffic networks

by integrating both route and departure time choice into the estimation process. The

core of this approach involves the estimation of a dynamic O-D matrix, whose cells

are also associated with preferred departure times. A switch from the preferred de-

parture time is associated with a certain disutility which is dictated by a schedule

delay function. The estimation problem is modeled as a Space-Time Extended Net-

2A detailed review of dynamic O-D estimation using Generalized Least Squares (GLS) is presented
in Section 2.4.

3Deviations attempt to capture the wealth of information about spatial and temporal relation-
ships between O-D flows contained in the historical estimates. The historical database would be
synthesized from several days of data

21



work (STEN) built by replicating the physical network as many times as there are

departure time periods. The replicated virtual origin nodes are duplicated further to

represent the preferred departure interval, with links between the two sets of extra

nodes depicting the realized departure intervals. The authors outline an iterative so-

lution scheme based on the Frank-Wolfe user optimal assignment algorithm to identify

a STEN that is consistent with the observed link flows. In a separate discussion, the

authors mention some of the limitations and drawbacks of the methodology. Firstly,

travel delays on links are approximated by a function of link inflows alone:

ta(qa) = t0a

(

1 + a

(

qa
qcap

)β
)

(1.1)

where ta is the delay on link a, t0a is the delay under free-flow conditions, qa is the inflow

for link a and qcap is the capacity of the link. While this function does not explicitly

capture congestion effects due to queuing, the authors suggest that a bottleneck model

might be approximated by employing a large value for the constant β. However,

the Frank-Wolfe algorithm was found to be incapable of handling the sensitive link

delay functions resulting from large values of β. Other experimental observations

point to the possibility of the iterative algorithm either cycling indefinitely between

equivalent STENs, or terminating at a local minimum or saddle point. In addition,

the numerical tests were performed on a small artificial network with assumed “true”

O-D flow, preferred departure time and scheduled delay data. The route choice model

was also assumed to be known.

Hazelton (2000) presents a Bayesian approach to the static O-D estimation prob-

lem. Assuming Poisson-distributed O-D flows, the paper outlines a Maximum Likeli-

hood Estimation procedure to estimate the unknown O-D flows from several days of

link observations. The full likelihood expression is also simplified to yield a tractable

estimation method that incorporates measurement errors in the observed link counts.

The paper, however, suffers from several limitations. Firstly, the focus remains on

static O-D estimation, and is therefore not directly suited to DTA scenarios. Sec-
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ondly, the theoretical underpinnings are based on uncongested network conditions,

which would be unrealistic in most real-time DTA applications. Lastly, the numerical

tests described in the paper were performed on a small and simple grid network with

6 nodes and 14 directed links, along with synthetic data based on a known matrix of

true O-D flows.

In a recent paper, Cascetta and Postorino (2001) evaluate different iterative solu-

tion algorithms for the fixed-point O-D estimation problem on congested networks.

However, the paper does not focus on model calibration, and its scope is limited to

static O-D estimation. As the paper provides key insights into the solution of fixed-

point problems, we now review the concepts presented therein. Cascetta et al state

the fixed-point formulation of the O-D estimation problem as:

f∗ = f(t∗) (1.2)

t∗ = argmin[F1(x, t̄) + F2(H
∗(c(f∗))x, f̄)] (1.3)

The function f(.) in Equation 1.2 maps estimated O-D flows t∗ to estimated link

flows f∗. Equation 1.3 is the solution step that generates t∗ by optimizing over

the variable x, with F1(.) and F2(.) forming two terms in the objective function.

While F1(.) measures the distance between the O-D flow x and the target flow t̄, the

function F2(.) measures the distance between the actual vehicle counts f̄ measured

at sensors, and the link flows resulting from the assignment of the demand vector x.

In addition, the function H∗(.) assigns the O-D vector x first to paths flows (using

link cost function c(.)) and then to link flows.

The paper briefly looks at existence and uniqueness conditions for the composed

fixed point problem outlined above. While these conditions are in general difficult

to analyze mathematically, the authors state sufficient conditions that require both

F1(.) and F2(.) to be continuous and convex, while at least one of them is strictly

convex. Three iterative algorithms were tested for accuracy and speed of convergence.

23



Functional Iteration provides a simple iterative framework where the latest O-D flow

estimates are fed back into the assignment model for the next iteration. The Method

of Successive Averages, or MSA, is an alternative scheme that assigns weights to the

results from each iteration:

tk =
1

k
xk +

k − 1

k
tk−1 (1.4)

where the “filtered” flows tk are obtained by weighting the latest estimates xk, and

the filtered flows from the previous iteration tk−1. The iteration counter k is used to

generate the weights. While this method has the advantage of utilizing the estimates

from all iterations, a potential drawback is that newer estimates are allotted lower

weights. Consequently, “bad” initial estimates might be weighted higher, thereby low-

ering the speed of convergence. The Method of Successive Averages with Decreased

Reinitializations, or MSADR, is a modification of the MSA algorithm that reinitial-

izes the algorithm’s “memory” with a frequency that decreases with the number of

iterations. This acceleration step causes the algorithm to skip intermediate values

and focus more on the later iterations that are closer to the solution. While the

MSADR and MSA algorithms produce the same sequence of solutions in the limit,

the convergence of the MSA (and hence of the MSADR) is difficult to establish.

These algorithms are therefore suggested as heuristic approaches to solve the fixed

point problem of interest. The authors mention the Baillon Algorithm as a fourth

approach, but restrict themselves to the first three schemes for numerical testing.

The paper concludes that all three algorithms tested converged to the same fixed

point even under stringent stopping tests. Functional iteration and MSADR out-

performed MSA on speed of convergence. While these findings are indicative of the

suitability of iterative schemes in solving fixed-point problems, they suffer from sev-

eral limitations:

• The tests were based on a small and simple grid network.

• The study used synthetic surveillance data. O-D flow and sensor count mea-

surements were generated artificially from known values.
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• The Logit route choice model used a fixed travel time coefficient.

• The model estimated static O-D flows. While these might suffice for certain

limited planning applications, they would be inadequate in a real-time DTMS

scenario.

Conclusion

While there has been a profusion of theoretical works on DTA systems, the literature

indicates that little work has been done on the calibration of their model components.

Much of the results have been based on small and simple uncongested networks with

little or no route choice, using synthetic data generated by adding a random term

to some assumed “true” values. A few studies involving congested networks have

either focused only on static O-D estimation, or have used simple networks consisting

entirely of freeways. Above all, there seem to have been no previous attempts at

jointly calibrating the parameters of the route choice model and the O-D estimation

and prediction model. This thesis presents a framework for the joint calibration of

the route choice and O-D estimation and prediction models within a DTA system.

The proposed methodology is then applied to a case study from a large-sized network

comprising of both freeways and arterials. The estimation and prediction abilities of

the calibrated system are validated against real sensor data obtained from the field.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we undertake a detailed explanation

of the input and output requirements of the demand calibration process for a DTA

system, and present the proposed calibration methodology. Chapter 3 explores issues

pertaining to setting up a historical database of O-D flows and other inputs to the

demand simulator. In chapter 4, we introduce DynaMIT, a state-of-the-art DTA-

based prediction and guidance system, and DynaMIT-P, an application of DTA for

planning. This chapter briefly describes the features, models and applications of the
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DynaMIT and DynaMIT-P systems that form a basis for our case studies. Chapter 5

describes case studies that demonstrate the feasibility and robustness of the proposed

calibration methodology when applied to large-scale networks, and presents valida-

tion results that evaluate the estimation and prediction capabilities of the calibrated

DynaMIT system. We conclude by stating some of the contributions of this research

in Chapter 6, and outline directions for future research.
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Chapter 2

Calibration Methodology

The dynamic traffic assignment system should possess the ability to accurately repli-

cate traffic conditions as observed by the surveillance system. The primary objective

of calibration is therefore to identify DTA model parameters and inputs that match

the offline surveillance data available. In this chapter, we cast the calibration problem

in an optimization framework, and discuss some important properties characterizing

the problem and its solution. We later present an iterative approach to the joint

calibration of the demand models within a DTA system.

Figure 2-1 summarizes the overall framework for the calibration of a DTA sys-

tem. We first identify a set of parameters that requires calibration, and assign initial

values to the same. The next step involves running the DTA system with the chosen

parameters to generate simulated measures of system performance. This output is

compared against the observed data obtained from the surveillance system, to eval-

uate an objective function. Our parameter estimates are now modified, and a new

optimization problem is solved. This process is continued iteratively until a predefined

set of convergence criteria is satisfied.

The calibration framework can be viewed as a large optimization problem, with

the final objective of matching various simulated and observed quantities:

Minimize
β, γ, xp

∥

∥

∥ simulated quantity− observed quantity

∥

∥

∥
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The minimization can be over a combination of several network performance measures

such as flows, speeds or densities. The simulated quantities are obtained through the

following steps:

x
h

= argmin[F
1
(x

h
,x

a

h
) + F

2
(

h
∑

p=h−p′

a
p

h
xp ,yh)] (2.1)

a
p

h
= g(xp , β, γ, tt

eq
l ) (2.2)

tteql = h(β, γ,xp) (2.3)

where β represents the route choice parameters, and γ the parameters in the supply

simulator. Equation (2.1) forms the basic O-D estimation step in the calibration

framework, and is itself an optimization problem with a two-part objective function.

The function F
1
measures the distance of the estimated flows x

h
from their target

values x
a

h
, while F

2
measures the distance of the measured counts y

h
from their

simulated values. The assignment matrices a
p

h
required by the O-D estimation module

are outputs of the dynamic network loading model, and are functions of the as yet

unknown O-D flows, the equilibrium travel times on each link (tteql ), the route choice

parameters β and supply-side parameters γ (Equation (2.2)). Finally, the equilibrium

travel times are themselves a function of the O-D flows, route choice parameters and

supply-side parameters (Equation (2.3)). Equations (2.1) to (2.3) therefore capture

the fixed-point nature of the calibration problem.

We now take a deeper look at the demand calibration process. Let us begin with

the O-D estimation module, which forms an important part of the demand simulator

within any DTA system. This module attempts to estimate point-to-point flows in

the network based on link-specific traffic counts measured by the surveillance system.

A key input for O-D estimation is the assignment matrix, the dimensions of which

depend on the number of independent link sensors in the network and the number

of O-D pairs to be estimated. Each element in the assignment matrix, therefore,

represents the fraction of an O-D flow associated with a particular link, and is derived

by simulating path flows in a dynamic network loading module. Path flows in turn
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are obtained through a route choice model combined with knowledge of the O-D flows

themselves, which we set out to estimate (Figure 2-2). The solution to the calibration

problem is therefore a fixed point between the route choice fractions, the assignment

fractions and the O-D flows, and necessitates an iterative solution approach.

2.1 Iterative Approach to Demand Calibration

The proposed iterative approach is illustrated in Figure 2-3. We use the route choice

model as the starting point in our iterative framework. Ideally, the parameters in

the route choice model should be estimated separately using a rich travel survey

data set. Such a survey would typically contain information regarding individual

drivers’ socio-economic characteristics and preferences, and attributes associated with

the alternatives1. In the absence of such disaggregate data, we need a method of

estimating these parameters from aggregate data such as vehicle counts at sensors.

The first step is to assume a set of initial values for the parameters in the route choice

model. In order to generate an assignment matrix, we need additional information

about path travel times and the O-D flows themselves. For a large network, the effort

required to collect and store time-dependent path travel times throughout the period

of interest can be prohibitive. We therefore simulate the assignment fractions using

an initial seed O-D matrix. The route choice model uses the latest available travel

time estimates to compute path choice probabilities2. Driver route choices are then

simulated to generate time-dependent assignment matrices. The assignment matrix

and corresponding O-D flows are passed on to the O-D estimation module, the output

of which is a new set of O-D flows.

This process raises two issues relating to convergence. The first issue deals with

the assignment matrix. The newly estimated O-D flows (generated by the O-

D estimation module) can be re-assigned to the network, using the original route

1The alternatives in this case being the different possible combinations of routes and departure
times.

2In the absence of initial travel time estimates, we might start the process with free-flow travel
times.
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choice model. The resulting assignment matrix is very likely to be different from

the matrix used as input to the O-D estimation module. It is therefore essential

to ensure consistency by iterating locally on the assignment matrix. A smoothing

algorithm such as a weighted average3 (of the latest matrix estimate with estimates

from previous iterations) can be used as input for the subsequent iteration. A suitable

termination rule should be determined in order to provide a stopping criterion. The

second issue relates to the route choice parameters. The estimated O-D flows

obtained thus far were based on the initial values assumed for the parameters in the

route choice model. In the absence of disaggregate data, we are forced to employ

aggregate approaches to estimate these parameters. Observing that link flows are

indirect manifestations of driver route choice decisions, we iterate on the route choice

model parameters until we are able to replicate fairly well the link flows observed at

the sensors.

2.1.1 Iterative schemes

Cascetta and Postorino (2001) present three different algorithms4 to iteratively solve

the fixed point problem associated with static O-D estimation in congested networks.

Their tests indicate that functional iterations and MSADR perform better than the

MSA in terms of speed of convergence. No significant difference was noticed in the

final solutions obtained. It is hard, however, to extend the findings to a larger dynamic

problem. The suitability of the various algorithms will have to be evaluated through

numerical testing.

The general structure of the iterative solutions consists of three basic steps:

• Re-assign the current estimated O-D flows to obtain a new assignment matrix.

• Compute a new assignment matrix using a smoothing algorithm.

• Use the smoothed assignment matrix to estimate new O-D flows.

3Typically, newer estimates are assigned higher weights than estimates from previous iterations
4Functional Iteration, Method of Successive Averages (MSA) and MSA with decreasing reinitial-

izations (MSADR)
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The steps are repeated until a suitable set of termination rules is satisfied. The

following sections provide a brief overview of the three iterative schemes.

Functional iteration represents the simplest form of the generic iterative algo-

rithm outlined previously, with the latest assignment matrix estimate being used for

the next iteration. Convergence is measured by the difference between successive O-D

flow estimates across all O-D pairs. A simple modification in the above procedure can

allow for the averaging of successive O-D flow estimates while computing the current

estimate. Yet another algorithm can be visualized by averaging successive assignment

matrices. However, this approach would involve the explicit evaluation and storage

of several assignment matrices, and can be a burden on computational efficiency and

storage.

The Method of Successive Averages (MSA) provides a way of assigning

weights to successive O-D flow estimates, thereby speeding up the convergence of the

iterative solution:

xk
∗

=
1

k
xk +

k − 1

k
xk−1 (2.4)

where xk
∗

is the new flow vector after iteration k, xk is the estimate generated in

iteration k and xk−1 is the estimate from the previous iteration. Such a weighted

approach is often known as smoothing, and has been found to significantly improve

convergence properties. It should be noted that the weight assigned to a new esti-

mated flow vector decreases as the iterations progress towards a solution, implying

that initial solutions are weighed more heavily than those closer to the true solution.

Consequently, the algorithm can slow down dramatically in the final iterations before

convergence. This drawback of the classical MSA algorithm is remedied in part by its

variant, the MSA with Decreasing Reinitializations (MSADR), which erases

the memory of the algorithm at predefined intervals. The frequency with which the

memory is reinitialized decreases as the algorithm gets closer to the true solution it

seeks. The effect of such an approach would be to skip intermediate solution steps,

thereby ensuring faster convergence.
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2.2 The Route Choice Model

The choice of route and departure time are important aspects in the modeling of

incidents, response to information and the evaluation of guidance strategies. The

route choice model captures key aspects of driver behavior in the context of dynamic

traffic assignment, and attempts to replicate driver choice decisions using a set of

explanatory variables. These variables can include route attributes such as travel

times and cost components, as well as driver characteristics such as income level.

Route choices can be modeled at two levels. Pre-trip route choices are made

before the driver embarks on the trip. At this stage, the driver has access to traffic

information and guidance from a variety of sources such as radio traffic bulletins, the

Internet, or a dedicated traveler information provider. The important aspect to note

here is that drivers have the ability to change their departure time depending on the

current information. Hence apart from changing the chosen route, the driver can also

decide to leave sooner or later, in a bid to beat the rush. Other alternatives that

are feasible at this point are a change of mode (say to public transit options), or to

cancel the trip itself. Once the driver has embarked on the trip, however, several

of the alternatives discussed above become unavailable. For example, drivers can no

longer change their departure times. We now model en-route driver decisions that

capture the phenomenon of path switching in response to real-time information. Such

information could be available, for example, through in-vehicle units (for equipped

drivers) or through Variable Message Signs (VMS) installed at specific locations on

the network.

The route choice model operates on each driver’s choice set. This set contains

all feasible combinations of departure times and routes. The choice probabilities for

all alternatives within the choice set are evaluated using a discrete choice model5. It

further simulates this choice through random draws, and determines the chosen path.

The aggregation of all such chosen paths will result in path flows by O-D pair, which

are used by the Dynamic Network Loading model discussed next.

5A detailed discussion of route choice model parameters is presented in Section 4.4.1.
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2.3 The Dynamic Network Loading Model

The path flows output by the route choice model are used by the dynamic network

loading (DNL) model to create time-dependent assignment matrices. This step in-

volves the assigning of path flows to the network, and counting the vehicles as they

cross traffic sensors. The departure times of the counted vehicles are also tracked, as

the matrices a
p

h
depend on the current interval h as well as the departure interval p.

Various analytical approaches with different underlying assumptions have been

suggested for the DNL problem. Cascetta and Cantarella (1991a) approximate the

behavior of all vehicles on path k in time interval h to be part of the same packet.

In a modified continuous packet approach, the vehicles in a packet are assumed to

be continuously spread between the “head” and the “tail” of the packet. Cascetta

and Cantarella (1991b) suggest a further variation that allows packets to “contract”

or “expand”, to help account for differing average speeds. All these approaches yield

very complex expressions for the assignment matrix fractions, and introduce a high

degree of non-linearity in the objective functions. Simulation provides us with a

more tractable alternative. The path and departure time records for each vehicle

can be tracked in a microscopic traffic simulator and later processed to obtain time-

dependent assignment matrices. A more aggregate mesoscopic traffic simulator can

also be used to achieve the same result.

2.4 The O-D Estimation Module

The O-D matrix estimation problem involves the identification of a set of O-D flows

that, when assigned to the transportation network, results in link flows that closely

match observed flows. The input data can be obtained from various sources, derived

from different processes and characterized by different error component structures.

We therefore need a unified approach that extracts the maximum information out of

the available data in a statistically efficient manner.
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2.4.1 Inputs and Outputs

Figure 2-4 illustrates the basic inputs and outputs for an O-D estimation model. This

model obtains initial O-D flow estimates from a historical database (the generation

of this database is a part of our calibration exercise). In addition, the module gets

a vector of link counts from the surveillance system6. In an offline application, such

as calibration, link counts for the entire analysis period would be available to the

model. However, in a real-time context, at the end of each interval h, only the counts

measured during that interval will be reported by the surveillance system. Finally,

the model either gets, or computes, a set of assignment matrices7. By comparing

the link counts measured by the sensors with the counts obtained by assigning the

estimated or a priori O-D flows to the network, the O-D estimation model updates

these estimates. While the offline estimation can attempt to estimate flows for all

T intervals simultaneously, the real-time estimation necessarily proceeds sequentially

through the intervals.

2.4.2 Preliminary Definitions

We begin by introducing some basic definitions that will be followed henceforth in this

thesis. Consider T , the analysis period of interest, to be divided into T subintervals

1 . . . T of equal length. The network is represented by a directed graph that includes

a set N of consecutively numbered nodes and a set of numbered links L. The network
is assumed to have n

LK
links, of which n

l
are equipped with sensors. There are n

OD

O-D pairs of interest.

We denote by x
rh

the number of vehicles between the rth O-D pair that departed

from their origin in time interval h, and by x
H

rh
the corresponding best historical

estimate. A historical estimate typically is the result of estimation conducted during

previous days. Further, let the corresponding (n
OD
∗ 1) vector of all O-D flows and

their corresponding historical estimates be denoted as x
h
and x

H

h
respectively. Let

6More generally, the inputs are a set of direct and indirect measurements, as described shortly.
7As mentioned in Chapter 1, an assignment matrix maps origin-destination flows into link flows.
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x̂
h
represent the estimate of x

h
. Finally, denote by y

lh
the observed traffic counts at

sensor l during time interval h, and by y
h
the corresponding (n

l
∗ 1) vector.

Traffic measurements fall into two broad categories:

• Indirect measurements

• Direct measurements

Indirect measurements contain information about the quantities we wish to

estimate, but are not direct observations of the quantities themselves. Our objective

is to estimate O-D flows. Observations of link counts at traffic sensors, for example,

would contain information about the O-D flows that caused them. In fact, link counts

constitute the most common type of indirect measurements. Link flows can be related

to the O-D flows through a set of assignment matrices:

y
h
=

h
∑

p=h−p′

a
p

h
xp + v

h
(2.5)

where y
h
are the link counts observed in time interval h, xp is a matrix of O-D flows

departing in interval p, a
p

h
is an assignment matrix that relates flows departing in

interval p to counts observed in interval h, and v
h
is a random error term. p′ is the

maximum number of intervals required by a vehicle to clear the network. Let the

variance-covariance matrix of v
h
be denoted as V

h
.

The indirect measurements represent n
l
equations in n

OD
unknown variables.

Typically, n
OD

is much larger than n
l
. In order to be able to estimate the n

OD

unknown flows, we supplement the indirect measurements with direct measurement

“observations”.

Direct measurements provide preliminary estimates of the unknown O-D flows.

We therefore express a direct measurement as follows:

x
a

h
= x

h
+ u

h
(2.6)
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where x
a

h
is the starting estimate of matrix x

h
, and u

h
is a random error term. We

now have a total of (n
l
+ n

OD
) equations to solve for the n

OD
unknown flows. Let

the variance-covariance matrix of u
h
be denoted as W

h
.

2.4.3 Deviations

It should be noted that Equation (2.6) only provides a means of including additional

observations on the O-D flows. The a priori estimates x
a

h
can have a variety of

functional forms (Ashok (1996)). Assume that we possess a historical database of

O-D flows synthesized from several days of data. Such a database would contain

valuable information about the spatial and temporal relationships between O-D flows.

In order to accommodate this structural information into the new estimates, we work

with deviations of current O-D flows from their historical values ( Figure 2-5 ):

x
a

h
= x

H

h
+

h−1
∑

p=h−q′

f
p

h
(xp − x

H

p
) (2.7)

where f
p

h
is a matrix that relates deviations in time interval p to the current time

interval h. Stated as deviations,

∂x
a

h
=

h−1
∑

p=h−q′

f
p

h
∂xp (2.8)

The measurement equations get modified as:

y
h
−

h
∑

p=h−p′

a
p

h
x
H

p
=

h
∑

p=h−p′

a
p

h
(xp − x

H

p
) + v

h
(2.9)

y
h
− y

H

h
=

h
∑

p=h−p′

a
p

h
∂xp + v

h
(2.10)
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where y
H

h
=
∑h

p=h−p′ a
p

h
x
H

p
. We are now ready to synthesize O-D flow estimates by

combining the information contained in the direct and indirect measurements. The

following sections review two approaches to O-D estimation from the literature. The

first is a generalized least squares approach, while the second uses a Kalman Filtering

technique.

2.4.4 Generalized Least Squares (GLS) Approach

The classical GLS estimator minimizes the “distance” between the estimated O-D

flows and the a priori flows, while simultaneously ensuring that the measured link

flows are as close as possible to the newly assigned link flows (the link flows ob-

tained by assigning the newly estimated O-D flows to the network). The indirect

measurements are first adjusted for link flow contributions from previous intervals:

y
h
−

h−1
∑

p=h−p′

a
p

h
x̂p = a

h

h
x
h
+ v

h
(2.11)

The direct measurement equations are maintained as is:

x
a

h
= x

h
+ u

h
(2.12)

The combined system of indirect and direct measurements can be expressed in

matrix algebra as:





y
h
−∑h−1

p=h−p′ a
p

h
x̂p

x
a

h



 =





a
p

h

In
OD



x
h
+





v
h

u
h





or
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Y
h
= A

h
x
h
+ ε

h
(2.13)

The error covariances V
h
and W

h
associated with the indirect and direct measure-

ments can be represented by a single covariance matrix:

Ω
h
=





V
h

0

0 W
h





The above structure for Ω
h
assumes that the measurement errors associated with

the indirect and direct measurements are not correlated. This would be a reasonable

assumption in most cases, as the two types of measurements are obtained from two

entirely different measurement processes. The flow estimates are then given by:

x̂
h
= argmin[(Y

h
−A

h
x
h
)′Ω

−1

h
(Y

h
−A

h
x
h
)] (2.14)

Ω
−1

h
can be interpreted as a weighting matrix. The weights for each measurement

(indirect or direct) reflect our confidence in the measurement process. For example,

we might discount the information contained in the a priori O-D flows because

they were derived from a static planning study. The corresponding high variance in

the direct measurement errors would manifest themselves as a low weight. On the

other hand, we also capture the effect of measurement errors in the counts recorded

by traffic sensors. A good sensor would therefore be associated with a lower error

variance, thereby implying a higher weight. The variability of the errors is thus

captured through the covariance matrix Ω
h
.

The estimator we have just described is a sequential estimator, in that it treats the

T time intervals one at a time. In other words, the estimates x̂
h−1

, x̂
h−2

, . . . obtained

for past intervals h− 1, h− 2, . . . are kept constant when estimating flows for current
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interval h. Expanding Ω
h
, we can state the optimization problem as:

x̂
h
= argmin[(x

h
− x

a

h
)′W

−1

h
(x

h
− x

a

h
)

+(y
h
−

h−1
∑

p=h−p′

a
p

h
x̂p − a

h

h
x
h
)′V

−1

h
(y

h
−

h−1
∑

p=h−p′

a
p

h
xp − a

h

h
x
h
)] (2.15)

While this approach has advantages from a computational standpoint, we might

be able to obtain more consistent estimates by estimating the flows for all T time

intervals simultaneously8. The equivalent of equation (2.14) would then be:

(x̂
1
, x̂

2
, . . . , x̂

T
) = argmin[

T
∑

h=1

(Y
h
−A

h
x
h
)′Ω

−1

h
(Y

h
−A

h
x
h
)] (2.16)

where the minimization is over x
i
≥ 0 ∀i = 1, 2, . . . , T . Again, we can expand

Equation (2.16) as:

(x̂
1
, x̂

2
, . . . , x̂

T
) = argmin

T
∑

h=1

[(x
h
− x

a

h
)′W

−1

h
(x

h
− x

a

h
)]

+
T
∑

h=1

[(y
h
−

h
∑

p=h−p′

a
p

h
xp)

′V
−1

h
(y

h
−

h
∑

p=h−p′

a
p

h
xp)] (2.17)

It should be noted that Equations (2.16) and (2.17) represents a much bigger

optimization problem when compared with Equations (2.14) and (2.15). In a practi-

cal application, computational considerations might drive us towards the sequential

estimator.

2.4.5 Kalman Filter Approach

The Kalman Filter approach (Ashok and Ben-Akiva (2000b)) provides a convenient

O-D estimation and prediction method for real-time applications as well as offline

estimation. This approach views the O-D estimation problem as a state-space model9

8Simultaneous estimation gains significance in offline applications such as model calibration.
9The reader is referred to Gelb (1974) for an exhaustive coverage of state-space models.
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which consists of two equation systems:

MeasurementEquation : Y
h
= A

h
X
h
+ v

h
(2.18)

TransitionEquation : X
h+1

= Φ
h
X
h
+W

h+1
(2.19)

where

X
h
=
[

∂x′

h
∂x′

h−1
· · · ∂x′

h−s

]′

The transition equation is based on an autoregressive process similar to Equation

(2.7). The state variables X
h
used in the above formulation correspond to an aug-

mented state approach that combines the advantages of both simultaneous and se-

quential estimators while reducing the heavy computational load associated with si-

multaneous estimation. The term A
h
is a suitably constructed matrix of assignment

fractions.

Assume that the initial state of the system X
0
has known mean X̄

0
and variance

P
0
. The system of measurement and transition equations can then be combined into

a sequence of steps that easily integrate a rolling horizon:

Σ
0|0

= P
0

(2.20)

Σ
h|h−1

= Φ
h−1

Σ
h−1|h−1

Φ′

h−1
+Q

h−1
(2.21)

K
h

= Σ
h|h−1

A′

h
(A

h
Σ
h|h−1

A′

h
+R

h
)
−1

(2.22)

Σ
h|h

= Σ
h|h−1

−K
h
A

h
Σ
h|h−1

(2.23)

X̂
0|0

= X̄
0

(2.24)

X̂
h|h−1

= Φ
h−1
X̂
h−1|h−1

(2.25)

X̂
h|h

= X̂
h|h−1

+K
h
(Y

h
−A

h
X̂
h|h−1

) (2.26)

The term X̂
h|h−1

represents a one-step prediction of the state X
h
, and signifies the

best knowledge of the deviations X
h
prior to obtaining the link counts for interval h.

This prediction is achieved through the autoregressive process described by Equation
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(2.25). Σ
h|h−1

denotes the variance of X̂
h|h−1

, and depends on the uncertainty in both

X̂
h−1|h−1

as well as the error in the autoregressive process (Equation (2.21)). The

role of the Kalman gain matrix K
h
is explained intuitively by Equation (2.26). K

h

helps update the one-step prediction X̂
h|h−1

with the information contained in the

new measurements Y
h
.

2.4.6 GLS vs the Kalman Filter

The Kalman Filter yields a convenient and elegant sequential methodology to update

the O-D flow estimates and error covariance matrices with data from successive time

intervals. The advantages of simultaneous estimation can also be easily integrated

into the estimation framework through the technique of state augmentation, and is

well suited to function in a rolling horizon10. In addition, the transition equation

inherently embeds a prediction step based on a rich autoregressive process. The

Kalman Filter approach is therefore a joint O-D estimation and prediction model,

and is an obvious choice within a real-time DTA-based traffic prediction and guidance

system.

While the advantages are many, the Kalman Filter might suffer from some limita-

tions in a calibration framework. The inputs to the Kalman Filter algorithm include

a historical database of O-D flows, covariances of the initial flows, error covariance

matrices and autoregressive matrices. As several of these input parameters are likely

to be unavailable in the initial stages of a calibration application, we need alternative

ways of initializing the Kalman Filter before it can be deployed on site. Further,

Equations (2.20) to (2.26) represent repeated matrix operations involving matrices of

very large dimensions, and could potentially render an iterative calibration scheme

computationally expensive and infeasible.

A practical solution to the above problem might be suggested by Ashok (1996),

which presents a derivation of the Kalman Filter algorithm from a GLS approach and

establishes the equivalence of the two methods for discrete stochastic linear processes.

10The concept of a rolling horizon in real-time DTA systems is covered in detail in Chapter 4.
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Chapter 3 explores this approach in detail, and addresses issues related to initializing

the calibration process, and the availability of data.

2.5 Supply-Side Calibration

While the focus of this thesis remains the calibration of the model parameters on the

demand side of a dynamic traffic assignment system, one should note that a DTA

system models equilibrium in the traffic network by modeling the interactions between

the demand and supply components. Indeed, the assignment matrix, which is a crucial

input to the O-D estimation module, is an output of a supply simulation that captures

traffic dynamics and simulates driver decisions in the context of capacity constraints.

It is therefore necessary to place the problem of demand calibration within an even

larger overall calibration framework.

The demand calibration framework presented here assumes the availability of a

calibrated supply simulator. The DTA calibration process should capture the close

interaction between the demand and supply components, and should attempt to es-

timate the parameters in both classes of models jointly. While we do not present

detailed discussions on the calibration of the supply model parameters in this work,

some results on this topic may be found as part of the case studies in Chapter 5.

2.6 Model Validation

A good indication of a valid model is its ability to predict future system behavior.

Model validation is therefore a critical final step in the calibration framework. The

calibration process might yield consistent and efficient parameter estimates that fit

the observed data. However, it is necessary to ensure that the calibrated system

continues to perform in a satisfactory manner when faced with fresh information

from the surveillance system. This issue is particularly important in the context of

a Traffic Management Center, where the calibrated DTA system must possess the

robustness to deliver accurate estimations and predictions in the face of real-time
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fluctuations in the measurements. These fluctuations can consist of either day-to-

day variations in traffic flows, or can represent significant deviations from normal

conditions due to accidents, incidents, weather or special events.

It is often too expensive or difficult to conduct separate data collection efforts for

calibration and validation. In such situations, we are forced to utilize the available

data wisely to achieve both objectives. We might then divide the available data into

two sets. While the first set would be used to estimate our model parameters, the

second might be used as the basis for model validation. Such an approach might also

help eliminate some of the effects specific to a particular data set.

It should be noted that discrepancies between model predictions and system out-

put after implementation might indicate the necessity to re-calibrate the model with

new data.

2.7 Conclusion

In this chapter, we formulated the overall DTA calibration process as an optimization

problem, and presented an integrated framework for the joint calibration of the de-

mand models within a DTA system. We discussed the roles played by the components

within the demand and supply simulators, and analyzed the inputs and outputs at

each calibration step. We concluded with a note on model validation and the larger

calibration picture. The next chapter will explore some of the issues relating to start-

ing the calibration process in the absence of reliable initial parameter estimates, and

focus on the use of multiple days of surveillance data to generate efficient estimates.

Subsequent chapters will present case studies that demonstrate the feasibility and

robustness of the proposed calibration methodology.

47



48



Chapter 3

Creating a Historical Database

In Chapter 2, we presented an iterative approach to the calibration of the demand

models within a DTA system. However, the component steps in this process had

several input requirements that might not be readily available. In this chapter, we

present approaches to starting the calibration process in such cases, and outline sim-

plifications that would allow us to estimate the missing inputs from a single day of

data. We further discuss ways of obtaining efficient parameter estimates from the en-

tire set of available data spanning several days of surveillance records, and conclude

with a section detailing the process of updating our historical database of O-D flows,

error covariances and autoregressive factors with each additional day of estimations.

We begin by briefly reviewing the input requirements of the O-D estimation mod-

ule that forms the core of the demand calibration routine.

3.1 The O-D Estimation Module

The inputs to the O-D estimation module are the a priori O-D flows x
a

h
, the sensor

counts y
h
, the assignment matrices a

p

h
and the variance-covariance matrices (V

h
and

W
h
) associated with the direct and indirect measurement errors. The outputs are

the estimated O-D flows. The new O-D flows can be estimated based on Cascetta’s
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GLS formulation (Cascetta (1984) and Cascetta et al. (1993)).

(x̂
1
, x̂

2
, . . . , x̂

T
) = argmin

T
∑

h=1

[(x
h
− x

a

h
)′W

−1

h
(x

h
− x

a

h
)]

+
T
∑

h=1

[(y
h
−

h
∑

p=h−p′

a
p

h
xp)

′V
−1

h
(y

h
−

h
∑

p=h−p′

a
p

h
xp)] (3.1)

x̂
h
= argmin[(x

h
− x

a

h
)′W

−1

h
(x

h
− x

a

h
)

+(y
h
−

h−1
∑

p=h−p′

a
p

h
x̂p − a

h

h
x
h
)′V

−1

h
(y

h
−

h−1
∑

p=h−p′

a
p

h
xp − a

h

h
x
h
)] (3.2)

Equation (3.1) solves for flows in several time intervals simultaneously. This in-

volves the estimation of (n
OD
∗ T ) unknown O-D flows, where n

OD
is the number of

O-D pairs, and T is the number of time intervals in the period of interest. The large

number of unknown quantities increases the computational burden tremendously.

Equation (3.2) sequentially estimates flows in successive time intervals. Note that

both approaches assume a knowledge of x
a

h
, V

h
and W

h
. The following sections

address the issue of generating these matrices.

3.2 Generating a priori O-D flow estimates (x
a

h
)

The a priori O-D flows provide direct measurement observations of the true flows.

Apart from supplementing the set of indirect measurements, these observations help

capture temporal relationships and spatial travel patterns among the O-D flows. It is

therefore imperative that we include these direct measurements, even if the number of

indirect measurements is adequate to solve for the O-D flows. Equation (2.6) allows

us to compute the a priori flows in a variety of ways. The most straightforward

possibility is to use flows from a historical database as starting guesses. Since our

aim, however, is to generate these historical flows, we need to look elsewhere for

our direct measurements. In a strict sense, the direct measurements are not real
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observations. We simply attempt to create realistic measures that might add to the

information already available. While several formulations for x
a

h
can be visualized, we

look at a few possibilities. The most straightforward option for a direct measurement

is to use available O-D flow estimates:

x
a

h
= x

H

h
(3.3)

In the absence of such time-dependent historical flow estimates, an alternative is to

use the flows estimated for interval h−1 as the starting point for interval h (Cascetta

et al. (1993)):

x
a

h
= x̂

h−1
(3.4)

However, such a formulation does not account for any patterns in the underlying

demand process. Let us for the present assume that we have good historical O-D flow

estimates1. Ashok (1996) hypothesizes that the ratio of interval-over-interval O-D

flows is stable on a day-to-day basis, and suggests:

x
a

h
= (x

H

h
/x

H

h−1
)x̂

h−1
(3.5)

We might further hypothesize that the O-D flows for interval h may be influenced by

flows in several preceding intervals. This prompts us to consider a modification of

(3.5) that spans several prior intervals:

x
a

h
=

h−1
∑

p=h−q′

τp(x
H

h
/x

H

p
)x̂p ,

∑

p

τp = 1 (3.6)

1We will soon revisit the case when good historical flow estimates are unavailable.
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Another method of capturing temporal dependence between the O-D flows is to build

an autoregressive process of degree q′ into the a priori estimates (Ashok (1996)):

x
a

h
=

h−1
∑

p=h−q′

f
p

h
x̂p (3.7)

The (n
OD
∗ n

OD
) matrix f

p

h
in Equation (3.7) captures the effects of xp on x

h
, and

helps accommodate temporal effects in O-D flows. A big drawback of this method is

that the wealth of information contained in the historical estimates is ignored. By

moving to deviations, we can integrate this information into the current estimation

problem:

x
a

h
= x

H

h
+

h−1
∑

p=h−q′

f
p

h
(x̂p − x

H

p
) (3.8)

The new target O-D flows x
a

h
now contain information about flows in past intervals.

The matrix f
p

h
is now an (n

OD
∗ n

OD
) matrix of effects of (xp − x

H

p
) on (x

h
− x

H

h
).

This formulation captures correlation over time among deviations, which arise from

unobserved factors (such as weather conditions or special events) that are themselves

correlated over time.

An important question that needs to be answered pertains to starting the process.

It should be noted that historical O-D estimates or autoregressive factors might not

be available while processing the first few days of data. While Equation 3.8 is clearly

one of the best ways to obtain the target O-D flows, we need to explore other ways

of obtaining x
a

h
until we have sufficient data to estimate x

H

h
and f

p

h
.

Consider the first day of data. We clearly need some reasonable flow estimates

for the first interval. Let us denote by x
S

h
a set of seed matrices of O-D flows. These

matrices represent the flow estimates available at the beginning of the calibration

process, and can be dynamic or static. A dynamic set of seed matrices will allow us
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to use a modification of Equation 3.3 to start the process:

x
a

1
= x

S

1
(3.9)

The target flows for subsequent intervals can be generated by a process similar to

Equation 3.5, but with the historical values replaced by the corresponding seed ma-

trices. In general, the target flows could be expressed as:

x
a

h
= (x

H, d−1

h
/x

H, d−1

h−1
)x̂

d

h−1
(3.10)

where d is the day index. When d = 1, the seed flows x
S

h
are used in place of the

flows from day d− 1.

A static seed matrix, on the other hand, is more difficult to handle. Such a matrix

would contain O-D flows cumulated over the entire period of interest (the AM peak,

for example). We might then follow different approaches. One way is to break down

the static flows into time-dependent flows:

xS
r,h

= (PF )rx
static

r
(3.11)

where the starting (seed) O-D flow xS

r,h
between O-D pair r departing during time

interval h is obtained by scaling the corresponding static flow x
static

r
by a peak factor

(PF )r . One way of obtaining the peak factors is to consider the fraction of flow

recorded by sensors in interval h over the corresponding flow aggregated across the

peak period:

(PF )r =
y
s,h

∑

h′∈peak ys,h′
(3.12)

where y
s,h

represents the flow counted at sensor location s during time interval h.

The summation in Equation (3.12) is carried out over the time horizon of the static

O-D matrix available. One might also have to determine an “average” peak factor

based on several independent sensors that would measure flows arising from O-D pair
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r. This procedure would depend on several factors such as network structure and

spread, sensor locations, primary O-D flows and the number of alternative routes

available to each O-D pair. An alternative approach would be to approximate from

the static matrix a seed matrix of O-D flows x
S

1
for the first time interval, and use

Equation 3.4 for the remaining intervals in the study period. Once we process a few

days of data in this manner, we would be able to generate some preliminary estimates

of V
h
, W

h
and f

p

h
, which would allow us to employ Equation 3.8 henceforth. Sections

3.3 and 3.4 discuss the issues involved in estimating these parameters.

3.3 Estimating Autoregressive Factors

The matrix f
p

h
represents the effect of deviations in time interval p on the deviations

in the current interval h. Let us denote the elements of this matrix by {f r′,p

r,h
}, which

captures the effect of the deviation in the r′th O-D flow of interval p on the deviation

in the rth O-D flow of the current interval. Estimation of the matrix would be done

element by element for each interval. The factor {f r′,p

r,h
} could be estimated through

a regression of the form:

x
r,h
− x

H

r,h
=

h−1
∑

p=h−q′

(f
1,p

r,h
(x

1,p
− x

H

1,p
) + · · ·+ f

nOD,p

r,h
(xn

OD
,p − x

H

n
OD

,p
)) + w

r,h
(3.13)

where w
r,h

is the error term. It should be noted that n
OD

such regressions would be

needed in order to obtain the entire f
p

h
matrix. Moreover, one would have to obtain

such a matrix for each time interval h. In other words, each day of O-D flow data

would yield exactly one observation for calibration. As a consequence, a large data

set encompassing sufficient days of usable traffic records is critical to the calibration

process. In the absence of such a large data set, one could effect simplifications to

the structure of the autoregressive matrices and manage to estimate the factors. For

example, it might be reasonable to assume that the structure of the autocorrelation

remains constant with h. This would imply that the elements of f
p

h
would depend
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only on the difference h − p, and not on the individual values of h and p. We can

now write equations such as (3.13) for each interval within one day and have enough

observations to estimate the elements of the matrix.

Some situations might allow a further simplification through the assumption that

deviations in flow between O-D pair r would be affected primarily by the preceding

deviations in flow between O-D pair r alone, and that contributions from other O-D

pairs would be insignificant in comparison. The resulting regression would assume a

much simpler form:

x
r,h
− x

H

r,h
=

h−1
∑

p=h−q′

f
r,p

r,h
(xr,p − x

H

r,p
) + w

r,h
(3.14)

and the resulting f
p

h
matrix would be diagonal. However, one should be careful in

using this approximation. While it is expected that f
p

h
will be sparse, the relationship

among the various O-D pairs will depend on several factors that include the structure

of the freeway and arterial network, land use and geographical patterns. It might also

be reasonable in some applications to assume that the O-D flows of interest belong

to specific groups. An obvious basis for such a classification would be the division of

the O-D flows into low, medium and high flow groups based on their magnitudes.

It should be noted that the autoregressive factors are often not readily available,

and are an output of the calibration process. While the estimation process outlined

in this section suggests approaches to obtaining these factors, it assumes a knowledge

of the historical O-D flows x
H

r,h
. The absence of reliable historical flow estimates in

the initial stages of calibration applications might be handled by applying Equation

(3.5) on the first few days of data. The autoregressive factors could then be estimated

periodically, after designating the latest O-D flow estimates as historical.
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3.4 Estimating Error Covariance Matrices

The GLS estimators represented in Equations (2.17) and (2.15) assume prior knowl-

edge of the error covariance matrices V
h
and W

h
. In most cases, however, this

information is initially not available, and has to be estimated. Feasible Generalized

Least Squares ( or FGLS) provides a method by which the estimation of the error

covariances is integrated with the O-D estimation step. While we present a brief

review of the FGLS procedure, the reader is referred to Greene (2000) for a more

comprehensive theoretical treatment.

Figure 3-1 outlines a sequential implementation of FGLS estimation that handles

one day of data at a time. Further, the time intervals within each day are processed

sequentially. The initialization step involves the definition of default covariance matri-

ces for the error components. Theoretically, the FGLS procedure sets these unknown

covariance matrices to the identity matrix, thereby reducing the estimation to one

of Ordinary Least Squares (OLS). While such a naive initialization can be employed

in general, we might be able to obtain a better starting point by incorporating some

additional information about the sensor counts and target O-D flows. We illustrate

this point by drawing from our discussion in Chapter 2 regarding the interpretation

of the covariance matrix Ω
h
. The assumption of a diagonal structure for V

h
and

W
h
would result in a diagonal Ω

h
, the elements along the diagonal representing the

variances of the corresponding errors. The matrix Ω−1

h
would then be interpreted

as a weight matrix associated with the indirect and direct measurements. Our de-

fault covariance matrices could now be constructed to reflect our a priori knowledge

about the reliability of our measurements. In a calibration application, for example,

it might be reasonable to assume that the counts reported by the surveillance system

are more reliable than the seed O-D flows available. We might then assign higher

default weights to the counts so as to discount the effect of the seed O-D flows. It

should be noted that better covariance estimates would be obtained as the calibration

process progresses across the multiple days of data available, thereby eliminating the
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need for the initialization step beyond the first few days2.

Once past the initialization step, we proceed through the intervals in day i sequen-

tially, starting from interval 1. The target O-D flows are computed for each interval

using the approaches suggested in Section 3.2, and the Dynamic Network Loading

model is used to generate an initial set of assignment matrices. The observed counts,

simulated assignment matrices and latest covariance estimates are used as inputs by

the O-D estimation model to generate new estimates of the O-D flows for each inter-

val. At this stage, it is critical to ensure that the assignment matrices obtained by

assigning the new estimated flows is comparable to those input to the O-D estima-

tion model. We therefore iterate over the O-D flows until the assignment fractions

converge, and proceed to the next time interval.

Once the flows for all intervals in day i have been estimated, one is in a position to

estimate the error variances. This could be achieved by first computing the error (or

residual) between measured and estimated quantities. The error in the sensor counts

would be the difference between the actually observed counts and those simulated by

the DTA system:

y
h
−

h
∑

p=h−p′

a
p

h
xp

Likewise, the error in the O-D flows could be computed as the difference between the

estimated flows and their corresponding target values:

x
a

h
− x

h

If we denote the number of O-D pairs by n
OD

and the number of links with sensors

by n
l
, we have a total of (n

OD
+ n

l
) variances to estimate. Let us first hypothesize

that we have n data points for each of the (n
OD

+ n
l
) error terms. Denote by e

x

ih

and e
y

ih
the n-dimensional row vectors of residuals associated with the ith direct and

indirect measurements respectively. The (i, j)th elements of the matrices W
h
and V

h

2The latest covariance matrix is obtained from the historical database.
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Figure 3-1: Sequential O-D and Covariance Estimation
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could then be approximated by:

W
ijh

= e
x

ih
e
x

jh

′
/n

V
ijh

= e
y

ih
e
y

jh

′
/n

It should be noted that each day of data would provide exactly one observation for

the error term associated with each of the measurement. While estimates of the

error variances based on a single observation3 can be inefficient, we might increase n

through simplifying assumptions similar to those in Section 3.3. The first assumption

would be to remove the dependence of W
h
and V

h
on h, thereby assuming that

the error covariance matrices are invariant across the time intervals within the study

period4. Each time interval would now yield an additional observation for every error

term, thereby increasing the efficiency of the covariance estimates.

Another practical simplifying approach would be to assume that the measurements

fall within a finite number of classes. This would allow us to separate the residuals into

groups and estimate a single variance for each group. The criteria used for grouping

the residuals could vary across the different types of measurements. The O-D flows,

for example, could be grouped into high, medium and low categories based on their

estimated values. A similar grouping could be used for the counts as well, though it

might be more intuitive to segregate the counts based on the type and location of the

sensor5.

The algorithm represented by Figure 3-1 would terminate when the estimated

O-D flows converge across iterations.

3A single observation would imply that n = 1.
4It might be more reasonable to expect constant covariances across a peak period. A more general

approach using multiple days of data is presented in Section 3.5.
5One example would be to compute a different variance for freeway and arterial sensors.
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3.5 Updating the Historical Database

The preceding sections discussed approaches to estimating the unknown autoregres-

sive factors and error covariances. We presented several simplifying assumptions that

would allow us to obtain efficient parameter estimates using estimation results from a

single day of surveillance observations. We now look at the broader picture involving

several days of data, and outline a framework for updating our historical database

with the results of each additional day of estimations.

Figure 3-2 summarizes the essence of the update process. The calibration process

is initialized by loading a set of default parameters into the constituent models. Sub-

sequently, the available data encompassing several days is processed sequentially as

described below. The surveillance data recorded on day i is read, and the O-D flows

for each of the constituent time intervals is estimated according to the procedure

outlined in Figure 3-1.

Iterations are now performed to identify an optimal set of parameters for the route

choice model, so as to achieve the best fit for the observed sensor counts. The search

algorithm used in this step can range from a simple line or grid technique (in the

case of one or two parameters respectively), or can involve a more complex algorithm

when dealing with a larger set of parameters. It is not necessary, however, to re-

calibrate the route choice model parameters after each day of data. In fact, such a

step might lead to widely fluctuating parameter estimates from day to day, and could

have adverse effects on the final estimates output by the calibration process. A more

reasonable approach would be to calibrate the route choice parameters once at the

beginning of the process, and regularly re-calibrate them after a specific number of

days of data have been processed. An efficient strategy at this stage might be to

increase the frequency of re-calibrations as the number of days processed increases,

thereby allowing the initial estimates to stabilize before intensive calibration begins.

This logic is reflected in the dashed arrow in Figure 3-2 that allows the calibration

process to bypass the route choice parameter calibration step for certain days.

A critical issue at this stage pertains to the methodology of updating the historical
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database with the results of our latest day of estimations, and involves the following

operations:

• Creation of new historical O-D flows.

• Creation of new error covariance matrices.

• Re-evaluation of the autoregressive factors.

The process of updating the historical O-D flows is significant in two different

applications. From a calibration perspective, we aim to construct a database of O-

D flows that would be stratified by various criteria such as the day of the week,

type of weather and special events. Also, once calibrated, the DTA system would

reside within a traffic management center and estimate and predict O-D flows in

real-time. In both cases, we need to update our best historical flow estimates with

the information contained in every new day of estimations. This updating process

could be achieved in several ways. The simplest approach is to designate the latest

flow estimates (those obtained during the last day) as our historical flows, as these

estimates would encapsulate all prior history. One could also construct alternative

updating methods that use estimates from several days. For example, a moving

average of the last few estimates would reflect day-to-day trends in the O-D flows. A

third alternative is to use a smoothing formula that might assume the following form:

x
H,d

rh
= x

H,d−1

rh
+ α(x̂

d

rh
− x

H,d−1

rh
) (3.15)

where x
H,d

rh
represents the historical flow between O-D pair r and departure time h

after d days, x̂
d

rh
is the corresponding estimate on day d, and α is a scalar between

zero and one.

Updating the historical error covariance matrices based on new covariance esti-

mates is a little more involved. In order to obtain statistically efficient estimates of

the error covariances, one should ideally utilize the information contained in all days

of data upto the current day. This could be achieved by re-estimating the O-D flows

for days 1, 2, . . . , d using the updated historical flows after day d as target flows for
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each day. The resulting residuals from the d days of estimations would then form the

basis for computing the error covariances. The estimates obtained after processing

all available days of data would represent an efficient synthesis of the information

contained in the surveillance data set.

Once the historical O-D flows and error covariances have been updated, the ap-

proach to re-estimating the autoregressive factors is similar to that described in Sec-

tion 3.3. As with the covariances, the efficiency of the autoregressive estimates could

also be increased by using the information in more than one day of observations.

Thus regressions similar to Equation (3.13) can be run using d days of data, again

using the updated historical flows after day d to compute the O-D flow deviations.

3.6 Conclusion

In this chapter, we presented approaches to the creation of a historical database

comprising of O-D flows, error covariance matrices and autoregressive factors. We

outlined methods for estimating these parameters, and addressed the issue of starting

the calibration process in the absence of reliable initial parameter estimates. Finally,

we described a sequential framework that attempts to increase the efficiency of our

estimates by jointly using multiple days of observations. In the remaining chapters, we

use DynaMIT, a state-of-the-art DTA system, as an example to identify the primary

calibration variables and explore the methodology proposed here through detailed

case studies.
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Chapter 4

The DynaMIT System

In previous chapters, we have laid out a methodology to calibrate the demand simula-

tor within a general Dynamic Traffic Assignment system. In this chapter, we discuss

the features and functionalities of one such application, and proceed to list the pa-

rameters we might wish to calibrate. This would form the basis for the case studies

presented in subsequent chapters.

DynaMIT (Dynamic Network Assignment for the Management of Information to

Travelers) is a state-of-the-art real-time computer system for traffic estimation and

prediction, and the generation of traveler information and route guidance. DynaMIT

supports the operation of Advanced Traveler Information Systems (ATIS) and Ad-

vanced Traffic Management Systems (ATMS) at Traffic Management Centers (TMC).

Sponsored by the Federal Highway Administration (FHWA) with Oak Ridge National

Laboratories (ORNL) as the program manager, DynaMIT is the result of intense re-

search and development at the Intelligent Transportation Systems Program at the

Massachusetts Institute of Technology.

4.1 Features and Functionality

The key to DynaMIT’s functionality is its detailed network representation, cou-

pled with models of traveler behavior. Through an effective integration of historical

databases with real-time inputs from field installations (surveillance data and con-
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trol logic of traffic signals, ramp meters and toll booths), DynaMIT is designed to

efficiently achieve:

• Real time estimation of network conditions.

• Rolling horizon predictions of network conditions in response to alternative

traffic control measures and information dissemination strategies.

• Generation of traffic information and route guidance to steer drivers towards

optimal decisions.

To sustain users’ acceptance and achieve reliable predictions and credible guid-

ance, DynaMIT incorporates unbiasedness and consistency into its core operations.

Unbiasedness guarantees that the information provided to travelers is based on the

best available knowledge of current and anticipated network conditions. Consis-

tency ensures that DynaMIT’s predictions of expected network conditions match

what drivers would experience on the network.

DynaMIT has the ability to trade-off level of detail (or resolution) and computa-

tional practicability, without compromising the integrity of its output. Its important

features include:

• A microscopic demand simulator that generates individual travelers and simu-

lates their pre-trip and en-route decisions (choice of departure time and route)

in response to information provided by the ATIS.

• Estimation and prediction of origin-destination flows.

• Simulation of different vehicle types and driver behaviors.

• A mesoscopic supply simulator that explicitly captures traffic dynamics related

to the development and dissipation of queues, spillbacks, and congestion.

• Time-based supply simulation that simulates traffic operations at a user-defined

level of detail that facilitates real time performance. The level of detail could be

determined by the choice of time steps and the level of aggregation of vehicles

into homogeneous packets.
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• Traveler information and guidance generation based on predicted traffic con-

ditions to account for driver over-reaction to incident congestion. The system

iterates between predicted network state, driver response to information and

the resulting network state, towards the generation of consistent and unbiased

information strategies.

• Adaptable to diverse ATIS requirements.

• Distinguishes between informed and uninformed drivers.

• Generates detailed vehicle trajectories by simulating each individual trip.

• Optimally uses historical, surveillance and O-D data to generate reliable O-

D estimates in real-time. The system records the results from previous O-D

estimations to update O-D databases.

• Uses a rolling horizon to achieve efficient and accurate real-time estimations

and predictions.

• Handles real time scenarios including incidents, special events, weather condi-

tions, highway construction activities and fluctuations in demand.

• Integrated with the MITSIMLab microscopic traffic simulator for offline evalu-

ation and calibration.

• Ready for integration with external global systems (such as a TMC) using an

external distributed CORBA interface, which allows for future adaptability and

expansion.

4.2 Overall Framework

DynaMIT is composed of several detailed models and algorithms to achieve two main

functionalities:

• Estimation of current network state using both historical and real-time infor-

mation.
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• Generation of prediction-based information for a given time horizon.

The estimation and prediction phases operate in a rolling horizon. This concept

is illustrated with a simple example (Figure 4-1).

It is now 8:00am. DynaMIT starts an execution cycle, and performs a state

estimation using data collected during the last 5 minutes. When the state of the

network at 8:00 is available, DynaMIT starts predicting for a given horizon, say one

hour, and computes a guidance strategy which is consistent with that prediction. At

8:07, DynaMIT has finished the computation, and is ready to implement the guidance

strategy on the real network. This strategy will be in effect until a new strategy is

generated. Immediately following that, DynaMIT starts a new execution cycle. Now,

the state estimation is performed for the last 7 minutes. Indeed, while DynaMIT was

busy computing and implementing the new guidance strategy, the surveillance system

continued to collect real-time information, and DynaMIT will update its knowledge

of the current network conditions using that information. The new network estimate

is used as a basis for a new prediction and guidance strategy. The process continues

rolling in a similar fashion during the whole day.

The overall structure with interactions among the various elements of DynaMIT

is illustrated in Figure 4-2. DynaMIT utilizes both off-line and real-time information.

The most important off-line information, in addition to the detailed description of the

network, is a database containing historical network conditions. This database might

combine directly observed data and the results of off-line models. The historical

database contains time-dependent data, including origin-destination matrices, link

travel times and other model parameters. Clearly, the richer the historical database,

the better the results. Such a rich historical database requires substantial efforts

towards data collection and careful calibration.

Real-time information is provided by the surveillance system and the control sys-

tem. DynaMIT is designed to operate with a wide range of surveillance and con-

trol systems. The minimum real-time information required by DynaMIT is time-

dependent link flows, incident characteristics (location, starting time, duration and

severity), and traffic control strategies.
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4.2.1 State Estimation

The state estimation module provides estimates of the current state of the network

in terms of O-D flows, link flows, queues, speeds and densities. This step represents

an important function of DTA systems, since information obtained from the traffic

sensors can vary depending on the type of surveillance system employed. In an

ideal system where there is two-way communication between the traffic control center

and every vehicle in the network, perfect information about the vehicle location and

possibly its origin and destination can be obtained. While such perfect systems

are possible in the future, most existing surveillance systems are limited to vehicle

detectors located at critical points in the network. The information provided by these

traffic sensors therefore must be used to infer traffic flows, densities and queue lengths

in the entire network.

The main models used by the State Estimation module are:

• A demand simulator that combines real-time O-D estimation with user behavior

models for route and departure time choice.

• A network state estimator (also known as the supply simulator) that simulates

driver decisions and collects information about the resulting traffic conditions.

The demand and supply simulators interact with each other in order to provide

demand and network state estimates that are congruent and utilize the most recent

information available from the surveillance system (Figure 4-3).

4.2.2 Demand Simulation

Demand estimation in DynaMIT is sensitive to the guidance generated and infor-

mation provided to the users, and is accomplished through an explicit simulation

of pre-trip departure time, mode and route choice decisions that ultimately produce

the O-D flows used by the O-D estimation model. The pre-trip demand simulator

updates the historical O-D matrices by modeling the reaction of each individual to

71



Historical
Database

Pre-Trip Demand
Simulation

Departure Time
Mode
Route

Pre-Trip Demand
Simulation

OD Flow Estimation

Network State Estimation

En-route
Demand

Simulation

Supply
Simulation

Traffic
control

Information

Network
Conditions

Assignment
Matrix

SurveillanceCongruency?

Network Conditions

No

Yes

Figure 4-3: State Estimation in DynaMIT

72



guidance information. The consequent changes are then aggregated to obtain up-

dated historical O-D matrices. However, these updated historical O-D flows require

further adjustments to reflect the actual travel demand in the network. Reasons for

the divergence of actual O-D flows from historical estimates include capacity changes

on the network (such as the closure of roads or lanes), special events that temporarily

attract a large amount of trips to a destination, and other day-to-day fluctuations.

Consequently, one of the requirements for dynamic traffic modeling is the capability

to estimate (and predict) O-D flows in real time. The O-D model uses updated his-

torical O-D flows, real- time measurements of actual link flows on the network, and

estimates of assignment fractions (the mapping from O-D flows to link flows based

on route choice fractions and travel times) to estimate the O-D flows for the current

estimation interval.

Note on O-D Smoothing

The fixed point nature of the O-D estimation procedure, coupled with the real-time

requirements of a prediction-based DTA system, necessitates the use of an efficient

solution scheme that would result in quick iterative convergence. The O-D estimation

module within DynaMIT utilizes an algorithm similar to the Method of Successive

Averages with Decreasing Reinitializations (MSADR)1 to compute the target O-D

flows for successive iterations. Stated mathematically,

xk
∗

= x̂k−1 + αk(x̂
k − x̂k−1) (4.1)

= αkx̂
k + (1− αk)x̂

k−1 (4.2)

where xk
∗

is the new target O-D flow vector, x̂k and x̂k−1 are the estimated flows

from iterations k and k− 1 respectively. The weighting parameter αk is computed so

1See Section 2.1.1, or Cascetta and Postorino (2001).
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as to accelerate the convergence of the iterative algorithm:

αk =

[

1

ae−ka

]

[

1
∑k

j=1
1

ae−ja

]

(4.3)

where k is the iteration counter. The parameter a in the above expression assumes a

default value of 1.0.

4.2.3 Supply Simulation

The network state estimator utilizes a traffic simulation model that simulates the

actual traffic conditions in the network during the current estimation interval. The

inputs to this model include the travel demand (as estimated by the demand sim-

ulator), updated capacities and traffic dynamics parameters, the control strategies

implemented and the traffic information and guidance actually disseminated. The

driver behavior model captures the responses to ATIS in the form of en route choices.

4.2.4 Demand-Supply Interactions

One of the inputs to the O-D estimation model is a set of assignment matrices. These

matrices map the O-D flows from current and past intervals to link flows in the current

interval. The assignment fractions therefore depend on the time interval, and also

on the route choice decisions made by individual drivers. The flows measured on the

network are a result of the interaction between the demand and supply components.

It may be necessary to iterate between the network state estimation and the O-

D estimation models until convergence is achieved. The output of this process is

an estimate of the actual traffic conditions on the network, and information about

origin-destination flows, link flows, queues, speeds and densities.

4.2.5 Prediction and Guidance Generation

The prediction-based guidance module (Figure 4-4) consists of several interacting

steps:
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• Pre-trip demand simulation

• O-D flow prediction

• Network state prediction

• Guidance generation

The O-D prediction model uses as input the aggregated historical demand adjusted

by the pre-trip demand simulator to account for departure time, mode and route

choices in response to guidance, and provides the required estimates of future O-D

flows. The network state prediction function undertakes the important task of traffic

prediction for a given control and guidance strategy and predicted set of O-D flows,

using the current network condition estimated by the state estimation module as a

starting point. The performance of the network in the prediction horizon is evaluated

using a traffic simulation model and en-route behavioral models.

The traffic information and guidance generation function uses the predicted traffic

conditions to generate information and guidance according to the various ATIS in

place. Traffic control is loosely coupled with DynaMIT in the current version of the

system. Control strategies are assumed to be generated outside the DTA system,

using the predictions as an input.

The generated traffic information and guidance must be consistent and unbiased.

Under such conditions, there would be no better path that a driver could have taken

based on the provided information. An iterative process is employed in order to obtain

guidance that satisfies these requirements. Each iteration consists of a trial strategy,

the state prediction (comprising both demand prediction and network state predic-

tion) under the trial strategy, and the evaluation of the predicted state for consistency.

Since, in general, the updated historical O-D flows depend on future guidance and

information, the update of the historical O-D flows (using the departure time and

mode choice models) and the O-D prediction models are included in the iteration.

This general case represents the situation where pre-trip guidance is available to the

drivers. In the special case where only en-route guidance is available, the pre-trip
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demand simulator is bypassed in the iterations. The initial strategy could then be

generated from the prediction and guidance generation of the previous period.

4.3 DynaMIT for Planning

Apart from its real-time applications, DTA has the potential to significantly improve

the transportation planning process for networks with congested facilities. DynaMIT-

P is a DTA-based planning tool developed at MIT that is designed to assist planners

in making decisions regarding proposed investments and operational changes in local

and regional transportation networks. DynaMIT-P efficiently adapts the modules

contained in the real-time DynaMIT system to suit offline planning applications.

Travel-related choices vary with regard to the time horizon over which the de-

cisions are made. Individuals make long-term, short-term and within-day travel

decisions (Figure 4-5). Long-term mobility decisions could include choices related

to residential location and auto ownership. Short-term (or day-to-day) travel deci-

sions include choice of trip frequency, destination, departure time, mode and route.

Adjustments in short-term decisions are made in response to changes in long-term

decisions (like auto ownership) and changes in the network. Individuals form habitual

travel patterns that they follow regularly. Within-day decisions capture deviations

from the habitual travel patterns. These deviations could be in response to real-time

information, unusual weather conditions, incidents, or other special events.

DynaMIT-P focuses on modeling the short-term and within-day travel decisions,

assuming that the long-term decisions are given. The inputs to DynaMIT-P include

the potential users of the system, their demographic characteristics, residential loca-

tion, etc. The output is the performance of the transportation system in terms of

consumption of resources and benefits. Several important characteristics distinguish

DynaMIT-P from traditional planning approaches:

• Microsimulation ensures accurate depiction of individual traveler behavior.

• Detailed modeling of spillbacks, queue formation and dissipation captures the
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essence of network dynamics.

• Sensitivity to ATMS/ATIS facilitates the evaluation of ITS strategies.

• Time-dependent interactions between the demand and supply components presents

a realistic picture of equilibrium.

DynaMIT-P employs three main components to achieve the functionality de-

scribed above:

• The supply simulator

• The demand simulator

• The day-to-day learning model

The supply simulator is a mesoscopic traffic simulation model. For a given set

of travelers and control strategies, it predicts the performance of the network by

measuring time-dependent flows, travel times, queue lengths, etc. The simulator is

designed to operate at different levels of granularity, depending on the requirements

of each application. The main elements of the demand simulator are the O-D matrix
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estimation and the behavioral models. The O-D estimation model takes link counts

and historical O-D flows as inputs, and produces an updated time-dependent O-D

matrix to match the observed counts. The behavioral models are used to predict

the travel behavior of individual travelers as a function of network level of service

characteristics, perceptions and past experiences, information access and socioeco-

nomic characteristics. Driver behavior is modeled using the path-size logit model

(PS-Logit, Ramming Ramming (2001)), which is an extension of C-Logit (Cascetta,

Nuzzolo, Russo and Vitetta (1997)). This model accounts for the degree of overlap

among alternative routes while simulating individual route choice. The day-to-day

learning model updates travelers perceptions of travel times based on past experiences

and expectations, according to the following model:

T̄
t

k
= λT

t−1

k
+ (1− λ)T̄

t−1

k
(4.4)

where T̄
t

k
is the expected time-dependent travel time along path k on day t, and T

t

k

is the time-dependent travel time experienced along path k on day t. λ captures the

learning rate, and may vary across market segments. The value of λ lies between 0

and 1, and is affected by the use of ATIS.

The demand and supply simulators interact with the learning models in a system-

atic way to capture both the day-to-day and within-day (short-term) demand-supply

interactions (Cantarella and Cascetta (1995)). The structure of the short-term dy-

namics module is shown in Figure 4-6. The model is based on an iterative process

between the demand and supply simulators. The main input to short-term dynamics

is an O-D matrix of potential travelers. The demand simulator uses the corresponding

behavioral models to update their frequency, destination, departure time, mode, and

route, choices. The travelers are then loaded onto the supply simulator and a new

network performance is obtained. Based on the learning model, travelers update their

decisions in response to the observed level of service and network performance. When

convergence between supply and demand is reached, the process ends. The output of
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the short-term dynamics component is the travelers’ habitual travel behavior.

The purpose of the within-day dynamics model is to evaluate the performance

of the transportation network in the presence of stochastic factors such as unusual

weather, incidents, and special events (music, sports, etc.), which could substantially

affect traffic conditions as compared to the usual conditions. The habitual travel

behavior, obtained from the short-term dynamics, is input to the within-day model.

Figure 4-7 summarizes the interactions among the different elements of the within-day

dynamics component.

The outputs from both the short-term and within-day behavior components are

used to generate the desired resource consumption and benefits (such as total sav-

ings in travel delays, costs, revenues, air pollution, safety, fuel consumption, etc.)

DynaMIT-P’s open system of demand models, detailed representation of network dy-

namics, and flexible structure make it a useful tool for a host of planning applications:

• Impact studies of Work Zone Activity, and minimum-impact work zone schedul-

ing

• Special Events

• High-occupancy Vehicle (HOV) and High-occupancy Toll (HOT) facilities

• Congestion Pricing strategies

• Effectiveness of ATMS and ATIS

While both DynaMIT and DynaMIT-P capture the interaction between the O-D

estimation and route choice model components within the DTA system, DynaMIT-P

is better suited for calibration purposes. This stems primarily from DynaMIT-P’s

functionality to compute equilibrium network travel times. Network equilibrium for

a given travel demand level results from a balance between the demand and supply

elements. The fixed point nature of the calibration problem constrains us to require

equilibrium at each calibration stage in order to ensure that the route choice fractions,

assignment matrices and estimated O-D flows are consistent in each iteration.
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4.4 Calibration Variables

In this section, we enumerate the various model parameters that need to be calibrated

within the DynaMIT system. We separate the calibration variables into demand-side

and supply-side parameters, and briefly review the role played by each in the overall

DTA framework.

4.4.1 Demand Simulator Parameters

The demand simulator is primarily comprised of the driver behavior model and the

O-D estimation and prediction model.

Parameters in the Route Choice Model

DynaMIT relies on discrete choice models to model driver decisions. This process

involves three steps:

• Generate a choice set of feasible route alternatives for each O-D pair.

• Compute the utility of each alternative, and evaluate a choice probability for

each alternative.

• Simulate the computed probability through a random draw to determine the

“chosen” alternative.

The choice set generation step involves the computation of a good set of feasible

paths connecting every O-D pair of interest. This is a critical step that controls the

outcome of the entire calibration exercise. While the shortest set of paths between

every O-D pair might capture driver behavior under uncongested traffic conditions,

rising congestion levels can increase the attractiveness of previously unchosen routes.

Also, incidents can cause blocks in the shortest route and force drivers onto less

attractive paths. A good set of paths for each O-D pair is therefore essential in traffic

estimation and prediction.

DynaMIT employs three steps in its path generation algorithm. The shortest

path computation step generates the shortest path connecting each link in the
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network to all defined destination nodes. This set represents the most probable paths

chosen by drivers under uncongested conditions. A link elimination step augments

the paths from the shortest path set with alternative paths. This step involves the

elimination of each link in the network and the subsequent re-computation of the

shortest path, and ensures that an incident on any link will still leave alternative

paths open for every O-D pair. A further random perturbation step is performed

in order to obtain a richer path set. The impedances of the links are perturbed

randomly to simulate varying travel times. Another set of shortest paths are now

computed, and appended to the existing set. The number of random perturbations

performed could be controlled by the user. The algorithm also screens the final path

set for uniqueness, and eliminates unreasonably long paths.

Once the choice set has been defined, DynaMIT is ready to compute the probabil-

ity with which an individual might choose each of the available alternatives. Utility

theory along with the Path-Size Logit (PS-Logit) model is employed to evaluate these

probabilities. Stated mathematically,

Pn(i) =
e

Vi+lnPSi

∑

j∈Cn
e

Vj+lnPSj
(4.5)

where Pn(i) is the probability of individual n choosing alternative i, V
i
is the utility

of alternative i, PS
i
is the size of path i, and Cn denotes the choice set for individual

n.

The utility V
i
of each path is a function of several explanatory variables including

attributes of the alternatives (such as travel times) and socio-economic characteristics

of the individual driver. The size of a path is defined as (Exponential Path-Size

formulation, Ramming (2001)):

PSin =
∑

a∈Γi

(

la
L
i

)

1
∑

j∈Cn

L
γ

i

L
γ

j

δaj

(4.6)
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where la is the length of link a, L
i
is the length of path i and δaj takes the value 1 if

link a is a part of path j (and is zero otherwise). The inner summation is computed

over all paths in choice set Cn, while the outer summation is over all links a in path

Γi. The parameter γ is an exponent in the model.

We list below the key calibration parameters for the route choice model:

• Parameters in the path choice set generation algorithm.

• Parameters in the path utility specification

• Path-size exponent γ.

The aggregate nature of the observed surveillance data2 necessitates that the

calibration of the disaggregate route choice model parameters be undertaken at an

aggregate level. Given this constraint, it might be advantageous in some applications

to estimate just a few factors that would scale initial parameter estimates uniformly.

This approach obviously requires the availability of a good default set of route choice

model parameters. An alternative approach would be to focus on the calibration of a

subset of key route choice coefficients while holding all other parameters in the model

fixed at their initial values.

Parameters in the O-D Estimation/Prediction Model

The current version of DynaMIT employs a sequential GLS-based O-D estimation

module similar to Equation (2.14). The external inputs to the model include link

counts and the historical database of O-D flows. The historical flows are coupled with

the concept of flow deviations in order to effectively capture the information contained

in the past estimates. The key inputs generated internally are the time-dependent

assignment matrices. While the matrices a
p

h
are generated by the supply simulator,

the historical database would have to be created offline. The O-D estimation and

prediction algorithm is also based on an autoregressive process that captures spatial

2Counts and speeds, for example, might be cumulated or averaged over a time interval covering
several minutes.
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and temporal correlations between the O-D flows. We list below the key calibration

parameters for the O-D estimation and prediction model:

• The historical database of O-D flows, x
H

h
.

• The variance-covariance matrix V
h
associated with the indirect measurement

errors.

• The variance-covariance matrix W
h
associated with the direct measurement

errors.

• The matrices f
p

h
of autoregressive factors.

4.4.2 Supply Simulator Parameters

The focus of this thesis is the calibration of the demand simulator within a DTA

system. However, the close link between the demand and the supply components

necessitates a joint calibration of all the associated model parameters. Though we

will not undertake a detailed discussion involving the supply models, we present here

a brief overview of the relevant supply-side parameters that would enter the overall

calibration framework.

The supply simulator obtains aggregate measures of network performance by sim-

ulating the movement of drivers on the road network. Detailed mesoscopic models

capture traffic dynamics and accurately model the build-up and dissipation of lane-

specific queues and spillbacks. The links in the network are subdivided into segments

to capture changing section geometries. Further, the lanes within each segment are

grouped into lane groups to account for turning-movement-specific capacities at di-

version and merge points and intersections.

Each segment contains a moving part (with vehicles moving at certain speeds),

and a queuing part. The movement of vehicles in the moving part are governed by

macroscopic speed-density relationships that take the following form:
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v = vmax



1−
(

k − k
min

k
jam

)β



α

(4.7)

where v is the speed of the vehicle (in mph), vmax is the speed on the segment under

free-flow traffic conditions, k is the current segment density (in vehicles/mile/lane),

k
min

is the minimum density beyond which free-flow conditions begin to break down,

k
jam

is the jam density, and α and β are segment-specific coefficients. In addition,

the speeds computed using Equation 4.7 are subject to a segment-specific minimum

speed vmin.

The movement of vehicles from one segment to the next is governed by a host of

capacity calculations. The primary quantities of interest are the input and output

capacities of the various segments. These capacities are compared with the available

physical space on the downstream segments before allowing vehicles to cross segment

boundaries. A constraint on either capacity or space would cause vehicles to queue.

An important calibration step is therefore the computation of segment (more specifi-

cally, lane group) capacities that truly approximate the allowed turning movements,

signal logic and sectional geometry of the network.

We list below the key calibration variables on the supply side:

• Segment-specific speed-density parameters (vmax , kmin
, k

jam
, β, α and v

min
).

• Lane group capacities on freeway and arterial segments.

• Lane group capacities at intersections, based on signal control logic.

4.5 Conclusion

In this chapter, we reviewed the features and functionalities of DynaMIT and DynaMIT-

P, two state-of-the-art DTA systems for traffic estimation, prediction and planning

applications. We outlined the critical models within the demand and supply modules

of the DTA system, and identified key variables that need to be calibrated before the
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systems can be employed for real-time traffic management or planning applications.

These variables were classified into demand and supply side parameters to facilitate a

sequential approach to overall DTA system calibration. In the following chapter, we

discuss the calibration of DynaMIT and DynaMIT-P using the methods and concepts

outlined in Chapter 2, and present results from demand calibration and validation

studies carried out on a real-sized traffic network.
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Chapter 5

Case Studies

In Chapter 2, we presented an iterative scheme for the joint calibration of the route

choice and O-D estimation/prediction model parameters within a DTA system. The

objective of this chapter is to utilize data recorded by a real traffic surveillance system

to test the performance of the proposed approach. The results presented in this

chapter are derived from case studies based on a large-sized study network in Irvine,

California. The DynaMIT-P system discussed in Chapter 4 is used as the calibration

system.

We begin by briefly describing the study network and the data available for the

calibration study, and proceed to outline the calibration approach as applied to this

data set. We then discuss several assumptions that were employed to work around

practical constraints and considerations, and present results from calibration and

validation tests that verify the performance and feasibility of the methodology we

proposed in Chapter 2. We conclude by summarizing our results and findings.

5.1 The Irvine Dataset

The data used in this research was collected from Irvine, a part of District 12 in Orange

County, California, USA. We describe briefly the main features of this network and

the surveillance data recorded.
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5.1.1 Network Description

The study network (Figure 5-1) is comprised of three major freeways and a dense

network of arterial segments. The I-5 and I-405 Interstates, along with State Route

133, define a wedge that is criss-crossed by several major arterials. The city of Irvine is

located in Orange County, just outside Los Angeles. It therefore lies along the heavily

traveled corridor connecting Los Angeles and San Diego. It is a major commercial and

business center, and serves as an important regional airport. Irvine is also home to

several schools and universities. The city therefore attracts a varied mix of commuters

and travelers.

Figure 5-1: The Irvine Network

The network is represented as a set of 298 nodes connected by 618 directed links.

These links represent the physical links on the network, and are further subdivided

into 1373 segments to model changing link section geometry. Almost all of the 80 in-

tersections within the study area are signalized, and are controlled by vehicle-actuated
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signal logic. A high fraction of the signals along the primary arterials (Barranca Park-

way, Alton Parkway and Irvine Center Drive) are coordinated to minimize the number

of stops.

5.1.2 Data Description and Analysis

The available data was derived primarily from four sources:

• PARAMICS network files

• O-D flows from OCTAM planning study

• Time-dependent detector data

• Signal timing and coordination plans

Information regarding the network was contained in a set of input files created for the

PARAMICS traffic simulation system. These files included descriptions of network

geometry, link and lane connectivity, sensor locations and signal phase timing plans.

The OCTAM planning study generated a static matrix of O-D flows covering the

morning peak period. While this matrix contained every possible origin-destination

combination from 61 zones, several of these flows were zero. In this study, a subset

of 655 primary O-D pairs with non-zero flows was extracted from the static matrix.

A review of the static O-D matrix showed that freeway-based O-D pairs contributed

to a major proportion of the total demand. Figures 5-2 and 5-3 indicate the primary

O-D pairs. The thickness of the lines connecting the origins and destinations is a

measure of the magnitude of the O-D flow.
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Figure 5-2: Primary O-D Pairs

Figure 5-3: Primary O-D pairs
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Time-varying freeway and arterial detector data recorded over 5 working days

was available from California Department of Transportation (Caltrans). This data

consisted of counts and occupancies measured by lane-specific sensors on freeway links

and lane-group-specific sensors on arterial links. While the freeway detectors reported

data every 30 seconds, the arterial detectors aggregated the data by 5 minute time

slices. It should be noted that only 68 out of 225 sensors reported usable data. The

remaining detectors were either situated outside the study area, or their data files

were inconsistent. The 68 usable sensors were split into 30 situated on freeway and

ramp links, and 38 on arterial links.

The data collected by the surveillance system consisted of vehicle counts and

occupancies. The counts were aggregated into common intervals of length 15 minutes.

Time-varying densities were approximated from the occupancies by assuming a mean

vehicle length of 5 metres. Further analysis indicated that there was not much day-to-

day variability in the sensor data received, even though these 5 days fell on different

days of the week (Figures 5-4 and 5-5).
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Figure 5-4: Counts Variation Across Days: Freeway Sensor
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Figure 5-5: Counts Variation Across Days: Arterial Sensor

Signal timing and coordination charts from the City of Irvine specified the details

regarding signal phasing, timing, actuation and coordination.

5.1.3 DynaMIT Input Files

Let us briefly review the input files required by the DynaMIT system. The net-

work file describes the locations of nodes, links, segments and sensors, and defines

the connectivity between individual lanes in the network. The network information

contained in the PARAMICS data set was parsed and translated into a format under-

stood by DynaMIT. Changing section geometry within links was modeled by dividing

the links into smaller segments. The positions of freeway, arterial and ramp sensors

were located using latitude and longitude information.

The O-D demand file specifies the time-varying origin-destination flows for each

O-D pair in the network that has a non-zero flow between it. We specify a different

block of O-D flows for each time interval in our study period. The time intervals are
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assumed to be of constant duration.

The supply parameter file contains segment-specific relationships that are used

by DynaMIT’s supply simulator while simulating the movement of vehicles on the

network. Specifically, this file contains the characteristics discussed in Equation 4.7.

DynaMIT also requires information regarding aggregate driver characteristics that

are used while generating the population of drivers. These include trip purpose,

information source and value of time, and are defined for each origin-destination pair

that appears in the demand file. The socio-economic characteristics are used by

DynaMIT’s route choice models. Trip purpose can fall within the categories WORK,

LEISURE and OTHER. Guided drivers receive information regarding updated travel

times during their trips. This source could be an in-vehicle device. Unguided vehicles

would not have access to updated network information during their trip, except in

the vicinity of Variable Message Signs (VMS) and Changeable Message Signs (CMS).

The value of time reflects the importance that drivers place on trip travel time, and is

a critical component of the route choice model. The flexibility to handle time-varying

socio-economic characteristics is built into the DynaMIT system.

A file containing time-varying traffic sensor counts is used by the O-D esti-

mation and prediction module within DynaMIT. The data recorded by the detectors

is specified in this file after aggregating all sensors over a common time interval du-

ration.

DynaMIT uses historical estimates of link travel times while assigning initial

routes to drivers. These travel times are the result of an equilibrium between the

demand and supply in the transportation network. It should be noted that these

time-dependent inputs are also an output of our calibration exercise.

In addition to the inputs discussed above, DynaMIT’s demand simulator requires

error covariance and autoregressive matrices, that are to be estimated by our

calibration process.
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5.2 Supply Side Calibration

The calibration of the supply simulator parameters within DynaMIT falls outside the

scope of this thesis, and is reported in Kunde (2002). In this section, we present a

brief review of the essential details of this process for completeness. Calibration of

the supply module entails the estimation of lane group capacities and the parameters

in the segment-specific speed-density relationships. Lane group output capacities

at intersections are complex functions of the signal control logic and timing data.

Capacities were initially estimated by approximating the signal logic based on the

recommendations of the Highway Capacity Manual.

The speed-density relationships were estimated by fitting curves through the plots

of observed speeds against densities. The 1373 segments were separated into eleven

categories based on the type of segment (freeway, arterial, ramp, weaving section)

and the different types of relationships observed in the sensor reports.

A subnetwork extracted from the Irvine test network was used to further refine the

supply model parameter estimates. Dynamic speeds (computed from flow and density

measurements) were used as the criterion during this step. Figure 5-8 shows a sample

comparison between simulated and “observed” speeds. It should be noted that these

supply parameter estimates were merely initial values. They were modified at various

stages of the demand calibration process in order to obtain consistent estimates across

both demand and supply models.

5.3 Demand Side Calibration

We now describe the demand calibration process on the Irvine data set. This dis-

cussion is split across several sections. We first present the details that prepare the

ground for the actual calibration exercise. This includes the generation of the path

choice set, definition of the period of study, generation of initial seed O-D flows, and

a statement of the critical simplifying assumptions. We then proceed to outline the

steps in the actual calibration process before presenting our major findings.
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Figure 5-6: Subnetwork Calibration: Freeway Sensor

5.3.1 Path Choice Set Generation

The first step in the calibration process was the generation of a good set of paths for

each O-D pair of interest. Optimum parameters for the path generation algorithm

were identified so as to capture most of the feasible paths for every O-D pair. A

suitable path set was obtained by using 100 random draws to complement the set

of link-elimination-based shortest paths from every link to a destination node. Rec-

ognizing the need to replicate most of the freeway-based paths, an internal freeway

“bias” of 0.6 was used to force the path generation algorithm into preferring paths

with longer freeway sections. The random draws helped augment this set with arterial

paths. All unique paths shorter than twice the shortest distance were included in the

final path set. Manual inspection confirmed that most of the practical alternatives

had been selected in the path generation stage. The final set contained a total of

9036 origin-destination paths.
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Figure 5-7: Subnetwork Calibration: Ramp Sensor

5.3.2 Defining the Period of Study

The period of interest was defined as the AM peak, from 6:00 AM to 8:30 AM1.

However, it had to be ensured that the first interval we estimated had minimal “in-

terference” from vehicles departing in prior time intervals2. Calibration was begun

at 4:00 AM, when sensors indicated that the network was predominantly empty. The

study interval was divided into equal subintervals of length 15 minutes. This dis-

cretization was based on probe vehicle data that indicated maximum travel times of

the order of 10 minutes along the freeways and major arterials.

5.3.3 Generating Seed O-D Flows

A reasonable starting estimate of the O-D flows was constructed manually to start

the O-D estimation process. The planning matrix of static O-D flows was distributed

1Flows were found to drop beyond 8:30 AM.
2Estimation of x

h
requires knowledge of a

p

h
, which is not known initially.
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Figure 5-8: Subnetwork: Speed Comparison
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across the time intervals within the study period. The fraction of flow assigned to

a particular interval was proportional to a peak factor that was computed for each

sensor as the ratio of the counts measured in the current interval to that measured

across the peak period. The peak factor for each O-D flow was approximated by

considering an average of the primary sensors that measured the O-D flow under

study.

5.3.4 Simplifying Assumptions

Several assumptions were made in order to accommodate practical considerations

while estimating the model parameters with the limited data available. The error

covariance matrices V
h
and W

h
were assumed to possess a diagonal structure, in

order to ensure that we had enough observations to estimate the elements of these

matrices from just one day of data. The structure of the error covariances was also

assumed to remain constant across the peak period, thereby further increasing the

number of observations. The autoregressive matrices f
p

h
were assumed to be diagonal,

meaning that the deviations of flow between O-D pair r from their historical values

depend on prior interval flow deviations between O-D pair r alone. The O-D flows

themselves were further grouped into high, medium and low categories, and common

autoregressive factors were estimated for each flow class.

5.3.5 Error Statistics

The following error statistics were used in analyzing the results:

1. Root Mean Square (RMS) Error =
√

∑

i(yi−ŷi)2

N

2. Root Mean Square Normalized (RMSN) Error =
√

N
∑

i(yi−ŷi)2
∑

i yi

3. Weighted Root Mean Square (WRMS) Error =
√

∑

i wi(yi−ŷi)2

N

4. Weighted Root Mean Square Normalized (WRMSN) Error =

√
N

∑

i wi(yi−ŷi)2
∑

i yi
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where wi, the weight associated with measurement i, is the inverse of the variance

of the corresponding measurement error. The weighted statistics were computed in

order to discount the effect of large measurement errors on the objective function

value.

5.3.6 Calibration Approach

Three days of data were set aside for model calibration. The calibration process

utilized these different days of data sequentially, and attempted to refine the param-

eter estimates with each additional day of data. The seed O-D flows computed from

the static planning matrix were used as target flows for the O-D estimation module.

These direct measurements were treated as in Equation 3.9. In the absence of any

initial error covariance estimates, a weighted least squares approach was adopted,

with the sensor counts being assigned higher weights than the target O-D flows. This

step was employed in order to extract all the O-D flow information from the sensor

counts, and downplay the importance of the seed O-D flows. The weights used for

O-D flows were not kept constant across the O-D pairs. Low flows (as indicated by

the planning matrix) were assigned high weights in order to maintain them in an ac-

ceptable range, and capture the fact that such flows normally exhibit low variability.

Flows for each time interval were estimated sequentially using the GLS formulation

outlined in Section 2.4.

Several iterations were performed in conjunction with the O-D estimation step to

determine an optimal set of parameters for the route choice model. The utility V
i
of

each path is a function of two travel time components:

Vi = β
1
tt
Ai

+ (β
2
β
1
)tt

Fi
(5.1)

where tt
Ai

and tt
Fi

are the arterial and freeway components of the travel time along

path i, β
1
is the coefficient of arterial travel time, and β

2
is the freeway bias3. Different

3Freeway bias attempts to capture the driver’s preference for a freeway section over an arterial
section of the same impedance.
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combinations of the parameters β
1
and β

2
were tried , to cover a wide range of

route choice situations. Obviously, one would expect β
1
to carry a negative sign,

while β
2
would be a positive number between 0 and 1. Table 5.1 summarizes the

last few iterations of this search process. Iterations 1 through 6 represent (β
1
,β
2
)

of (-0.03,0.77), (-0.04,0.75), (-0.035,0.75), (-0.03,0.75), (-0.04,0.78) and (-0.04,0.80)

respectively. The optimal value for (β
1
, β

2
) was found to be (-0.04, 0.80) (as seen

from Figure 5-9), and was identified after the third day of data was processed. A very

high value of 40 for the Path-Size exponent γ was also selected for best model fit4.

Iteration RMS RMSN WRMS WRMSN
1 9.77E+03 1.3012 87.7477 0.0117
2 1.01E+04 1.3440 61.0514 0.0081
3 9.68E+03 1.2891 53.0597 0.0071
4 9.89E+03 1.3175 52.0614 0.0069
5 9.76E+03 1.3002 49.2280 0.0066
6 9.67E+03 1.2874 47.9872 0.0064

Table 5.1: Error in Fit to Counts for Varying Route Choice Parameters

Once the flows for all intervals had been estimated using the first day of data,

the error covariances were estimated from the resulting residuals, as described in

Section 3.4. The O-D flows were then re-estimated for day 1 using the new covariance

estimates. The resulting O-D flows and simulated counts were used to re-estimate

the error covariances again before moving to day 2.

Data from day 2 was processed in a manner similar to day 1, with a slight differ-

ence. The O-D flow estimates obtained from day 1 were designated as historical flows

for day 2, and Equation 3.5 was used to compute the target flows for subsequent time

intervals. The day 1 estimates for the first interval were used as target flows for the

first interval in day 2. The error covariances were estimated before proceeding to day

3. The treatment of data from day 3 was identical to that from day 2.

Figures 5-10 to 5-14 graphically depict the comparison of estimated and observed

sensor counts during the off-peak period leading to the AM peak. Having thus con-

4Such a high value of γ is consistent with the findings of Ramming (2001), who reports best fit
as γ → ∞.
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Figure 5-9: Route Choice Parameter Estimation

firmed that we have a reasonable estimate of the network state at the commencement

of the peak period of interest, we focus on the peak period for statistical comparisons.

Similar visual comparisons for intervals in the peak period are presented in Figures

5-15 to 5-17 after processing the third day of data. Tables 5.2 and 5.3 summarize the

error statistics that measure the performance of the calibration algorithm at various

stages5. While the RMSN errors were found to be stable across the four estima-

tion iterations, the progress in the estimates was indicated by the Weighted RMSN

(WRMSN) errors, that accounted for the variability in sensor measurements. Table

5.3 clearly indicates an improvement in fit with every additional day of surveillance

data processed.

Analysis of the calibration algorithm’s performance was also evaluated by com-

paring the time-varying sensor counts reported by the supply simulator against that

recorded by the surveillance system (Figure 5-21). It was found that the counts on

5More detailed numerical results are presented in Appendix A
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Initialization day 1 day 2 day 3

6:00 0.09 0.11 0.13 0.11
6:15 0.17 0.13 0.16 0.15
6:30 0.09 0.09 0.14 0.11
6:45 0.11 0.11 0.13 0.11
7:00 0.13 0.13 0.11 0.10
7:15 0.15 0.14 0.11 0.14
7:30 0.13 0.12 0.14 0.11
7:45 0.14 0.14 0.15 0.22
8:00 0.16 0.13 0.16 0.21
8:15 0.23 0.16 0.18 0.23

Table 5.2: RMSN Errors from Four Estimations

Initialization day 1 day 2 day 3

6:00 231.87 23.36 11.37 9.66
6:15 150.92 16.77 17.44 16.63
6:30 230.51 14.92 10.35 9.23
6:45 159.67 15.00 10.63 10.36
7:00 195.26 50.82 7.59 7.31
7:15 156.34 23.14 13.19 7.39
7:30 108.79 13.30 21.04 13.83
7:45 157.03 16.32 7.81 15.97
8:00 107.66 13.94 9.41 9.77
8:15 132.07 35.54 8.44 18.53

Table 5.3: WRMSN Errors from Four Estimations

freeway links were replicated with a high degree of accuracy, while the counts on ar-

terial and ramp links were subject to a small degree of stochasticity. This error could

be largely attributed to approximations made while converting the vehicle-actuated

signal control logic at intersections into segment-specific capacities. Recent research

in this area has subsequently led to the integration of a capacity translator in Dy-

naMIT, that allows for the online adjustment of segment capacities at intersections.

This addition was however, not included in this study.

A further check involving the O-D flows was performed to ascertain the variation

of O-D flows with time. A comparison of the dynamic estimated flows for one of the

most heavily traveled O-D pairs (Figure 5-22) against the initial seed flows indicate
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that the dynamic seed flows obtained from the static planning flows is indeed a good

approximation of the actual flows, and provide a reasonable starting point for the

calibration process.
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Figure 5-10: Days 1, 2 and 4: Counts from 4:15 AM to 4:45 AM
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Figure 5-11: Days 1, 2 and 4: Counts from 4:45 AM to 5:15 AM
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Figure 5-12: Day 1: Counts from 5:15 AM to 5:45 AM
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Figure 5-13: Day 2: Counts from 5:45 AM to 6:15 AM
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Figure 5-14: Day 2: Counts from 6:15 AM to 6:45 AM
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Figure 5-15: Estimated Counts for 6:45 to 7:00 AM
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Figure 5-16: Estimated Counts for 7:00 to 7:15 AM

111



0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed Counts for 7:30 AM, Day 3

E
st

im
at

ed
 C

ou
nt

s 
fo

r 7
:3

0 
A

M

Figure 5-17: Estimated Counts for 7:15 to 7:30 AM

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed Counts for 7:45 AM, Day 2

E
st

im
at

ed
 C

ou
nt

s 
fo

r 7
:4

5 
A

M

Figure 5-18: Estimated Counts for 7:30 to 7:45 AM
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Figure 5-19: Estimated Counts for 7:45 to 8:00 AM
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Figure 5-20: Estimated Counts for 8:00 to 8:15 AM
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Figure 5-21: Comparison of Time-Varying Freeway, Arterial and Ramp Sensor Counts
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Figure 5-22: Comparison of O-D Flows

Having used the first three days of data to obtain the flow and error covariance

estimates, we proceeded to estimate an autoregressive process that would form the

basis for DynaMIT’s predictive capability. The deviations of the day 3 estimates from

their historical values6 were computed, and regressions similar to Equation 3.13 were

run. An autoregressive process of degree 4 was found to fit the data best, with an

additional degree causing only a marginal improvement in fit (by reducing the RMS

error from 30.04 to 29.84). Separate parameters were estimated for O-D pairs falling

within low, medium and high flow brackets7. The estimated factors are summarized

below:











ρhih−1 ρhih−2 ρhih−3 ρhih−4

ρmed
h−1 ρmed

h−2 ρmed
h−3 ρmed

h−4

ρlowh−1 ρlowh−2 ρlowh−3 ρlowh−4











=











0.4186 0.2840 0.0103 −0.1841
0.3408 0.2280 −0.0642 0.7881

0.2076 0.1124 0.0547 0.0359











(5.2)

6The estimates from day 2 were used as historical flows here.
7Historical flows higher than 600 vehicles/hour were classified as high, while those lower than 280

vehicles/hour were designated low.
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The predictive ability of the calibrated DynaMIT system was evaluated through

validation tests.

5.4 Validation of Calibration Results

The calibrated system was tested for its estimation and prediction performance using

data that was not a part of the original calibration exercise. Data from day 4 was

used for this purpose.

5.4.1 Validation of Estimation Capability

The process of validating the estimation capability of the calibrated DynaMIT system

was similar to the actual calibration process. The best historical O-D flow estimates,

error covariances and route choice parameters were used along with a new day of

traffic surveillance data to re-estimate the O-D flows. The resulting simulated sensor

counts were compared against those recorded by the field sensors.

RMSN WRMSN
day 3 day 4 day 3 day 4

6:00 0.11 0.12 9.66 8.77
6:15 0.15 0.16 16.63 12.26
6:30 0.11 0.12 9.23 8.34
6:45 0.11 0.10 10.36 6.97
7:00 0.10 0.12 7.31 6.29
7:15 0.14 0.13 7.39 4.72
7:30 0.11 0.20 13.83 7.47
7:45 0.22 0.22 15.97 8.40
8:00 0.26 0.26 9.77 8.91
8:15 0.42 0.42 18.53 12.84

Table 5.4: Validation of Estimation Results

Table 5.4 summarizes the results of the first validation test. The first two columns

indicate the RMSN error in counts from the last calibration run, and the validation

run respectively. These errors were found to be fairly stable. The weighted RMSN

errors (contained in columns 3 and 4) showed a further slight negative trend, thereby
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indicating that the five estimation iterations performed in total have moved in the

right direction with reference to replicating the observed link counts.

Having verified DynaMIT’s ability to estimate O-D flows, we next moved to eval-

uating its predictive ability.

5.4.2 Validation of Prediction Capability

The validation of DynaMIT’s prediction capability is critical for the evaluation of

the performance of the DTA-based guidance and traveler information system. For

this test, the calibrated system was run from 4:00 AM through 7:30 AM. During this

run, DynaMIT estimated flows for each time interval until 7:30 AM. The autoregres-

sive process was now applied on the flow deviations to generate one, two, three and

four-step O-D flow predictions (covering a one-hour prediction horizon), which were

then simulated by DynaMIT’s supply simulator to generate simulated sensor counts.

The comparison of simulated counts with those actually observed by the surveillance

system is summarized in Table 5.5. As expected, the fit to counts deteriorated as

the prediction interval moved away from the current interval. Figures 5-23 and 5-

24 graphically indicate a slight reduction in fit as the prediction horizon increases,

thereby highlighting the importance of a rolling horizon approach to traffic prediction.

RMSN WRMSN
day 4 Validation day 4 Validation

7:30 0.20 0.14 7.47 9.25
7:45 0.22 0.12 8.40 18.54
8:00 0.26 0.15 8.91 17.53
8:15 0.42 0.16 12.84 19.16
8:30 - 0.25 - 21.61

Table 5.5: Validation of Prediction Results
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Figure 5-23: Predicted Counts for 7:30 AM to 8:00 AM
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Figure 5-24: Predicted Counts for 8:00 AM to 8:30 AM
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5.5 Summary and Conclusion

In this chapter, we calibrated the DynaMIT/DynaMIT-P DTA system using data

collected by a traffic surveillance system in Irvine, California. We further validated the

estimation and prediction capabilities of the calibrated system. The results indicate

that the calibration methodology proposed in earlier chapters can indeed be applied

to large urban networks with complex routes to obtain robust parameter estimates.
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Chapter 6

Conclusion

We begin this chapter with an assessment of the contributions of this research to

the state of the art of DTA model calibration methods, and conclude with some

suggestions for future research directions.

6.1 Research Contribution

This research represents significant extensions to existing literature related to the

calibration and validation of Dynamic Traffic Assignment Systems. Specifically,

• The methodology presented here is one of the first attempts at the joint cali-

bration of route choice and O-D estimation and prediction models. It extends

existing O-D estimation approaches to handle the needs of a calibration pro-

cess, and provides an integrated framework for the joint calibration of individual

driver route choice models in the absence of disaggregate data.

• This thesis undertakes a detailed outline of the component steps in the demand

calibration process, and analyzes the inputs and outputs at each stage. The

critical issue of starting the calibration process from static O-D data in the

absence of reliable historical estimates is also discussed and implemented.

• This work addresses the issue of using several days of data to update the his-

torical database of O-D flows, error covariances and autoregressive factors.
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• The case studies in this research involve a real-sized urban network consisting

of both freeways and arterials, and demonstrate the practical feasibility and

robustness of the proposed calibration approach. More importantly, the cali-

brated DTA system has been validated through evaluations of its estimation

and prediction capabilities, with very encouraging results.

6.2 Directions for Further Research

The focus of this thesis was on a general framework for the calibration of the de-

mand models within a DTA system. We have discussed the component steps in the

process, and the factors involved in obtaining the inputs and outputs at each step.

We addressed issues relating to starting the process for the first few days of data,

when several key inputs are likely to be either unavailable, or unreliable at best. We

further presented a framework for setting up a historical database of O-D flows, error

covariances and autoregressive factors, and outlined some approaches to updating this

database with multiple days of surveillance data. There are several issues, however,

that could be pursued as further research.

6.2.1 Updating Model Parameter Estimates

While this work has considered the within-day variability in O-D flows, a common

underlying process was assumed to govern all four days of data used in this research.

A topic for further research could include the analysis of correlations across multi-

ple days of data, and efficient estimation methods to handle the same. Such effects

would be important especially when the calibration objective is expanded to include

the creation of a stratified historical database covering a wide range of demand condi-

tions and traffic scenarios. Criteria for such stratification schemes could include day

of the week, weather conditions, special events, scheduled workzone operations and

incidents.

Yet another issue is the importance of the starting seed O-D matrix. Clearly, the

seed plays a critical role in the calibration process, particularly when the assignment
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matrices are obtained from simulation models. With a sufficiently large data set

encompassing several months of data, one would expect the starting seed flows to

have a negligible effect on the final flow estimates. The limited size of the data set

available for this research, however, prevented us from exploring this idea in greater

detail.

6.2.2 Simultaneous estimation

DynaMIT employs a sequential approach to O-D estimation, primarily from consid-

erations of real-time computational efficiency. The calibration process, however, is

offline, and a simultaneous approach would be expected to yield more efficient es-

timates. One might therefore consider replacing the sequential GLS O-D estimator

with alternative estimation methods such as a simultaneous GLS estimator, or the

Kalman filter-based offline smoothing technique developed by Ashok (1996). This

approach, however, would require the computation and storage of assignment ma-

trices from all past intervals that influence counts in the current interval, and can

be computationally prohibitive. The development of efficient storage schemes might

yield a more robust calibration methodology.

6.2.3 Effect of number of sensors

The size of the O-D estimation problem depends on the number of sensors on the

network. In the perfect scenario, there would be as many sensors as O-D pairs, so

that the unknown O-D flows can be obtained in a simple manner. Unfortunately,

such is rarely the case. The number of sensors is often far lower than the number

of flows we wish to estimate. It would therefore be interesting to study the effect of

network coverage (in terms of the number of independent sensors) on the robustness

of the O-D flow estimates. One could also attempt to identify an optimum coverage

level to ensure consistent and robust estimation.
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6.2.4 Handling incidents

An important aspect of traffic estimation and prediction is the handling of incidents.

An extension of this study could include the analysis of DynaMIT’s estimation and

prediction capabilities under unexpected demand fluctuations, and its ability to gen-

erate consistent route guidance to minimize the impacts of the disturbance. A re-

quirement for such a study is the availability of a rich data set encompassing several

months of surveillance data, including detailed records of accidents and incidents that

caused capacity reductions in the network.

6.2.5 Driver behavior models

The driver behavior models in a DTA system would be composed of several network-

related attributes that might explain the choices made by travelers. In fact, drivers in

the real world might cancel their trips or switch modes based on information provided

to them by the ATIS. Under congested conditions, drivers might also change their

departure times in order to beat the rush. Such deviations could be expected to

seriously impact the O-D estimation module. Recent enhancements to DynaMIT’s

behavioral models have added the functionality to model these complex decisions.

Future work could study the effect of such driver behavior on the efficiency of the

final estimates, and on the quality of DynaMIT’s predictions.

6.3 Conclusion

An integrated approach to the calibration of demand models within a Dynamic Traffic

Assignment system was presented in this thesis. The route choice and O-D estima-

tion and prediction models were jointly calibrated for a large-scale urban network,

using data collected by a real traffic surveillance system. Validation studies indi-

cated encouraging results regarding the estimation and prediction capabilities of the

calibrated system. Further work involving larger data sets and more complex DTA

models would significantly extend the state of the art of real-time traffic simulation
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model calibration and validation.
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Appendix A

Tables

RMS RMSN WRMS WRMSN

6:00 27.71 0.09 75223.04 231.87
6:15 59.59 0.17 52672.55 150.92
6:30 35.85 0.09 93143.59 230.51
6:45 51.88 0.11 76971.29 159.67
7:00 64.74 0.13 100490.56 195.26
7:15 79.48 0.15 83111.06 156.34
7:30 77.16 0.13 65180.36 108.79
7:45 80.89 0.14 93435.59 157.03
8:00 96.78 0.16 64204.88 107.66
8:15 128.71 0.23 73878.42 132.07

Table A.1: Error Statistics for Day 1 Data (initialization)

RMS RMSN WRMS WRMSN

6:00 35.54 0.11 7577.61 23.36
6:15 46.35 0.13 5854.21 16.77
6:30 38.05 0.09 6030.49 14.92
6:45 53.39 0.11 7230.90 15.00
7:00 65.27 0.13 26153.72 50.82
7:15 72.77 0.14 12302.60 23.14
7:30 73.17 0.12 7967.53 13.30
7:45 85.47 0.14 9712.34 16.32
8:00 78.30 0.13 8314.34 13.94
8:15 89.87 0.16 19882.89 35.54

Table A.2: Error Statistics for Day 1 Data
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RMS RMSN WRMS WRMSN

6:00 38.04 0.13 3401.00 11.37
6:15 55.73 0.16 6072.21 17.44
6:30 57.16 0.14 4105.82 10.35
6:45 60.12 0.13 5017.08 10.63
7:00 55.47 0.11 3843.48 7.59
7:15 60.65 0.11 6990.40 13.19
7:30 79.04 0.14 11514.79 21.04
7:45 85.47 0.15 4561.13 7.81
8:00 93.50 0.16 5559.81 9.41
8:15 100.06 0.18 4810.94 8.44

Table A.3: Error Statistics for Day 2 Data

RMS RMSN WRMS WRMSN

6:00 37.71 0.11 3183.22 9.66
6:15 56.14 0.15 6194.73 16.63
6:30 48.35 0.11 4034.87 9.23
6:45 59.19 0.11 5444.57 10.36
7:00 58.14 0.10 4053.42 7.31
7:15 80.18 0.14 4259.06 7.39
7:30 68.10 0.11 8313.14 13.83
7:45 133.17 0.22 9705.44 15.97
8:00 129.67 0.21 5953.61 9.77
8:15 131.48 0.23 10495.00 18.53

Table A.4: Error Statistics for Day 3 Data

RMS RMSN WRMS WRMSN

6:00 39.81 0.12 2886.65 8.77
6:15 57.76 0.16 4340.39 12.26
6:30 47.63 0.12 3342.41 8.34
6:45 46.88 0.10 3435.29 6.97
7:00 65.21 0.12 3367.01 6.29
7:15 71.71 0.13 2556.83 4.72
7:30 117.26 0.20 4400.79 7.47
7:45 136.35 0.22 5263.17 8.40
8:00 162.64 0.26 5514.74 8.91
8:15 244.45 0.42 7469.00 12.84

Table A.5: Error Statistics for Day 4 Data
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