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Abstract

Advances in Intelligent Transportation Systems (ITS) have resulted in the deployment
of surveillance systems that automatically collect and store extensive network-wide
traffic data. Dynamic Traffic Assignment (DTA) models have also been developed for
a variety of dynamic traffic management applications. Such models are designed to
estimate and predict the evolution of congestion through detailed models and algo-
rithms that capture travel demand, network supply and their complex interactions.
The availability of rich time-varying traffic data spanning multiple days thus provides
the opportunity to calibrate a DTA model’s many inputs and parameters, so that its
outputs reflect field conditions.

The current state of the art of DTA model calibration is a sequential approach, in
which supply model calibration (assuming known demand inputs) is followed by de-
mand calibration with fixed supply parameters. In this thesis, we develop an off-line
DTA model calibration methodology for the simultaneous estimation of all demand
and supply inputs and parameters, using sensor data. We adopt a minimization for-
mulation that can use any general traffic data, and present approaches to solve the
complex, non-linear, stochastic optimization problem. Case studies with DynaMIT,
a DTA model with traffic estimation and prediction capabilities, are used to demon-
strate and validate the proposed methodology. A synthetic traffic network with known
demand parameters and simulated sensor data is used to illustrate the improvement
over the sequential approach, the ability to accurately recover underlying model pa-
rameters, and robustness in a variety of demand and supply situations. Archived
sensor data and a network from Los Angeles, CA are then used to demonstrate scal-
ability. The benefit of the proposed methodology is validated through a real-time
test of the calibrated DynaMIT’s estimation and prediction accuracy, based on sen-
sor data not used for calibration. Results indicate that the simultaneous approach
significantly outperforms the sequential state of the art.
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As the world rapidly becomes a global society and economy, the need to physically

move goods and people from one place to another has never been greater. Individuals

and families make more trips today for a variety of reasons: they commute to work,

perform household tasks and travel to participate in recreational activities. The

simultaneous boom in manufacturing and retail services has led to a surge in the

shipment of raw materials and finished goods across and between entire continents.

Of these two components, the transportation of people is of particular interest, since

the entities interact directly with their environment, make their own decisions and

prefer to operate within individual-specific environmental parameters.

Road (highway) traffic systems involve perhaps the most complex set of interac-

tions related to transportation. Individuals in such systems need to be in constant

control of their vehicles. They also make continuous decisions relating to route and

lane choice, speed, acceleration and deceleration, overtaking, merging and response

to information and control messages. Driver behavior under a variety of traffic con-

ditions (such as congestion, delays and accidents) and personal circumstances (the

need to keep an appointment, for example) add yet another dimension that can often

perturb traffic flow and increase stress. Transportation systems must therefore be

planned, operated and managed with care in order to ensure smooth flow, taking into

consideration expected demand, stochasticity and potential disruptions.

Network modeling has historically played an important role in analyzing the

costs and benefits of important transportation infrastructure proposals. The ever-

expanding list of stakeholders and the growing awareness of diverse socio-political,

environmental and quality-of-life issues have made transportation network planning,

design and operations a complex yet necessary process. The existence of complicated

interactions between the various parties involved, together with the irreversibility

of infrastructure investment, drives the need to carefully weigh the targeted system

benefits against all potential undesirable long- and short-term consequences.

Transportation has a strong influence on land use. Decisions by traffic planners

clearly have long-term impacts on network performance, land use evolution and re-

gional urban development. For example, the construction of a high level-of-service
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highway or transit link has the potential to draw businesses and residents towards

the new transportation corridor. Industrial growth and induced vehicular traffic could

also lead to congestion and environmental effects that may play major roles in house-

holds’ decisions to own automobiles or change home location. In addition, the physical

alignment of the proposed facility may itself be the focus of intense political and en-

vironmental concern that can delay urban development and cause financial over-runs.

Accurate analysis methodologies are therefore essential to ensuring the long-term sus-

tainability of urban growth while also providing short-term benefits and opportunities

to the local communities.

Constraints on the availability of land and financial resources along with strong

opposition to the addition of noisy facilities close to residential areas have forced a re-

thinking of urban mobility planning. Transportation systems have recently been the

subject of a paradigm shift away from building new capacity, towards the enhance-

ment, better management and utilization of existing infrastructure. Enhancements

to increase network capacity include lane expansions, signal and ramp metering opti-

mization and ramp re-design. It is also believed that more efficient demand and inci-

dent management through the deployment of Advanced Traveler Information Systems

(ATIS) and Advanced Traffic Management Systems (ATMS) may mitigate congestion.

The success of such measures relies heavily on planners’ abilities to accurately model

a wide range of ATMS and ATIS technologies, evaluate network performance, and

capture driver behavior (particularly their response to improved information). The

modeling capabilities to support such decisions at both the planning and operational

levels target short-term and within-day effects, given long-term decisions. Critically,

these models must capture dynamic traffic evolution in order to replicate the forma-

tion and dissipation of queues and spillback (under both recurrent congestion and

during unexpected perturbations such as incidents).

Static approaches based on the traditional four-step modeling approach predict

trip rates (the trip generation step) over large time horizons potentially spanning

several years. They also forecast the corresponding origin-destination (OD) demands

and the level of use of various transportation modes, through the trip distribution and
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modal split steps. Finally, these models estimate congestion levels and link volumes.

This final step, generally referred to as traffic assignment, assumes that network

flows and travel times remain unchanged over the entire study period such as the

morning or evening peak period. Steady-state OD flows are then loaded onto the

network, yielding link flows that are expected to capture average conditions across

the entire period. The simplest network loading technique is all-or-nothing assignment

through which the entire flow between any OD pair is assigned to the path with the

minimum travel time (or generalized cost). Capacitated variations of this shortest-

path approach have been tried, in order to capture congestion effects. Other popular

methods include User Equilibrium (UE), Stochastic User Equilibrium (SUE) and

System Optimal (SO). A UE assignment is based on the hypothesis that drivers,

and other users of the transportation system, evaluate and maximize their perceived

utilities across all feasible (or reasonable) routes. Under this assumption, no driver can

reduce her travel cost by switching to another route from her choice set. Deterministic

network link costs and drivers’ perfect perception of the same are also assumed. SUE

approaches introduce probabilistic route choice models that recognize stochasticity

in drivers’ perceptions of route costs. Finally, the SO approach minimizes the total

system travel cost across all drivers. Such a situation, even if it exists, is not an

equilibrium, since some drivers can potentially benefit by switching to another route.

Further, SO assignment is not reflective of expected driver behavior, since it requires

communication and cooperation between all drivers.

Static analyses (such as the four step process) are well-suited for long-range plan-

ning purposes such as major infrastructure investments, land use planning (including

industrial and residential zoning), and airport and facility location. A particular

advantage of these methods is their ability to project OD demand and mode utiliza-

tion based on current data. However, the resolution along the time dimension is too

coarse to allow the modeling of within-day and day-to-day effects. For example, a

static model may yield daily average vehicular flows on the links comprising the study

network, but cannot capture within-day dynamic demand profiles, the formation and

dissipation of queues, and network performance under incidents or other real-time
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perturbations.

The advent of simulation techniques and powerful, inexpensive computers have

seen a gradual shift away from static traffic assignment approaches, towards less

tractable yet more realistic models that capture dynamic demand patterns, incor-

porate stochastic driver behavior, model traffic dynamics, and explicitly replicate

demand-supply interactions. Dynamic models also allow the modeling of drivers’ en-

route decisions, which include response to traveler information disseminated through

variable message signs or other means. Transportation analysts are increasingly

adopting such complex modeling and simulation methods to design transportation

infrastructure and optimize its operations. The rapid transition of the state-of-the-

art of dynamic transportation network modeling to the state of the practice in recent

times has been possible due to three primary factors:

• Modern traffic network sensing technologies such as pavement loop detectors,

automatic vehicle identification (AVI) and remote traffic microwave systems

(RTMS) are yielding richer, more up-to-date and easily collected traffic data

that provide opportunities to estimate more realistic models of traffic and driver

behavior.

• Research in modeling and simulation techniques have resulted in models that

can replicate network demand and supply processes, driver behavior mecha-

nisms, and their complex interactions. Further, these advanced models have

been validated through real sensor data that is becoming more widespread with

large-scale traffic surveillance deployment.

• Rapid progress in the capabilities of modern computers are playing a critical

role in thrusting ITS prototypes onto the practical realm. Faster computers are

demonstrating the advantages of data- and processor-intensive simulation mod-

els for both off-line planning analyses as well as real-time system optimization

and operations.

Next we present the structure of a generic Dynamic Traffic Assignment (DTA)

model, followed by an overview of the evolution of dynamic traffic assignment ap-
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proaches. This discussion aims to convey the growing model complexity during the

development of DTA theory, and motivates the need for calibrating such complex

systems before they are applied to real-life scenarios.

1.1 Generic structure of DTA models

DTA models replicate various traffic phenomena through complex demand and sup-

ply model components that interact systematically to simulate the performance of

the network. The structure of a generic DTA model is outlined in Figure 1-1. De-

mand models estimate and predict origin-destination (OD) trip patterns, and simu-

late the behavior of individual drivers (including pre-trip departure time, mode and

route choice, and response to information). Supply models capture traffic phenom-

ena through detailed representations of the capacities of network elements, the traffic

dynamics resulting from speed/acceleration, lane changing and merging/weaving be-

havior, and the impact of incidents. Various algorithms tie the demand and supply

components together to assign the dynamic demand to the network and determine

the temporal propagation of flows. The resulting traffic conditions (including speeds,

densities, travel times and delays) may be used for a variety of planning and real-time

management applications.

DTA models differ in the mechanisms used to capture the time-varying nature of

demand and supply processes and their interactions. A discussion of various DTA

approaches follows.

1.2 Typology of DTA Models

While the mathematical properties and solution approaches of the static assignment

problem are well understood, the associated modeling limitations yield unrealistic

traffic characterizations that fail to capture driver behavior such as response to en-

route information, and fundamental congestion phenomena such as queuing dynamics.

The importance of modeling traffic in a dynamic setting has been stressed already,
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particularly in the context of real-time incident management and en-route guidance.

In this section, we review the literature on dynamic traffic assignment methods. The

following discussion is intended to highlight the complexity of current DTA models,

and the intermediate approaches leading to the state-of-the-art.

DTA model types can be broadly classified according to the nature of their mod-

eling and solution frameworks. We divide the literature under three headings. The

first describes some of the initial efforts to replicate observed dynamic congestion fea-

tures using known static concepts. Next, two very different mainstream approaches,

truly dynamic in their treatment of traffic, are outlined. One relies on analytical

formulations (largely through optimization) and solution algorithms, while the other

employs simulation techniques. We summarize with a note on the complexity of

simulation-based DTA systems, leading to the motivation for this research.

1.2.1 Early developments

The development of computer programs capable of solving the static traffic assign-

ment problem may have provided the impetus for the first non-static approaches to
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modeling traffic phenomena. Peeta (1994) describes a few such efforts, classified as

“quasi-dynamic” assignment. These approaches attempted to introduce dynamic con-

siderations through the repeated application of static methods to sub-intervals of the

period of interest. One such study (Halati and Boyce (1991), Halati et al. (1991))

focuses on evaluating the impact of route guidance during incidents. The authors

divide the time horizon into “pre-incident”, “incident” and “post-incident” regimes,

and solve a static user equilibrium formulation to obtain steady-state conditions lead-

ing up to the incident. The subsequent analysis, targeting more dynamic treatment

of congestion evolution, employs successive static user equilibrium problems over ten-

minute intervals.

Quasi-dynamic methods were also the basis for some early simulation-based as-

signment models. An initial version of CONTRAM (CONtinuous TRaffic Assignment

Model, Leonard et al. (1978), Leonard et al. (1989)) from the UK-based Transporta-

tion and Road Research Laboratory, captured within-day demand dynamics through

the specification of different OD demand rates in each sub-interval. The model, how-

ever, allowed only one path per vehicle packet1. Also, the use of relatively long time

sub-intervals, coupled with a network equilibrium objective, rendered it unsuitable

for short-term planning and real-time/ATIS applications. The current CONTRAM

software release addresses many of these limitations, and is discussed in Taylor (2003).

SATURN (Simulation and Assignment of Traffic to Urban Road Networks), devel-

oped at the University of Leeds (UK), is another quasi-dynamic system with features

and properties similar to the first CONTRAM model. Details of this model are pro-

vided in Hall et al. (1980) and Vliet (1982). It improves over CONTRAM in terms

of its detailed treatment of urban intersections and traffic signals.

In summary, quasi-dynamic approaches represent the earliest research that moves

away from traditional static traffic modeling. While they began to harness the growing

capabilities of computers and simulation, their applicability and modeling accuracy

were still severely limited:

1Vehicles between an OD pair were aggregated into homogeneous groups called packets in order
to reduce computational requirements.
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• Time intervals were too long to replicate fast-evolving traffic conditions.

• Static assignment assumes the instantaneous propagation of the entire OD de-

mand within each interval. The reliance on a series of static assignments thus

ignored the impact of vehicle interactions on capacity and traffic dynamics.

• Solving a successive set of independent static assignments did not guarantee

flow conservation and continuity across time interval boundaries.

The above limitations led to research into truly dynamic assignment techniques

that could, directly or indirectly, capture vehicle interactions and traffic dynamics.

1.2.2 Analytical approaches

Several researchers worked on extending the analytical static assignment problem

to capture some prominent features of time-varying traffic conditions. Analytical

DTA models approximate the DTA problem for a specific objective (such as User

Equilibrium (UE) or System Optimal (SO)), through mathematical formulations and

explicit constraints. The corresponding solutions of interest are usually obtained by

the application of a traditional (typically non-linear) optimization algorithm that

solves for the unknown variables (network descriptors).

Analytical DTA models can be classified according to the basic assumptions un-

derlying their formulations. We present here an outline of three major formulation

ideas, focusing on the crucial limitations that motivate simulation-based DTA ap-

proaches (such as those described in Section 1.2.3). The three classes rely on concepts

drawn respectively from the areas of mathematical programming, optimal control and

variational inequalities. A more detailed discussion of these modeling concepts can

be found in the review paper by Peeta and Ziliaskopoulos (2001) and the references

contained therein. We present here a brief synopsis of the three approaches.
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Mathematical programming formulations

DTA models based on mathematical programs employ a time-discretization scheme

to model traffic dynamics. The basic formulation, after being adjusted and modified

repeatedly, possesses desirable mathematical properties such as convexity and well-

behaved functional forms. In particular, convexity allows for solution approaches that

exploit standard non-linear programming packages.

The mathematical properties of academic problems consisting of a single OD pair

have been thoroughly analyzed in the literature (Merchant and Nemhauser, 1978;

Carey, 1987). However, extensions to the realistic scenario of multiple OD pairs has

highlighted the crucial limitations of the mathematical programming approach. For

instance, vehicles may “jump” over other vehicles, if such decisions result in a lower

objective function value. A less serious effect concerns overtaking maneuvers, a regu-

larly observed feature in real traffic, that is precluded through explicit First-In-First-

Out (FIFO) requirements. Yet another limitation concerns the problem formulation

with a System Optimal objective, with the solution algorithm potentially subjecting

a subset of vehicles to unreasonable delays at certain nodes in order to reduce the

travel times of other traffic streams (and consequently lowering system-wide costs).

Both these issues are discussed in detail by Carey and Subrahmanian (2000).

In general, in spite of other extensions that aim to increase the realism of math-

ematical DTA approaches (Janson, 1991; Birge and Ho, 1993; Ziliaskopoulos, 2000),

mathematical programming formulations lack the ability to accurately replicate real-

world congestion patterns and driver behavior. Where more realistic approaches are

attempted by incorporating additional constraints, the resulting problems are too

complex to be applied to large-scale networks in real-time applications.

Optimal control formulations

Formulations based on optimal control theory differ from mathematical programming

approaches in their representation of the temporal dimension. While the previous

class of models sliced time into discrete intervals, optimal control formulations treat
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OD demand and link flows as continuous functions of time (Friesz et al., 1989; Wie,

1991). The resulting approaches share many of the properties and limitations of

mathematical programming models. The generalization of Wardrop’s UE principle

has been particularly difficult, when more than one OD pair is considered.

Several papers discuss methodologies and relaxations that may help enhance the

realism of optimal control approaches (Ran and Shimazaki, 1989; Ran et al., 1993;

Boyce et al., 1995). However, these efforts remain preliminary, with few practical ex-

amples or data to support their applicability. The lack of efficient solution algorithms

has also severely hindered the progress of this class of DTA models.

Variational inequality formulations

Applications of variational inequalities (VI) to the traffic assignment problem have

been well-documented for the static case. The underlying concepts were recently

transferred to the dynamic case with some success, resulting in more general models.

Further, mathematical analyses of VI problems have helped identify limitations of

other analytical methods when dealing with asymmetric link costs. However, basic

limitations of analytical approaches (such as lack of realistic representation of con-

gestion and driver behavior) persist in this class of models.

Friesz et al. (1993) present a path-based DTA formulation which is one of the few

analytical approaches to include driver behavior. The authors approximate drivers’

route and departure time choices by utilizing link performance functions together with

desired arrival times and early/late arrival penalties while computing path costs.

However, the resulting system of simultaneous integral equations cannot be solved

efficiently using existing algorithms.

Subsequent work using a link-based approach has shown improved traffic realism

at the expense of computational overhead (Ran and Boyce, 1996; Chen and Hsueh,

1998). Path-based approaches are however better suited to route guidance and ATIS

situations, since driver behavior realistically includes perceptions of entire paths or

sub-paths (sequences of consecutive links) rather than individual links. VI formu-

lations thus exhibit more flexibility in capturing real traffic phenomena, but their
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solution remains prohibitively expensive even for moderately-sized networks.

Conclusions

Analytical DTA approaches have attempted rigorous mathematical formulations of

ever-increasing complexity, in a bid to close the gap between the models’ capabilities

and observed reality. However, such efforts, while meeting with limited success on

small networks with simplified behavioral assumptions, largely fail to capture the truly

dynamic characteristics revealed in the real world. As the focus of traffic planning

and operations shifts towards demand management and real-time route guidance,

there is a need for DTA models capable of capturing the full complexity of individual

drivers’ decisions relating to route and departure time choice and response to en-

route information and control messages. The capabilities of such DTA systems must

go beyond traffic assignment, to estimating and predicting OD flows, travel times,

delays and queues. Such detailed modeling abilities lie in the realm of simulation.

Section 1.2.3 reviews the cutting edge of simulation-based dynamic traffic assignment,

which is the focus of this thesis.

1.2.3 Simulation-based approaches

Traffic simulation models may be classified based on their level of abstraction of

drivers and driving behavior. Microscopic models represent individual drivers, their

decisions and interactions at a high level of detail. Interactions may include car

following, lane changing, merging and yielding maneuvers that indirectly determine

network capacity and traffic dynamics. Macroscopic models treat traffic as a uniform

or homogeneous flow, and adapt physical concepts (such as fluid dynamics) to approx-

imate their propagation through the network. Such approaches are unable to capture

behavioral elements such as route and departure time choice, response to information

or drivers’ interactions with adjacent vehicles. Mesoscopic models combine some el-

ements from both microscopic and macroscopic approaches, representing individual

drivers and their travel decisions but replacing vehicle interactions with macroscopic
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traffic relationships. These relationships typically reflect the inter-relationships be-

tween flows, speeds and densities on the various links of the network.

Given the interest to model dynamic traffic for both planning and real-time ap-

plications, numerous simulation models have been developed to date. Some early

microscopic simulators include NETSIM, TRAF-NETSIM, INTRAS and FRESIM.

Macroscopic tools have also been widely used for network modeling and signal tim-

ing optimization, including TRANSYT, FREQ, FREFLO, KRONOS and CORQ.

INTEGRATION, along with later versions of CONTRAM and SATURN have been

classified as mesoscopic systems in the literature.

While the list of available simulation tools is large, the tools themselves are often

tailored for a specific type of application, such as a freeway corridor or an urban

intersection. Further, the literature indicates many limitations (relating to critical

aspects such as the replication of congestion patterns, driver behavior in weaving

segments, and response to information) on the applicability of these early models.

The handling of alternative paths between OD pairs, and the modeling of drivers’

perceptions of the same, is another area that has received attention only recently. We

now review some of the more sophisticated DTA models in use today, to provide a

flavor of their complexity and realism.

Current DTA models

Microscopic models are widely employed today both by the research community

and transportation professionals. Such models capture traffic dynamics through de-

tailed representations of individual drivers and vehicular interactions. Ahmed (1999)

presents a comprehensive discussion on microscopic traffic model components. Pop-

ular commercial microscopic software packages include CORSIM (FHWA, 2005),

PARAMICS (Smith et al., 1995), AIMSUN2 (Barcelo and Casas, 2002), MITSIMLab

(Yang and Koutsopoulos, 1996; Yang et al., 2000), VISSIM (PTV, 2006) and Trans-

Modeler (Caliper, 2006). Such tools have been applied in a wide range of planning

and design contexts (Abdulhai et al., 1999; Mcdougall and Millar, 2001).

Macroscopic models achieve fast running times on very large networks, at the ex-
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pense of individual driver behavior modeling. Flows are typically treated as fluids, and

the speed of flow is captured through a macroscopic function such as a speed-density

or speed-flow relationship. While such models may be used for long-range planning

applications, the lack of behavioral detail (such as route choice) is a limitation in appli-

cations that involve driver response to information (such as the impact of variable mes-

sage signs (VMS) and the evaluation of ATIS strategies). Several macroscopic mod-

els are reported in the literature, including METANET (Messmer and Papageorgiou,

2001), EMME/2 (INRO, 2006), VISUM (PTV, 2006) and the cell transmission model

(CTM, Daganzo (1994)).

Mesoscopic models target the estimation and prediction of traffic conditions in

real-time. Such systems are syntheses of microscopic and macroscopic modeling con-

cepts, coupling the detailed behavior of individual drivers’ route choice behaviors with

more macroscopic models of traffic dynamics. Mesoscopic models have significantly

faster run times than microscopic models, yet capture the individual decision pro-

cesses that are required for evaluating drivers’ response to information. Such models

are therefore suitable for real-time or on-line applications such as incident manage-

ment and route guidance generation. Examples of such systems include Dynamic

Network Assignment for the Management of Information to Travelers (DynaMIT,

Ben-Akiva et al. (2001, 2002)) and DYnamic Network Assignment-Simulation Model

for Advanced Road Telematics (DYNASMART, Mahmassani (2002); UMD (2005)).

DynaMIT integrates detailed demand and supply simulators to estimate and pre-

dict network state (including flows, speeds, densities and queue lengths). The de-

mand simulator models network demand at two resolutions: disaggregate drivers’

route and departure time choices are simulated using sophisticated discrete choice

models, while OD demand is modeled as aggregate flows. DynaMIT-R, developed

for real-time applications, synthesizes estimates of current network conditions from

historical information along with real-time surveillance data. OD predictions (based

on current network state) are then assigned using a mesoscopic supply simulator to

assess network performance in the near future. DynaMIT-R is flexible enough to al-

low the simulation of a wide range of ITS strategies, including variable message signs,
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on-board traveler information devices, and HOV lanes.

DYNASMART-X performs traffic routing functions similar to the real-time Dy-

naMIT system. It may operate in different modes, including predictive, decentralized

reactive (when local network controllers route vehicles by reacting to events such as in-

cidents), and hybrid (a combination of the centralized and decentralized approaches).

While sophisticated microscopic models have been applied to large, integrated,

urban networks, the associated computational requirements limit their use to short-

and medium-range planning. The repeated use of microscopic simulations for plan-

ning entire cities or regions may involve extremely costly computer runs, though these

applications may not be required to run faster than real-time. Large run times can

also occur in highly congested situations. DTA systems have therefore been developed

for short-term planning applications on large networks. The DynaMIT-P system, for

example, draws on detailed demand and supply simulators to estimate dynamic OD

flows from link counts, simulate drivers’ day-to-day travel time learning behavior and

predict the impact of a variety of information provision strategies during work zones,

special events and other pre-planned scenarios. The system can further simulate

multiple user classes and HOV lane use. DYNASMART-P is a similar variant of the

real-time DYNASMART-X system.

Dynameq (Dynamic Equilibrium), recently developed by INRO, is a commercial

network planning tool equipped to perform iterative simulations towards a dynamic

user equilibrium solution. Dynameq employs innovative algorithms to achieve sig-

nificant run-time savings when compared to most existing microscopic models, while

retaining some of the details such as car-following (Mahut et al., 2005).

1.2.4 Synthesis

State-of-the-art DTA models have been developed in the past decade, for a variety

of traffic network design, planning and operations management situations. These

models employ sophisticated algorithms and detailed microscopic, macroscopic and

mesoscopic simulation techniques to estimate network performance, predict (short-

term) future conditions and generate route guidance. Analytical approaches to route
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guidance generation are also being explored. Such advanced systems are being actively

pursued today in the context of ATMS, APTS and ATIS, with the on-line deployment

of real-time, predictive guidance systems a distinct possibility in the next few years.

DTA models are also being increasingly applied for short-term planning purposes

with the aim of including dynamic congestion evolution in the analysis of network

performance.

1.3 Motivation and scope

The value of DTA models (particularly large-scale simulation systems) depends on

their ability to accurately replicate conditions for the specific network being studied.

Indeed, the true impact of a new signal timing plan, for example, may be assessed

only if simulations of current (base-case) traffic control measures and drivers’ reaction

and response to the associated control messages are realistic. While advanced DTA

models provide realistic abstractions of actual demand and supply processes, their

outputs are governed by a large set of inputs and parameters that must be estimated

before the models are applied. Well-calibrated models are therefore critical to the

success of any DTA application.

The goal of DTA model calibration is to obtain accurate depictions of the following

aspects of a region’s transportation and traffic patterns:

Travel demand: Time-varying matrices of OD demand are important inputs to

DTA models. They capture local trip rates and travel patterns. OD demand

can potentially vary according to changing activity patterns of the travelers,

which may vary by day of the week, season, weather conditions, major work

zones and special events. DTA models also capture a variety of drivers’ travel

behavior, such as route choices and response to information. DTA models rely

on time-varying OD profiles and route choice models to capture demand-side

effects.

Network supply: The capacities of network elements such as links and intersec-
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tions (signalized and unsignalized) are determined by a host of factors related

to both the network and the drivers. The number of lanes on a freeway section,

for example, imposes constraints on the section’s throughput. Traffic signals

perform a similar function at arterial intersections, by allocating available ca-

pacity among competing streams of traffic. Complex vehicle interactions (such

as passing, lane changing, merging, yielding and weaving) further influence

evolving traffic dynamics and indirectly impact capacities. Incidents can also

potentially impact the smooth flow of vehicles, especially when the network is

operating with high traffic volumes. DTA models replicate the network’s supply

phenomena through detailed representations of capacities and traffic dynamics.

Demand-supply interactions Traffic patterns realized on the network are the re-

sult of complex interactions between travel demand and network supply. DTA

models employ detailed algorithms to capture these interactions and ensure

accurate estimates of queues, spillbacks and delays.

The topology of the traffic network, a critical input to all DTA models, will be

treated as an exogenous input in this research. It is assumed that a node-link repre-

sentation of the network at a resolution suitable to the proposed modeling task and

chosen DTA model is available from sources such as GIS (geographic information sys-

tems) databases, off-line and on-line maps, satellite images, aerial photographs and

prior network studies.

DTA models involve a large number of parameters and inputs that must be cali-

brated with actual traffic data to accurately predict traffic conditions. Off-line calibra-

tion typically results in the creation of a historical database that ensures the model’s

ability to replicate average conditions potentially covering a wide range of factors

such as day of the week, month, season, weather conditions and special events. Such

a calibration is expected to perform satisfactorily in planning studies, including the

evaluation of alternative network configurations and traffic management strategies.

On-line DTA applications require accurate real-time predictions of traffic condi-

tions on a given day. Traffic conditions are impacted by factors such as weather,
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road surface conditions, traffic composition and incidents. The results of the off-line

calibration must therefore be adjusted in real-time to be sensitive to the variability

of traffic conditions from their average values. On-line calibration is performed using

real-time surveillance data. The results of the off-line calibration are used as a priori

estimates during the on-line calibration process. Figure 1-2 illustrates an integrated

framework that captures the relationship between off-line and on-line calibration in

the context of DTA model applications. The typical data and parameters involved

in each step are also indicated. This thesis focuses on the off-line calibration of DTA

models.

OFF-LINE
CALIBRATION

ON-LINE
CALIBRATION

OD flows
Capacities

Traffic dynamics parameters
Route choice parameters

Travel times

Error covariances
OD prediction parameters

OD flows
Capacities
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Sensor data
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Figure 1-2: Off-line and On-line Model Calibration

Typically, models and the data needed to calibrate them fall in the same category.

Route choice models are thus traditionally calibrated using disaggregate survey data.

Similarly, modern OD matrix estimation methods rely on aggregate link sensor count

observations2. Given the paucity of disaggregate (survey) datasets, however, the

2An exception to this is the use of disaggregate OD surveys to generate OD matrices. This
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analyst will often be faced with the task of calibrating complicated DTA models using

aggregate data alone. Alternatively, models estimated using traditional methods may

have to be updated using recent sensor measurements. This thesis provides a rigorous

treatment of these problems, and demonstrates how the disaggregate and aggregate

models within a DTA system may be calibrated jointly using aggregate data.

The off-line calibration of a DTA model is summarized in Figure 1-3. We have

a DTA model with a list of unknown inputs and parameters (dynamic OD flows,

route choice model parameters, capacities, speed-density relationships, etc). We must

obtain estimates of these inputs and parameters by using the information contained in

available aggregate, time-dependent traffic measurements, so that the DTA model’s

outputs accurately mirror the collected data. This data includes, but is not limited

to, counts and speeds from standard pavement loop detectors3. Different sets of

parameters may be estimated to reflect any systematic variability in traffic patterns

identified from several days of observed data. A priori estimates for some or all of the

parameters, if available, may serve as starting values to be updated with the latest

data.

Automated data collection technologies afford the measurement and storage of

large amounts of traffic data. This data is expected to span many days, representing

the various factors (demand patterns, supply phenomena, incidents, weather condi-

tions and special events) characteristic of the region. In order to apply the DTA model

in the future, a database of model inputs and parameters must be calibrated for each

combination of factors observed in the data. The calibration task must therefore

begin with data analysis that reveals these combinations, and partitions the sensor

measurements accordingly.

Once calibrated, an important practical consideration is the maintenance of the

historical database as sensor data from future days become available. The histori-

cal estimates of model inputs and parameters must be updated with every new day

of measurements. In keeping with this requirement, we focus on the development

method has largely been replaced in recent times by the approach based on link counts.
3A more detailed description of aggregate data sources is provided in Section 3.2.
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Figure 1-3: Calibration Framework

of a systematic calibration methodology that estimates all demand and supply vari-

ables using one day of data at a time. Methods to periodically update the database

have been proposed elsewhere (see, for example, Ashok (1996) and Balakrishna et al.

(2005a)), and are discussed in detail in Section 3.3.

1.4 Problem definition

Let the period of interest each day be denoted by H. This period could include the

entire day, or a specific portion of the day (such as the AM or PM peak). Let H

be divided into H intervals of equal duration, represented by h = {1, 2, . . . , H}. Let

G denote the directed graph of nodes and links (and their associated characteristics,

including records of major incidents and special events) corresponding to the physical

transportation network input to the DTA model4. Let x represent the set of dynamic

OD flows xh , h ∈ H prevalent on that day. Each nOD-sized vector5 xh represents the

OD flows departing from their origin nodes during interval h. Further, let β be the

4We refer here to a general DTA model, chosen to suit the application at hand.
5nOD denotes the number of OD pairs on the network.
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set of time-specific model parameters βh comprised of route choice model parameters

and supply-side variables such as link/segment output capacities and speed-density

function parameters. We denote the total set of unknown parameters [x β] as θ. Let

the travel time inputs to the route choice model be TTrc.

The off-line DTA calibration problem can now be defined as the simultaneous

estimation of all the demand and supply variables in θ, and a consistent set of route

choice travel times, error covariances and OD prediction model parameters, using

time-dependent counts and speeds recorded by traffic loop detectors. Traffic data M

are assumed to be available over the H intervals in H, so that

M = {M1,M2, . . . ,Mh, . . . ,MH}

The vector Mh contains records of vehicle counts and speeds recorded during interval

h.

A priori estimates xa and βa, if available, can provide valuable structural infor-

mation that must be exploited by the calibration methodology. The non-zero cells in

xa, for example, indicate the OD pairs that contribute to network flows (and hence

must be included as optimization variables). Further, speed-density or speed-flow

equations fitted to actual sensor data may serve as a good starting solution to be

refined through systematic calibration. Information about the relative magnitudes of

the various OD flows and model parameters may also be useful in speeding up the

optimization through the use of appropriate lower and upper bounds.

The network G can vary from day to day. For example, a subset of links or

lanes in the network might become unavailable for a few days due to severe incidents,

weather conditions or scheduled maintenance activities. Such disruptions are treated

as exogenous inputs to the calibration process. Details of planned special events that

are expected to have a significant impact on the day’s travel and traffic patterns are

also included in G.
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1.5 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 presents a detailed

review of existing DTA model calibration approaches, and identifies the strengths and

limitations of recent work in this area. Chapter 3 briefly describes typical DTA cali-

bration variables and available sensor data, and outlines our formulation of the off-line

DTA model calibration problem. Critical characteristics of the problem are analyzed,

and an efficient calibration methodology is developed. Further, optimization algo-

rithms are identified for solving the DTA calibration problem. The methodology is

systematically tested in Chapter 4, using the DynaMIT DTA system, and results from

a case study with a real dataset are presented and discussed in Chapter 5. Finally,

we conclude with a synthesis of our major findings, contributions and directions for

future research in Chapter 6.
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Model calibration (or estimation) is the crucial step between the model devel-

opment and application phases of any project or study. Indeed, the abundance of

related literature underscores the importance of this problem. This chapter presents

a review of recent model calibration efforts, while emphasizing their advantages and

limitations. The chapter concludes by summarizing the current state-of-the-art, which

will form the reference case for comparisons through case studies.

2.1 DTA calibration literature

Work relating to the rigorous and systematic off-line calibration of simulation-based

DTA systems remains limited. The paucity of theoretical results on the calibration

front is partly because DTA is a relatively new field, and much of the research effort

thus far has focused on developing the theoretical foundations for various underlying

model components and their interactions. The resulting systems are large-scale and

complex, and employ detailed behavioral techniques and simulation approaches to

achieve a high degree of congruity with real-life processes and phenomena.

The lack of significant quantities of real-world traffic data (typically caused by

resource and technology constraints) has often limited the scope of DTA system cal-

ibration studies to date. The dynamic nature of DTA systems’ model inputs and

parameters requires the support of dynamic data recorded over extended periods,

which depends on advanced surveillance/sensor technologies. The demonstration of

the applicability and functionalities of DTA systems has thus been limited to small-

scale networks and short time periods, for which sufficient data can be collected.

The extensive deployment of ITS infrastructure in recent years has substantially

increased the amount of time-dependent surveillance data from large, complex net-

works. More cities are installing pavement loop detectors and road side sensors capa-

ble of measuring traffic characteristics (such as vehicle counts and speeds) over time

intervals as low as 30 seconds. In addition, communications technologies have en-

abled the transfer and storage of large traffic databases for future processing, thereby

facilitating the study of DTA calibration and validation methods on real networks.
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The literature pertaining to the calibration of DTA models can be grouped based

on the constituent model component(s) whose inputs and parameters are under

scrutiny. For this purpose, it is convenient to divide DTA model components into two

categories: (a) the demand models that capture time-dependent origin-destination

(OD) flows and traveler behavior (including mode, route and departure time choice),

and (b) the supply models that mimic traffic dynamics and the phenomena of queue

formation, dissipation and spillback. We organize the literature review into the fol-

lowing three broad classes:

• Demand-supply calibration of DTA models

• Estimation of supply models

• Estimation of demand models

While the calibration of the demand or supply models individually may be viewed

as only a part of the overall problem of DTA system calibration, the experiences from

such analyses provide valuable insights and suggest directions for the simultaneous,

efficient and systematic estimation of all relevant DTA model parameters. We now

focus on each of the three classes of estimation problems individually.

2.2 Demand-supply calibration of DTA models

A majority of the research on the calibration of a DTA system’s demand and sup-

ply model components treats the various components as independent entities whose

parameters are calibrated through a combination of prior experience, engineering

judgment and manual adjustment. Chen et al. (2004), for example, present prelimi-

nary results from a case study applying the DYNASMART-P simulator in Zwolle in

the Netherlands. The approach lacks a consistent model estimation framework, and

relies almost entirely on manual adjustments to individual model components based

on prior experiences with the network and its traffic patterns. Chu et al. (2004)

present a similar calibration approach using PARAMICS in Irvine, California that

combines heuristics and static approaches to assist in the fine-tuning of various model
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parameters. Gomes et al. (2004) evaluate the fit to observed speeds through visual

inspection, and iterate after manual adjustment until a satisfactory fit is obtained.

There are many drawbacks to such approaches. First, the process is tedious and

time-consuming, with no guarantee of improving upon the initial (or default) solu-

tion. Second, the complex inter-dependencies between model components are ignored,

resulting in potentially biased parameter estimates. Finally, the large-scale nature of

most traffic simulation applications would render any manual procedures infeasible.

Literature on the demand-supply calibration of DTA systems is limited. He et al.

(1999) attempt to list the major sources of error in a DTA system, and lay out frame-

works for the off-line and on-line calibration of the system. The proposed frameworks

treat the calibration of the dynamic travel time, route choice, flow propagation and

OD estimation models sequentially. The authors consider a modified Greenshields

model to explain dynamic travel time variations on freeway links, and split the travel

times on arterials into a cruise time component and a delay component1. The pro-

posed calibration approach aims to minimize the “distance” between the analytically

computed travel times and those measured by detectors. Further, the maximum like-

lihood estimation procedure suggested for the calibration of the route choice model

relies heavily on the availability of adequate survey data about travelers’ route choices.

This assumption would fail in many real cases, where only aggregate network per-

formance measures (such as link counts) are available. A procedure similar to that

adopted for the dynamic travel time models is applied for the flow propagation model,

where link inflows and outflows are matched against detector data. While such a de-

tailed level of model calibration might be preferable, the lack of a sufficiently rich

dataset at the link level would often render the approach infeasible. In addition, the

approach does not include OD estimation, which constitutes a critical part of demand

calibration.

In a subsequent paper, He and Ran (2000) suggest a calibration and validation

approach that focuses on the route choice and flow propagation components of a DTA

system. This paper again assumes prior knowledge of time-dependent OD matrices,

1Delays on arterial links are attributed to queuing at intersections.
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and further simplifies the demand process by imposing temporal independence of OD

flows between all OD pairs. The assumption of disaggregate data availability to allow

a Maximum Likelihood Estimation of the route choice model is still a restriction on

the practical applicability of the proposed approach.

The approaches reviewed thus far fail to address the overall problem of jointly cal-

ibrating the OD estimation, route choice and supply models. Hawas (2002) attempts

to study the propagation of calibration errors through a DTA system, by assigning

integer ranks to processes based on their external data requirements and internal in-

formation flows. The author recommends that processes with lower rank (and hence

fewer internal interactions) be calibrated first, in order to minimize an overall er-

ror statistic computed with simulator outputs. However, there are serious questions

about the applicability of the proposed approach to real networks with large sets of

parameters. For example, the effort involved in individually perturbing each variable

to study its impact on the model’s output, as described in the paper, is likely to be

great. The computational overhead will potentially increase further if model outputs

from multiple replications must be averaged to account for simulator stochasticity

(a point not covered in the paper). Moreover, the magnitude of the perturbation

may be hypothesized to vary across the parameters, given the non-linear nature of

the objective function. A uniform perturbation for all variables is therefore not op-

timal. Lastly, the case study on a small network, with known OD flows, simulated

sensor data and just two calibrated parameters does not capture the complexity of a

real-world calibration.

Mahut et al. (2004) describe the calibration of a mesoscopic traffic simulator in

Alberta, Canada. Their software combines a microscopic network loading model (with

gap acceptance parameters, for example, that are closer to lane-changing models) and

a mesoscopic routing engine that employs volume-delay functions. Iterations between

the two components are used to establish dynamic equilibrium travel times on the

network.

The described calibration approach is again based on heuristics, and the differ-

ent model components are treated independently. Hourly OD flows are estimated
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by matching turning movement counts at major intersections with their simulated

values. It should be noted that such detailed counts, collected for this case study

through an extensive survey, are rarely available. Capacities are estimated based on

saturation flow rates and empirically derived downstream intersection capacities (the

method for obtaining downstream capacities is not explained). Triangular volume-

delay functions approximated based on posted speed limits and estimated capacities

may not accurately reflect ground conditions, since drivers on average travel at speeds

higher than the speed limit under uncongested conditions2. The gap acceptance and

route choice parameters were adjusted manually to minimize the objective function.

While valuable insights are provided to support these adjustments, they remain case-

specific, and may not generally be transferable.

Mahmassani et al. (2004) report on the calibration of DYNASMART-X for a real-

time application on the Irvine network. Modified Greenshields speed-density func-

tions were calibrated using linear regression, after applying a logarithmic transfor-

mation. Dynamic OD flows were estimated using a least squares approach similar

to that of Balakrishna et al. (2005a) (discussed in detail in Section 2.4.2), the re-

quired assignment being generated by the DTA model. The report, however, does

not mention the calibration method for capacities and the route choice model.

Gupta (2005) demonstrates the calibration of the DynaMIT mesoscopic model

by combining the demand approach of Balakrishna et al. (2005a) with the supply

estimation approach of Kunde (2002) (see Section 2.3.1). In this thesis, supply and

demand estimations are performed sequentially using real sensor count and speed data

from the Los Angeles network. Although the application has many limitations (such

as sequential OD estimation and local supply fitting) discussed in later sections, it

contributes significantly through the development of an observability test that allows

the modeler to ascertain if unique OD flows may be estimated from the given sensor

configuration and coverage.

Several recent studies have focused on calibrating both demand and supply model

2This is particularly true on multi-lane freeway links, where speeds generally increase from one
lane to the next.
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inputs for micro-simulation. Mahanti (2004) calibrates the demand and select supply

parameters for the MITSIMLab microscopic simulator by formulating the overall op-

timization problem in a Generalized Least Squares (GLS) framework. The approach

divides the parameter set into two groups: the OD flows (which may be estimated ef-

ficiently using existing tools) and the remaining parameters (including a route choice

coefficient, an acceleration/deceleration constant in the car-following model, and the

mean and variance of the distribution of drivers’ desired speeds relative to the speed

limit). An iterative solution method is implemented, with the OD flows estimated

using the classical GLS estimator, and the parameters estimated by Box-Complex

iterations (see Box (1965) for a detailed outline of the solution algorithm).

Toledo et al. (2004) formulate the problem of jointly calibrating the OD flows,

travel behavior and driving behavior components of microscopic models, using ag-

gregate sensor data sources. The OD estimation step (utilizing a GLS formulation)

is introduced as an explicit constraint, and a bi-level heuristic solution algorithm is

used to solve for the three components iteratively. The use of the Box-Complex algo-

rithm is reported for the estimation of select behavioral parameters. A more general

formulation incorporating drivers’ day-to-day travel time learning mechanisms was

presented by Balakrishna et al. (2004).

Jha et al. (2004) calibrate MITSIMLab for a large-scale network in Des Moines,

IA comprised of 20,953 OD pairs for four 15-minute intervals. They estimate driving

behavior parameters independently on a single freeway section for which OD flows

could be inferred easily (and without error) from sensor counts. Subsequently, OD

flows, a route choice parameter and habitual travel times were obtained by iteratively

calibrating each component individually until convergence. The authors discuss sev-

eral practical issues relevant to large-scale model calibration, the most important

being the effect of stochasticity and extremely low OD flows on the quality of the

simulated assignment matrices used for the GLS-based OD estimation.

To summarize, the calibration of a DTA model’s demand and supply components

has generally been attempted through a sequential procedure that first estimates sup-

ply parameters (assuming known demand inputs), then estimates demand parameters
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with fixed supply. The complex interactions between demand and supply are thus

ignored. The remainder of this chapter focuses on methods that have been employed

to individually calibrate the supply and demand parameters.

2.3 Estimation of supply models

Network supply is modeled in a variety of ways in DTA models. Macroscopic traf-

fic models capture traffic dynamics through aggregate relationships derived by ap-

proximating vehicular flow as a fluid. Mesoscopic models use speed-density or link

performance functions that are based on traffic variables such as flows, speeds and

densities. In either case, a potentially large set of parameters needs to be calibrated

for the DTA system to replicate field measurements.

Recent studies have employed systematic algorithms for the calibration of DTA

supply models, with varying degrees of success. In this section we review the experi-

ence with sophisticated optimization algorithms applied to macroscopic, mesoscopic

and microscopic supply model calibration.

2.3.1 Macroscopic and mesoscopic supply calibration

Supply calibration in the macroscopic and mesoscopic contexts generally involves the

estimation of capacities and link performance functions. The typical data used for

this task are sensor records of at least two of the three primary traffic descriptors:

speeds, flows (or counts) and densities (or detector occupancies).

Leclercq (2005) estimates four parameters of a two-part flow-density function with

data from arterial segments in Toulouse, France. An interior point, conjugate gradient

method is employed to optimize the fit to observed sensor flows, with the fitted flows

obtained from an aggregate relationship comprised of a parabolic “free-flow” part and

a linear congested regime. Van Aerde and Rakha (1995) describe the calibration of

speed-flow profiles by fitting data from loop detectors on I-4 near Orlando, Florida.

Realistic sensor coverage levels, however, require that the links or segments on large

networks be grouped based on the traffic characteristics observed at sensor locations,
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and separate functions estimated for each group. Similar approaches have been widely

applied on networks of realistic size and structure.

A major drawback of the above approach is one of localized fit. The estimated

link performance functions reflect spot measurements at discrete sensor stations, and

do not necessarily correspond to overall link dynamics (especially in the presence of

congestion). The estimation procedure does not enforce consistency across contiguous

links or segments, stressing the need for an expanded approach that considers larger

sections of the network.

Most calibration approaches focus on the independent estimation of subsets of

supply parameters. Muñoz et al. (2004) describe a calibration methodology for a

modified cell transmission model (MCTM), applied to a 14-mile westbound stretch

of the I-210 freeway. Free-flow speeds are obtained through least squares, by fitting

a speed-flow plot through each detector’s data. Free flow speeds for cells without

detectors are computed by interpolating between the available speed estimates. In

the case of bad or missing sensor data, a default of 60 mph was assumed. For the

purpose of capacity estimation, the freeway is divided into congested and free-flow

sections by studying speed and density contours from detector data. Capacities in

the free-flow cells are set to be slightly higher than the maximum flow observed

at the nearest detector. Bottleneck capacities are estimated to match the observed

mainline and ramp flows just upstream of the free-flow part of the bottleneck. Speed-

flow functions are obtained through constrained least squares on sensor data from

congested cells. Demands are calculated from complete knowledge of all mainline

and ramp flows.

Yue and Yu (2000) calibrate the EMME/2 and QRS II models for South Missouri

City, a small suburban network outside the city of Houston, TX. While no systematic

calibration approach is outlined, the authors “adjust” and “fine-tune” the free-flow

travel times and turning fractions to match detector count data. Such ad-hoc pro-

cedures are unlikely to perform satisfactorily when applied to large-scale models and

networks.

Many applications of macroscopic traffic models focus on freeway corridors or sec-
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tions. The automated calibration of macroscopic supply models for such cases has

been documented in the literature. Messmer and Papageorgiou (2001) use the Nelder-

Mead method (a gradient-free algorithm working directly with objective function eval-

uations) to develop a parameter calibration approach for METANET. Several subse-

quent papers report on applications of the above method. Ngoduy and Hoogendoorn

(2003) calibrate METANET for a section of the A1 freeway in The Netherlands, and

use the calibrated model to study the prevention of traffic breakdown due to very

high densities. The authors develop model predictive control (MPC) methods for

setting dynamic freeway speed limits. Ngoduy et al. (2006) calibrate six parameters

in the METANET speed-density function and shock wave propagation equation, for

a freeway section with no ramps. An objective function measuring the fit to count

and speed data is optimized.

A recent effort on the calibration of the supply models within a mesoscopic DTA

system is described in Kunde (2002). A three-stage approach to supply calibration is

outlined, in increasing order of complexity. At the disaggregate level, segment speed-

density relationships are estimated similar to Van Aerde and Rakha (1995). In the

second stage, a suitable sub-network is chosen, and the estimates from the previous

stage are refined by accounting for interactions between the segments. The choice of

a subnetwork depends on the structure of the network and the location of sensors. An

ideal sub-network would allow one to deduce the true OD flows for the sub-network

from the available sensor count information, so that the supply parameters may be

inferred under known demand conditions. The final stage utilizes the entire network

to incorporate demand-supply interactions into the calibration process.

The above thesis demonstrates the proposed approach using data from Irvine,

California, by applying two simulation optimization algorithms to the supply calibra-

tion problem. SPSA (Simultaneous Perturbation Stochastic Approximation) approx-

imates the gradient of the objective function through finite differences. Critically,

the approach infers the components of the gradient vector from two function evalua-

tions, after perturbing all components of the parameter vector simultaneously. The

computational savings are thus significant when compared to traditional stochastic
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approximation methods, though many replications may be required in order to obtain

a more stable gradient through smoothing (Spall, 1994b). The Box-Complex algo-

rithm (Box, 1965) was applied with better success, though the number of convergence

iterations was still too few to study computational performance and the quality of

the final solutions.

2.3.2 Microscopic supply calibration

Although microscopic traffic models are not within the scope of this thesis, we review

a segment of literature on the calibration of such models. Some of the methods and

algorithms employed in this context are relevant to the problem at hand, and may be

appropriate for DTA model calibration after enhancement and modification.

The calibration of microscopic traffic simulation models has received serious atten-

tion in recent years, fueled by the widespread use of such models in professional and

academic circles. Early studies often relied on manual adjustments and heuristics

to reduce the discrepancy between observed and simulated quantities (see, for ex-

ample, Daigle et al. (1998), Gabriel Gomes and Adolf May and Roberto Horowitz

(2004) and Liu et al. (2004)). The time-consuming nature of this process, coupled

with lack of a systematic approach capable of handling large parameter sets, have

motivated research into the use of optimization algorithms to solve the calibration

problem.

Kurian (2000) describes an early attempt to use sophisticated optimization pack-

ages for the calibration of MITSIMLab, using data from 16 sensor stations in the

I-880 freeway corridor. He selects, through an experimental design, four parameters

that control deceleration characteristics in the car-following model (the time-varying

OD flows are obtained from a previous study, and are unchanged during calibration).

In his approach, the BOSS Quattro package is used to optimize the chosen parameters

using MITSIMLab as a black-box function evaluator. The algorithm, based on the

steepest descent concept, progresses by moving a certain step size along a direction

derived from the gradient at the current location. However, the inherent stochas-

ticity in MITSIMLab, together with the optimizer’s reliance on numerical gradients,
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resulted in noisy derivatives that prevented stable convergence. Further, the highly

nonlinear objective function resulted in the determination of different local optima

based on the starting parameter values selected.

Subsequent experiences with MITSIMLab involved the use of the Box-Complex

(Box, 1965) algorithm, a population-based approach that maintains a complex (or

set) of parameter vectors (points) and their corresponding objective function values.

The size of the complex was pre-determined based on the recommendations in Box

(1965). The algorithm begins by initializing the complex with points generated at

random, so as to cover the feasible region defined through lower and upper bounds

on each individual parameter. At every iteration, a point with the “worst” objective

function value is replaced by its reflection about the centroid of the remainder of

the complex, thus driving the complex towards the optimal solution. Darda (2002)

applies the Box-Complex method to estimate select car-following and lane-changing

model parameters under the assumption of a fixed OD demand matrix. However,

the convergence criterion on the maximum number of iterations was insufficient to

ascertain convergence.

The gradient-free downhill simplex algorithm (adapted from the Nelder-Mead sim-

plex procedure) was used by Brockfeld et al. (2005) to calibrate a small set of supply

parameters in a wide range of microscopic and macroscopic traffic models. Others

report on the successful application of genetic algorithms (GA) for the calibration

of select parameters in various microscopic traffic simulation tools (Abdulhai et al.,

1999; Lee et al., 2001; Kim, 2002; Kim and Rilett, 2003). The use of GA in trans-

portation is illustrated by Kim and Rilett (2004), who describe the calibration of

driving behavior parameters in the CORSIM and TRANSIMS microscopic models.

The data for the research consisted of traffic volume data from the I-10 and US-290

freeway corridors around Houston, TX. Apart from the simple structure (and the

corresponding lack of route choice) inherent to the test networks, the broader appli-

cability of their work is also limited by the small number of parameters estimated.

Indeed, the paper reports computational constraints even on such small examples!

The numerical values of several algorithmic constants were also assumed from prior
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analyses without sufficient elaboration. However, the authors do state the impact of

the OD matrix on the final results, though they do not include OD flows as variables

in the optimization.

Henderson and Fu (2004) provide a concise review of the transportation appli-

cations of GA to date. Indeed, the range of studies reported therein share several

common characteristics that limit the scope of their conclusions:

• All applications are in the domain of traffic micro-simulation, and focus en-

tirely on a subset of car-following and lane-changing parameters. Apart from

being few in number (the biggest problem instance involved 19 parameters),

OD flows were treated as exogenous to the GA application. This is a critical

limitation, as the estimation of OD flows will significantly increase the scale of

the optimization problem.

• The studies rarely compare the performance of GA against other well-established

non-linear optimization methods. Often, the primary measure of performance

is the improvement in the objective function value over the starting point, as

employed by Yu et al. (2005). The claimed superiority of GA is thus not clearly

established.

• GA involves a large set of highly sensitive tuning parameters and strategies

such as variable encoding schemes and crossover and mutation probabilities.

Most existing studies use default settings from earlier approaches, without any

analysis or justification for their use.

Systematic optimization techniques are thus being increasingly applied for the

calibration of supply model parameters. However, these experiences have been limited

to simple networks and small parameter sets. While some of the algorithms have

shown promise, tests on larger networks and variable sets should be performed to

ascertain their suitability for overall DTA model calibration.
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2.4 Estimation of demand models

Demand calibration involves the estimation of (a) travel behavior model parameters,

(b) time-varying flows for each OD pair on the network, and (c) other parameters

that the DTA model might use in the estimation and prediction of OD flows. We

begin the review of demand model estimation techniques with a discussion of travel

behavior model estimation.

The literature provides a rich spectrum of mode, departure time and route choice

models that capture driver behavior at both pre-trip and en-route levels. Pre-trip

decisions could include the choice of travel mode, departure time and route based

on perceptions of expected traffic conditions for the trip under consideration. Trip

chaining decisions (making one (or more) stop(s) before the final destination) and

multi-modal route selections (including park-and-ride transit options) may also be

made at the pre-trip stage. En-route decisions are made by drivers in response to

evolving trip conditions. The most common example of an en-route choice is to change

route due to unexpected traffic congestion, or in response to traveler information

obtained through a Variable Message Sign (VMS) or an on-board device (such as a

cell phone or radio).

The class of traveler behavior models considered here are disaggregate, in that

they predict the choices made by individual drivers (trip makers). In Section 2.4.1,

we briefly outline the standard discrete choice approach to estimating such models

using disaggregate survey data.

Off-line demand calibration at the aggregate level has primarily focused on the

estimation of OD flows from archived field measurements such as surveys, manual

traffic counts or automated loop detector counts. The OD estimation problem has

attracted substantial interest in the last few decades, and represents the calibration

of demand parameters (OD flows) that form critical inputs to any DTA system.

While OD estimation research covers both on-line (real-time) and off-line methods,

our review of the relevant literature (Section 2.4.2) will be limited to the off-line case.

Section 2.4.3 reviews work on the joint calibration of a DTA model’s demand
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models in an off-line setting. Such approaches capture the role of travel behavior

on the OD estimation problem, and attempt to incorporate their inter-relationships

while obtaining consistent estimates of the various OD flows and travel behavior

model parameters.

2.4.1 Travel behavior modeling

Discrete choice theory forms the backbone of most travel behavior analyses, and is

best illustrated in the context of DTA through route choice. The route choice model

contains the following dimensions:

• An individual driver n ∈ {1, 2, . . . ,N} chooses from a set of alternatives (routes)

Cn.

• Driver n is described by a vector of characteristics. Each route i in the choice

set is similarly described by a vector of attributes. The combination of the

characteristics for driver n, along with the corresponding attributes for route i,

is represented by the vector Xin.

• Each driver n is assumed to perceive a “utility” associated with every route i

in his/her choice set. The utilities map the attributes and characteristics into

a real number for comparison.

• A decision rule is employed to determine the chosen route for each driver.

The principle underlying discrete choice theory is that of utility maximization:

each individual n will pick the route with the maximum perceived utility Ujn, j ∈ Cn.

From a modeling perspective, however, the utilities Ujn are not directly observed.

This discrepancy between the “true” utilities and their systematic model equivalents

is captured through Random Utility Theory:

Uin = Vin + εin (2.1)
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where Vin is a “systematic” utility computed as a linear function of the variables in

Xin. For example, Vin = β′Xin, where β is a vector of coefficients to be estimated.

The term εin represents the error between the model and the true utilities. Utility

maximization then yields the probability of driver n selecting route i as:

P(i) = Pr(Uin ≥ Ujn ∀j ∈ Cn) (2.2)

Combining Equations (2.1) and (2.2), we get:

P(i) = Pr(εin − εjn ≥ Vjn − Vin ∀j ∈ Cn) (2.3)

Assumptions on the distribution of the error terms εin (or the difference εin−εjn)

dictate the structure, richness and complexity of the resulting model. The assumption

of normally distributed errors, for example, results in the Multinomial Probit (MNP)

model, while Gumbel errors yield the popular Multinomial Logit (MNL) model.

The Probit model can potentially capture complex correlations among the alter-

native paths. However, its use involves the evaluation of high-dimension integrals that

do not possess closed-form solutions. The Logit model, with its attractive closed-form

expression, has thus been the most popular approach to capturing individual drivers’

travel decisions. Several variants and extensions to the above model classes have

been postulated, analyzed and tested, in view of the Logit model’s inability to handle

perceived correlations arising from the physical overlapping of alternative paths (the

well-known IIA property). These include the C-Logit and Path-Size Logit models,

and the flexible Logit Kernel approach. An overview of the various route choice model

structures is presented in Ramming (2001).

Traditional route choice model estimation (or the calibration of the vector β)

requires data from an individual (disaggregate) route choice survey. Each sampled

driver n responds with his/her characteristics (including both socio-economic vari-

ables as well as descriptors such as trip purpose), a set of alternative routes in his/her

choice set Cn, perceived route attributes and the chosen route.
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The vector β of unknown systematic utility coefficients is estimated using standard

concepts from Maximum Likelihood theory, by maximizing the joint probability of

the chosen paths in the dataset. A detailed mathematical treatment of the mechanics

of maximum likelihood estimation can be found in Ben-Akiva and Lerman (1985).

Disaggregate route choice models estimated from survey data possess several ad-

vantages. They provide a way of incorporating individual-specific characteristics and

tastes into the systematic utilities. The resulting estimates also largely reflect ac-

tually observed choices made by individual drivers. Sampling issues, however, im-

pose limitations on the choice-based model. A restricted sample size due to re-

source constraints and non-response may introduce bias in the estimated parameters,

as the resulting datasets may not be representative of the general driver popula-

tion. Justification bias (or a respondent’s tendency to provide data that validates

his/her choice) may further skew the resulting parameter estimates. Moreover, the

high costs associated with administering surveys introduces significant lag times that

could date the parameter estimates obtained. The use of aggregate data for enhanc-

ing route choice model estimation has only just begun to receive attention (exam-

ples include Ashok (1996), Tsavachidis (2000), Toledo et al. (2004), Jha et al. (2004)

and Balakrishna et al. (2005a)).

2.4.2 The OD estimation problem

The OD estimation problem has received significant attention in the fields of trans-

portation, computer network routing and general estimation theory. The problem

focuses on the inference of the elements of an unobserved matrix x of point-to-point

network trip demand3, based on aggregate traffic flow measurements y collected at

specific links on the network. The matrix x would have as many rows as there are

potential trip origin nodes, and as many columns as there are destinations. Each cell

in x thus represents the number of trips between a specific origin-destination pair.

Much of the OD estimation literature concentrates on the static problem. A single

3In the context of computer networks, demand may be defined in terms of data packets rather
than vehicle trips.
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OD demand matrix is estimated across a relatively large time period, such as an en-

tire day or the morning peak (see, for example, Cascetta and Nguyen (1988)). Static

approaches work with average flows across the entire study period. A critical limita-

tion of such methods is their inability to capture within-period temporal patterns in

OD demand, such as peaking. The demand inputs to DTA models must be dynamic,

to facilitate the modeling of time-dependent phenomena such as the formation and

dissipation of queues and spillback.

The following sections summarize the different approaches proposed for the esti-

mation of dynamic OD demand from observed sensor count measurements4. Common

to all methods is the assumption that the period of interest H is divided into intervals

h = 1, 2, . . . , H of equal duration. Let xh represent the matrix of OD flows departing

their origins during interval h, and yh the vehicle counts observed on various network

links at the end of h. The objective of the dynamic OD estimation problem is to

estimate the flows x̂h that replicate observed counts yh, ∀h ∈ H.

Least squares approach

The most widely employed dynamic OD estimation technique is based on extensions

to the least squares technique proposed by Cascetta and Nguyen (1988) in the static

context. Cascetta et al. (1993) propose a generalized least squares (GLS) framework

that fuses data from two sources to efficiently estimate dynamic OD flows. The

authors present two alternative estimators that work within this framework. The

sequential estimator optimizes for the unknown OD flows one interval at a time:

x̂h = arg min
xh

[f1(xh,x
a
h) + f2(yh, ŷh)] (2.4)

where xh is the current best solution; xah are a priori flows (extracted from other stud-

ies, or set to x̂h−1); ŷh are the fitted counts obtained by assigning xh to the network;

f1(•) and f2(•) are functions that measure the “distance” between the estimated or

fitted quantities from their a priori or observed values. It is generally expected that

4Time-varying vehicle counts are currently the most common source of field traffic data.
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the number of link count observations (the dimension of yh) is much smaller than

the number of unknowns (the number of non-zero cells in xh). The a priori flows xah

thus provide valuable structural information that renders feasible a problem that is

otherwise indeterminate.

A measurement equation maps the OD flows xh to the counts yh through a linear

assignment matrix mapping:

yh =

h∑

p=h−p ′

aphxp + vh (2.5)

where the elements of aph specify the fractions of each OD flow in xp (departing

during interval p) that arrive at every sensor location during interval h. vh is an

error term. p ′ indicates the number of intervals spanning the longest trip on the

network, and is a function of network topology as well as congestion levels. Since the

sequential estimator constrains the flows in prior intervals to their best estimates, the

measurement equation may be re-written as:

ỹh = yh −

h−1∑

p=h−p ′

aphx̂p = ahhxh + vh (2.6)

Consistent with the GLS formulation, Equations 2.4 and 2.6 yield the following esti-

mator:

x̂h = arg min
xh

[

(xh − xah)
′W−1

h (xh − xah) + (ỹh − ahhxh)
′R−1

h (ỹh − ahhxh)
]

(2.7)

The above optimization is constrained so that xh ≥ 0. Wh and Rh are error variance-

covariance matrices that may be used to reflect the reliability of the different mea-

surements. Cascetta et al. propose setting them to identity matrices of appropriate

dimensions, in the absence of reliable estimates for the same.

The authors propose a second estimator that solves for the OD flows in multiple
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intervals simultaneously:

(x̂1, x̂2, . . . , x̂H) = arg min
x1,x2,...,xH

[f1(x1, x̂2, . . . ,xH;xa1 ,x
a
2 , . . . ,x

a
H) (2.8)

+ f2(y1,y2, . . . ,yH; ŷ1, ŷ2, . . . , ŷH]

with Equation 2.5 serving as the measurement equation for counts.

A qualitative comparison of the two estimators is in order. The sequential ap-

proach estimates OD flows xh based only on yh, the first set of counts it contributes

to (these flows are fixed while estimating OD flows for subsequent intervals). Fu-

ture count measurements are thus not used to refine past estimates. The simulta-

neous estimator is more efficient in this regard, since it captures the contribution of

xh to the counts measured in all subsequent intervals. However, the approach in-

volves the calculation, storage and inversion of a large augmented assignment matrix,

which has been found to be too computationally intensive on large networks (see

Cascetta and Russo (1997), Toledo et al. (2003) and Bierlaire and Crittin (2004)).

The sequential approximation is therefore an attractive option for many applications.

Assignment matrices themselves are linear approximations of the relationship be-

tween OD flows and sensor counts. They are typically obtained through a network

loading model that mimics the progression of candidate OD flows along a set of paths

between each OD pair. Knowledge of drivers’ route choice behavior and network

travel times are thus essential to the computation of the assignment matrix, due to

their roles in splitting OD flows into path flows that can subsequently be propagated

along each path. Travel times, in turn, depend on the OD flows, whose “true” values

are as yet unknown. OD estimation in the presence of congestion is therefore a fixed-

point problem requiring an iterative solution methodology that captures the complex

dependencies between the OD flows, the route choice model and the network loading

model.

Cascetta and Postorino (2001) apply iterative schemes based on the method of

successive averages (MSA) to solve the fixed-point OD estimation problem and obtain

consistent OD flows and assignment matrices on congested networks. A GLS estima-
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tor is used to generate updated flows in each iteration, which are then “smoothed” by

the MSA technique. The authors provide empirical evidence in support of a modified

OD smoothing algorithm (which they term MSADR5), that provides faster conver-

gence by re-initializing MSA’s iteration counter as the algorithm progresses. The

re-setting of the counter is performed with decreasing frequency. Intuitive arguments

are provided to show the equivalence of the final MSA and MSADR solutions. How-

ever, the approach pertains to the static case.

Kalman Filter approach

Ashok (1996) develops a sequential off-line OD smoothing scheme based on state-space

modeling concepts. This approach uses transition equations to capture the evolution

of system state, and measurement equations to incorporate the sensor count measure-

ments. The authors provide a key innovation over previous state-space approaches,

by defining the state in terms of deviations: the difference of OD flows xh from their

historical or expected values xHh . The above transformation allows the state to be

represented through symmetrical distributions (such as normal) that possess desirable

estimation properties, which would not be appropriate for OD flows directly.

A transition equation based on an autoregressive process describes the interval-

to-interval evolution structure for network state:

xh+1 − xHh+1 =

h∑

p=h−q ′+1

fph+1(xp − xHp ) + wh+1 (2.9)

where fph+1 is a matrix relating spatial and temporal OD relationships between in-

tervals p and h + 1. The parameter q ′ is the degree of the autoregressive process,

representing the length of past history affecting the current interval.

The measurement equation is obtained by adapting Equation 2.5 to work with

deviations:

yh − yHh =

h∑

p=h−p ′

aph(xp − xHp ) + vh (2.10)

5MSADR stands for MSA with Decreasing Reinitializations.
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with yHh =
∑h

p=h−p ′ a
p
hx

H
p serving as historical count estimates. Rh and Qh denote

the error covariance matrices for vh and wh respectively. The author provides a

Kalman Filter solution approach for estimating xh: In a forward pass, the flows xh

are estimated sequentially for h = 1, . . . , H (ignoring the contribution of xh to counts

yh+1,yh+2, . . . ,yH). Each OD matrix is then re-estimated (updated) while back-

tracking from h = H to h = 1. The information contained in yH,yH−1, . . . ,yh+1 is

thus completely used in identifying the flows for interval h.

This work also contains modeling enhancements for practical applications. First,

state augmentation is proposed as a way of improving the efficiency of the esti-

mated OD flows by exploiting the information about prior OD departure intervals

(xh−1,xh−2, . . .) contained in sensor measurements yh. In this approach, OD devia-

tions from a pre-defined number of past intervals are added to the state vector, and

are re-estimated periodically as future intervals are processed. State augmentation

may be perceived as a compromise between the computationally attractive sequential

estimator, and its more efficient simultaneous adaptation.

Further, the author briefly discusses methods to estimate the initial inputs re-

quired by the Kalman Filter algorithm: the historical OD flows xHh , error covariance

matrices Qh and Rh, and autoregressive matrices fph , which are an important part of

off-line demand model calibration.

Maximum Likelihood (ML) approach

Hazelton (2000) presents an OD estimation methodology that uses traffic counts and

a priori OD flow estimates in a maximum likelihood framework. A theoretical esti-

mator is developed by assuming a general distribution for the OD flows and sensor

counts. Indeed, they show that the GLS formulations by Cascetta et al. (1993) may

be obtained by selecting the normal distribution to model all error terms. While this

approach presents an elegant generalization of some prior results, its applicability

to the DTA calibration context is limited. First, the analysis focuses on static OD

estimation. The further assumption of uncongested network conditions, while allow-

ing the author to ignore temporal dynamics in route choice fractions, renders the
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approach unrealistic in the DTA context. Lastly, the general framework still requires

the assumption of a realistic distribution if the method is to become operational.

van der Zijpp’s approach

A method for estimating OD flows on freeway networks is developed by van der Zijpp

(1996), in which the time interval boundaries are determined by analyzing space-

time trajectories. Assuming that vehicle speeds are known, the trajectories of the

first and last vehicles in each departure interval are calculated. Trajectories for all

other vehicles departing during the interval are determined based on first-in, first-out

(FIFO) rules. The set of trajectories is then used to estimate split fractions that

allocate sensor counts to OD flows from the current and previous intervals. The split

fractions are modeled by a truncated multivariate normal (TMVN) distribution, and

are updated at each step through a Bayesian formula.

The above approach has been packaged into the DelftOD software (van der Zijpp,

2002), which has been applied in many freeway situations (see, for example, Hegyi et al.

(2003), Ngoduy and Hoogendoorn (2003) and Park et al. (2005)). However, the lack

of a closed-form expression for the TMVN distribution poses practical difficulties

when determining its mean. Further, the calculation of complete vehicle trajectories

requires knowledge of speeds during the entire trip. An accurate predictor of future

speeds or travel times is thus essential for real-world applications.

A note on assignment matrices

In his thesis, Ashok (1996) outlines two ways of obtaining an assignment matrix for

OD estimation. The simpler approach involves the use of a traffic simulator, say the

DTA model being calibrated, to load the current best OD flows onto the network.

The required fractions in the assignment matrix may then be calculated through a

simple book-keeping of vehicle records at sensors. However, recent experiences with a

network from Los Angeles (Gupta, 2005; Balakrishna et al., 2006) have indicated that

simulated assignment matrices may be sub-optimal for OD estimation. An issue of

particular concern centers around the stability of the calculated assignment fractions.
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In the absence of a good starting OD matrix, artificial bottlenecks may result due

to spatial and temporal OD patterns that are far from optimal, yielding incorrect

assignment fractions. The use of small starting flows to offset this problem typically

results in highly stochastic and small fractions, since few vehicles will be assigned to

each path.

An alternative approach for calculating the assignment fractions from link travel

times has been discussed by Ashok (1996). Under certain assumptions regarding

vehicles’ within-interval departure times6, and with knowledge of time-dependent link

traversal times, one may calculate crossing fractions that represent the percentage of

each path flow departing during interval p that reaches every sensor during interval

h. The assignment fraction for a given sensor and OD pair may be computed by

summing across all paths (for the OD pair) the product of crossing fractions (to the

sensor in question) and the corresponding path choice fractions (obtained through

the application of a route choice model). Such analytically calculated assignment

matrices possess many advantages. First, the link travel times obtained from a traffic

simulator are average values computed from several vehicles (across different OD

pairs). The resulting assignment fractions are therefore less stochastic than those

obtained directly from the simulator. Secondly, uncongested (free-flow) travel times

are generally known with a high degree of accuracy, from observed sensor speed

data. The assignment fractions (and estimated OD flows) for the intervals leading

up to the congested regime are therefore accurate, and may be expected to yield

accurate travel times even in subsequent intervals when coupled with sequential OD

estimation. Further, the contributions of current OD departures on future intervals

accurately account for congestion (through the travel times), minimizing the effects

of the starting OD matrix. Finally, the calculated fractions capture all possible paths,

including those that may be assigned few or no vehicles during the simulation. The

last two points, however, lead to assignment matrices that are not as sparse as their

simulated counterparts, and significantly increase the time taken to solve the OD

6Vehicle departure times within an interval are assumed to be uniformly spaced, with the first
and last vehicles departing at the beginning and end of the interval.
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estimation problem. Gupta (2005) reports on the improved convergence and fit to

counts when the assignment matrices are calculated from travel times.

The role of the assignment matrix in OD estimation underscores the importance

of route choice in demand model calibration. Some prior studies have strived to

estimate accurate network travel times (used by the route choice model) that are

consistent with the estimated OD flows. However, few have focused on the param-

eters of the route choice model itself. Often, these parameters are assigned ad hoc

or convenient values that are then fixed for the remainder of the OD estimation pro-

cedure. Mahmassani et al. (2003), for example, describe the calibration of dynamic

OD flows for DYNASMART using traffic sensor data and with assumed route choice

model parameters. The authors cite the general lack of calibration data as the reason

for assuming known route choice splits. These splits are hypothesized as outputs of

some other procedure, and are hence exogenous to the functioning of the DTA system.

Ignoring the role of the route choice model can lead to biased and inconsistent

estimates of travel demand. We now look at some literature related to the joint

estimation of OD flows and the route choice model parameters.

2.4.3 Joint estimation of OD demand and travel behavior

models

The demand simulator of a DTA model relies on estimates of OD demand, route

choice model parameters and network travel times in order to accurately model the

network and its underlying demand patterns. Demand calibration therefore involves

solving a fixed-point problem that explicitly includes the route choice model param-

eters as variables. Initial research calibrating OD flows treated route choice as exter-

nal to the OD estimation problem, potentially leading to biased OD flow estimates.

Cascetta and Nguyen (1988), for example, assume an ad hoc travel time coefficient

in the route choice model while estimating OD flows using a GLS approach.

Ashok (1996), while demonstrating his Kalman Filter based OD estimation

methodology, estimates a route choice model using traffic counts data from the A10
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beltway in Amsterdam. The Logit route choice model contained a single coefficient,

that of travel time, whose optimal value (resulting in the best fit to the observed

counts) was identified through a line search that was conducted independent of the

OD estimation process. The final estimated parameter was very low, corresponding

to an all-or-nothing assignment to the shortest path. It should be noted that the

beltway provides exactly two paths between each OD pair, with little or no overlap

between them. An all-or-nothing assignment would therefore be reasonable for this

network, where one of the two routes is often much longer than the other.

Balakrishna (2002) uses multiple days of sensor counts to jointly calibrate dy-

namic OD flows and a route choice model within the DynaMIT traffic estimation

and prediction system. The study focused on an urban network from Irvine, CA

consisting of both arterial and freeway links. A static OD matrix for the AM peak

(available from the Orange County MPO through a previous planning exercise) was

adjusted systematically using a sequential GLS estimator to obtain dynamic OD ma-

trices for the entire AM peak. A Path-Size Logit based route choice model (Ramming,

2001; Ben-Akiva and Bierlaire, 2003) with three parameters was estimated using an

approach similar to the one outlined by Ashok (1996).

The joint calibration of DynaMIT’s route choice model and OD estimation and

prediction model using three days of sensor count data was carried out iteratively (a

detailed presentation of the algorithm may be found in Balakrishna et al. (2005a)).

Other estimated parameters included the error covariance matrices and autoregressive

factors used by DynaMIT’s OD estimation and prediction module. The performance

of the calibrated DynaMIT system was validated using two independent days of data

not used during calibration.

A related effort (Sundaram, 2002) develops a simulation-based short-term trans-

portation planning framework that jointly estimates dynamic OD flows and network

equilibrium travel times. While the coefficients of the route choice model are not esti-

mated, a consistent set of OD flows and travel times are obtained (for the given route

choice model) by iterating between an OD estimation module and a day-to-day travel

time updating model. The basis for the travel time iterations is a time-smoothing
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procedure:

TTrc
k = λ TTk−1 + (1 − λ) TTrc

k−1 (2.11)

where drivers’ perceived route choice travel times TTrc
k on day k are modeled as

a function of the perceived estimates TTrc
k−1 from the previous day, and the latest

experienced (simulated) quantities TTk−1. The parameter λ captures a learning rate

(a value between 0 and 1) whose magnitude would be affected, among other factors,

by drivers’ familiarity with the network and its traffic patterns, and the prevalence

of traveler information services.

Sundaram’s approach operates in two steps. Travel times are established for a

given set of dynamic OD demands. The resulting equilibrium travel time estimates

are used to re-calculate assignment matrices for OD estimation. Travel times may

then be computed again based on the new OD estimates if convergence has not been

attained.

2.5 Conclusions: state-of-the-art (reference case)

The discussion in this chapter leads to a definition of standard procedures adopted

when DTA models are currently calibrated using aggregate sensor data. The state-

of-the-art, as defined here, will form the reference (henceforth known as the reference

case, or Ref) against which the calibration methodology developed in this thesis will

be compared:

• Demand and supply models are calibrated independently (sequentially), ignor-

ing the effect of their interactions. Supply parameters are estimated first, then

demand parameters are calibrated with fixed supply models.

• Supply calibration:

– Capacities are estimated from sensor data and network geometry (primar-

ily the number of lanes), based on the Highway Capacity Manual (HCM).

Capacities during incidents are approximated from the HCM, based on the

number of affected lanes, total number of lanes and incident severity.
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– Speed-density functions (or volume-delay relationships) are identified lo-

cally (ignoring network effects) by fitting appropriate curves to sensor data.

Links are grouped according to physical network features (such as the num-

ber of lanes and the position relative to diverge and merge points, on- and

off-ramps), and the most representative function is assigned to each group.

• Demand calibration:

– OD flows and route choice model parameters are estimated iteratively (se-

quentially).

– Time-dependent OD flows are estimated sequentially7 using one of several

methods (GLS or the Kalman Filter, for example) that rely on a set of

assignment matrices. The assignment matrices may be simulated, or com-

puted analytically based on the latest known travel times and route choice

parameters.

– Route choice parameters are estimated through manual line or grid searches.

A limited number of parameters might be handled in this way.

2.6 Summary

A review of the literature indicates several shortcomings in the state-of-the-art of

DTA model calibration, primary being the sequential treatment of demand and sup-

ply parameters. Most prevalent practices rely on heuristics and manual parameter

adjustment approaches that are largely based on judgment. Applications of system-

atic optimization algorithms for model calibration have been few, and focus primarily

on DTA model components. Moreover, these studies typically estimate a small subset

of parameters deemed important in explaining observed data for specific networks and

datasets, and typically do not perform sufficient iterations to ensure a high degree of

accuracy.

7As discussed earlier in Section 2.4.2, the sequential approach, while computationally attractive,
may not accurately capture long trips encountered on large or highly congested networks.
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Limited experience with simulation optimization in the realm of transportation

indicate the promise of select algorithms (such as the Box-Complex algorithm), but

not others (such as stochastic approximation or gradient-based methods). There is

need to explore this topic in depth, and develop a robust calibration methodology

that can simultaneously estimate both demand and supply model parameters in a

simulation-based DTA system. Chapter 3 presents a rigorous treatment of the off-line

DTA calibration problem, analyzes its dimensions and characteristics, and proposes

a robust and systematic estimator for its solution.

65



66



Chapter 3

Methodology

Contents

3.1 Calibration variables . . . . . . . . . . . . . . . . . . . . . 68

3.2 Sensor data for calibration . . . . . . . . . . . . . . . . . . 69

3.3 The historical database . . . . . . . . . . . . . . . . . . . . 72

3.4 General problem formulation . . . . . . . . . . . . . . . . 76

3.5 Problem characteristics . . . . . . . . . . . . . . . . . . . . 80

3.6 Review of optimization methods . . . . . . . . . . . . . . 83

3.7 Solution of the off-line calibration problem . . . . . . . . 102

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

67



This chapter begins by outlining the various model inputs and parameters typically

encountered in a generic simulation-based DTA model, and collects the variables that

may need to be calibrated. The sensor data to be used for calibration are described

next, followed by a mathematical statement of the problem. The statement is sub-

sequently expanded to provide a detailed formulation and framework that accounts

for the various issues and complexities associated with identifying model parameters

through simulation. Finally, solution approaches are outlined in order to make the

overall calibration framework operational.

3.1 Calibration variables

The set of critical DTA model parameters that must be calibrated for a specific net-

work may be grouped into demand- and supply-side variables. Demand variables are

typically common to all classes of DTA models (e.g. microscopic and mesoscopic),

and include time-dependent OD demand for the period of interest as well as travel be-

havior model inputs and parameters. The vector xh represents the OD demand rates

between the nOD OD pairs on the network, departing their origins during interval

h. Demand is assigned to the network using drivers’ perceived network travel times,

through a probabilistic route choice model. The basic parameters in such a model

include coefficients for various path attributes such as travel time, fraction of freeway

links, number of left turns, number of signalized intersections and the frequency of

freeway-arterial changes.

The number and nature of supply variables may vary depending on the level of

detail employed while capturing traffic dynamics and queuing phenomena. Micro-

scopic models generally possess a much wider set of models and parameters that

operate under different traffic regimes and explain a complex set of individual driver

decisions and maneuvers. These include car-following (acceleration, deceleration and

desired speed), lane-changing (gap acceptance, merging, yielding and look-ahead) and

compliance (response to arterial signals, ramp meters and toll plazas). Mesoscopic

models capture network performance through aggregate (macroscopic) methods in-
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volving parameters such as link/segment capacities and speed-density relationships.

While the number of speed-density functions (and hence parameters) can technically

be very large, it is limited in practice through the classification of segments into a few

representative groups (see, for example, Van Aerde and Rakha (1995)). It should

be noted that the vector β is used to denote the combined parameters in the route

choice and supply models.

A more detailed list of parameters in the context of mesoscopic DTA may be

found in Appendix A, which describes the modeling concepts behind the DynaMIT

prediction and guidance generation system in depth.

3.2 Sensor data for calibration

Figure 3-1 provides a high-level overview of the traffic data collection process. Traffic

conditions experienced on a road network are a result of interactions between the

network itself (with its topology of alternative routes and their capacities), individual

drivers (who constitute the demand, and who make a multitude of decisions based

on their knowledge and perceptions about the network), and external factors (both

unexpected, such as incidents, and anticipated, such as weather conditions or special

events) that perturb the system away from “normal” or “regular” operating condi-

tions. A subset of vehicles moving on the network are intercepted by instruments

that form the surveillance system: a collection of modern technologies such as video

cameras, closed-circuit televisions, loop detectors and electronic tag readers. that

sense individual vehicles, and record traffic measurements.

The type of traffic data available through the surveillance system (or obtained

by post-processing the recorded data) depends on the sensing technology deployed

on the network. Footage from a video camera can be processed to yield vehicle

trajectories that show individual driver behavior such as lane changing and speed

adjustments. Data at such a fine level of detail are termed disaggregate, since

they provide information at the resolution of the individual driver. However, the

collection and processing of video data is extremely time-consuming, and such data
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Figure 3-1: The Aggregate Measurement Process

is currently available only for short periods of time and on small sections of roads.

Other disaggregate sources of traffic data include surveys for OD demand and route

choice model estimation. It should be noted that the effort and costs involved in

designing and administering surveys precludes their frequent application. Moreover,

survey data inevitably suffers from response bias and sampling inefficiencies.

By contrast, aggregate data is collected at a lower resolution, representing the

sum of multiple vehicles in each measurement. The most common source of aggregate

measurements are inductance loop detectors buried beneath the pavement surface.

These devices have the capability to record traffic counts, detector occupancy rates

and average vehicle speeds, which can be collected in a central database for model

calibration purposes. Since the data collection process is automatic, the most recent

data may be obtained with minimum effort (once the surveillance system has been

installed). Such sensor data also captures a larger proportion of the population, and

reflects actual driver behavior (thus eliminating response bias).
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A DTA system’s component models, like the various sources of traffic data, can be

disaggregate or aggregate. Disaggregate models predict individual driver decisions,

such as route, departure time and mode choice, speed and acceleration choice and

lane selection. On the other hand, the estimation and prediction of OD flows is

performed at the aggregate level: the total flow between each OD pair, across all

individual drivers. In this thesis, we develop a methodology for estimating all DTA

model components (both disaggregate and aggregate) using aggregate data.

The aggregate traffic dataset used in this research consists of information collected

using inductive loop detectors. Such sensors consist of wire loops embedded beneath

the pavement surface. Metallic vehicles crossing the loops cause changes in their elec-

tromagnetic fields, which indicate the presence of vehicles above the loops. Individual

loop detector units are designed and calibrated to translate these magnetic data into

traffic descriptors. The traffic flow at a sensing location during time interval is typ-

ically recorded as the count of vehicles crossing the loop during the interval. This

measure may then be converted to hourly flow (volume) estimates q. Loops also mea-

sure occupancy occ, the percentage of a time interval for which vehicles were sensed

over the loops. Sensor occupancy is a reflection of the spatial density (sometimes

known as concentration) of vehicles in the vicinity of the loop.

The space mean speed v may be inferred from flow and occupancy data, through

the fundamental equation

v =
q

k
(3.1)

together with the following relationship (May, 1990):

k =
52.8

LV + LD
(occ) (3.2)

where k is the density (vehicles/lane-mile); LV is the mean vehicle length (feet); LD is

the detector length (feet). In some situations, accurate speed measurements may be

obtained directly from the detector. When loops are deployed in pairs, vehicles’ travel

times between the loops may be measured and the corresponding speeds inferred.

In this thesis, we employ loop detector count and speed data to illustrate the
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several dimensions and the solution of the calibration problem. Sensor data for cali-

bration must be recorded over consecutive, uniform measurement intervals that span

the period of interest.

3.3 The historical database

Off-line calibration serves two primary goals. The first is to provide a complete set

of DTA model inputs and parameters (called a historical database) that may be used

by planners and modelers for future applications of the model. OD demand patterns,

route choice behavior and supply processes vary in the real world according to several

factors. The OD flows for the morning peak period, for example, could depend on the

day of the week. Further, route choice and traffic dynamics may be different on dry

and rainy/snowy days. Traffic data covering such a wide range of conditions will be

available through the archived sensor dataset. The historical database must therefore

reflect this diversity in a practical way.

In theory, one can estimate a separate historical database for each day of observed

sensor measurements, the underlying assumption being that every day is unique.

However, such an approach raises the issue of selecting a database as DTA inputs

on a new (future) day. A more useful approach is the classification of the historical

database along criteria identified after closely analyzing the available sensor data from

a large number of days. For example, the database might be stratified based on day of

the week, weather conditions and special events. On a new day, the profile that best

fits the criteria (both known, such as day of the week, and forecast, such as weather)

can then be used to pick the most appropriate database for application. Obviously,

the criteria used to set up the database may differ with geographic location, season,

etc.

The second goal of calibration involves the maintenance of the historical database

on a day-to-day basis, as new traffic measurements are recorded by the surveillance

system. Travel patterns and traffic conditions evolve over time. While systematic

day-to-day changes in OD patterns and network travel times may not be significant
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in the short term, their impacts in the long term could be substantial. There is thus

a need for a calibration methodology that can be re-applied at regular intervals in

order to update the historical database. For example, the historical estimates (for

the relevant class of day) could be updated at the end of each day.

The two goals above motivate a calibration framework based on a day-to-day

updating mechanism, so that the historical database may be adjusted with the new

estimates at the end of each day. We will now outline prior work in this area before

discussing the scope of the current research on the updating framework.

The day-to-day updating framework proposed by Balakrishna et al. (2005a) is

reproduced in Figure 3-2. This approach assumes the availability of sensor count

data from M days of the same type, and estimates a historical database of demand

parameters using a sequential process. OD flows and error covariances are estimated

for the first day (m = 1) through the sequential estimator outlined in Section 2.4.2.

Sequential OD estimation for the departure intervals h = 1, 2, . . . , T are iterated with

error covariance estimation until convergence. The OD estimates from interval h form

the a priori estimates for interval h + 1 for the sequential OD estimation.
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Figure 3-2: Day-to-Day Updating (Balakrishna et al., 2005a)

The estimated demand parameters from day m = 1 are used to calculate the
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a priori inputs for the next day (m = 2). Demand parameters for this new day

are obtained, and the procedure progresses until all M days are utilized. It should

be noted that the framework allows for the periodic calibration of auto-regressive

factors, route choice parameters and travel times. At the end of this calibration

process, the historical database may be defined by one of several methods (Ashok,

1996; Balakrishna et al., 2005a). One option is to define the latest estimated param-

eters (OD flows, error covariances, auto-regressive factors, route choice parameters

and travel times) as the current historical values that encapsulate the entire prior

sequence of estimations. Alternatively, a moving average of all parameters could be

maintained, and used as input for the next day of this type encountered in practice.

Other updating schemes may also be developed. However, the evaluation of different

schemes is beyond the scope of this thesis, and is a suitable topic for future research.

The focus of the preceding description is the calibration of demand variables us-

ing sensor count data. Supply model parameters are therefore treated as exogenous

inputs. In this research, we replace the within-day sequential OD estimator described

in the above framework, with an estimator that:

• calibrates the demand and supply model parameters (including route choice

parameters) simultaneously,

• estimates OD flows across multiple intervals h simultaneously, and without

using the assignment matrix, and

• utilizes count and speed data.

The rest of the methodology (pertaining to the estimation of error covariances, OD

prediction model parameters and travel times TTrc) thus remains the same. A note

on the application of our proposed methodology for the first few days is in order.

While the approach can simultaneously estimate parameters across multiple intervals,

this would require time-varying a priori parameter values. Such values are typically

not available until a reliable historical database has been established. Under these

circumstances, a sequential within-day estimation procedure across time intervals may
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be used to initialize the process, noting that the demand and supply parameters may

still be estimated simultaneously for each interval. The advantage of this approach is

that the estimates for h may serve as a priori values for h + 1 for the first few days,

to be replaced by time-varying historical values once stable estimates are obtained.

The above initialization method is related to the concept of system observability,

discussed in Gupta (2005) and Balakrishna et al. (2006) (and briefly in Ashok (1996)

and Section 2.2). When sensor coverage is low, traditional OD estimation methods

rely on a priori OD flows in order to solve for the unknown OD flows. However, the

choice of a priori flows might impact the final outcome of the estimation. Observabil-

ity ensures that sequential OD estimation from a nearly empty network (potentially

encountered in the early hours of the day) yields reasonably stable OD estimates after

many intervals, independent of the a priori flows selected for h = 1. The number of

intervals may be roughly determined by comparing the number of OD flows to sensors

(and is verified empirically in Gupta (2005)).

The methodology in this chapter focuses on simultaneously estimating the best

model inputs (OD flows, route choice parameters and supply parameters) for a single

day. We now formulate the resulting problem, dropping the day-index m without loss

of generality.
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3.4 General problem formulation

The off-line calibration problem is formulated using the following notation:

x : OD flows, x = {xh}, ∀ h ∈ H

β : Model parameters, β = {βh}

M : Observed aggregate sensor count and speed measurements, M = {Mh}

xa : A priori OD flows, xa = {xah}

βa : A priori model parameter values, βa = {βa
h}

G : Road network (given), G = {Gh}

Let M be the set of all fitted sensor measurements. The off-line calibration prob-

lem is mathematically stated as the minimization of an objective function over the

parameter space:

Minimize
x, β

z (M,M,x,β,xa,βa) (3.3)

subject to the following constraints:

M = f(x,β, G) (3.4)

lx ≤ x ≤ ux (3.5)

lβ ≤ β ≤ uβ (3.6)

Equation (3.3) denotes the objective function for the minimization problem, and is

interpreted as some goodness-of-fit measure between observed (or a priori) quantities

and the corresponding fitted values. M, the output of the model, is represented

explicitly through constraint 3.4. The output for a particular interval h may be
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stated as:

Mh = f(x1, . . . ,xh;β1, . . . ,βh;G1, . . . , Gh) (3.7)

i.e. Mh is a function of all OD flows, model parameters and network characteristics

up to (and including) the current interval. Further, any stochasticity in the model’s

output is controlled through the function f(•), by defining Mh as the mean output

from multiple replications (a more detailed discussion on this aspect is provided in

Section 3.5.4).

The optimization is performed over the vector of unknown quantities x and β,

whose lower and upper bounds are captured through Equations 3.5 and 3.6. Param-

eter bounds define the search space to be explored by the solution algorithm. The

lower bounds lx are particularly useful, as they may be used to enforce non-negativity

of relevant parameters (such as capacities and OD flows). Route choice model pa-

rameters may employ the upper bound to restrict the search space. The coefficient

of travel time, for example, must be negative, and hence has an upper bound of zero.

We expand the general objective function (Equation 3.3) into a three-part expres-

sion that measures the distances of measurements, OD flows and model parameters:

Minimize
x, β

[z1(M,M) + z2(x,x
a) + z3(β,β

a)] (3.8)

The functional forms of z1(•), z2(•) and z3(•) depend on the specific goodness-of-fit

measures chosen. Under the least squares framework, for example, zi(εi) = ε′
iΩ

−1
i εi.

The index i = {M,x, β} denote the sensor data, OD flows and model parameters

respectively. The term Ωi represents a variance-covariance matrix. The deviations

are computed as

εM = M − M

εx = x − xa

εβ = β − βa

The general formulation assumes that all calibration variables are dynamic. Specif-
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ically, the model parameters βh depend on h, reflecting the impact of unobserved

time-varying factors on travel and driving behavior. These effects include vehicle

mix, weather conditions and drivers’ response to major and minor incidents. Modifi-

cations of the general approach may be constructed to fit specific modeling hypotheses

that impose additional constraints on the optimization problem. We present one such

special formulation before outlining the algorithmic component of our methodology.

A special case imposes constraints on the values of model parameters across the

intervals in H. It may be reasonable to envision that the parameters β remain

constant across the period of interest. For example, the route choice model parameters

are likely to be unchanged across the entire day. It may also be reasonable to suppose

that capacities and speed-density functions are constant for given weather conditions.

Note that the OD demands xh are still modeled as dynamic variables.

The problem formulation under this hypothesis thus becomes:

Minimize
x, β

H∑

h=1

[z1(Mh,Mh) + z2(xh,x
a
h)] + z3(β,β

a) (3.9)

subject to the following constraints:

Mh = f(x1, . . . ,xh;β;G1, . . . , Gh)

In the context of generalized least squares, the objective function in 3.9 becomes:

Minimize
x, β

H∑

h=1

[

ε′
Mh Ω−1

Mh εMh + ε′
xh Ω−1

xh εxh
]

+ ε′
β Ω−1

β εβ (3.10)

with εMh = Mh − Mh and εxh = xh − xah (εβ is as defined earlier). It may be

possible to relax the dependence of covariance structures on time interval h in some

situations.

The above approach assumes the absense of serial correlation across time intervals

h. While this may at first be perceived as a strong assumption, it should be noted

that spatial and temporal correlation effects are at least partially captured implicitly
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through the model output Mh (the additional equations being embedded within the

DTA model).

A comparison of the proposed methodology with existing OD estimation ap-

proaches is relevant here, for two reasons:

1. OD flow variables typically dominate any calibration problem, since their num-

ber increases rapidly with network size and the length of the study period.

2. Many prior studies have focused on approximations to simplify OD estimation,

while treating the route choice and supply parameters as exogenous inputs.

The most popular OD estimation method is one that replaces Equation 3.7 with

a linear approximation that maps the OD flow variables to the sensor data. The

corresponding mapping, termed an assignment matrix, is essentially a set of linear

equations that list the contributions of each OD flow to the vehicle counts observed

at each sensor location (refer to Equation 2.5):

ŷh =

h∑

p=h−p ′

aph xp

Apart from being an approximation of the true relationship, the above equation also

restricts the estimation to the use of sensor counts alone. The relationship between

OD flows and other data (such as speeds or travel times) is clearly non-linear, and

cannot be modeled as a linear equation. Thus, OD estimation, until recently, has

been solved using counts alone.

Recent experiences have indicated the existence of multiple sets of OD flows that

yield the same fit to link counts (see, for example, Lee et al. (2006)). This behavior

is primarily because of the dependence on a priori flows to help resolve the under-

determined nature of the problem due to limited sensor count data coverage. The

typical estimation method picks one of these many solutions, which often does not

replicate traffic dynamics very well (the fit to speeds or probe vehicle travel times,

for example, may be poor). It is therefore critical to constrain the calibration using

additional traffic descriptors. While this procedure is difficult with the prior formu-
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lation, our proposed formulation can easily include any type of field measurements.

The non-linear relationship between OD flows and the observed field measurements

are captured implicitly through the simulator (Equation 3.7). The generality of this

approach also allows an expansion of the parameter set, to include other model param-

eters in addition to the OD flow variables. Simultaneous demand-supply calibration

thus becomes possible.

The proposed approach does not rely on the costly computation, storage and in-

version of assignment matrices. Simultaneous calibration of OD flows across multiple

time intervals thus becomes practical, and allows the analyst to move away from the

limitations of the sequential approach.

The remaining sections in this chapter discuss the solution of the off-line calibra-

tion problem formulated in previous sections.

3.5 Problem characteristics

The off-line DTA model calibration problem formulated in earlier sections possesses

several characteristics that affect the effectiveness of different solution approaches.

We discuss each of these factors, and draw conclusions that will subsequently assist

in comparing existing optimization algorithms and choosing suitable approaches.

3.5.1 Large scale

A critical characteristic of the calibration problem is the size of θ, the vector of pa-

rameters over which the optimization must be carried out. The number of variables

to be identified is strongly correlated with the physical extent and structure of the

network being studied, as well as the desired temporal resolution for traffic dynamics

modeling. Both aspects influence the number of OD pairs and links on the network,

which directly impact the number of demand and supply parameters to be calibrated.

While running time is not a primary concern given the off-line nature of the prob-

lem, the solution algorithm chosen to execute the calibration must still terminate in

reasonable time.
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3.5.2 Non-linearity

The off-line calibration problem is highly non-linear. The source of this non-linearity is

embedded within the DTA simulator. The parameters in θ pass through complex and

non-linear transforms comprised of the various traffic dynamics models and algorithms

embedded within the DTA system. For example, simulated vehicle speeds may be

computed as

v = vmax

[

1 −

(

k − kmin

kjam

)β
]α

where v is the speed of the vehicle, vmax is the speed on the segment under free-flow

traffic conditions, k is the current segment density, kmin is the minimum density

beyond which free-flow conditions begin to break down, kjam is the jam density, and

α and β are segment-specific coefficients. In addition, the calculated speeds may be

subject to a segment-specific minimum speed vmin.

The terms vmax, kmin, kjam, α, β and vmin for each segment could be included

in θ as supply-side variables. Further, the density k is itself indirectly related to

demand variables (OD flows, route choice model parameters) and non-linear route

choice models. The functions z1(•), z2(•) and z3(•) in the objective function are also

typically non-linear, thus adding to the complexity.

The highly non-linear nature of the problem results in an objective function that

potentially contains many local minima. Studying the true shape of the objective

function is impractical, owing to the large number of parameters that must be ana-

lyzed. A further complication is introduced when the simulation model is stochastic,

as function values will then be measured with error (the implications of stochasticity

on the problem formulation and solution approach are discussed in Section 3.5.4).

3.5.3 Non-analytical simulator output

The dependence of the objective function on the output of a large-scale, non-linear

simulation model implies that it is infeasible to obtain an explicit analytical expres-

sion for f(•) as a function of θ. Consequently, analytical derivatives with respect to
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the parameters of interest are difficult to obtain. The implicit connection between

the simulator output and the vector of unknowns suggests the appropriateness of op-

timization approaches that work with function evaluations (methods that essentially

treat the simulation model as a black box).

3.5.4 Stochasticity

Traffic network quantities are stochastic, due to the presence of large numbers of

individuals with a wide spectrum of unobserved characteristics, who are constantly

making largely independent decisions that impact both local traffic conditions and

the reactions and responses of surrounding drivers. A certain level of stochasticity is

thus inevitable.

Sophisticated DTA systems whose constituent models reflect the complexity of

the corresponding real-world processes, thus contain several sources of stochasticity.

Simulated drivers’ behavioral characteristics, specific departure times and habitual

routes are sampled from pre-specified distributions. In addition, drivers’ route choice

decisions are modeled through probabilistic discrete choice models. Other sources

of randomness in traffic simulation models are embedded within the algorithms that

process vehicles and network elements, in order to replicate noisy system behavior.

For example, stochasticity in trip travel times and network delays may be approxi-

mated through a randomization of the order in which incoming links at a node (or

queued vehicles at an intersection) are processed in each simulation time step.

A stochastic simulator has implications on the problem formulation. In the ab-

sence of noise, replications of a simulation run yield identical outputs. It therefore

suffices to directly compare the observed data to the output from a single simula-

tion model run. With Monte-Carlo simulation, the comparison must account for the

distribution of model output for a given set of input parameters. The function f(•)

in our case therefore represents the mean model output, obtained by averaging over
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many simulation replications:

Mh =
1

W

W∑

i=1

fi(x1, . . . ,xh;β1, . . . ,βh;G1, . . . , Gh)

where W must be selected so as to obtain a pre-determined maximum allowable error

d. The required sample size can be calculated using:

W =
[

zα/2
σ

d

]2

where zα/2 is the critical value from the standard cumulative normal distribution,

corresponding to a confidence level α, and σ is the standard deviation of the popula-

tion. Since σ is usually not known, an iterative sample size determination based on

the sample standard deviation may be adopted.

3.6 Review of optimization methods

Commonly adopted optimization methods rely on the availability of an explicit ob-

jective function. The use of a stochastic simulation model, however, renders such

a function intractable. Most of the optimization literature is therefore not directly

suited to the solution of the DTA model calibration problem, and the modeler must

turn to simulation optimization methods (see Fu (2001) for a review of such tech-

niques).

Optimization methods for large-scale, stochastic, non-linear problems can be clas-

sified into path search, pattern search and random search techniques. We review each

class of methods next, and compare their advantages and limitations. For the purpose

of this discussion, we adopt the following notation. An optimization problem of the

following form is considered:

Minimize
θ

z(θ)

83



subject to the following constraints:

l ≤ θ ≤ u

In the above formulation, θ is a K-dimensional parameter vector (to be calibrated),

and is comprised of components θk. Lower and upper bounds on the parameters are

specified through l and u, with l = [l1l2 . . . lk . . . lK] and u = [u1u2 . . . uk . . . uK].

3.6.1 Path search methods

Path search methods start at an initial parameter vector, and move in a certain

direction with the aim of improving the value of the objective function. Often, the

gradient of the function is used to determine the direction. Here, we review response

surface methodology and stochastic approximation as two promising types of path

search methods.

Response surface methodology

Response surface methodology (RSM) is a widely applied approach that (a) fits a local

polynomial approximation based on the objective function values evaluated in the

vicinity of the current parameter vector, (b) calculates the gradient of the resulting

function, and (c) moves along the corresponding direction by some step size. The

points at which the function must be evaluated are determined systematically, such

as through an experimental design. Typically, a linear or quadratic response surface

is chosen.

RSM can be implemented in two ways. In a sequential search, linear response

surfaces are repeatedly applied until the objective function does not improve further.

A quadratic surface is then fitted iteratively (and the parameters updated along the

gradient-based direction) until the gradient estimate converges to zero. Higher-order

approximations may be performed in a similar way, until the desired level of accuracy

is achieved.

The second implementation of RSM involves meta-models: once the set of obser-
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vation points around the current solution have been identified, the function values at

these points are used to fit a response curve or meta-model. Deterministic optimiza-

tion methods are then employed to generate the meta-model’s gradient and update

the parameter.

A detailed discussion of RSM may be found in Kleijnen (1987). While the sta-

tistical theory behind these algorithms is easily understood, they may be limited by

the large number of function evaluations (model runs) needed for convergence. They

have also been shown to be ineffective when the objective function contains sharp

ridges and flat valleys.

A recently developed RSM-based algorithm that can potentially overcome these

drawbacks, is SNOBFIT1(Huyer and Neumaier, 2004). While this algorithm does not

search for a path to the optimum in the strictest sense, it does fit a quadratic response

surface at multiple points in each iteration. SNOBFIT maintains a population of

points around which local quadratic surfaces are generated based on the function

values of its nearest neighbors. The initial set of points is determined through a

smaller optimization step that ensures a more uniform search of the feasible space

(as defined by the lower and upper bounds). The algorithm is thus less likely to be

affected by the choice of a starting point, and can also search over high ridges. The

ability to control the relative local vs. global nature of the search (through a single

tuning parameter) further increases the appeal of this approach and its ability to climb

hills. At the end of each SNOBFIT iteration, a new set of points is recommended

based on minimizations of the quadratic approximations. The function values are

re-evaluated before proceeding to the next iteration.

The following steps broadly illustrate the underlying principles:

1. A set S of initial points θs ∀ s ∈ {1, 2, . . . , S}, their bounds [l, u] and the

function values z(θs) are selected. The set dimension C denotes the number of

points the modeler desires SNOBFIT to recommend in each pass. Typically,

the points output by SNOBFIT in one iteration will form the input for the next

iteration. At the start of the process, however, it is likely that only a single

1Stable Noisy Optimization using Branch and FIT
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point θ0 is available. In such an event, the algorithm will still recommend a set

of S points that optimally span the feasible domain as defined by the bounds.

The associated procedure is outlined in a later step of the algorithm.

2. The uncertainty ∆z(θs) in the function evaluated at θs, is determined. The

corresponding vector ∆s is used by SNOBFIT to capture model stochasticity.

The elements of the uncertainty vector can easily be computed from multiple

replications of the function at each point θs. A resolution vector ∆θ with

∆θk > 0 ∀ k ∈ {1, 2, . . . , K} is defined. Two points are considered different if

they differ by more than ∆θk in at least one of their K components.

3. The initial parameter bounds box is split into sub-boxes such that each sub-box

contains exactly one point from S. During subsequent iterations, every sub-box

with more than one point is further divided through a branching procedure with

the following steps:

(a) Identify the parameter component k for which the variance of θk/(uk− lk)

across all points in the sub-box is the maximum.

(b) Sort the points such that θ1k ≤ θ2k ≤ . . .

(c) Split the kth component at θ̃k = λθs
∗

k +(1−λ)θs
∗+1
k , where s∗ = arg max(θs+1k −

θsk) and λ is a function of the golden section number ρ = 1
2
(
√
5 − 1).

Each sub-box is assigned a “smallness” measure that indicates the number of

bisections of the full box [l, u] required in order to obtain the current sub-box.

Multiple sub-boxes may have the same smallness.

4. If the number of points currently in C is less than (K + 6), there is insufficient

information to attempt quadratic approximation. We therefore go to step 8.

5. A list of the (K + 5) nearest neighbors is identified for each point θs. For each

k ∈ {1, 2, . . . , K}, the point closest to θs among the points not yet in the list,

and that also satisfy |θsk − θs
′

k | ≥ ∆θk is added to the list. The five closest points

not yet in the list are added to make up (K + 5) neighbors.
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6. A local quadratic (Hessian) approximation model is fit around the current best

point θ∗ and each of the remaining points, if their lists of nearest neighbors

have changed.

7. A set of size S, comprised of five types of points, is now recommended:

(a) A single type 1 point is identified by minimizing the quadratic approxima-

tion around θ∗, using a trust region of radius d. A single type 2 point is

generated by solving an identical problem with a radius of ρd. The radius

is initialized to d = 1
4
(u − l) for the first iteration, and is expanded or

contracted in subsequent iterations based on comparisons of the realized

function value at the current best point with those at the type 1 and type

2 points recommended at the end of the previous iteration. It should be

noted that there is a possibility of a type 1 or type 2 point not being

generated, if the calculated points differ from existing points by less than

∆θ.

(b) Type 3 points are chosen from the minima (or valleys) of all remaining

points (excluding the best point θ∗). Type 4 points are generated from

as yet unexplored regions, by selecting points from sub-boxes of increas-

ing smallness (denoting larger volumes) that have not already been used

for type 3 selection. The split between types 3 and 4 is user-specified

through p, the probability of a type 3 point. If required, additional type 4

points may be generated at the end of the procedure (conditional on the

availability of sub-boxes that have not yet been considered).

8. If the number of recommended points is still less than S, the necessary number

of type 5 points are generated. A large set of random points are created, and a

subset with the maximum distance from existing points is selected.

While a convergence rate result for SNOBFIT is currently unavailable, Huyer and

Neumaier demonstrate that the algorithm is guaranteed to converge to the global

minimizer θ∗ under the following set of assumptions: (a) the objective function z(θ)
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is continuous, at least in the neighborhood of θ∗, (b) ∆θ = 0, (c) the exploratory

space [l, u] is scaled to [0, 1]K, (d) parameters are not rounded, implying (together

with (b), that all points of types 3 and 4 are accepted, (e) at least one point of type

4 is generated in each iteration, and (f) the objective function is evaluated at the set

of points recommended by SNOBFIT.

The authors list several merits of their approach, some of which are relevant for

our problem setting. The algorithm works well with fewer function evaluations than

existing methods, due mainly to its global search capability and intelligent local anal-

ysis. Moreover, the method explicitly accounts for noise in the function evaluations,

which is attractive in the context of a stochastic simulator. The type 3 probability

p may also be used to control the trade-off between local and global search. For

example, requesting more type 4 points (with a probability of 1-p) allows SNOBFIT

to spread out into unexplored regions of the domain.

The rigorous quadratic search employed by SNOBFIT is an obvious advantage,

since the search intelligently handles the non-linearity in the objective function. An

added advantage is the algorithm’s memory: it “remembers” the points it already

considered, and avoids recommending new points that are too close to them (the

component-wise cut-off distance being a user-defined threshold).

A concern with applying SNOBFIT in situations with very wide parameter bounds

is the initial effort spent on quadratic local fits on a randomly selected set of points.

Indeed, if S is relatively small, the first complete set S recommended by SNOBFIT

is likely to provide sub-optimal coverage of the feasible space. While a decision to

increase S in such situations is justified, it might not be a practical option from a

run-time perspective. This concern has potential implications on the applicability of

this calibration solution method to large networks.

Stochastic approximation

Stochastic approximation (SA) traces a sequence of parameter estimates that con-

verges to the zero of the objective function’s gradient. The parameter updates at
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each iteration i are generalized as:

θi+1 = θi − ai ĝ(θi) (3.11)

where θi is the parameter vector at the beginning of iteration i; ĝ(θi) is a current

estimate of the gradient; {ai} is a gain sequence of step sizes. The Robbins-Monro

algorithm (Robbins and Monro, 1951) results when an unbiased estimator of the gra-

dient is used to perform the parameter updates. However, such an estimator typically

requires detailed knowledge of the model being calibrated, often generated through

a perturbation analysis. Given the large-scale and stochastic nature of DTA models

(and the variety of models in existence), such an exercise is expected to be unreliable

and time-consuming.

When a finite-differences (FD) approach is used to approximate the gradient, the

Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz, 1952) is obtained. Two popular

FD schemes have been reported in practice:

ĝk(θ
i) =

z(θi + ci ek) − z(θi − ci ek)

2ci
(3.12)

ĝk(θ
i) =

z(θi + ci ek) − z(θi)

ci
(3.13)

where ek is a K-vector with a one in the kth location (and zeroes elsewhere), and

{ci} is a decreasing sequence of small positive numbers. Equation 3.12 is known as

a symmetric design, while Equation 3.13 is a one-sided or asymmetric design. The

optimal asymptotic convergence rates have been shown to be i−1/2 for the Robbins-

Monro algorithm, and i−1/3 or i−1/4 for the Keifer-Wolfowitz algorithm (depending on

the choice of one-sided or symmetric differences respectively)2. The faster convergence

rate of Robbins-Monro has been attributed to its use of increased information through

an estimate of the gradient, rather than a stochastic approximation based on noisy

function evaluations (Spall, 1999).

It should be noted that a total of 2K function evaluations are required per sym-

2see Pflug (1996) for details.
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metric gradient computation. The less-expensive asymmetric computation requires

only K+ 1 function evaluations. In spite of the computational savings in using Equa-

tion 3.13 (relative to Equation 3.12), the effort per iteration increases linearly with the

problem size K. This property is expected to negatively affect scalability, especially

when the simulation model’s running time is non-trivial. A single function evaluation

with a mesoscopic traffic simulator can take several minutes, depending on the size

of the network and the demand levels (total number of vehicles on the network at a

given instant). For a case with a simulation time of 2 minutes and K = 2000, the

time per iteration is as high as 67 hours, or nearly three days!

SPSA (simultaneous perturbation stochastic approximation, Spall (1992, 1994a,b,

1998b,a, 1999)) provides huge savings in per iteration cost, by approximating the

gradient using just two function evaluations (independent of the value of K):

ĝ(θi) =
z(θi + ci∆i) − z(θi − ci∆i)

2ci
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(3.14)

where ∆i is a K-dimensional perturbation vector consisting of component-wise pertur-

bations ∆ik. Since the numerator in Equation 3.14 is invariant for all k = 1, 2, . . . , K,

the computational effort in each iteration is fixed (independent of K). This represents

an obvious benefit for scalability, though numerical tests will be required in order to

determine if the number of iterations to convergence is also reasonable. Neverthe-

less, from a theoretical perspective, SPSA represents a promising solution algorithm

that must be further evaluated to determine its suitability to the off-line calibration

problem.

The following steps describe the SPSA approach in detail:

1. The process is initialized (i = 0) so that θi = θ0, a K-dimensional vector of a

priori values. The SPSA algorithm’s non-negative coefficients a,A,c,α and γ
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are chosen according to the characteristics of the problem3.

2. The number of gradient replications (grad rep) for obtaining the average gra-

dient estimate at θi is selected4.

3. The iteration counter is incremented: i = i + 1. The step sizes ai and ci are

calculated as ai = a/(A + i)α and ci = c/iγ.

4. A K-dimensional vector ∆i of independent random perturbations is generated.

Each element ∆ik, k = 1, 2, . . . , K, is drawn from a probability distribution

that is symmetrically distributed about zero, and satisfies the conditions that

both |∆ik| and E|∆−1
ik | are bounded above by constants. The literature indicates

the suitability and success of the Bernoulli distribution (∆ik = ±1 with equal

probability). Note that the inverse moment condition above precludes the use

of the uniform or normal distributions.

5. The objective function is evaluated at two points, on “either side” of θi. These

points correspond to θi
+

= θi + ci ∆i and θi− = θi − ci ∆i. Lower and upper

bound constraints are both imposed on each point before function evaluation.

6. The K-dimensional gradient vector is approximated as

ĝ(θi) =
z(θi

+

) − z(θi−)

2ci
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(3.15)

The common numerator for all K components of the gradient vector distin-

guishes the SPSA approach from traditional FD methods.

7. Steps 4 to 6 are repeated grad rep times, using independent ∆i draws, and an

average gradient vector for θi is computed.

3Some guidelines for the selection of SPSA parameters are outlined in a later section.
4Gradient smoothing is believed to provide more stable approximations when function evaluations

are noisy.
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8. An updated solution point θi+1 is obtained through the application of Equa-

tion 3.11. The resulting point is again adjusted for bounds violations.

9. Step 3 is re-visited until convergence. Convergence is declared when θi and the

corresponding function value z(θi) stabilize across several iterations.

The convergence characteristics of SPSA depend on the choice of gain sequences

{ai} and {ci}, and the distribution of the perturbations ∆i. Spall (1999) states

that the two gain sequences must approach 0 at rates that are neither too high nor

too low, and that the objective function must be several times differentiable in the

neighborhood of θ0. If these properties hold, and if the perturbations are selected

according to the requirements stated in Step 4 above, then the author provides the

best-case convergence rate as i−1/3. The paper also claims the superior efficiency of

SPSA compared to FDSA, with a K-fold saving per iteration.

Spall (1998a) provides some intuition for the success of SPSA, by comparing

its performance with that of FDSA. When the objective function may be evaluated

with little or no noise, FDSA is expected to emulate the steepest descent approach.

Mathematical analysis has established this descent direction to be at right-angles to

the contour line at each point. SPSA, owing to a random search direction, does not

necessarily follow a true descent to the optimum. That is, the gradient approximations

may differ from the true gradients, so that the corresponding search directions deviate

from those of steepest descent. However, SPSA’s gradient approximation is almost

unbiased:

E[ĝ(θi)] = g(θi) + bi (3.16)

where the bias bi = µci
2

, the term µ being a constant of proportionality. As ci → 0

(for large i), the small bias bi vanishes. The path determined by SPSA is thus

expected to deviate only slightly from that of FDSA. The “errors” in the search path

will average out across several iterations, so that FDSA and SPSA converge to the

same solution in a comparable number of iterations (Figure 3-3).

When the function evaluations are noisy, neither FDSA nor SPSA will trace the

steepest descent directions with certainty. However, extending the previous analogy,
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Figure 3-3: SPSA vs. FDSA [Spall (1998a)]

the SPSA directions on average remain close to the optimal directions.

The SPSA method outlined in this section immediately illustrates the potential

computational savings for large-scale optimization. Unlike traditional stochastic ap-

proximation approaches, the effort expended per SPSA iteration is exactly 2 func-

tional evaluations, and is independent of the number of parameters, K. The sequence

{ci}, if chosen carefully, can overcome the other limitation of FDSA, namely the unre-

liability of gradient approximations based on very small perturbations. Essentially, ci

must approach zero with i, but must do so at a “reasonable” rate. Rapid convergence

of ci may result in unreliable derivatives, while a slow rate may prevent SPSA from

approaching the true gradient near the optimum.
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3.6.2 Pattern search methods

Pattern search methods are often listed as direct search methods, since they do not

require derivative calculations. Instead, they compare function values to determine

the “best” direction of movement from the current solution.

Hooke and Jeeves method

This algorithm (Hooke and Jeeves, 1961) starts from an initial solution θ0 and begins

by determining a “good” search direction for k = 1, the first component of θ0. This

is achieved by moving by a certain search step size on either side of θ01, and compar-

ing the function values at both points (while maintaining the remaining parameter

dimensions k = 2, 3, . . . , K constant). If an improved point is not obtained, the step

size is reduced, and the search is repeated until a local descent direction is identified

for k = 1.

An intermediate point is generated by moving along this direction (keeping all

other components fixed). By definition, the objective function at the intermediate

point is lower than the value computed at θ0. The search for k = 2 starts from this

new point, to generate a second intermediate point. The process is repeated until a

search direction has been identified for each of the K components in the parameter

vector. The iteration ends by collating all K search directions into a single direction,

and applying an update that yields θ1, the “solution” from the first iteration. Sub-

sequent iterations repeat similarly, until some pre-defined termination thresholds are

satisfied. Note that an improvement in objective function at each iteration is not

guaranteed by this method. However, the iterations are expected to move towards

a local optimum as i → ∞. More details about this class of methods may be found

in Kolda et al. (2003).

The independence from derivatives is conceptually a very attractive feature of

pattern searches, since stochastic DTA models are generally expected to result in un-

reliable gradient estimates. However, the personal experiences of the author indicate

that these methods perform poorly when applied to even small- and medium-sized
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simulation optimization problems. The primary reason for failure is the focus on the

immediate (component-wise) vicinity of the starting point, which is often far from a

global optimum. A new pattern requires at least K + 1 function evaluations. When

combined with a large-scale and highly non-linear function, the algorithm quickly

restricts its search space to a very small radius around the current point (due to a

rapidly shrinking search step size), thus making very slow progress even towards the

nearest local optimum. Search methods possessing the capability to “jump” rapidly

in a promising direction before refining their search, will therefore be better suited to

the calibration context.

Nelder-Mead (Simplex) method

The Nelder-Mead method (Nelder and Mead, 1965) maintains a population of K + 1

points (called a simplex), and begins by computing the objective function at each

point. At every iteration, the worst point is replaced by its reflection about the

centroid of the remaining points in the simplex. The objective function is evaluated

at the new point, and the process continues until little improvement can be achieved

by eliminating the worst point. The simplex can shrink or expand depending on the

objective function value of the new point, and ideally shrinks to a unique solution at

convergence. The initial simplex may be set up by randomly generating K+ 1 points

that satisfy the lower and upper bounds.

Convergence results for the Nelder-Mead algorithm are scarce, and are largely lim-

ited to the one- and two-dimensional cases (see, for example, Lagarias et al. (1998)).

This, and other papers, outline the difficulties in developing rigorous convergence

analyses when K > 2, and provide empirical evidence in support of the assertion that

the Nelder-Mead method can terminate at a sub-optimal point in noisy situations.

Box-Complex method

The Box-Complex algorithm (Box, 1965) is an extension to the Nelder-Mead ap-

proach: they both begin with a set of randomly-selected feasible points that span

the search space. In each iteration, a candidate point (one with the highest objective
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function value) is replaced by its reflection about the centroid of the remaining points.

If the resulting point is worse than the candidate, the point may be moved closer to

the centroid using some contraction scheme. The algorithms aim to move in a di-

rection that eventually collapses the population into a single solution. The primary

difference between the two methods lies in the definition of the size of the population:

while Simplex requires exactly K + 1 points in its set, Box-Complex requires a mini-

mum of K+2. The use of a larger set can potentially increase the speed and accuracy

of the search, and also guard against the possibilities of numerical instabilities with

the Nelder-Mead approach (see Box (1965) for details).

Below we present an outline of the algorithm, tailored to our specific problem

instance (a more elaborate treatment can be found in the original paper by Box):

1. A complex S of S > K+1 points is generated5. Each point θs is a complete pa-

rameter vector of dimension K. Let θsk denote the kth component of the point θs,

s = 1, 2, . . . , S. The first point θ1 (for s=1) is set to θ0 (determined externally

by the modeler), and is assumed to satisfy all the constraints. The remaining

S − 1 points are obtained one at a time, through the following procedure:

θsk = lk + rsk (uk − lk) (3.17)

where rsk is a uniformly distributed random number in (0,1). The complex of S

points thus spans the feasible space defined by the bound constraints.

2. The function value z(θs) is evaluated at each point s in the complex. A point

s′ with the “worst” (largest) objective function value is determined6, and is

replaced by its reflection about the centroid of the remainder of the complex:

θ̃s
′

k = θ̄k + α
[

θ̄k − θs
′

k

]

(3.18)

where θ̄k = 1
S−1

∑
s∈S\θs′ θ

s
k is the centroid for dimension k. If bound constraints

5The need for this constraint on the complex size is motivated in a later discussion.
6It should be noted that there can be multiple points with the same worst objective function

value. One of these points is chosen at random for replacement.
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are violated, the point is moved an infinitesimal distance δ within the violated

lower or upper limit. The value of α is chosen to be greater than unity7 which

allows the complex to expand (if necessary), enabling rapid progress if the initial

best solution is far from the optimum. Typically, α = 1.3.

3. If a new (reflected) point repeats as the worst point on consecutive trials, it is

moved one half the distance towards the centroid of the remaining points:

θ̃s
′

k =
θs

′

k + θ̄k

2
, k = 1, 2, . . . , K (3.19)

Bound constraints are checked and adjusted as previously outlined. The se-

lection of α > 1 helps to compensate for such adjustments that shrink the

complex.

4. The algorithm terminates when the function values of all points in the complex

satisfy some pre-determined distance measure. For example, iterations might

be stopped when all function values are within a certain percentage of each

other across consecutive iterations.

As mentioned earlier, the size S of the complex must be at least K+ 2, where K is

the number of parameters being estimated. When S equals K+ 1, the complex could

potentially collapse into a subspace defined by the first binding constraint, preventing

the exploration of other constraints. The Box-Complex method is therefore preferred

over the Nelder-Mead method. Box (1965) suggests a practical setting of S = 2K.

The advantages of the Complex algorithm in the context of calibrating simulation-

based functions are many. The non-dependence on numerical gradients has already

been stressed as a key feature. The random starting complex used by the algorithm

has the potential to move quickly towards the optimum before refining its search. In

addition, the random initialization of the complex significantly increases the chance

of converging to the global optimum, even if this is located “far” from the initial point

θ0 (since a subset of the starting complex is highly likely to be spread far away from

7Such an approach is known as over-reflection.
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the starting solution).

A potential drawback of the Complex method is related to its focus on the worst

point in the complex. While the algorithm repeatedly expends effort to improve the

points with the highest objective function value, an improvement to the “best” point

(with the lowest function value) is not guaranteed at every iteration. When combined

with the fact that multiple function evaluations may be required per iteration (in case

the worst point repeats), the algorithm tends to display extremely slow convergence

rates as the optimization proceeds. Further, model stochasticity may result in an

apparently worst point being eliminated from the complex, when it should have been

retained.

3.6.3 Random search methods

Random search methods adopt probabilistic mechanisms to randomly select up-

dated parameter vectors with the hope of improving towards an optimum. They

are gradient-free, yet are characterized by a large set of tuning parameters that must

be selected (often on a case-by-case basis). They are more suited to the context of

discrete variable optimization over small search spaces. In the realm of large-scale

continuous optimization, random search methods have displayed slow convergence (if

they at all move towards the optimum). Simulated annealing and genetic algorithms

are two common types of random searches, which we review here.

Simulated annealing

Simulated annealing (Metropolis et al., 1953; Corana et al., 1987) is the optimization

equivalent of the physical process of cooling. The method begins with a very high

temperature (chosen by the modeler), and attempts to reach the lowest possible tem-

perature (of zero) just as heated metal cools towards room temperature. When met-

als re-crystallize from a high-energy state, their molecules might attain intermediate

states of higher energy while they re-align themselves through an adiabatic (equi-

librium) process. The optimization method follows an analogous “learning” process,
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assigning a decreasing (non-zero) probability of traveling uphill while maintaining a

generally downward trend in the objective function. The early iterations therefore

allow for random “jumps” to escape from local optima.

Specific details of the implementation of simulated annealing methods vary widely

in the literature. However, the need for the pre-selection of a large number of tuning

parameters implies that significant effort may be required in identifying their optimal

values for each application. These parameters include (a) the initial temperature, (b)

the distribution of the perturbation applied to randomly generate updates, (c) the

cooling schedule that determines the sequence of temperatures, and (d) the criteria for

lowering the temperature (typically tied to the number of function evaluations of ran-

domly perturbed parameter vectors allowed at each temperature setting). The work

by Corana et al. (1987) is widely cited in the literature, and their tuning parameters

are largely adopted in applications.

Simulated annealing has been found to be effective in combinatorial optimiza-

tion problems, and has been widely applied in the area of electronic circuit de-

sign (Kirkpatrick et al., 1983). The primary advantage of the method is the ability

to reach a global optimum, due to the high initial probability of visiting a much

better solution by chance. The experience with continuous variables and large prob-

lems, however, is not encouraging. Wah and Wang (1999) adapt the basic algorithm

(ascribed to Metropolis et al. (1953)), to the case of constrained optimization with

continuous variables. They present many heuristics tailored to a set of benchmark

problems. Goffe et al. (1994) demonstrate that the tuning parameters suggested by

Corana et al. (1987) result in convergence for a 2-variable test case, after 852,001

function evaluations! The authors further propose modified parameters that reduce

this to 3,789 evaluations, which while being a significant reduction, is still high for

a small example. They note that the parameters in Corana et al. (1987) are conser-

vative, but acknowledge that they would be better suited for highly non-linear and

larger cases (indicating the method’s lack of scalability).
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Genetic algorithms

Genetic algorithms (GA) (Holland, 1975; Goldberg, 1989) are classified as evolution-

ary search methods, and are based on the theory of natural selection. A population

of starting solutions (chromosomes or individuals) is generated at random, and their

fitness (objective function values) evaluated. Solutions that are fitter (i.e. more likely

to be closer to an optimum) are retained in the population with a higher probability,

while the inferior points are eventually discarded. The population of current feasible

solutions progresses through generations (iterations), with several operators acting

on the chromosomes to decide the population that survives to the next iteration.

The fittest individuals in the current population are selected for starting a new

generation. The chosen individuals are crossed over in pairs with some probability,

and the resulting gene string may be further mutated to increase the randomness

of the new population (to perturb the search in a hitherto unexplored direction).

An elitist strategy might be enforced in order to retain the best solution(s) without

change. Fitness is evaluated before repeating the process.

Genetic algorithms have been applied to solve small transportation optimization

problems, including the calibration of a subset of microscopic traffic simulation model

inputs (see, for example, Kim and Rilett (2004) and Henderson and Fu (2004)),

however, they appear to be inferior to other methods reviewed earlier, for large-scale

calibration. GA are naturally tailored for integer variables. In this regard, they

differ fundamentally from other optimization methods that perform better in the

continuous domain. This characteristic is primarily because variables’ feasible values

are coded as binary strings. Discretizing the feasible ranges of a large number of

continuous variables (like the capacities and speed-density parameters encountered

in DTA models) would thus result in numerous possibilities, depending on the step

size chosen for this purpose. Even OD flows, if treated as integers, would result in an

extremely large set of potential values due to their significantly wider bounds.

Secondly, the algorithm requires several parameters to be pre-defined, includ-

ing crossover and mutation probabilities, a selection method and an elitist strategy.
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The choice of these parameters has been found to be critical, as demonstrated by

Mardle and Pascoe (1999). The authors report on the high sensitivity of GA to al-

gorithmic implementations, and the large running times when compared to more

traditional methods. They conclude with the recommendation that GA (and ran-

dom search methods in general) be viewed as an option only when other algorithms

fail. Henderson and Fu (2004) draw attention to the heuristic nature of GA, with no

guarantee of convergence. Unless the algorithm’s parameters are carefully selected

for each specific application, solutions of poor quality may result due to premature

“convergence”.

Thirdly, Henderson and Fu (2004) review an application of GA for maximum

likelihood estimation (Liu and Mahmassani, 2000), in which the effect of population

size and the number of generations (iterations) is briefly explored. The study found

that the two quantities varied greatly depending on the search space and the nature

of the objective function, and that large populations are necessary if high levels of

accuracy are desired. This conclusion is crucial in terms of scalability, especially when

function evaluations are expensive.

3.6.4 Summary

A wide variety of simulation optimization algorithms exist in the literature. However,

few have been tested on even medium-sized instances of non-linear optimization prob-

lems. While several approaches possess theoretically attractive properties desirable

for the calibration of large-scale traffic simulation models, their performance (includ-

ing both accuracy and running time) must be evaluated empirically before a suitable

algorithm(s) can be identified. Based on the preceding analysis and some preliminary

numerical experiments, three algorithms were short-listed for detailed testing:

• Box-Complex (pattern search)

• SNOBFIT (response surface method)

• SPSA (stochastic approximation - path search)
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3.7 Solution of the off-line calibration problem

In this section, we discuss some issues related to the application of the three selected

algorithms. First, we suggest the combination of Box-Complex and SNOBFIT to

increase the efficiency of the optimization. We then outline some guidelines for the

selection of algorithm parameters in the various methods.

3.7.1 Combined Box-SNOBFIT algorithm

We propose a solution approach that combines the Box-Complex and SNOBFIT op-

timization algorithms in a way that exploits their respective advantages. A review of

the merits and potential drawbacks of the two algorithms suggests a natural integra-

tion scheme to obtain accelerated convergence and added estimation accuracy.

The Complex algorithm has the ability to cover the feasible space effectively,

and rapidly replace the high-objective function points with estimates closer to the

initial best point. However, the rate of convergence can drop significantly as it be-

comes harder to improve the worst point just through reflections about the centroid.

SNOBFIT efficiently utilizes the information from every function evaluation to sys-

tematically search for local and global minima. However, it might benefit from a

good set of starting points that reduce the need for costly quadratic approximations

around remote points.

We propose a two-step approach in which the Complex algorithm first shrinks a

randomly generated initial set of points to one that is more uniform in function values,

without expending the computational resources needed to converge to the optimum.

The result is expected to be a complex that is more representative of the various

local minima of the non-linear objective function. In the second step, SNOBFIT

uses the final complex as the starting set L to further refine the search through

local approximation. A determination of the transition point (when the optimization

switches from Box-Complex to SNOBFIT) may be made after reviewing the progress

of the first method. A logical option would be to switch when the best objective

function in the complex flattens out consistently across successive iterations.
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While the per-iteration effort for SPSA represents a K-fold saving over FDSA or

population-based methods such as Box-SNOBFIT, analyses of the total time to con-

vergence must take into account the number of iterations required by each algorithm

to satisfy the stopping criteria. While a determination of the true running-time sav-

ings will require extensive empirical work (see Chapter 4), it should be noted that

the significant difference in per-iteration cost could, in theory, allow SPSA to per-

form many more iterations in the same (or less) time, to enable it to quickly identify

solutions very close in quality to the final Box-SNOBFIT result.

3.7.2 Some practical algorithmic considerations

Both Box-SNOBFIT and SPSA use coefficients that determine the actual workings

and performance of the respective algorithms. The choice of these coefficients sig-

nificantly impacts their practical rates of convergence. In this section, we borrow

from the literature and experimental experience to provide a brief review of the more

critical algorithmic coefficients, along with guidelines for their initialization.

Selecting algorithmic coefficients for Box

Perhaps the most critical input to the Box algorithm is the size of the population (or

complex) of points it maintains at each iteration. Theoretical considerations require

that this be a minimum of K + 2 to ensure numerical stability. A less dense set

risks a collapse of the complex along one or more dimension(s), with little chance

of pulling away into better regions of the feasible domain. Based on experiments on

fairly small problems, Box (1965) recommends that the complex size be twice or

thrice the problem dimension K, which immediately raises the issue of scalability: the

number of function evaluations required in order to set up the optimization iterations

equals the size of the complex. It should be noted, however, that each subsequent

iteration improves a single point in the set (one with the worst objective function).

The corresponding computational effort is generally very small relative to the initial

expense, though the per-iteration burden will typically increase sharply after many
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iterations. This increase is attributed to the fact that it gets progressively harder to

find, through a simple reflection operation about the shrinking centroid, a “better”

replacement for the current worst point. In other words, the worst point under

consideration may have to be reflected multiple times before its function value falls

below that of the second-worst point. Indeed, this behavior is a key contributor to the

drastic slow-down in Box’s convergence rate after the complex has shrunk significantly

in the early iterations.

Selecting algorithmic coefficients for SNOBFIT

Like the Box algorithm, SNOBFIT is also population-based. Therefore, the identi-

fication of an appropriate population size is again an important practical aspect. A

hard constraint in this regard is the requirement that there be enough points in the

population for SNOBFIT to perform its local quadratic fitting around each point.

Since this step involves the five nearest points for each point under consideration, a

minimum population size of K + 6 is necessary (Huyer and Neumaier, 2004).

As in any population-based method, maintaining a larger set of points enhances

SNOBFIT’s ability to locate a good solution. However, unlike the Box method,

increasing the size of the population adds to the computational time in every iteration.

This is because each SNOBFIT iteration recommends a new set of points (based on its

quadratic minimizations) at which the function must be evaluated before progressing

to the next iteration. From a scalability perspective, therefore, the minimum size of

K + 6 is the most attractive setting.

Another key input to SNOBFIT is p, the probability of recommending a type 3

point8. A smaller p encourages SNOBFIT to explore hitherto unknown areas of the

search space, in the search for a global solution. Larger values of p limit the search to

the vicinity of the points at which the objective function is already known. p = 0.3

was found to work well for the calibration problem.

8Type 3 points are chosen from the list of local minima obtained through quadratic fitting around
each point in the population. The best local minimum is designated as type 1, and is removed from
contention for a type 3 label.
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Selecting algorithmic coefficients for SPSA

SPSA is a random-search method, and does not maintain a population of points. This

is perhaps the primary reason for its limited global optimization ability. However,

the algorithm requires the initialization of other key constants: a, A, c and α and γ.

Experiments have confirmed that the values of α = 0.602 and γ = 0.101 reported

in the literature are adequate in the context of the calibration problem. Spall (1998b)

also provides similar values associated with asymptotic optimality. The value of the

“stability constant” A = 50 was also found to work well. The choice of the remaining

two terms, however, can significantly impact the performance of SPSA.

The values of a and c control, respectively, the step sizes for parameter updating

and gradient computation. If a is too large, SPSA may overlook a nearby solution and

venture too far away. If a is too small, the algorithm may get stuck locally and never

effectively search the surrounding space. Similarly, a large c may lead parameter

component(s) to hit their bounds (almost) immediately, thus rendering the gradient

approximations invalid. This problem would be magnified if the objective function is

highly non-linear about the current point. On the other hand, a very small value for

c could cause unreliable gradient approximations.

Empirical analyses revealed that suitable values for a and c may be identified by

studying the magnitudes of the gradient approximations and subsequently limiting the

desired updates to certain percentage of the magnitude of each parameter component.

3.8 Summary

In this chapter, typical DTA model calibration variables were described. The process

of data collection was outlined, and the type of data assumed for this research was

discussed. The off-line calibration problem was mathematically formulated, and the

challenging problem dimensions analyzed. The mechanics of three non-linear opti-

mization algorithms with properties suitable to the problem at hand were presented.

An innovative global search approach integrating the Box-Complex and SNOBFIT

algorithms was detailed. The SPSA stochastic approximation algorithm was intro-
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duced as a scalable alternative for large networks. Some theoretical considerations for

the empirical comparison of the computational performances of the two approaches

was outlined, and practical guidelines for the selection of algorithmic terms and con-

stants were outlined. The next two chapters focus on detailed case studies on two

networks: a test case with synthetic data, and a much larger real network from Los

Angeles, CA.
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Chapter 4

Synthetic Case Study
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This chapter describes a case study for the systematic evaluation of the estimator

developed in Chapter 3. The broad objectives of the case study are outlined, the

experimental setup and design described, and detailed numerical results presented and

analyzed. Conclusions are drawn about the performance of the calibration approach,

its ability to capture various transportation and traffic phenomena, and its scalability

to real-sized datasets.

4.1 Objectives

The primary objectives of this case study are to:

• operationalize the calibration estimator proposed in Chapter 3, and demonstrate

its ability to replicate traditional traffic sensor measurements.

• systematically evaluate the estimator for a variety of network conditions, on a

prototypical network with known underlying parameters and processes.

• Compare the numerical accuracy and computational performance of the Box-

SNOBFIT and SPSA algorithms.

4.2 Experimental setup

The setup for the evaluation of a DTA model calibration estimator requires three

components: (1) an archived dataset of time-varying aggregate sensor measurements,

(2) a DTA model with a set of inputs and model parameters, and (3) a network

representation with a functioning surveillance system.

4.2.1 Sensor dataset generation

The generation of an archived sensor dataset must:

• allow for an objective and independent evaluation of the model being calibrated.

The data generator must be able to model network processes and assumptions

that are different than those used by the DTA model.
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• realistically capture network demand patterns, driving behavior and supply

phenomena that are consistent with real-world conditions.

• model a wide range of demand and supply conditions resulting in different traffic

patterns.

• represent various surveillance system configurations, and record the types of

sensor data available through field detectors.

Archived data for this case study were obtained through detailed microscopic

simulations using MITSIM (Yang and Koutsopoulos, 1996; Yang et al., 2000).

4.2.2 Overview of DTA model and parameters

DynaMIT (Dynamic network assignment for the Management of Information to Trav-

elers) is the DTA model chosen for demonstrating the methodology developed in this

thesis. DynaMIT combines a flexible microscopic demand simulator and a meso-

scopic supply simulator to effectively capture complex demand and supply processes

and their interactions. Accurate modeling of origin-destination (OD) flows, pre-trip

and en-route driver decisions, traffic dynamics, queuing and spillback allow the sys-

tem to estimate and predict network state in a realistic manner. DynaMIT is designed

to prevent overreaction by ensuring that the generated guidance is consistent with

the conditions that drivers are expected to experience. This is achieved through ex-

plicit modeling of drivers’ reaction to information. The flexible simulation system

can adapt to diverse ATIS requirements, and is designed to handle a wide range of

scenarios including incidents, special events, weather conditions, highway construc-

tion activities and fluctuations in demand. A detailed description of the features and

functionalities of the DynaMIT system is provided in Ben-Akiva et al. (2001, 2002),

and in Appendix A. We focus here on the DynaMIT inputs and parameters that

must be calibrated.
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Demand model parameters

DynaMIT’s demand simulator is comprised of a route choice model and an OD esti-

mation and prediction model. Driver route choices are captured through a Path-Size

Logit model (Ramming, 2001):

P(i) =
eVi+lnPSi

∑
j∈P e

Vj+lnPSj
(4.1)

where P(i) is the probability of choosing path i, Vi is the systematic utility of alter-

native i, PSi is the size of path i, and P denotes the choice set (paths connecting the

relevant OD pair). The utility Vi for each path is a function of attributes such as the

travel time along the path. The coefficient of travel time is a calibration variable.

DynaMIT employs a sequential OD estimation module, based on transition and

measurement equations (see Equations 2.9 and 2.10). An input to this model is the

set of historical time-dependent OD flows (to be calibrated off-line), which will be

updated with the latest sensor count measurements as they become available. The

OD estimation and prediction algorithms are based on an autoregressive process that

captures (through the transition equation) spatial and temporal correlations between

the OD flows. We list below the key calibration parameters for the OD estimation

and prediction model:

• The historical OD flows, xHh .

• The variance-covariance matrix Vh associated with the indirect measurement

errors.

• The variance-covariance matrix Qh associated with the direct measurement

errors.

• The matrices fph of autoregressive factors.
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Supply model parameters

DynaMIT’s mesoscopic supply simulator captures traffic dynamics and models the

build-up and dissipation of queues and spillbacks. The links in the network are

subdivided into segments to capture changing section geometries. Each segment

contains a moving part (with vehicles moving at a certain speed), and a queuing

part. The speeds of vehicles in the moving part are governed by macroscopic speed-

density relationships:

v = vmax

[

1 −

(

k − kmin

kjam

)β
]α

(4.2)

where v is the speed of the vehicle (in mph), vmax is the speed on the segment under

free-flow traffic conditions, k is the current segment density (in vehicles/mile/lane),

kmin is the minimum density beyond which free-flow conditions begin to break down,

kjam is the jam density, and α and β are segment-specific coefficients. In addition,

the speeds computed using Equation 4.2 are subject to a minimum speed vmin.

The movement of vehicles from one segment to the next is governed by capacity

calculations. The primary quantities of interest are the segment capacities which to-

gether with the available physical space on the downstream segments, determine the

ability of vehicles to progress downstream. A constraint on either capacity or space

would cause vehicles to queue. An important calibration step is therefore the com-

putation of segment capacities that are consistent with prevailing traffic conditions.

We list below the key calibration variables on the supply side:

• Segment speed-density parameters (vmax, kmin, kjam, β, α and vmin).

• Segment capacities on freeway and arterial segments.

• Capacity factors that determine capacities on segments affected by incidents.

4.2.3 Network description and calibration variables

The prototypical network (Figure 4-1) was a directed graph consisting of 8 nodes and

8 links. Each link possessed a uniform cross-section along its length, and was divided
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into 3 segments in order to better represent the evolution of congestion. Demand

was assumed to flow between all three feasible OD pairs (connecting the three origin

nodes O1, O2 and O3 to the destination node D). Travelers making trips between O1

and D choose between two alternative paths, while the remaining two OD pairs were

each captive to a single path. Link geometries reflect varying numbers of lanes, as

indicated in the figure.

sensor

O1

O3

O2

D
d1

d3

d5

d4

d2

incident

Figure 4-1: Prototypical Network

The simulation period of interest spanned 50 minutes (6:50 – 7:40 AM), which

was further divided into 5-minute intervals (so that the number of intervals H = 10).

An incident was assumed to impact the available capacity on the network for a period

of 10 minutes, beginning at 7:05 AM. The location of the incident is indicated in the

figure through a filled circle. One out of two available lanes at the incident location

was assumed to be blocked during the incident. Drivers traveling between O1 and

D who chose to travel through the affected link were likely to experience incident

delays, depending on their departure times and prevailing traffic conditions. A total

of 5 link-wide traffic sensors (indicated by boxes, and labeled d1 through d5) provided
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count and speed observations.

The calibration variables for this case study included both demand and supply

parameters. The demand variables consisted of time-dependent flows for each of the

three OD pairs, and a travel time coefficient in the route choice model. OD profiles

were discretized into 5-minute time slices, yielding [50 min]

[5 min]
× [3 OD pairs] = 30 flow

variables. A total of 31 demand variables (including the route choice coefficient) were

thus estimated.

The supply variables consisted of segment exit capacities, segment speed-density

relationship parameters, and a capacity reduction factor during the incident. All

supply parameters were assumed to remain constant throughout the 50-minute period.

The 24 segments were classified into three groups based on the number of lanes in their

cross-sections, and a single speed-density function (with 6 parameters) was estimated

for each group. Consistent with the above assumptions, a total of [24 + (6 × 3) + 1]

= 43 supply variables were estimated.

4.3 Base case analysis

A base case was defined with the primary objective of demonstrating the feasibility

and validity of the methodology developed in Chapter 3. Four MITSIM factors (des-

ignated by the letters A, B, C and D, and representing both demand- and supply-side

effects) were selected, and their values chosen to reflect typical behaviors and pro-

cesses observed in prior studies.

The chosen factors and their settings are illustrated in Table 4.1. Factor A rep-

resents a demand-side effect that captures the sensitivity of drivers’ route choice

decisions to the perceived travel times along alternative routes. The factor controls

the travel time coefficient in the route choice model. A value of -0.03/minute was

selected based on earlier findings (see, for example, Ramming (2001)).

Factor B specifies the spatial distribution of demand between the three OD pairs.

The time-dependent profiles of the main OD flow (between nodes O1 and D) and the

two side flows were selected so as to generate visible congestion due to the incident,
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A B C D
Route Choice OD: Spatial OD: Temporal Desired Speed

-0.03 /min balanced low-variance typical

Table 4.1: Base Case Factor Settings

while simultaneously capturing merging and weaving phenomena between the main

flow and each of the minor flows (Figure 4-2).
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Figure 4-2: Base Case: Historical OD Flow Profiles

Factor B may be perceived as the historical demand between each OD pair. The

actual demand levels realized on a particular day are thus drawn from a distribution

with mean flows equal to the historical values. The spread of this distribution is

controlled through factor C, which represents the temporal (within-day) variability

in demand. The base setting for factor C allowed variations of up to 25% on either

side of the mean. It was assumed that the corresponding noise was independent across

time intervals.

Factor D corresponds to the distribution of desired speeds across the population of

drivers. This factor represents a supply-side effect that impacts vehicle interactions,

weaving behavior, traffic dynamics and network capacities in MITSIM. A typical

setting for this factor was chosen from prior calibration exercises based on real data.
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The dataset for the base case was simulated using MITSIM. Input files consistent

with the chosen factor and incident settings were created. Sensor count and speed data

from a single MITSIM run were recorded, representing a realization of the underlying

stochastic demand and supply processes.

4.3.1 Estimators

Five estimators were studied under the base case:

• Estimator Ref: The supply-side variables were calibrated using existing ap-

proaches, while the demand-side parameters (the OD flows and route choice

coefficient) were constrained to their known “true” values. Ref thus represents

the best fit that can be obtained using current methods, and serves as the

reference for evaluating the performance of our proposed estimators. Further,

the supply parameter estimates from Ref serve as the starting point for the

subsequent estimators.

Segment capacities for Ref were estimated based on the number of constituent

lanes and intersection signal timing plans, using the recommendations of the

Highway Capacity Manual (TRB, 2000). The residual incident capacity was

approximated through knowledge of the number of affected lanes (and the total

number of lanes), based on the Highway Capacity Manual. Speed-density func-

tions for each of the three segment types were identified by independently fitting

sensor speed-density data. The data from all sensors belonging to a particular

group were pooled for this purpose.

• Estimator S(c): The unknown parameter vector was restricted to the 43 supply

variables, while keeping the demand variables fixed at their known true values

(an approach similar to Ref). However, our solution approach was applied to

identify the optimal supply parameters at the network level. While the dataset

contained both count and speed observations, only the count measurements

were used to solve the optimization problem.
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• Estimator S(cs): The vector of unknown parameters was identical to S(c).

However, both count and speed data were used to refine the supply parameters

obtained in Ref. S(cs) may be viewed as estimator S(c) with added information.

• Estimator SD(c): The set of variables was augmented by treating the 31 de-

mand parameters as additional unknowns, resulting in the estimation of [43 +

31] = 74 parameters. The number of degrees of freedom in the optimization

problem were thus increased. Only count data were included in the objective

function.

• Estimator SD(cs): The entire set of variables (encompassing both demand and

supply models, as in SD(c)) was estimated, using count and speed data. This

estimator represents the best possible situation, that utilizes all the available

information.

4.3.2 Measures of performance

The root mean square error (RMSE) and root mean square normalized error (RMSN)

statistics were used to measure the performance of the estimators in replicating the

observed data:

RMSE =

√

∑S

i=1(yi − ŷi)2

S
(4.3)

RMSN =

√

S
∑S

i=1(yi − ŷi)2

∑S

i=1 yi
(4.4)

where yi is the ith observed measurement (or “true” parameter value), and ŷi the

corresponding simulated (or estimated) quantity. The measure of fit to observed

sensor counts and speeds were designated as RMSEc and RMSEs respectively. The

corresponding normalized statistics were designated as RMSNc and RMSNs. In each

case, the value of S in Equation 4.3 was the number of observations used in calculating

the statistic.

RMSEd and RMSNd were employed to evaluate the fit of the estimated OD flows
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against the true flows for the two SD estimators (where OD flows were part of the

unknown parameter vector). The route choice coefficient was compared against its

“true” value. The stability of the supply parameter estimates was studied to ensure

that the proposed approach yielded reasonable speed-density functions and capacities.

Statistics for the Ref estimator were computed for comparison purposes. The fit

to counts was represented by RMSEc = 17.19 (RMSNc = 0.0943), while the fit to

speed data evaluated to RMSEs = 3.85 (RMSNs = 0.0943).

4.3.3 Numerical results using Box-SNOBFIT

Tables 4.2 and 4.3 summarize the RMSE and RMSN statistics for the base case.

Numbers in parentheses denote percent improvement over Ref. It should be noted

that the percent improvements for RMSN statistics are identical to those for the

RMSE numbers, since RMSN represents a simple normalization of RMSE using the

mean of the measurement of interest (refer Equations 4.3 and 4.4).

The statistics for the base case indicate that the proposed methodology improves

DynaMIT’s ability to replicate the field data. Indeed, the RMSEc and RMSEs values

for all four S and SD estimators are consistently lower than those for Ref. The

enhanced performance is further highlighted by the significantly better fit to speeds

and OD flows obtained when sensor speed data are incorporated into the objective

function. The motivation for network-wide calibration is thus reinforced, especially

for the supply variables that are fit only locally at sensor locations in Ref.

Calibration Data
Estimator Counts (c) Counts + Speeds (cs)

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

S 15.89 (7.6) 2.86 (25.7) - 16.86 (1.9) 2.29 (40.5) -
SD 15.87 (7.7) 3.02 (21.6) 2.50 16.69 (2.9) 2.24 (41.8) 2.11

Table 4.2: Base Case RMSE Statistics: Box-SNOBFIT

Tables 4.2 and 4.3 further confirm expected trends across the five estimators.

Adding degrees of freedom, for example, results in better fit to counts. A similar

improvement in the fit to speeds is observed across S(cs) and SD(cs). Moreover, the

117



Calibration Data
Estimator Counts (c) Counts + Speeds (cs)

RMSNc RMSNs RMSNd RMSNc RMSNs RMSNd

S 0.0872 0.0700 - 0.0925 0.0561 -
SD 0.0871 0.0740 0.0214 0.0916 0.0549 0.0183

Table 4.3: Base Case RMSN Statistics: Box-SNOBFIT

introduction of constraints (in the form of speed observations, in the S(cs) and SD(cs)

estimators) helps fit the speeds better at the expense of the fit to counts. While the

loss of fit to counts is not large, the reduction in RMSEd indicates that better OD

flows have been identified through the information contained in speed data. The

RMSEc value is still below Ref levels, underscoring the overall advantages of the new

approach.

The estimated demand variables in the two SD estimators compare favorably

with the assumed “true” values, as illustrated by the low error in fitting OD flows

as well as the visual comparisons in Figures 4-3 and 4-4. In addition, simultaneous

OD estimation using the traditional assignment matrix formulation1 and Ref supply

parameters resulted in RMSNd = 0.0335, underlining the ability of the proposed

methodology to more accurately capture demand patterns. The travel time coefficient

of the route choice model was estimated as -0.0291/minute and -0.0301/minute for

SD(c) and SD(cs) respectively, representing errors of less than 3% with respect to the

true value of -0.03/minute.

The speed-density parameters estimated for each of the three segment groups are

presented in Tables 4.4 through 4.62. It is verified that the parameter estimates are

stable across all five estimators, and also for all three segment groups.

The calibrated DynaMIT accurately captured the impact of the incident that dis-

abled one of two lanes at the affected location. The estimated segment capacity during

the incident was found to be less than half of the original capacity, consistent with

1Note that the popular sequential OD estimation approach fails in this example, since the travel
time between any origin node and sensor is greater than the departure interval width of five minutes.
Thus few, if any, of the vehicles are counted by sensors during their respective departure intervals.

2vmax and vmin are speed estimates measured in miles/hour. kjam and kmin represent densities
in vehicles/lane-mile. α and β are parameters.
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Figure 4-3: Fit to OD Flows (using only counts)
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Figure 4-4: Fit to OD Flows (using counts and speeds)
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Ref S(c) S(cs) SD(c) SD(cs)

vmax 51.75 49.90 46.85 49.86 47.74
vmin 10.00 10.95 8.46 9.61 9.63
kjam 527.5 501.0 513.3 441.8 507.2
kmin 6.8 3.3 9.5 5.1 6.3
α 0.2871 0.2532 0.2656 0.2761 0.2793
β 0.2464 0.2720 0.2804 0.2717 0.2713

Table 4.4: Speed-Density Parameters: Group 1

Ref S(c) S(cs) SD(c) SD(cs)

vmax 52.06 49.92 51.86 48.92 50.23
vmin 10.00 11.36 11.20 10.52 7.50
kjam 500.4 472.0 467.0 476.4 497.1
kmin 4.5 5.7 1.8 3.1 2.5
α 0.3779 0.3687 0.3423 0.3413 0.3711
β 0.2803 0.2786 0.2062 0.3215 0.2683

Table 4.5: Speed-Density Parameters: Group 2

Ref S(c) S(cs) SD(c) SD(cs)

vmax 52.06 51.36 47.74 48.99 51.15
vmin 10.00 9.47 12.40 11.89 8.03
kjam 500.4 461.0 473.7 459.0 446.4
kmin 4.5 5.2 4.6 3.6 5.2
α 0.3779 0.3448 0.3042 0.3372 0.3516
β 0.2803 0.3158 0.3656 0.3058 0.3049

Table 4.6: Speed-Density Parameters: Group 3
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the additional loss of throughput due to the forced merging of vehicles (in MITSIM)

immediately upstream of the affected lane.

4.4 Sensitivity analysis

A detailed sensitivity analysis was adopted in order to systematically study the per-

formance of the solution methods developed in Chapter 3 under various demand and

supply situations. Four factors were identified for this purpose. The chosen factors,

their levels and the selected experimental runs are discussed next.

4.4.1 Factor levels and runs

The four factors A, B, C and D are each represented by three levels, denoted by the

integers -1, 0 and +1. Further, we reference a factor and one of it’s levels by combining

the factor’s letter code and the level’s integer code. Thus, A(0) represents the level-

zero setting for factor A. Other factors and their levels are similarly referenced.

Table 4.7 summarizes the four factors and their settings. Factor A captures the

sensitivity of drivers’ pre-trip route choice decisions to expected network travel times.

The levels of this factor correspond to a range of possible behavioral patterns, rep-

resented through the travel time coefficient in the route choice model. A(0) = -

0.03/minute represents typical parameter values estimated in earlier route choice

studies (see, for example, Ramming (2001)). A(+1)=-0.15/minute captures nearly

deterministic behavior, with drivers strongly favoring the path with minimum delays.

Such a hypothesis tends to magnify even small differences in travel times between

the different paths. A(-1) = -0.01/minute captures the other extreme, when drivers

display more “balanced” behavior by being indifferent to significant travel time dif-

ferences among the available alternative paths.

Factor B controls the the spatial distribution of network demand, through the

relative magnitudes of the main and side OD flows. B(-1) combines a low main flow

(between O1 and D) with high side flows. Under this setting, a small number of

vehicles pass through the incident (and are impacted by the associated delays), while
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Factor Levels
-1 0 +1

Route Choice (A) -0.01 /min -0.03 /min -0.15 /min
(time-insensitive) (deterministic)

OD: spatial (B) main flow: lower balanced main flow: higher
(historical) side flows: higher side flows: lower

OD: temporal (C) hist. flow hist. flow + hist. flow +
(no variance) low-variance error high-variance error

Desired Speed (D) slower typical faster

Table 4.7: Factors and Levels

experiencing more interactions with the side flows originating at nodes O2 and O3.

B(+1) increases the main flow (and the impact of the incident) while reducing the

merging interactions from the two minor OD pairs. B(0) provides an intermediate

setting.

Factor B also specifies the historical (or average) dynamic demand profile that

generates the transportation demand underlying the network. Actual demands are

assumed to be instances of a stochastic process that adds a uniformly distributed error

term to the historical flows. The variance of this error term is the focus of factor C.

Three variance levels are studied. C(-1) corresponds to a zero-variance situation,

when the actual demand profile on a given day is identical to the historical profile

specified through factor B. C(0) and C(+1) introduce some temporal noise through

low- and high-variance perturbations to the historical flows.

Factor D represents supply-side effects that impact vehicle speeds and network

capacities. We focus on individual drivers’ desired speeds, which play a role in deter-

mining their actual speeds as well as their interactions with surrounding vehicles. The

levels for this factor were obtained by controlling the distribution of desired speeds

in MITSIMLab. D(-1), D(0) and D(+1) capture increasing mean desired speeds.

Table 4.8 summarizes the nine runs constituting the analysis. Run 1 represents

“typical” settings that may be expected in reality, and is identical to the base case

described earlier. Each of the subsequent runs are obtained by varying one factor at

a time to its two extreme settings of -1 and +1.

The dataset for each run in the sensitivity analysis was simulated using the pro-
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Run A B C D

1 0 0 0 0
2 -1 0 0 0
3 +1 0 0 0
4 0 -1 0 0
5 0 +1 0 0
6 0 0 -1 0
7 0 0 +1 0
8 0 0 0 -1
9 0 0 0 +1

Table 4.8: Sensitivity Analysis Runs

cedure adopted for the base case. A separate set of input files was created for each

run, consistent with the individual factor settings outlined in Table 4.8.

4.4.2 Numerical results

The RMSE statistics reveal that the calibrated DynaMIT simulator accurately repli-

cates the observed count and speed data under a variety of demand and supply condi-

tions. Detailed tables documenting the numerical results are presented in Appendix B

and Figures 4-5 through 4-9 summarize the RMSE statistics.

Figure 4-5 presents the fit to counts for scenarios S and SD, when only the counts

subset of the sensor data is used for calibration. Scenario S consistently fits the counts

better than the reference case. As expected, the SD scenario further improves the fit,

owing to the increase in degrees of freedom arising from estimating OD flows and the

route choice coefficient.

A comparison of the count RMSE statistic identifies runs 1 (base case), 3 (de-

terministic route choice) and 8 (slower-moving vehicles) as particularly complicated,

with fit that is worse than that of the remaining runs. Among these, the base case is

expected to be challenging (the corresponding factor settings having been chosen to

be representative of actual conditions experienced on real networks). Deterministic

route choice (run 3) results in drivers always choosing the shortest route to their des-

tinations. This can increase congestion and add to the complexity, as the side flows

will cause a greater impact when merging with the main flows. Lower desired speeds
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(run 8) imply that drivers stay on the network longer than in the base case. The

potential for interactions with other drivers increases, and delays due to the incident

impact downstream sensors more than in the base case (owing to the longer travel

times).

The fit to counts when speed observations are added to the objective function, is

presented in Figure 4-6. Scenario SD again shows more accurate replications of the

observed counts. However, the reference case is found to fit the counts better in certain

cases (runs 2 and 5). This may be explained by viewing the speed measurements as

added constraints to the counts-only situation, which could narrow the set of feasible

solutions. The benefit of adding speeds to the dataset is seen shortly.

Figure 4-7 outlines the fit to observed speeds, when only the count data are used

for estimation. Such a comparison contains limited information about the estimator’s

ability to fit observed data, since the algorithm does not use the speeds to refine the

parameter estimates. However, the figure confirms that the counts are not over-fit

at the expense of the speeds. Rather, the fit to speeds often improves from the base

case (though there is no systematic pattern when it does). These improvements may

be attributed to small adjustments to the supply parameters based on the traffic

information contained in the counts (supply parameters control the speed-density

function, which sets vehicle speeds according to prevailing traffic densities).

Figure 4-8 provides a more meaningful illustration of the impact of speed data.

As expected, estimator S provides reductions in the speed RMSE (when compared to

the reference case), with SD further improving the speed statistics. The significantly

better fit to speeds comes at the expense of the count statistics, though the loss in

fit to counts (see Figure 4-6) is minimal.

It is observed that the improvement over S due to estimating demand parameters

in addition to supply parameters (SD) is often minimal. This can be ascribed to the

use of the “true” OD flows while estimating S (and in Ref). Further, the small number

of OD pairs in the synthetic network limits the potential impact of demand calibration

(the role of demand is illustrated in the next chapter, using a real network).

A key advantage of this evaluation methodology is the availability of “true” pa-
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Figure 4-5: Fit to Counts Using Only Counts
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Figure 4-6: Fit to Counts Using Counts and Speeds
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Figure 4-7: Fit to Speeds Using Only Counts

Figure 4-8: Fit to Speeds Using Counts and Speeds
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rameter values, which are typically lacking in real datasets. Figure 4-9 focuses on

the ability of our estimators to replicate the underlying “true” OD flows (in sce-

nario SD). The RMSE statistic was computed using all three OD pairs, across the

ten intervals. The figure indicates good fit to known demand profiles, and indicates

that the inclusion of speed information systematically improves the quality of the OD

flows. Runs 7 (high interval-over-interval variability) and 8 (slower drivers) display

relatively poorer statistics, as may be expected: greater fluctuations across intervals

create a harder estimation problem, since the temporal transition of OD flows is not

smooth. The algorithm must therefore expend additional effort in each interval, while

simultaneously accounting for the vehicle contributions from prior departure inter-

vals. Slower drivers remain on the network longer, and impact sensor counts at more

sensor locations and time intervals.

4.4.3 Conclusions and further analysis

It can be concluded, from the discussion in the previous section, that each factor

contains one level setting that results in a challenge for calibration. These cases

correspond to A(+1), B(0), C(+1) and D(-1), corresponding to deterministic route

choice behavior, “balanced” spatial demand distribution, high-variance temporal fluc-

tuations and slower drivers. Similarly, the situations of least resistance are A(-1), B(-

1), C(-1) and D(+1), corresponding to time-insensitive route choice decisions, lower

main flows, no temporal variability and faster drivers. The extreme (“worst” and

“best”) levels were combined to form two additional runs (Table 4.9), that capture

some of the interactions between the factors. These combinations, however, have

been selected with an overall eye on several fitness measures (counts, speeds and OD

flows). Focusing on a single quantity (such as fit to true OD flows) can yield different

“best” and “worst” cases. It is also possible that the factors interact in ways such

that their individual effects are either enhanced or cancelled. Other combinations of

factor levels may therefore correspond to the true best and worst cases, though their

identification is not within the scope of this research.

The numerical results for runs 1, 10 and 11 are compared in Figures 4-10 to 4-14
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Run A B C D

10 +1 0 +1 -1
11 -1 -1 -1 +1

Table 4.9: Additional Experimental Runs

(detailed results are provided in Appendix B). It is observed that the error statistics

for runs 10 and 11 are generally higher than before, verifying that they represent two

sets of factor levels that yield significantly more challenging estimation situations. In

particular, the individual “best” factor settings (in run 11) seem to cancel out, with

their interactions resulting in a more difficult calibration situation. The numerical

results, however, display trends similar to those in the previous runs: the addition

of degrees of freedom causes better fit, while the inclusion of speed information leads

to a slight deterioration in the fit to counts. The significance of speed measurements

in helping to capture supply-side dynamics, congestion evolution and the underlying

OD flows is again emphasized.

4.5 Base case numerical results with SPSA

Performance statistics when adopting the SPSA algorithm for the four base-case esti-

mators are summarized in Tables 4.10 and 4.11. A comparison with the corresponding

Box-SNOBFIT results in Tables 4.2 and 4.3 illustrates the accuracy of the new solu-

tion algorithm, while revealing a consistent pattern: the parameters estimated using

Box-SNOBFIT replicate the observed data marginally better than those obtained us-

ing SPSA. Intuitively, this observation may be explained based on knowledge of the

mechanisms of the two algorithms. SPSA adopts a search-direction approach that

must climb hills to explore global minima. While there are no explicit constraints that

preclude SPSA from finding a global optimum, its search path generally follows the

gradient (approximation) at each step. A complete exploration of the search space

may therefore not occur. SNOBFIT, however, maintains a set of “good” parameter

vectors at all times, allowing the method to potentially exploit the “spread” of this

population to search more globally for a solution.
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Figure 4-9: Fit to OD Flows: Runs 1 (Base) to 9
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Figure 4-10: Fit to Counts Using Only Counts

129



1 (Base) 10 11
0

5

10

15

20

25

30

C
ou

nt
 R

M
S

E
 (

ve
h/

5 
m

in
)

Run

 

 

Reference

S (cs)

SD (cs)

Figure 4-11: Fit to Counts Using Counts and Speeds
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Figure 4-12: Fit to Speeds Using Only Counts
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Figure 4-13: Fit to Speeds Using Counts and Speeds
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Figure 4-14: Fit to OD Flows
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Calibration Data
Scenario Counts (c) Counts + Speeds (cs)

RMSEc RMSEs RMSEc RMSEs

S 15.93 (7.3) 3.13 (18.7) 16.93 (1.5) 2.52 (34.5)
SD 15.90 (7.5) 3.17 (17.7) 16.76 (2.5) 2.48 (35.6)

Table 4.10: Base Case RMSE Statistics: SPSA

Calibration Data
Scenario Counts (c) Counts + Speeds (cs)

RMSNc RMSNs RMSNc RMSNs

S 0.0874 0.0766 0.0929 0.0617
SD 0.0872 0.0776 0.0920 0.0607

Table 4.11: Base Case RMSN Statistics: SPSA

Further graphical comparisons between the two sets of estimated parameters con-

firm that the final solutions reached by the two approaches are comparable, as indi-

cated by the tightness of the points about the 45-degree line. Figures 4-15 and 4-16

show the proximity of the two sets of OD flows (for estimators SD(c) and SD(cs)).

Figure 4-17 is an example of SPSA’s ability to identify stable supply model param-

eters that are close to their Box-SNOBFIT counterparts.

4.5.1 Scalability: Box-SNOBFIT vs. SPSA

The previous section discussed the quality of the solutions obtained using the Box-

SNOBFIT and SPSA algorithms. A comparison of the computational burden of the

two methods is thus in order. For this discussion, we separate the contributions

of different types of computational “cost” to the overall running time needed for

convergence. The total running time τ may be represented as:

τ = t1 + t2 (4.5)

where t1 is the total time spent in function evaluations, and t2 is the additional time

expended in the optimization steps. Let msnobfit and mspsa denote the number of

iterations required for the two algorithms to converge. The time occupied by function
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Figure 4-15: SD(c): Box-SNOBFIT vs. SPSA
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Figure 4-16: SD(cs): Box-SNOBFIT vs. SPSA
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Figure 4-17: SD(c): Box-SNOBFIT vs. SPSA

evaluations may thus be written as:

tsnobfit1 = msnobfit(K + 6)(t) (4.6)

t
spsa
1 = mspsa(grad reps)(2t) (4.7)

Here, K denotes the number of variables we wish to estimate. The constant t repre-

sents the time for a single function evaluation. It should be noted that a minimum

of (K + 6) points must be maintained by SNOBFIT at all times. Since each itera-

tion involves the evaluation of the function at all points in the set, tsnobfit1 represents

the minimum function evaluation time. It should be noted that the time required

for a single SPSA gradient calculation is the equivalent of two function evaluations.

The term grad reps enters the analysis when more than one gradient replication is

averaged during each iteration.

The second running time component is related to how each algorithm utilizes the

generated function values. Box-SNOBFIT relies on a series of quadratic local fits
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during each iteration. Such a step would depend non-linearly on the problem size K,

so that

tsnobfit2 = msnobfit K
a (4.8)

with a > 1. On the other hand, SPSA’s computational requirement per iteration is

limited to the calculation of gradient replications and a one-step parameter update,

which takes constant time b:

t
spsa
2 = mspsa(b) (4.9)

Generally, it is expected that msnobfit ¿ mspsa. For small problems, such as the

one described in this case study, tsnobfit1 and t
spsa
1 are comparable: the significant time

spent by SNOBFIT in evaluating functions in each iteration is offset by the far fewer

number of iterations to achieve convergence. Also, tsnobfit2 is negligible for small K.

τsnobfit and τspsa are therefore of the same order of magnitude, as borne out by the

empirical evidence: Figure 4-18 tracks the value of the objective function as a function

of the number of iterations. For larger problems on real networks, both tsnobfit1 and

tsnobfit2 would grow quickly with K, while t
spsa
1 and t

spsa
2 would remain parsimonious.

SPSA is thus expected to score heavily over Box-SNOBFIT in terms of scalability.

More empirical evidence confirming this hypothesis is provided in Chapter 5, using

the Los Angeles dataset.

4.5.2 Conclusions

Analysis of the base case validates the appropriateness and feasibility of the proposed

calibration estimators under the assumed network setting. The Box-SNOBFIT algo-

rithm provides more accurate solutions closer to the global optimum, but preliminary

analyses raise questions about its scalability to large networks. The SPSA algorithm

exhibits very attractive computational performance, and yields estimates that are

very close to the Box-SNOBFIT results.
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Figure 4-18: Computational Performance of SPSA and Box-SNOBFIT Algorithms

4.6 Synthesis of results and contributions

In this chapter, we evaluated our proposed calibration approach through a systematic

sensitivity analysis. A synthetic network and simulated data were used to study the

performance of four estimators under varying demand and supply, using the DynaMIT

traffic simulator as a test-bed. A main-effects plan based on four factors (at three

levels apiece) was implemented. The results were used to identify and test two ad-

ditional runs representing potentially challenging interaction effects. The calibrated

DynaMIT was found to accurately replicate the sensor count and speed observations,

and the estimators successfully captured the underlying demand and supply parame-

ters. A global search method and a close approximation with superior computational

performance were evaluated. Chapter 5 describes further experiments demonstrating

our methodology on a large and actual transportation network.

The synthetic case study presented in this chapter facilitated the evaluation of

several key dimensions of the off-line DTA model calibration problem. It served as an
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operational implementation of the methodology outlined in Chapter 3, thus demon-

strating the feasibility of our proposed model and solution approach. The simultane-

ous estimation of demand and supply parameters across multiple time intervals was

also documented.

An important contribution of this evaluation was the illustration of our estima-

tor’s ability to replicate the traffic patterns and behavior mechanisms that generate

surveillance measurements. A range of demand- and supply-side factors were var-

ied systematically to test the effectiveness of the estimator under both typical and

extreme traveler decision processes, network demand patterns and driver behavior

hypotheses. The accuracy of the fit to observed or known quantities, together with

the stability of the unobserved parameters, prove the validity and robustness of the

estimator.

The results in this chapter demonstrate the applicability of black-box simulation

optimization techniques such as the Box-Complex, SNOBFIT and SPSA algorithms,

to complex transportation network problems. The experiences from this case study

have validated the parameter recapture capability of the approach, as well as its

practical computational overhead. A demonstration of scalability to large networks

is undertaken in Chapter 5.
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5.1 Objectives

Chapter 4 described, through a detailed sensitivity analysis, an evaluation of the

robustness of the calibration methodology developed in this thesis. We concluded

that the new estimators have the ability to replicate demand and supply parameters

underlying several synthetic sensor data sets. A key property of the synthetic network,

however, was the a priori knowledge of the true OD flows and route choice parameter.

Such data are generally not available for real networks. Further, the size of the

problem allowed for extensive experimentation to fine-tune the various algorithms for

rapid convergence.

This chapter documents the second application of the calibration methodology, to

a network in the South Park region of Los Angeles, CA, with the following objectives:

• Demonstrate the feasibility of the estimator on a real network, with unobserved

demand parameters1.

• Demonstrate the scalability of the solution approach on a complex network with

many route choice possibilities.

• Illustrate the advantages of approximation-free simultaneous demand-supply

estimation (without the traditional assignment matrix).

We describe the Los Angeles dataset in some detail, to provide context to this

case study. This includes an analysis of the archived sensor data collected by a real

surveillance system, and a discussion of the extent of variability within the same.

Numerical experiments are outlined, and results comparing the new approach to the

reference case are presented. The tests include a validation exercise illustrating the

benefits of the new off-line methodology in a real-time application.

1Supply parameters remain unobserved, as they were in Chapter 4.
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5.2 The Los Angeles dataset

In this section the network, surveillance data and a log of special events in the study

area are described.

5.2.1 Network description

The Los Angeles network is for the South Park area just south of downtown Los

Angeles. This area includes both the Staples Center and the Los Angeles Convention

Center, and so is heavily affected by special events. Specifically, the area generates a

minimum of 200 events per year ranging from the Democratic National Convention

and the Automobile Show, to NBA Lakers and NHL Kings games. Traffic patterns

vary significantly with different types of events. Recurring commuter traffic along

the Figueroa Corridor, Olympic Boulevard and other one-way streets in the financial

district also pose a challenge to traffic management.

Figure 5-1: The Los Angeles Network

The region is crossed by two major freeways: the Harbor Freeway (I-110) and the

Santa Monica Freeway (I-10). Traffic along the freeways is very heavy throughout the

day, and on weekends. When severe and prolonged traffic congestion develops along
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these freeways, diversions to parallel surface streets frequently occur. The traffic

getting onto the freeways may also be diverted to other ramps connecting to several

major arterials marking the border of the study network (including Hoover Street on

the west, Adams Blvd towards the south, Olympic Blvd due north and Grand Avenue

on the east).

The South Park area has an Advanced Traffic Control System (ATCS) with 109

traffic signals under the control of this new PC-based traffic system. An extensive

video surveillance system and variable message signs are also available to confirm

incidents and provide information to motorists.

The computer representation of the network consisted of 243 nodes connected by

606 directed links. The links were further divided into a total of 740 segments to

capture variations in section geometry and traffic dynamics along the length of each

link.

5.2.2 Surveillance data

The data for this case study was obtained from a set of freeway and arterial loop

detectors that reported time-dependent vehicle counts and detector occupancies for

the month of September 2004. Archived traffic records and location information for

a total of 203 detectors were obtained through two sources. Freeway and ramp data

were extracted from the on-line PeMS (UC Berkeley and Caltrans, 2005) database.

Arterial sensor data were provided by the Los Angeles Department of Transportation

(LADoT). Both sources contained traffic data by lane. Detector occupancies were

converted into density estimates using standard assumptions regarding average vehicle

and detector lengths. Speeds were obtained from counts and densities, using the

fundamental relationship:

q = k v

where q is the flow rate (vehicles/hour); k is the traffic density (vehicles/lane-mile);

v is the space mean speed (miles/hour).

In addition to loop detector data, the surveillance information included a record
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of incidents that were reported on the network. While the records provided details

such as the incident’s end time, location and general description, they did not contain

any indicators of the start time.

Since the incident start time and duration are key exogenous inputs to the DTA

model, the count data were analyzed to identify abnormalities that could potentially

be ascribed to specific records in the incident log. No such deviations were observed.

While the level of sensor coverage does not preclude major incidents on links without

sensors, the probability of such an event in a relatively small section of the city may

well be low. Minor incidents that occur when flows are below the link capacities

(adjusted to account for the reduction in throughput due to the incident) are not

expected to affect the calibration process, and may be left out of the dataset.

5.2.3 Special events and weather logs

Logs of weather conditions and scheduled special events in and around the study

area were reviewed to identify days expected to have significantly modified travel

demand and/or driver behavior patterns. According to the Weather Underground

website (The Weather Underground, Inc., 2004), there was no precipitation in the Los

Angeles area during the entire month of September 2004 (except for minor showers

on the 14th). Temperatures also remained uniform and high throughout the month.

A list of weekday holidays and special events at the Convention Center was re-

viewed to determine if planned and scheduled events might be a factor in determining

demand patterns. Labor Day counts were found to be markedly different from those

measured on other weekdays in the month. This is to be expected, as the day is

marked by a holiday with a high fraction of shopping trips.

5.2.4 The historical database

A total of one month (September 2004) of freeway and arterial data was analyzed,

to ascertain its sufficiency for the calibration task. Figures 5-2 and 5-3 illustrate

the temporal distribution of sensor counts at two representative counting locations
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on freeway sections, for different days of the week. Figure 5-4 depicts a similar

analysis for a sample arterial sensor. The days were randomly selected from groups

of Mondays, Tuesdays, etc spanning the entire month. It was observed that 5:15-8:00

AM is the most challenging time period from the calibration view-point, as it includes

a sharp (almost linear) build-up of commuter trips over a short duration, and covers

the AM peak period.

Sensor count profiles were compared by time of day and day of the week to help in

the classification of data into day types. Weekdays and weekends displayed markedly

different traffic patterns, with Saturdays and Sundays also significantly different from

each other. Weekdays exhibited similar build-up and dissipation of congestion, with

no clear day-of-the-week effects. The available data was thus classified into three

groups: weekdays, Saturdays and Sundays. The application of the methodology

developed in this thesis is demonstrated for weekdays.

5.3 Application

5.3.1 Reference case

A detailed presentation of the reference case (summarized in Section 2.5) applied to

the Los Angeles dataset is available in Gupta (2005). The work represents the best

current methods applied to off-line DTA system calibration, with the following salient

features:

• Segment capacities (under normal conditions and with incidents) are approxi-

mately determined according to sensor flow data, the number of freeway lanes,

arterial signal timing plans and the recommendations of the Highway Capacity

Manual.

• Segments are classified according to appropriate physical attributes (facility

type, number of lanes, etc.). Speed-density functions for each segment type are

estimated through local regressions between sensor speed and density (occu-

pancy) measurements.
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Figure 5-2: Freeway Flows by Day of Week (Sensor ID 764037)
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Figure 5-3: Freeway Flows by Day of Week (Sensor ID 718166)
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Figure 5-4: Arterial Flows by Day of Week

• The supply parameters (capacities and speed-density functions) are held con-

stant once they are estimated through the steps described above.

• Time-varying OD flows are estimated with a sequential approach using only sen-

sor count data. The restriction on the type of data stems from the use of a linear

assignment matrix mapping between OD flows and link counts. Corresponding

mappings for speed or density measurements are generally intractable.

• The route choice parameter is estimated through a manual line search.

Gupta (2005) describes the application of the above reference methodology to

create a historical database of demand and supply parameters for the entire day

(3:00 AM -midnight).

5.3.2 Network setup and parameters

The time period of 3:00 AM–9:00 AM was selected, so as to include the peak 5:15–

7:00 window and to provide extension into the demand plateau region. Given the low

levels of traffic in the early hours of the day, the period from 3:00-5:15 AM was also

146



used to warm up and load the network. The focus of the evaluation was thus limited

to 5:15-9:00 AM, which was divided into 15-minute time intervals.

A total of nOD = 1129 active OD pairs was identified by Gupta (2005) for the

Los Angeles network, by tracking the non-zero flows over several time intervals of

sequential OD estimation. The flow between every OD pair was estimated for each

time interval in the study period. The set of demand parameters was augmented by

a travel time coefficient used by DynaMIT’s route choice model.

Supply parameters (segment capacities and speed-density function parameters)

were also part of the calibration. Segments were grouped based on physical attributes

such as their position on the network, and the number of lanes in their sections.

Supply parameters were estimated for each group.

5.3.3 Estimators

Five estimators were employed in addition to the reference case. As in Chapter 4, S(c)

and SD(c) correspond to the count-based estimation of supply parameters only, and all

(supply+demand) parameters, respectively2. D1(c) corresponds to the estimation of

demand parameters alone (OD flows and route choice parameters), using Ref supply

parameters. In addition, estimator D2(c) was developed to identify only demand

parameters using the supply parameters from S(c) as given. D2(c) thus corresponds

to sequential demand-supply calibration, as in the reference case. Further, the two D

estimators will help verify the impact of the demand component on the outcome of the

calibration process. Since the OD flows typically outnumber the other parameters,

D would be expected to provide a more significant improvement in fit than S, over

the reference case3. D also includes the effect of simultaneous OD estimation across

intervals, and the direct use of simulator output without linear assignment matrix

approximations. The final estimator, SD(cs), corresponds to simultaneous demand-

supply calibration using both count and speed data.

2Demand parameters from Ref were used while estimating S(c).
3This effect was not prominent in the previous case study, due to the relatively small number of

demand parameters.
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While the combination of S(c) and D2(c) denotes a sequential approach, it should

be noted that the individual demand and supply calibration methods are those de-

veloped in this thesis, and differ markedly from those used in the reference case.

Critically, the new approach eliminates the dependence on an assignment matrix,

thus also providing the flexibility to incorporate any generic traffic measurement into

the calibration framework. Supply calibration is also performed at the network level,

rather than locally at individual sensor locations.

A comparison of D2(c) and SD(c) could provide information about the benefits (if

any) of simultaneous demand-supply calibration over the more traditional sequential

approach.

5.3.4 Measures of performance

The Root Mean Square Normalized (RMSN) error statistic defined in Chapter 4 was

used to document and analyze the performance of the various calibration estimators.

The fit to counts and speeds were computed across all sensors, as well as for freeway

and arterial sensors, to study the accuracy by type of roadway facility. Since true

OD flows, route choice and supply parameters are not available for real networks,

evaluations were limited to the fit to measured data.

Tests of the accuracy of the calibration were augmented with additional validation

analyses. Estimation and prediction tests through a rolling-horizon implementation

of the calibrated DynaMIT system were employed together with a new day of sensor

count measurements, in order to validate the real-time performance obtained as a

result of the above off-line calibration.

5.3.5 Solution algorithm

In Chapter 4, we analyzed the computational effort associated with the Box-SNOBFIT

and SPSA methods as a function of the number of unknowns to be estimated through

calibration. We concluded that the two algorithms estimate comparable parameters,

though SPSA does so at a fraction of the computational cost (measured by running
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time to convergence) for large-scale problems. The validity of this conclusion was

confirmed by initial tests on the Los Angeles dataset.

The test case involved 7 consecutive time intervals, resulting in K = 4629 vari-

ables. A solution to the problem was attempted with both algorithms, on a dedicated

Pentium 4 processor with 2 GB of physical memory and 750 GB of total hard disk ca-

pacity. The machine ran the Fedora Core 3 Linux operating system. The time taken

for a single function evaluation was approximately 1.5 minutes. While this number

may seem small, a simple calculation of per-iteration effort illustrates the significant

savings provided by SPSA.

A single iteration of SNOBFIT requires K+ 6 = 4635 function evaluations, while

the corresponding number for SPSA is 6 (corresponding to averaging across 3 gra-

dient replications). Each SNOBFIT iteration thus takes nearly 116 hours (about 5

days), while SPSA requires just 9 minutes! Empirical evidence strongly supported

the argument that SPSA can therefore make significant progress towards the opti-

mum solution (through many more iterations) well before SNOBFIT is even ready

to perform its first set of quadratic minimizations and recommend potential solution

points. SPSA thus represents a scalable solution approach (though not strictly a

global estimator), while Box-SNOBFIT may be used on smaller instances to locate

a more precise global optimum. The results in the remainder of this chapter were

obtained through the application of SPSA.

Most of the theoretical and empirical results involving stochastic approximation

(SA) techniques correspond to cases where the components of the parameter vector θ

have similar magnitudes. Under this condition, it generally suffices to adopt uniform

aj and cj for all components of θ. The DTA calibration problem obviously deviates

from this requirement. While the OD flows are definitely positive and often fairly

large, the supply parameters are more diverse in their range. The travel time coeffi-

cient in the route choice model is small in magnitude and possesses a negative sign. A

further complication is that the different parameter magnitudes depend on the units

used to measure them.

Spall (1998b) mentions the potential need for scaling in order to “regularize” the
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problem and ensure fast convergence. One method of achieving this objective is to

scale all parameters to similar magnitude (Gill et al., 1984), so that the usual SPSA

steps can be directly applied. Other approaches for parameter-specific scaling are

suggested in Spall (1998b).

5.4 Results

The empirical results are presented in two sections. The first section details the

performance of the various estimators in an off-line setting, employing the same sensor

dataset used by the reference estimator. Subsequently, a new weekday is selected,

and the calibrated DynaMIT system is operated in real-time fashion to validate the

improvement in the system’s ability to estimate and predict traffic conditions in a

real-time setting.

5.4.1 Calibration results

Table 5.1 contains the fit-to-counts statistics for the various estimators. As expected,

all four estimators provide significant levels of improvement over the reference case.

The importance of capturing network-wide effects in the calibration procedure

is underscored by a comparison of estimator S(c) against the reference case. The

significant improvement in fit to both counts and speeds is principally due to the

shift away from the local sensor-by-sensor supply calibration adopted in Ref.

Estimator Fit to Counts (RMSNc) Fit to Speeds (RMSNs)
Freeway Arterial Freeway Arterial

Ref 0.218 0.239 0.181 0.203
S (c) 0.149 0.178 0.119 0.131

D1 (c)† 0.114 0.143 0.118 0.125
D2 (c)‡ 0.103 0.126 0.107 0.112
SD (c) 0.090 0.113 0.088 0.093
SD (cs) 0.098 0.114 0.048 0.058

†Using Reference supply parameters
‡Using S (c) supply parameters

Table 5.1: Fit to Counts: RMSN (15-minute counts)
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The practical usefulness of estimator S extends beyond the above results. Realistic

sensor coverage levels mean that a large fraction of a network’s links are not instru-

mented. Currently, such links (or their constituent segments) are grouped together

with the closest segment type, and a common speed-density relationship is fitted.

Estimator S allows the estimation of a potentially greater number of relationships,

with the closest segment type only providing a priori parameter estimates that may

be revised for better network-wide fit. Further, in applications where only one of the

three basic traffic data (counts, speeds and densities) is available, the reference case

would be faced with insufficient information to derive speed-density relationships.

Estimator S may then be used to update supply parameters transferred from another

location.

D1(c) fits the counts better than S(c), thus highlighting the importance of demand

parameters for calibration. Since demand is the basic and primary driver of traffic

conditions on the network, this result is expected. From an optimization perspective,

the number of unknown OD flows is typically far larger than the supply parameter

set. Consequently, D provides many more degrees of freedom that allow the algorithm

more flexibility in finding a better solution. Interestingly, calibrating demand param-

eters using only count data also results in an improvement in speeds, potentially due

to better density estimates arising from demand patterns that are closer to the true

values.

Demand calibration through D1(c) also provides insight into the limitations of tra-

ditional OD estimation approaches. First, the linearizing assignment matrix trans-

formation of current methods approximates the complex relationship between OD

flows and sensor counts. Second, the often-adopted sequential approach to estimat-

ing OD flows across successive intervals may fail when trip times are much larger

than the width of the estimation interval. A majority of the vehicles departing on

half-hour-long trips, for example, could affect counts in future intervals, and may not

be observed during the fifteen-minute departure interval. The sequential approach

ignores the impact of this lag between a vehicle’s departure time and when it is

actually “measured” on the network. While the assumption may be reasonable on
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small networks with short trips, it is unrealistic on large and congested networks with

multi-interval trips. The interval width also plays a crucial role, with shorter intervals

accentuating the limitation. Estimator D removes both drawbacks, thus providing

more accurate and efficient OD flow estimates. The improvement in fit for D1(c) over

the reference case highlights this important contribution 4.

D2(c) completes one iteration of sequential demand-supply calibration, in which

the supply parameters obtained from S(c) are used while estimating only OD flows

and route choice model parameters through the D estimator. The results show better

fit than either S(c) or D1(c), indicating the benefits of joint model calibration. Fur-

ther iterations between the demand and supply estimators may be performed until

convergence criteria are satisfied. However, it must be remembered that each itera-

tion consists of two complex, large-scale optimization problems. Further, the rate of

convergence of this iterative method is difficult to establish, and the expected number

of iterations is consequently unavailable.

SD(c) represents the simultaneous equivalent of D2(c), with both demand and

supply parameters estimated together. This estimator thus does not involve demand-

supply iterations, and terminates after the solution of a single optimization problem.

This approach is preferable, as it provides both added efficiency (through simulta-

neous calibration) and rapid convergence. SD(c) improves upon D2(c), though the

reduction in RMSN is relatively small. It should however be preferred in practice,

owing to the advantages outlined earlier.

The final estimator, SD(cs), extends the SD(c) case to match speed observa-

tions in addition to counts. As in the previous case study, the introduction of speed

measurement equations results in a marginal loss of fit to counts. This must be an-

ticipated, as the objective function being minimized now includes additional terms.

From a practical perspective, the speed information plays the role of selecting the

right set of demand parameters among many that may capture the counts accurately.

In Park et al. (2005), for example, traditional count-based OD estimation reliably

4D1(c) was estimated with reference supply parameters. The improvement in fit over the reference
case therefore captures the differences in demand estimation between the two approaches.
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captured temporal count profiles, yet failed to replicate path travel times measured

using probe vehicles. A calibration methodology that can significantly improve the

model’s ability to explain traffic dynamics, with minimum impact to the fit to counts,

would thus be invaluable in travel time reliability studies and route guidance applica-

tions. The fit to speed data improves significantly from SD(c) to SD(cs), underscoring

a key contribution of the proposed calibration methodology arising from the ability

to include general traffic data.

Figure 5-5 compares the fitted counts from Ref and SD(c), against the actual

counts for all sensors and time intervals. The fit to sensor count data was also analyzed

by time of day, to ensure that the calibration methodology effectively tracked the

profiles of observed counts across the network. Figure 5-6 shows cumulative counts

(summed across all sensors). Visual inspection illustrates the accuracy of SD(c), and

the improvement over Ref.

Some sample plots of cumulative counts at individual sensor locations are pre-

sented in Figures 5-7 to 5-12, which further indicate the accuracy of the calibration

approach developed in this thesis. Indeed, the SD(c) case results in a more accurate

fit to counts when compared with the reference case. The six sensors shown here were

selected at random to provide a spatial spread across the entire network.

The fit to count data across the entire network is illustrated in Figure 5-13.

RMSNc values for a sample of sensors distributed spatially on both freeways and

arterials are provided, as further proof of calibration accuracy.

5.4.2 Validation results

The results in the previous section illustrated the ability of the methodology to better

fit observed data in an off-line scenario. Additional validation tests were performed

to evaluate the ability of the calibrated system to provide real-time traffic estimations

and predictions of higher quality compared to the reference case. For this purpose, the

DynaMIT-R DTA system was run in a rolling horizon, with sensor count data from

a new day (not used for calibration) used to simulate the real-time data collection
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Figure 5-5: Sensor Counts (all sensor locations)

7:00 7:30 8:00 8:30 9:00
1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Time of Day

C
um

ul
at

iv
e 

C
ou

nt
s 

(a
ll 

se
ns

or
s)

 

 

Observed

SD(c)

Reference

Figure 5-6: Cumulative Counts (all sensor locations)
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Figure 5-7: Cumulative Counts (Sensor 5)
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Figure 5-8: Cumulative Counts (Sensor 39)
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Figure 5-9: Cumulative Counts (Sensor 50)
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Figure 5-10: Cumulative Counts (Sensor 30)
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Figure 5-11: Cumulative Counts (Sensor 137)
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Figure 5-12: Cumulative Counts (Sensor 189)
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duties of the network’s surveillance system5.

In the tests, the calibrated demand and supply parameters from SD(c) and the

reference case were in turn input to DynaMIT-R as a historical database representa-

tive of real traffic patterns and conditions. The real-time system was then executed

from 5:15 to 9:00 AM in a rolling horizon comprised of 15-minute estimation phases

and one-hour prediction phases. Figure 5-14 portrays the 14 horizons contained in the

analysis period. An OD prediction process based on an autoregressive (AR) process

of degree 3 was employed, meaning that the latest estimations and predictions of the

past 45 minutes were used to predict the flows for each interval (one-hour predictions

were generated in four 15-minute steps). The factors in the AR process were esti-

mated based on the OD flow estimates obtained through off-line calibration in the

reference case.

It should be noted that DynaMIT-R’s OD estimation module uses the formu-

lation based on the assignment matrix, which represents an approximation of the

formulation used in this thesis. Further, the rolling horizon implementation employs

a sequential OD estimation framework, which could cause further deterioration in the

quality of the real-time OD flow estimates and the corresponding fit to sensor counts.

While the simultaneous approach adopted for calibration is superior to the sequential

method, the latter possesses computational benefits that are suitable for real-time

operation.

Evaluating the real-time performance of the calibrated DynaMIT system involves

the comparison of the 1-step, 2-step, 3-step and 4-step predictions for each time in-

terval against those obtained by assigning the corresponding historical and estimated

OD flows. The most direct analysis of this kind involves the OD flows themselves.

The historical (calibrated) OD flows represent the expected demand patterns for the

specific type of day. The data for validation, though obtained from the same day

type, will typically deviate from the historical flows. The estimated OD flows thus

represent the best knowledge of demand patterns on the given day, since they are

5A detailed description of DynaMIT-R and the rolling horizon framework is presented in Ap-
pendix A.
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obtained by updating the historical flows using the latest sensor count information

reported by the surveillance system.

Predicted OD flows from each horizon represent the best estimates of the OD

flows in the absence of the critical count data. They incorporate all prior knowledge

contained in the historical flows as well as the estimated flows until the previous

estimation interval. Extending this argument, the historical flows would provide the

lowest fit to counts, since they contain no additional information about the deviation

of the current day from expected conditions for that type of day.

Table 5.2 provides a summary of the fit to counts across all horizons. Average

RMSNc statistics from using two different sets of historical inputs (corresponding

to SD(c) and Ref) are compared, for six different cases: estimation, four steps of

prediction, and the historical. The last case corresponds to evaluating the fit to the

counts on a new day, without any adjustments to the historical database.

Clearly, DynaMIT’s performance in a real-time setting is vastly enhanced due to

the higher quality of the SD(c) historical database, thus providing a clear validation of

the benefits of the proposed methodology. Further, the statistics follow the expected

pattern across the six cases: state estimation results in the lowest possible error, since

it is based on known count data. Prediction quality deteriorates with the horizon,

ultimately leveling at the historical value. This behavior is consistent when SD(c) is

used as input, but is not evident with the reference inputs.

An interesting observation is the limited variability between the error statistics

between the six cases, justifying the assumption that the different week days belong

to the same type (and are characterized by similar underlying demand and supply

processes).

Figures 5-15 to 5-19 illustrate the fit to counts by time of day, and underline the

improvement over the reference case. As expected, the gap between the predicted

and historical statistics shrinks as one looks farther into the future. For example, the

2-, 3- and 4-step predictions are progressively closer to the corresponding historical

numbers than the 1-step predictions. Since the AR process predicts deviations of OD

flows from the historical, this finding confirms that the ability to predict diminishes
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Fit to Counts (RMSNc)
SD(c) Reference

Estimation 0.102 0.303
1-Step Prediction 0.110 0.304
2-Step Prediction 0.113 0.295
3-Step Prediction 0.114 0.301
4-Step Prediction 0.124 0.300

Historical 0.127 0.336

Table 5.2: Fit to Counts: Average RMSN for 5:15 AM - 9:00 AM

with the length of the horizon, with the impact approaching zero far enough away

from the start. The accuracy of the calibration, estimation and prediction capabilities

are thus reinforced.

The empirical results from the validation tests are thus consistent with the cali-

bration results and expected trends, and validate the feasibility and accuracy of the

methods developed through this research.

5.5 Synthesis of results and major findings

This chapter served as a real-world validation of the off-line DTA calibration method-

ology proposed and tested in previous chapters. Empirical findings justifying the

practical applicability and scalability of the developed methodology were presented.

Primarily, the method’s ability to provide significant improvements over existing cal-

ibration approaches was illustrated on a large and real network with actual sensor

data. The scalability of the SPSA stochastic approximation algorithm was convinc-

ingly demonstrated as a solution approach for large-scale calibration. The results

were validated through prediction tests using data from an independent day. The

numerical results are consistent with standard a priori hypotheses, and indicate the

validity and usefulness of the methods developed in this thesis.
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Figure 5-15: Fit to Counts: 6:15-6:30
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Figure 5-16: Fit to Counts: 6:30-6:45
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Figure 5-17: Fit to Counts: 6:45-7:00
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Figure 5-18: Fit to Counts: 7:30-7:45
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Figure 5-19: Fit to Counts: 8:30-8:45
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We conclude this thesis with a summary of the context and scope of this research,

its principal contributions, and some natural avenues for future work.

6.1 Summary

Traffic data collection efforts in the past have relied on manual procedures such as

surveys and vehicle counts, that are both costly and time-consuming. They have

therefore been applied infrequently, and often do not capture the full range of demand

and supply patterns on the network. The extensive deployment of traffic surveillance

technologies has now resulted in the collection and archiving of time-varying traffic

data at the network level and across multiple days, providing rich datasets for the

calibration of complex DTA models. This thesis develops an off-line methodology that

simultaneously calibrates both demand and supply components of DTA models using

such traffic data. Solution algorithms suitable for the resulting non-linear, stochastic

optimization problem are identified and evaluated through detailed case studies. The

benefits of this approach over current practices that estimate supply and demand

parameters sequentially are presented, and its ability to replicate underlying network

parameters in a robust manner is demonstrated. The role of speed data in improving

the underlying demand parameters is also highlighted. Further, the scalability of

the methodology is illustrated through a real network with actual sensor data, which

represents a key finding from a practical perspective.

The benefits of the proposed calibration methodology are many. First, the simul-

taneous calibration of all demand and supply parameters provides the most efficient

estimates of the DTA model’s inputs. The Los Angeles case study clearly demon-

strates the superiority of this approach over the sequential state-of-the-art. Second,

the direct use of the model’s output (without approximating the complex relation-

ship between the calibration variables and the observed data) improves the accuracy

of the estimates and introduces the flexibility to use general traffic data. Further,

simultaneous demand estimation across multiple time intervals helps capture the ef-

fect of long trips (a sequential estimator has a more local outlook that ignores the
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contributions of OD departures to measurements in future time intervals). Finally,

the calibration of supply parameters at the network level significantly improves over

the current local-fitting approach, by capturing the spatial and temporal correlations

between the various measurements.

It should be noted that the approach developed in this thesis can be applied to

any general DTA model. Though the case studies in Chapters 4 and 5 are based

on the real-time, mesoscopic DynaMIT traffic simulation tool, the methodology in

Chapter 3 makes no restrictive assumptions on the function f(•), which can be

(a) analytical or simulation-based, (b) deterministic or stochastic, (c) designed for

network planning, operations or management. Simulation-based models can further

be microscopic, mesoscopic or macroscopic, with the approach currently being tested

on the MITSIMLab microscopic simulator. The applications of this research are

therefore diverse.

We now summarize the main contributions of this research (Section 6.2), and

outline some directions for future work (Section 6.3).

6.2 Research contributions

The following are the primary contributions of this research:

• Development of an off-line methodology for the simultaneous demand-supply

calibration of general DTA models, that:

– uses model outputs to directly capture complex relationships between the

data and model parameters (does not use linear approximations).

– accommodates general traffic data (beyond loop detector counts).

– is robust under various demand and supply situations.

– scales to large networks.

– was validated on real data.
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The above contributions were systematically developed through the following

steps:

• General formulation of the off-line calibration problem through an optimization

framework.

• Analysis of problem characteristics, and the identification of suitable solution

algorithms suited to its non-linear, non-analytical and stochastic nature.

• Proof of concept of the proposed methodology on a synthetic network with

simulated traffic data, and a systematic sensitivity analysis demonstrating the

ability to recover known underlying parameters for a wide range of demand and

supply settings.

• Tests on a large traffic network with actual sensor data, that demonstrated

both the practical nature of the methodology and its scalability to large, real

traffic problems. Confirmation of benefits, including the advantage of model

estimation without the linear assignment matrix approximation. Validation of

calibration benefits for an on-line application.

6.3 Future research directions

While the theoretical calibration framework developed in this thesis is general, simpli-

fying assumptions were made in the case studies in order to demonstrate the primary

contributions of the methodology. Relaxing these assumptions could yield potentially

useful research extensions, some of which are outlined next.

6.3.1 Equilibrium and day-to-day effects

Network travel times TTrc used by the route choice model were assumed to be ex-

ogenous inputs in the two case studies. Consistency between the estimated model

parameters and travel times could however be enforced by embedding an equilibrium

model (such as the day-to-day learning mechanism in Equation 2.11) within f(•).
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The demonstration of our approach on a dataset with potential travel time learning

effects across multiple days will represent another interesting application of this work.

However, a dataset that supports a learning hypothesis will have to be obtained first.

Such a dataset must span a significant length of time, such as several months, in order

to allow for the identification of drivers’ long-term learning processes when faced with

evolving traffic patterns.

6.3.2 Observability and optimal sensor coverage

Empirical tests (Gupta, 2005) have indicated that the dynamic OD estimation prob-

lem is observable1: when the number of OD pairs is larger than the number of inde-

pendent sensor counts, sequential OD estimation with a suitable transition equation

could yield OD flows that do not depend on the (arbitrary) choice of a priori flows for

the first interval. The ratio of the size of the OD vector to the size of the counts vec-

tor is an indicator of the number of “warm-up” intervals before stable OD estimates

are obtained. The methodology developed in this thesis presents the opportunity

to test if added information through speed measurements can hasten the onset of

observability, thus shortening the “warm-up” period required.

Observability tests help determine if the existing sensor coverage is adequate to

uniquely estimate all OD flows. An interesting trade-off in this context is the relative

benefit of count and speed information for varying sensor coverage levels. Increased

count data coverage potentially provides more information about the underlying OD

flows, which might limit the additional benefit from speed measurements. A related

issue of some practical significance is the identification of optimal spatial distributions

of sensors. This question is pertinent in the design stage when sensor deployment loca-

tions are flexible, and can thus be optimized. While this problem has clear objectives,

its solution is non-trivial. An obvious requirement would be that the final solution

minimize the number (or cost) of sensors deployed, while maximizing estimation ac-

curacy. A more complex variant would impose a budget constraint that limits the

total number of sensors that can be installed. Apart from the large number of pos-

1The concept of observability was discussed in Section 3.3.
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sible sensor locations, the potentially high correlations between measurements from

neighboring sensors adds to the complexity (since additional sensors close to existing

ones provide diminishing information about the unknown parameters). A valuable

avenue for future research is a sensitivity analysis that explores the impact of sensor

coverage on calibration accuracy, and the development of guidelines for the better

design of surveillance systems with multiple sources of traffic data.

6.3.3 Impact of incidents

Incidents can have a significant impact on the estimation and prediction accuracy of

DTA models, particularly in on-line applications. Though the true severity and du-

ration of an incident may not be known until well into the future, a good estimate of

the reduction in capacity is essential for maintaining the accuracy of the system’s pre-

dictions. Knowledge of capacity reduction factors for incidents observed in archived

datasets can therefore allow operators of Traffic Management Centers to choose an

appropriate factor for disruptions detected in real-time on the network. The estima-

tion of such factors was demonstrated through the synthetic case study. However,

complete incident data for the Los Angeles application were unavailable. A log of

severe incidents from real networks, including location, start and end times, and a

description of severity, can be used to classify incidents and estimate representative

capacity reduction factors for planning and on-line applications.

6.3.4 Historical database updating

The methods in this thesis have advanced the state-of-the-art of DTA system calibra-

tion for a single day of data. In the context of real-time and on-line systems, these

methods may be applied at the end of each day, using the most recent archived set of

traffic measurements to update the historical database. Recent research efforts have

proposed heuristic approaches for maintaining a “current” historical database that

reflects all the information contained in the days leading up to the previous day. A

logical next step of immense value to traffic system operators would be the empirical

172



testing of different updating schemes, to determine the most appropriate procedure(s)

for on-line traffic systems. Ashok (1996), for example, lists several possibilities for

updating OD flows, such as the use of a moving average from the past few days.

Research into the consistent updating of other parameters such as error covariances

will also be useful.

6.3.5 Networks, models and modeling error

The results in the two case studies are derived using a mesoscopic traffic simulation

model and one real network. Tests on more networks possessing different structures

(combinations of freeways and arterials with various degrees of overlapping routes)

should be performed. Further, the performance of the proposed methodology on dif-

ferent types of DTA models should be analyzed. Apart from identifying calibration

guidelines by model type, such tests could reveal the impact of modeling errors on cali-

bration. Alternatively, different model specifications (such as speed-density functional

forms) could be implemented in the same DTA model to ascertain if the calibration

methodology is capable of recovering the true underlying demand parameters in each

case.

6.3.6 More detailed travel behavior models

The case studies in this thesis focus on drivers’ pre-trip route choice behavior, while

capturing their departure time preferences implicitly through the time-dependent OD

matrix. Other possible decisions relate to choice of mode and response to en-route

traveler information. The use of a DTA model with transit capabilities, for example,

could be used to demonstrate the impact of calibrating parameters in a mode choice

model. Advanced datasets that include detailed records of traveler information pro-

vision (data dissemination methods, message sets, and displayed messages by time of

day), if available, can be used to estimate models of en-route response to information.

Survey data for the calibration of such models using traditional techniques are rare,

and an approach based on aggregate data will be of value.
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6.3.7 Emerging traffic data

The methodology and solution approach developed in this research are flexible, and

allow for the use of any available traffic data in the off-line calibration process. Indeed,

this flexibility was clearly demonstrated in both case studies through the use of sensor

speeds in addition to traditional counts data. The sensor data however consisted

of point measurements. Future applications could combine such observations with

point-to-point data recorded through automatic vehicle identification (AVI) or GPS

technologies. Such path (or sub-path) information may be expected to improve the

efficiency of the estimated parameters, especially on the demand side.

6.4 Conclusion

A comprehensive optimization framework for the off-line calibration of complex dy-

namic traffic assignment systems was developed in this research. The framework was

operationalized by adapting state-of-the-art simulation optimization algorithms to

suit the unique characteristics of the problem at hand. Detailed demonstrations on

both synthetic and large, real networks have validated the efficiency and practical

nature of the developed methodology, and confirm that the new approach of simul-

taneous demand-supply calibration significantly out-performs the sequential state-of-

the-art.
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Overview of the DynaMIT System
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This appendix introduces DynaMIT ( Ben-Akiva et al. (1997)), a state-of-the-art

DTA system with both real-time and planning applications. The features and func-

tionalities of the DynaMIT system are presented, along with an overview of its model

components. The system’s unknown quantities (both model inputs and parameters)

are enumerated, both in order to illustrate the dimensionality of the problem, and

provide an introduction to the case studies presented in this thesis.

The models in a DTA system can be broadly categorized into two classes. The

demand simulator captures aggregate flows of vehicles between points on the network,

and models individual drivers’ route choice decisions at various stages of their trips.

In addition, the demand models play a key role in the prediction of future network

flows. The supply simulator models vehicle movements on the links of the network.

The outputs of the supply simulator include link, path and sub-path travel times,

link flows, speeds and densities, and queue lengths upstream of bottlenecks.

Section A.1 provides an overview of DynaMIT-R, a DTA-based real-time meso-

scopic traffic simulation model. Section A.2 reviews the framework for DynaMIT-P,

a version of DynaMIT for short-term planning applications. The various demand and

supply inputs to DynaMIT were reviewed earlier, in Sections 4.2.2 and 4.2.2.

A.1 Overview of DynaMIT-R

DynaMIT (Dynamic Network Assignment for the Management of Information to

Travelers) is a state-of-the-art traffic simulation system based on the principle of dy-

namic traffic assignment. Its real-time version (DynaMIT-R) is designed for traffic

estimation and prediction, and the generation of traveler information and consistent

anticipatory route guidance. DynaMIT-R supports the operation of Advanced Trav-

eler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS)

at Traffic Management Centers (TMC). A planning version of DynaMIT, codenamed

DynaMIT-P, employs DTA for short-term planning scenarios such as work zones,

optimal VMS locations and OD estimation. Sponsored by the Federal Highway

Administration (FHWA), DynaMIT was designed and developed at the Intelligent
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Transportation Systems Program at the Massachusetts Institute of Technology.

A.1.1 Features and Functionality

The key to DynaMIT’s functionality is its detailed network representation, cou-

pled with models of traveler behavior. Through an effective integration of historical

databases with real-time inputs from field installations (surveillance data and con-

trol logic of traffic signals, ramp meters and toll booths), DynaMIT is designed to

efficiently achieve:

• Real time estimation of network conditions.

• Rolling horizon predictions of network conditions in response to alternative

traffic control measures and information dissemination strategies.

• Generation of traffic information and route guidance to steer drivers towards

optimal decisions.

To sustain users’ acceptance and achieve reliable predictions and credible guid-

ance, DynaMIT incorporates unbiasedness and consistency into its core operations.

Unbiasedness guarantees that the information provided to travelers is based on the

best available knowledge of current and anticipated network conditions. Consis-

tency ensures that DynaMIT’s predictions of expected network conditions match

what drivers would experience on the network.

DynaMIT has the ability to trade-off level of detail (or resolution) and computa-

tional practicability, without compromising the integrity of its output.

A.1.2 Overall Framework

DynaMIT is composed of several detailed models and algorithms to achieve two main

functionalities:

• Estimation of current network state using both historical and real-time infor-

mation.
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• Generation of prediction-based information for a given time horizon.

The estimation and prediction phases operate over a rolling horizon. This concept

is illustrated with a simple example (Figure A-1).

8:007:55 9:00

Estimation Prediction

Running
time

8:007:55 9:00

Estimation Prediction

Running
time

8:07

8:07

9:07

At 8:00

At 8:07

Figure A-1: The Rolling Horizon

It is now 8:00am. DynaMIT starts an execution cycle, and performs a state

estimation using data collected during the last 5 minutes. When the state of the

network at 8:00 is available, DynaMIT starts predicting for a given horizon, say one

hour, and computes a guidance strategy which is consistent with that prediction. At

8:07, DynaMIT has finished the computation, and is ready to implement the guidance

strategy on the real network. This strategy will be in effect until a new strategy is

generated. Immediately following that, DynaMIT starts a new execution cycle. Now,

the state estimation is performed for the last 7 minutes. Indeed, while DynaMIT was

busy computing and implementing the new guidance strategy, the surveillance system

continued to collect real-time information, and DynaMIT will update its knowledge

of the current network conditions using that information. The new network estimate

is used as a basis for a new prediction and guidance strategy. The process continues

rolling in a similar fashion during the whole day.

The overall structure with interactions among the various elements of DynaMIT is

illustrated in Figure A-2. DynaMIT utilizes both off-line and real-time information.
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The most important off-line information, in addition to the detailed description of

the network, is a database containing historical network conditions. This database

might combine directly observed data and the results of off-line models. The histori-

cal database contains time-dependent data, including origin-destination matrices, link

travel times and other model parameters. Clearly, the richer the historical database,

the better the results. Such a rich historical database requires substantial data col-

lection and careful calibration.

Information dissemination

Database
Network representation
Historical information

Real-Time inputs
Traffic Surveillance and

Control

State Estimation

Demand
Simulation

Supply
Simulation

Prediction-based Information Generation

Information
Generation

Demand
Simulation

Supply
Simulation

Figure A-2: The DynaMIT Framework

Real-time information is provided by the surveillance system and the control sys-

tem. DynaMIT is designed to operate with a wide range of surveillance and con-

trol systems. The minimum real-time information required by DynaMIT is time-

dependent link flows, incident characteristics (location, starting time, duration and
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severity), and traffic control strategies.

State Estimation

The state estimation module provides estimates of the current state of the network

in terms of OD flows, link flows, queues, speeds and densities. This step represents

an important function of DTA systems, since information obtained from the traffic

sensors can vary depending on the type of surveillance system employed. In an

ideal system where there is two-way communication between the traffic control center

and every vehicle in the network, perfect information about the vehicle location and

possibly its origin and destination can be obtained. While such perfect systems

are possible in the future, most existing surveillance systems are limited to vehicle

detectors located at critical points in the network. The information provided by these

traffic sensors therefore must be used to infer traffic flows, densities and queue lengths

in the entire network.

The main models used by the State Estimation module are:

• A demand simulator that combines real-time OD estimation with user behavior

models for route and departure time choice.

• A network state estimator (also known as the supply simulator) that simulates

driver decisions and collects information about the resulting traffic conditions.

The demand and supply simulators interact with each other in order to provide

demand and network state estimates that are congruent and utilize the most recent

information available from the surveillance system (Figure A-3).

Demand Simulation

Demand estimation in DynaMIT is sensitive to the guidance generated and infor-

mation provided to the users, and is accomplished through an explicit simulation of

pre-trip departure time, mode and route choice decisions that ultimately produce the

OD flows used by the OD estimation model. The pre-trip demand simulator updates

180



Historical
Database

Pre-Trip Demand
Simulation

Departure Time
Mode
Route

Pre-Trip Demand
Simulation

OD Flow Estimation

Network State Estimation

En-route
Demand

Simulation

Supply
Simulation

Traffic
control

Information

Network
Conditions

Assignment
Matrix

SurveillanceCongruency?

Network Conditions

No

Yes

Figure A-3: State Estimation in DynaMIT

the historical OD matrices by modeling the reaction of each individual to guidance in-

formation. The consequent changes are then aggregated to obtain updated historical

OD matrices. However, these updated historical OD flows require further adjust-

ments to reflect the actual travel demand in the network. Reasons for the divergence

of actual OD flows from historical estimates include capacity changes on the network

(such as the closure of roads or lanes), special events that temporarily attract a large

number of trips to a destination, and other day-to-day fluctuations. Consequently,

one of the requirements for dynamic traffic modeling is the capability to estimate (and

predict) OD flows in real time. The OD model uses updated historical OD flows, real-

time measurements of actual link flows on the network, and estimates of assignment
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fractions (the mapping from OD flows to link flows based on route choice fractions

and travel times) to estimate the OD flows for the current estimation interval.

Note on OD Smoothing

The fixed point nature of the OD estimation procedure, coupled with the real-time

requirements of a prediction-based DTA system, necessitates the use of an efficient

solution scheme that will converge quickly. The OD estimation module within Dy-

naMIT utilizes an algorithm similar to the Method of Successive Averages with De-

creasing Re-initializations (MSADR)1 to compute the target OD flows for successive

iterations. Stated mathematically,

xk
∗

= x̂k−1 + αk(x̂
k − x̂k−1) (A.1)

= αkx̂
k + (1 − αk)x̂

k−1 (A.2)

where xk
∗

is the new target OD flow vector, x̂k and x̂k−1 are the estimated flows from

iterations k and k − 1 respectively. The weighting parameter αk is computed so as

to accelerate the convergence of the iterative algorithm:

αk =

[

1

ae−ka

]

[

1
∑k

j=1
1

ae−ja

]

(A.3)

where k is the iteration counter. The parameter a in the above expression assumes a

default value of 1.0.

Supply Simulation

The network state estimator utilizes a traffic simulation model that simulates the

actual traffic conditions in the network during the current estimation interval. The

inputs to this model include the travel demand (as estimated by the demand sim-

ulator), updated capacities and traffic dynamics parameters, the control strategies

implemented and the traffic information and guidance actually disseminated. The

1See Cascetta and Postorino (2001).
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driver behavior model captures the responses to ATIS in the form of en route choices.

Demand-Supply Interactions

One of the inputs to the OD estimation model is a set of assignment matrices. These

matrices map the OD flows from current and past intervals to link flows in the current

interval. The assignment fractions therefore depend on the time interval, and also

on the route choice decisions made by individual drivers. The flows measured on the

network are a result of the interaction between the demand and supply components.

It may be necessary to iterate between the network state estimation and the OD

estimation models until convergence is achieved. The output of this process is an

estimate of the actual traffic conditions on the network, and information about origin-

destination flows, link flows, queues, speeds and densities.

A.1.3 Prediction and Guidance Generation

The prediction-based guidance module (Figure A-4) consists of several interacting

steps:

• Pre-trip demand simulation

• OD flow prediction

• Network state prediction

• Guidance generation

The OD prediction model uses as input the aggregate historical demand adjusted

by the pre-trip demand simulator to account for departure time, mode and route

choices in response to guidance, and provides the required estimates of future OD

flows. The network state prediction function undertakes the important task of traffic

prediction for a given control and guidance strategy and predicted set of OD flows,

using the current network conditions estimated by the state estimation module as
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a starting point. The performance of the network over the prediction horizon is

evaluated using a traffic simulation model and en-route behavioral models.

The traffic information and guidance generation function uses the predicted traffic

conditions to generate information and guidance according to the various ATIS in

place. Traffic control is loosely coupled with DynaMIT in the current version of the

system. Control strategies are assumed to be generated outside the DTA system,

using the predictions as an input.

The generated traffic information and guidance must be consistent and unbiased.

Under such conditions, there would be no better path that a driver could have taken

based on the provided information. An iterative process is employed in order to

obtain guidance that satisfies these requirements. Each iteration consists of a trial

strategy, the state prediction (comprising both demand prediction and network state

prediction) under the trial strategy, and the evaluation of the predicted state for con-

sistency. Since, in general, the updated historical OD flows depend on future guidance

and information, the update of the historical OD flows (using the departure time and

mode choice models) and the OD prediction models are included in the iteration.

This general case represents the situation where pre-trip guidance is available to the

drivers. In the special case where only en-route guidance is available, the pre-trip

demand simulator is bypassed in the iterations. The initial strategy could then be

generated from the prediction and guidance generation of the previous period.

A.2 Overview of DynaMIT-P

Apart from its real-time applications, DTA has the potential to significantly improve

the transportation planning process for networks with congested facilities. DynaMIT-

P is a DTA-based planning tool developed at MIT that is designed to assist planners

in making decisions regarding proposed investments and operational changes in local

and regional transportation networks. DynaMIT-P efficiently adapts the modules

contained in the real-time DynaMIT system for off-line planning applications.
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A.2.1 Features and Functionality

DynaMIT-P is designed to assist the evaluations of proposed changes to local and re-

gional transportation networks. Such changes could affect infrastructure, operations,

or information. Through the continual interaction between the demand simulator

and the supply simulator, DynaMIT-P can effectively achieve:

• Predictions of day-to-day evolutions of travel demand and network conditions.

• Predictions of within-day patterns of traffic flows and travel times.

• Comparisons of different alternatives.

DynaMIT-P incorporates both equilibrium and day-to-day learning into its core

operations involving the modeling of demand and supply interactions. Its features

include:

• Modular structure with a mesoscopic traffic simulator and a demand micro-

simulator.

• Expands on the real time DynaMIT System.

• Flexible modeling of demand-supply interactions including both equilibrium

algorithms and day-to day learning behavior.

• Uses disaggregate behavioral models.

• Supply simulator uses speed-density functions and queuing and captures the

locations and impacts of queues and spillbacks.

• Behavioral models capture the inherent stochasticity of transportation demand.

• Captures the effects of segment-level operational changes, such as ramp meters

and traffic signals.

• Predicts the effects of the introduction or enhancement of Advanced Traveler In-

formation Systems (ATIS) and Advanced Traffic Management Systems (ATMS)

on travel behavior and network performance.
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• Enumeration of drivers facilitates fine distinctions among vehicle types and

driver behaviors.

• Distinguishes between informed and uninformed drivers.

• Distinguishes between long-term, short-term, and within-day behaviors.

• Different and interacting approaches for modeling habitual and switching be-

havior.

• Visualizes and graphically compares alternative strategies using flow/speed/density

(over time) charts.

A.2.2 Overall Framework

Travel-related choices vary with regard to the time horizon over which they are made.

Individuals make long-term, short-term and within-day travel decisions (Figure A-5).

Long-term mobility decisions could include choices on residential location and auto

ownership. Short-term (or day-to-day) travel decisions include choice of trip fre-

quency, destination, departure time, mode and route. Adjustments in short-term

decisions are made in response to changes in long-term decisions (such as auto owner-

ship) and changes in the network. Individuals form habitual travel patterns that they

follow regularly. Within-day decisions capture deviations from these habitual travel

patterns. These deviations could be in response to real-time information, unusual

weather conditions, incidents, or other special events.

DynaMIT-P focuses on modeling the short-term and within-day travel decisions,

assuming that the long-term decisions are given. The inputs to DynaMIT-P include

the potential users of the system, their demographic characteristics, residential loca-

tion, etc. The output is the performance of the transportation system in terms of

consumption of resources and benefits. Several important characteristics distinguish

DynaMIT-P from traditional planning approaches:

• Microsimulation ensures accurate depiction of individual traveler behavior.
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• Detailed modeling of spillbacks, queue formation and dissipation captures the

essence of network dynamics.

• Sensitivity to ATMS/ATIS facilitates the evaluation of ITS strategies.

• Time-dependent interactions between the demand and supply components presents

a realistic picture of equilibrium.

DynaMIT-P employs three main components to achieve the functionality de-

scribed above:

• The supply simulator

• The demand simulator

• The day-to-day learning model

The supply simulator is a mesoscopic traffic simulation model. For a given set of

travelers and control strategies, it predicts the performance of the network by measur-

ing time-dependent flows, travel times, queue lengths, etc. The simulator is designed

to operate at different levels of granularity, depending on the requirements of each

application. The main elements of the demand simulator are the OD matrix esti-

mation and the behavioral models. The OD estimation model takes link counts and

historical OD flows as inputs, and produces an updated time-dependent OD matrix to

match the observed counts. The behavioral models are used to predict the travel be-

havior of individual travelers as a function of network level of service characteristics,

perceptions and past experiences, information access and socioeconomic characteris-

tics. Driver behavior is modeled using the path-size logit model (PS-Logit, Ramming

(2001)), which is an extension of C-Logit (Cascetta and Russo (1997)). This model

accounts for the degree of overlap among alternative routes while simulating indi-

vidual route choice. The day-to-day learning model updates travelers perceptions of

travel times based on past experiences and expectations, according to the following

model:

T̄
t

k
= λT

t−1

k
+ (1 − λ)T̄

t−1

k
(A.4)
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where T̄
t

k
is the expected time-dependent travel time along path k on day t, and T

t

k

is the time-dependent travel time experienced along path k on day t. λ captures the

learning rate, which may vary across market segments. The value of λ lies between 0

and 1, and is affected by the use of ATIS.

The demand and supply simulators interact with the learning models in a system-

atic way to capture both the day-to-day and within-day (short-term) demand-supply

interactions (Cantarella and Cascetta (1995)). The structure of the short-term dy-

namics module is shown in Figure A-6. The model is based on an iterative process

between the demand and supply simulators. The main input to short-term dynamics

is an OD matrix of potential travelers. The demand simulator uses the correspond-

ing behavioral models to update their frequency, destination, departure time, mode,

and route, choices. The travelers are then loaded onto the supply simulator and

new network performance is obtained. Based on the learning model, travelers update

their decisions in response to the observed level of service and network performance.

When supply and demand converge, the process ends. The output of the short-term

dynamics component is the travelers’ habitual travel behavior.

The purpose of the within-day dynamics model is to evaluate the performance

of the transportation network in the presence of stochastic factors such as unusual

weather, incidents, and special events (concerts, sports, etc.), which could substan-

tially affect traffic conditions. The habitual travel behavior, obtained from the short-

term dynamics, is input to the within-day model. Figure A-7 summarizes the inter-

actions among the different elements of the within-day dynamics component.

The outputs from both the short-term and within-day behavior components are

used to generate the desired resource consumption and benefits (such as total sav-

ings in travel delays, costs, revenues, air pollution, safety, fuel consumption, etc.)

DynaMIT-P’s open system of demand models, detailed representation of network dy-

namics, and flexible structure make it a useful tool for a host of planning applications:

• Impact studies of Work Zone Activity, and minimum-impact work zone schedul-

ing
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• Special Events

• High-occupancy Vehicle (HOV) and High-occupancy Toll (HOT) facilities

• Congestion Pricing strategies

• Effectiveness of ATMS and ATIS

While both DynaMIT and DynaMIT-P capture the interaction between the OD

estimation and route choice model components within the DTA system, DynaMIT-P

is better suited for calibration purposes. This stems primarily from DynaMIT-P’s

functionality to compute equilibrium network travel times. Network equilibrium for

a given travel demand level results from a balance between the demand and supply

elements. The fixed point nature of the calibration problem requires equilibrium at

each calibration stage in order to ensure that the route choice fractions, assignment

matrices and estimated OD flows are consistent in each iteration.
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Appendix B

Prototypical Evaluation: Detailed

Numerical Results

B.1 Fit to counts, speeds and OD flows

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 15.14 3.93 -
S 13.75 4.59 - 16.97 2.33 -

SD 12.94 4.84 3.95 16.50 2.01 2.67

Table B.1: Run 2

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 19.77 3.85 -
S 18.66 2.89 - 19.37 2.72 -

SD 17.74 3.00 3.87 18.44 2.18 3.02

Table B.2: Run 3
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Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 16.24 4.29 -
S 14.40 2.68 - 16.18 1.57 -

SD 13.10 2.60 6.14 15.45 1.56 2.72

Table B.3: Run 4

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 17.14 3.14 -
S 13.32 3.62 - 17.88 2.63 -

SD 12.91 2.81 3.21 16.52 2.17 3.15

Table B.4: Run 5

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 15.00 5.22 -
S 14.00 2.82 - 14.64 1.79 -

SD 12.40 3.05 5.72 14.19 1.75 5.19

Table B.5: Run 6

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 18.73 3.65 -
S 13.57 3.31 - 18.34 2.33 -

SD 12.89 3.36 9.15 16.43 2.07 3.43

Table B.6: Run 7

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 20.42 5.17 -
S 18.60 3.18 - 18.68 3.03 -

SD 18.04 3.33 11.98 18.60 2.99 5.46

Table B.7: Run 8
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Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 13.83 4.03 -
S 12.54 3.41 - 13.73 1.71 -

SD 12.15 5.62 3.69 13.62 1.69 2.41

Table B.8: Run 9

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 20.94 4.01 -
S 17.43 3.52 - 20.62 2.17 -

SD 17.33 3.36 5.99 19.02 2.07 2.09

Table B.9: Run 10

Calibration Data
Scenario Counts Counts + Speeds

RMSEc RMSEs RMSEd RMSEc RMSEs RMSEd

Base - - - 20.20 4.48 -
S 15.12 3.80 - 20.14 2.26 -

SD 14.36 4.35 7.05 19.91 2.19 2.84

Table B.10: Run 11
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