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A B S T R A C T

Traffic incident duration is known to result from a combination of multiple factors, including covariates
such as spatial and temporal characteristics, traffic conditions, and existence of secondary accidents but
also the clearancemethod itself. In this paper, a competing risks mixturemodel is used to investigate the
influence of clearance methods and various covariates on the duration of traffic incidents and predict
traffic incident duration. The proposed mixture model considers the uncertainty in any of five clearance
methods that occurred. The probability of the clearance method is specified in the mixture by using
a multinomial logistic model. Three candidate distributions, namely, generalized gamma, Weibull, and
log-logistic are tested to determine the most appropriate probability density function of the parametric
survival analysis model. The unobserved heterogeneity is also incorporated into the mixture model in a
way that allows parameters to vary across observations based on the three candidate distributions. The
methods are illustrated with incident data from Singaporean expressways from January 2010 to
December 2011. Regression analysis reveals that the probability of different clearance methods and the
duration of traffic incidents are both significantly affected by various factors, such as traffic conditions
and incident characteristics. Results show that the proposedmixture model is better than the traditional
accelerated failure time model, and it predicts traffic incident duration with reasonable accuracy, as
shown by the mean average percent error.

ã 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic incidents are major causes of non-recurrent congestion
on expressways (Haas, 2006) and urban arterial roads (Shao and
He, 2008). An effective approach to reduce the influence of traffic
incidents is the application of the Traffic Incident Management
System (TIMS), which requires a timely and precise estimation of
traffic incident duration. By performing reliable prediction of
incident duration, traffic operators could deploy appropriate
measures around the incident location and provide travelers with
real-time traffic information to reduce incident-related traffic
congestion. In the past two decades, significant research effort has

been exerted on the analysis and prediction of traffic incident
duration.

Total incident duration can be divided into the following
sequential and distinct time intervals (Nam and Mannering, 2000;
TRB, 2000; Valenti et al., 2010):

� Detection/reporting time: time between the time of incident
occurrence and the time of response by the traffic control center
operators receiving the call; usually, this period is difficult to
capture.

� Preparation/dispatching time: time between operators receiving
the call and dispatching the incident response team members.

� Travel time: time between incident response team members
receiving the dispatch order and their arrival at the incident
location.

� Clearance time: time between the incident response team
members’ arrival and incident clearance.

A general assumption in this work is that a model of incident
duration can be discretized according to groups of “clearance
methods”, namely related to participation of police, tow truck or
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drivers self-driving off of the scene. From the perspective of
hazard-based modeling, these methods correspond to “failure
events”. Since the clearance method is not always observable, we
propose a discrete mixture model.

This paper uses a hazard-based competing risks mixture model
and is focused on analyzing the influence of various factors on the
incident duration, as determined from the moment the operators
receive the call to the total incident clearance, when the roadway
capacity returns to its normal conditions; this duration is the sum
of total preparation time, travel time, and clearance time but
excludes the unknown period from the time of incidence
occurrence to the time of reporting. The proposed model is also
tested to predict the traffic incident duration.

The rest of this paper is organized as follows. The first section
presents a literature review of online incident duration
predictions and hazard-based models. The next section discusses
the proposed parametric mixture approach used to analyze the
duration of traffic incidents; parametric mixture duration models
and coefficient estimation methods are also discussed in this
section. The third section describes the data used in this study.
The fourth section presents the calibration of the parametric
mixture model, and the fifth section evaluates the prediction
accuracy. Lastly, we end this paper by presenting our conclusions
and suggesting future plans.

2. Literature review

In the past two decades, traffic incident duration has been
investigated through various approaches, such as finding the
factors that significantly affect traffic incident duration (Khattak
et al., 2010; Zhang and Khattak, 2010) or predicting traffic incident
duration. The majority of the literature review is focused on the
latter.

Various regression models have been applied in predicting
traffic incident duration. Khattak et al. (1995) applied a truncated
regression model based on a simple time sequential procedure
to predict the traffic incident duration by establishing a
relationship between traffic incident duration and independent
variables. However, they did not examine the prediction accuracy
of the sequential model because not enough data were available
to support the test. Peeta et al. (2000) developed a linear
regression model that predicts traffic incident clearance time
with time-independent variables. He et al. (2011) established an
incident duration prediction model based on hybrid tree-based
quantile regression to predict traffic incident duration on urban
freeways. The results of the study showed that the proposed
model had better prediction performance in comparison with
three other kinds of prediction models. A non-parametric
regression model (Smith and Smith, 2001) has also been used
to predict traffic incident duration; however, the performance of
the model was unsatisfactory, with an average error of more than
20min.

Decision trees and classification trees, such as the classification
and regression tree (Kim et al., 2008; Knibbe et al., 2006) and the
M5P tree (Zhan et al., 2011), have also been applied to predict
traffic incident duration. One study was able to predict incident
duration on the basis of the time interval it occurred and obtained
an overall confidence of over 80% (Kim et al., 2008). Another study
showed that the M5P tree algorithm can perform a predictionwith
a mean average percentage error (MAPE) of 42.7% (Zhan et al.,
2011).

Several kinds of Bayesian classifiers (Boyles et al., 2007;
Demiroluk and Ozbay, 2011; JiYang et al., 2008; Li and Cheng,
2011; Shen and Huang, 2011) have been used to accommodate
incomplete information or information received at different time
points. These studies show that the Bayesian classifier has better

prediction performance than other traditional models (Demiroluk
and Ozbay, 2011), such as linear regression and classification and
regression trees (CART); for example, the presented model
outperformed the CART model with 53% accuracy rate.

A number of studies recently applied artificial neural networks
(ANN) in developing prediction models of traffic incident
duration. Wei et al. (Lee and Wei 2010; Wei and Lee, 2007)
developed two ANN-based models that sequentially predict
traffic accident duration, and the results showed that these
models achieve a reasonable prediction; that is, the MAPEs of the
models were mostly under 40% (Wei and Lee, 2007). Pereira et al.
(2013) used radial basis function algorithm, which continuously
makes predictions as new information arrives. New information
arrives in the form of text messages (internal to the traffic
operator and emergency response system) and is analyzed with
text mining techniques (latent Dirichlet allocation) to extract a
list of “topics” associated with the current situation of the
incident. The overall median error decreased by 28% in the
approach with topics in comparison with that without topics.
Other techniques, such as genetic algorithms (GA) (Lee and Wei
2010) and fuzzy logic (Vlahogianni and Karlaftis, 2013) have been
combined with ANN to obtain better prediction performance.
Vlahogianni and Karlaftis (2013) applied fuzzy entropy feature
selection to select the factors to be used for incident duration
prediction. Hazard-based duration models, which focus on time
to event data, have been used in estimating and predicting traffic
incident duration. Jones et al. (1991) applied an accelerated
failure time (AFT) model with log-normal distribution to examine
the factors affecting the incident duration on Seattle freeways.
AFT hazard-based duration models were then applied to different
traffic incident duration intervals (Nam and Mannering, 2000),
and the results revealed that different distributions of the hazard
function are suitable for different incident duration intervals and
that a wide variety of factors significantly affect incident time
intervals.

Different distributions-based AFT hazard-based models, which
are based on different data resources of traffic incidents, have been
used to estimate and predict traffic incident duration. These
models include log-logistic distribution (Chung, 2010; Chung et al.,
2010; Kang and Fang, 2011;Wang et al., 2013),Weibull distribution
(Alkaabi et al., 2011; Hojati et al., 2013), log-normal distribution
(Chung and Yoon, 2012) and gamma distribution (Li, 2014). To find
a more appropriate distribution for the hazard function, Ghosh
et al. (2012) applied the flexible generalized F distribution to fit the
traffic incident duration.

On basis of whether the model distinguishes multiple (and
possibly latent) clearance methods, two types of hazard-based
models can be considered: single and competing risks hazard-
based models. The above mentioned models generally fall under
the single risk category. However, in viewof the high heterogeneity
in incident types, driver behavior (i.e., the drivers that participate
in the incident), and response strategies, significant information
may be lost when all of the factors are aggregated into one type.

Competing risks hazard-based models have recently been
widely used in medical research (Fürstová and Valenta, 2011;
Haller et al., 2013; Lau et al., 2008, 2009, 2011; Ravani et al., 2005)
and in transportation, among other fields. Gilbert (1992),Hensher
(1998), and Yamamoto et al. (2004) applied competing risks
hazard-basedmodels to investigate the time spent and influencing
factors in automobile transactions. Ettema et al. (1995) and Bhat
(1996) investigated travel activity duration by using accelerated
lifetime and proportional hazard models, respectively. Li and Guo
(2014) investigated the factors effected on the duration of two
incident group with proportional hazard competing risk model.
Shyr and Ben-Akiva (1996) used mixture competing risks hazard
models to examine rail fatigue behavior. The use of competing risks
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mixture models in analyzing and predicting incident data has not
been indicated in the literature.

3. Competing risks model

3.1. Mixture model

Competing risks occur when an incident can be cleared by at
least two possible ways but only one can actually occur. In classical
competing risks, the observed outcome dataset is represented by
(T, C, X), where T is the time to failure, assumed to be a continuous
and positive random variable, C is the cause of failure and takes
one of the values in the finite set {1,2, . . . . . . }, and X is a vector of
N covariates. For an individual i =1,2, . . . . . . M, the data record is
(T, C, X).

This study applied a mixture model of competing risks (Larson
and Dinse,1985), where several event types and times aremodeled
through a joint distribution, broken down into a sum (mixture) of
individual distributions, each one corresponding to a potential
event type. In our case, these failures are mutually exclusive and
discrete, so we represent it as a multinomial logit (MNL) function.

In fact, for different incidents, the response patternswill also be
different. For some accidents, such as vehicle overturns or
accidents involving injures, there should be an incident response
team (for example traffic police) to evaluate who is held
accountable for the accident, save the wounded and/or tow the
stalled vehicles. In comparison, for some minor accidents, such as
those without injuries or vehicles that are still functional, the
trafficmanagement department encourages the drivers involved to
negotiate among themselves before the incident response team
arrives at the scene, as well as fill in the necessary insurance forms
and take photos for evidence to reduce the incident duration,
which is similar with the quick clearance policy enforced in some
countries (Owens et al., 2010).

In this study, the events of failure are five types of incident
clearance methods: clearance method 1, drive self without police
arrival (drivers involved in an incident will drive off without police
arrival); clearance method 2, drive self with police arrival (drivers
involved in an incident will drive off after the police arrives);
clearance method 3, tow without police arrival (some or all of the
vehicles involved inan incidentwill be towedwithoutpolice arrival);
and clearance method 4, tow with police arrival (some or all the
vehicles involvedinanincidentwillbetowedandwithpolicearrival).
Other incidents are cleared by unknown or uncertain clearance
methods and are considered classified under clearance method 5.

The cumulative incidence function (CIF) for the kth type of
failure is:

F�kðtÞ ¼ PrðT � t;C ¼ kÞ ¼ PrðC ¼ kÞPrðT � tjC ¼ kÞ
¼ PrðC ¼ kÞFkðtÞ (1)

The overall distribution function is the sum of CIFs. Thus,

FðtÞ ¼ PrðT � tÞ ¼
XK
k¼1

F�kðtÞ (2)

Similarly, the overall survivor function is the sum of k sub-survivor
functions, where each sub-survivor is the survivor function for the
kth type of failure. Therefore,

SðtÞ ¼ PrðT > tÞ ¼
XK
k¼1

S�kðtÞ (3)

where S�kðtÞ is the sub-survivor function for kth type of failure.
The corresponding sub-density function is

f �kðtÞ ¼
@F�kðtÞ
@t

¼ dPrðT � tjC ¼ kÞ
dt

PrðC ¼ kÞ ¼ f kðtÞPrðC ¼ kÞ (4)

and the mixture model is

f ðtÞ ¼
XK
k¼1

f �kðtÞ ¼
XK
k¼1

PrðC ¼ kÞf kðtÞ (5)

With covariate vector X, Eqs. (2) and (5) and can be rewritten as
follows:

FðtjXÞ ¼
XK
k¼1

F�kðtjXÞ ¼
XK
k¼1

FkðtjXÞPrðC ¼ kjXÞ (6)

f ðtjXÞ ¼
XK
k¼1

f �kðtjXÞ ¼
XK
k¼1

f kðtjXÞPrðC ¼ kjXÞ (7)

Amultinomial logistic (MNL) regressionmodel is used to assess
the influence of covariates on the probability of failing from a
certain cause k (Haller et al., 2013); this model is given by

pk ¼ PrðC ¼ kjXÞ ¼ expðmk þ fT
kXÞ

S
K
l¼1expðml þ fT

l XÞ
(8)

wheremk is a scalar constant, andf
T
k is a row vector ofN regression

coefficients (k =1,2, . . . . . . K). For (k=1,2, . . . . . . K�1), Eq. (8)
can be written as

pk ¼ PrðC ¼ kjXÞ ¼ expðmk þ fT
kXÞ

1þS
K�1
l¼1 expðml þ fT

l XÞ
(9)

and

pk ¼ 1�
Xk�1

i¼1

pi (10)

3.2. Maximum likelihood estimation

In a mixture model, the contribution to the likelihood function
of an incident iwith covariate vector Xiwith a type k failure at time
ti is (Lau et al., 2008):

Li ¼ pkif kðtiÞ (11)

where

pki ¼ PrðCi ¼ kjXiÞ

All of the traffic incidents in the research dataset have been
cleared, and no right-censored data are present. Thus, for the
known four clearance methods, the likelihood function is

Li ¼ ½p1i�f 1ðtiÞ�d1i � ½p2i�f 2ðtiÞ�d2i � ½p3i�f 3ðtiÞ�d3i
� ½ð1� p1i � p2i � p3iÞ�f 4ðtiÞ�d4i (12)

and the indicator function is given by

dki ¼ 0 if Ci 6¼ k
1 if Ci ¼ k

� �
(13)

where pki ¼ PrðCi ¼ kjXiÞ is the mixture probability and fk(ti) is the
probability density function for the parametric distribution for a
type k failure.

In Eq. (12), the clearancemethod for each incident is assumed to
be known. However, in reality, the time of clearancemay be known
while the clearancemethod used is uncertain. The actual clearance
method cannot be measured with certainty or be completely
ascertained. Instead of eliminating or censoring those data, the
above likelihoodmay bemodified to incorporate the uncertainty of

194 R. Li et al. / Accident Analysis and Prevention 75 (2015) 192–201



clearance method type by obtaining the sum of fk(t) for all
events that could have occurred, such that the likelihood in
Eq. (12) would be

Li ¼ ½p1i�f 1ðtiÞ�d1i � ½p2i�f 2ðtiÞ�d2i � ½p3i�f 3ðtiÞ�d3i
� ½ð1� p1i � p2i � p3iÞ�f 4ðtiÞ�d4i
� ½p1i�f 1ðtiÞ þ p2i�f 2ðtiÞ þ p3i�f 3ðtiÞ
þ ð1� p1i � p2i � p3iÞ�f 4ðtiÞ�1�d1i�d2i�d3i�d4i (14)

3.3. Hazard function distribution

According to previous studies, Weibull distribution (Alkaabi
et al., 2011; Hojati et al., 2013; Nam and Mannering, 2000) or
log-logistic distribution (Chung, 2010; Chung et al., 2010; Hu et al.,
2011; Jones et al., 1991; Qi and Teng, 2008;Wang et al., 2013) is the
best distribution for traffic incident duration. Thus, these
distributions were tested in this study. To find other possible
distributions for the incident duration, the generalized gamma
distribution was also used to estimate fk(ti) and their respective
survivor functions.

In this study, the conditional clearance time distributions for all
methods were modeled with a three-parameter generalized
gamma distribution GG(b, s, l); these parameters are location
(b), scale (s), and shape (l). The generalized gamma distribution
can be reduced to commonly used distributions, such as
exponential when l =s =1, gamma when l =s, log-normal when
l = 0, and Weibull distribution when l =1 (Cox et al., 2007; Lau
et al., 2008). The mixture of generalized gamma distributions
makes the model flexible.

The probability density function fk(ti) and the survival function
Sk(ti) are defined as follows (Lau et al., 2008):

f kðtiÞ ¼
jlkj

sktiGðl�2
k Þ

½l�2
k ðe�bk tiÞlk=sk �l�2

k exp½�l�2
k ðe�bk tiÞlk=sk � (15)

SkðtiÞ ¼ 1� G½l�2
k ðe�bk tiÞlk=sk ;l�2

k � if lk > 0
G½l�2

k ðe�bk tiÞlk=sk ;l�2
k � if lk < 0

( )
(16)

where G[ . . . ; . . . ] is the cumulative distribution function for the
two-parameter gamma distribution, withmean and variance equal
to g > 0; that is, Gðt;gÞ ¼ R t

0 y
g�1e�ydy=GðgÞ (Cox et al., 2007; Lau

et al., 2008).
This study assumed that the scale and shape parameters

do not change, whereas the location parameter is a linear
combination of the covariates; thus, the generalized gamma
distributions are similarly parameterized to a conventional
regression model with GGðaþ bT

kX;s;lÞ, in which bT
k is a vector

of estimable parameters.

3.4. Unobserved heterogeneity

In the above fixed parameter models, it is assumed that all
differences between traffic incidents were captured with the
observed explanatory variables (the vector), that is, the effect of
any individual explanatory variable is the same for each

observation. But in fact, it is difficult to obtain all the related
information that truly influences the duration of traffic incidents.
For example, there may be unobservable factors influencing the
traffic incident duration, such as traffic flowvolume, that cannot be
integrated into the incident dataset. Consequently it is necessary to
consider unobserved factors that are not included in the covariates
vector, which is usually referred to as unobserved heterogeneity.
Two approaches can be used to examine the heterogeneity
assumption, namely, applying the gamma distribution to incorpo-
rate heterogeneity and allowing parameters to vary across
observations based on some pre-specified distribution, known
as the random-parameter duration model (Anastasopoulos et al.,
2012; Anastasopoulos and Mannering, 2014; Washington et al.,
2011). For the context of traffic incidents, the random-parameter
duration model has been reported to outperform the
fixed parameter duration models (Hojati et al., 2013, 2014). In
this paper, we will follow such suggestion and introduce
random parameters in our duration models (Anastasopoulos and
Mannering, 2014; Hojati et al., 2014)1, from now on referred to as
random parameter models. We assume that, for each observation
i (Washington et al., 2011), we have

bi ¼ bþvi (17)

where bi is a vector of parameters that vary acrossM incidents and
vi is a randomly distributed term (e.g., normally distributed term
with mean zero and variance s2). In this paper we follow earlier
research (Hojati et al., 2014) in using the normal distribution
directly and did not compare it with some other distributions.

4. Data description

The data used in this study consisted of 12,093 incident records
with duration ofmore than twominutes on Singapore expressways
from January 2010 to December 2011. Each incident record
originated from external information (driver’s call, police, etc.)
and created in the traffic management center in Singapore. The
incident response adapts to the situation when new information
continually becomes available. The initial information includes
location (road name, coordinates, distance to on/off ramp, zone ID),
direction, traffic condition (congestion/non congestion), number of
affected lanes and vehicles, etc. In addition to time tag, additional
new information are inserted in an incident record in text form.

The characteristics of the incident database are shown in
Table 1. Overall, the database can be divided into five groups. The
duration of incident with clearance method 4 is longest2. The
skewness values are greater than zero, indicating that the traffic
incident duration in the groups are all right-skewed. The
distributions of the groups are shown in Fig. 1. The distribution
differs for each incident record group. Curiously, methods 2

Table 1
Statistical characteristics of the selected incident database.

Method Obs number Min. (min) Max. (min) Mean (min) Std. dev Variance Skewness Kurtosis

1- Self drive without police 1474 2 147 11.55 11.30 127.84 3.90 30.20
2- Self drive with police 237 2 154 29.43 25.22 636.41 1.81 7.24
3- Tow without police 2224 2 170 32.63 27.28 744.27 1.90 7.15
4- Tow with police 3629 2 180 55.82 35.79 1281.14 1.05 3.72
5- Unknown method 4529 2 176 26.78 28.70 823.63 1.82 6.67

1 It is worth noting that other options exist, such as modeling together random
parameters model with gamma heterogeneity, as in (Anastasopoulos and
Mannering, 2014).

2 We should note the risk of endogeneity between incident duration and
likelihood of police arrival, as there is a potential circular causality between police
clearance process and extended duration. Hence, the results presented should be
considered with this aspect in mind.
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(self drive with police) and 3 (tow without police) are the
most similar to each other despite their apparent un-relatedness.
Except for these two cases, the fact that these distributions are
generally different support the idea of a competing risks mixture

model, that assumes that duration distribution is generated
through different underlying processes.

Kaplan–Meier estimation is a non-parametric method of
estimating S(t) from data. The Kaplan–Meier (KM) estimates

[(Fig._1)TD$FIG]

Fig. 1. Distribution of different incident record groups.
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of the survival function (Kaplan and Meier, 1958) of the five
clearance methods are shown in Fig. 2.

By using Fig. 2, we can compare the curves for the five different
groups of incidents with clearance methods. The KM curve for
incidents with clearance method 4 is consistently higher than the
KM curve for clearance method 1, suggesting that the incidents
that needed towing and police arrival have longer duration than
the incidents where those involved drove off before the police
arrived.

For all five KM curves, gaps in these curves can be found in an
horizontal or vertical direction. A vertical gap means that, at a
specific point in time, one group from the upper curve had a
greater fraction of incidents that had not yet been cleared.
A horizontal gap means that it took longer for one group from
the right curve to experience a certain fraction of clearance.

Research over the past few decades has elucidated the
relationships between influencing variables and incident duration.
Several reported variable groups affecting incident duration
include incident characteristics (e.g., incident type and severity;
number and type of vehicles involved; number of injures or
fatality) (Chung, 2010; Zhan et al., 2011), temporal characteristics
(Chung, 2010), traffic condition (Kim and Chang, 2012; Vlahogianni

and Karlaftis, 2013), road geometric characteristics (Jones et al.,
1991), operational factors (Khattak et al., 1995; Kim and Chang,
2012), environmental characteristics (Nam and Mannering, 2000;
Vlahogianni and Karlaftis, 2013), and textual topics from incident
reports (Pereira et al., 2013). In this study, the candidate variables
shown in Table 2 were extracted from the initial information and
the reported textual information of an incident.

The candidate variables derived from two types of data are the
set of values created by the operator (location, lanes blocked, etc.)
and the incident characteristics extracted from the incident report.
Following the recommendation of Khattak et al. (2012) on the
interactions between different incidents that are close in time and
space, we computed a few factors that should contribute to
incident duration; that is, for each record, we calculated the
number of incidents that occurred at several distances (same road,
100m, 1000m, 5000m) during a time window before the current
incident.

From the continual textual information before an incident
clearance, we also identified various incident characteristics, such
as whether the incident involved bikes, fire, injuries, buses, trucks,
motorcycles, etc. A simplistic capacity reduction value was
calculated by dividing the number of affected lanes by the total
number of lanes in the affected area; however, this approach
requires a more detailed analysis in future studies.

5. Model development

A total of 8062 incident records were chosen to estimate the
proposed competing risk mixture model, and 4031 records were
used to test the prediction accuracy of the developed model. The
former, training set, corresponds to earlier dates than the latter.

Analysis was performedwith the statistical software SASwhere
Eq. (14) is the log-likelihood (SAS Institute Inc., 2013). For a
parametric model application, the most appropriate distribution
for the duration must be identified by assessing the goodness of fit
in terms of variousmeasures such as likelihood (Ghosh et al., 2012;
Nam and Mannering, 2000), Akaike’s information criterion (AIC)
(Hojati et al., 2013; Wang et al., 2013), or Bayesian information
criterion (BIC). Table 3 shows the results of the different
distributions.

Table 3 shows that the random parameter log-logistic
distribution is the best fit for the incident duration although with

[(Fig._2)TD$FIG]

Fig. 2. The Kaplan–Meier plots of five clearance methods.

Table 2
Potential variables and their descriptions.

Variable Value

Temporal characteristics
Weekday Binary variable: 1—weekday; 0—weekend

Spatial characteristics
Same road Continuous variable: the incident number on the same road during a time window
Less 100 Continuous variable: the incident number in 100m during a time window
Less 1000 Continuous variable: the incident number in 1000m during a time window
Less 5000 Continuous variable: the incident number in 5000m during a time window

Traffic condition
Congestion Binary variable: 1—congested traffic condition when incident occurrence; 0—no-congested traffic condition
Capacity reduction Continuous variable: percent
Block shoulder Binary variable: 1—the shoulder is blocked; 0—the shoulder is blocked

Incident characteristics
Bike Binary variable: 1—incident involve bike; 0—no bike
Ambulance Binary variable: 1—incident need ambulance; 0—no need ambulance
Fire Binary variable: 1—incident involve fire; 0—no fire
Injure Binary variable: 1—incident involve injure; 0—no injure
Taxi Binary variable: 1—incident involve taxi; 0—no taxi
Bus Binary variable: 1–-incident involve bus; 0–-no bus
truck Binary variable: 1—incident involve truck; 0—no truck
Motorcycle Binary variable: 1—incident involve motorcycle; 0—no motorcycle
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a marginal advantage over Weibull, similarly to previous research
(Chung, 2010; Chung et al., 2010; Hu et al., 2011). For the remainder
of this paper, a competing risks mixture model based on random
parameter log-logistic distribution is estimated and used to predict
the duration of incidents.

It could be argued that, by splitting dataset for estimation (only
2/3 are used for training), our results will be less robust, so we
re-estimated the model with the full dataset and the results
show that the differences in the estimated coefficients are
marginal. This indicates that our dataset is large enough for
model estimation and validation with unseen data, following a
similar approach as some previous studies (Chung, 2010; Wei and
Lee, 2007; Zhan et al., 2011).

The estimated coefficients of the proposed competing risks
mixture approach based on log-logistic distribution with random
parameters are presented in Table 4. The multinomial logistic
model and the hazard-based models’ regression coefficients were
simultaneously estimated. Therefore, useful interpretations were
obtained as to how various factors affect the incidence of each
clearance method and how they influence the clearance time by
each method. On the other hand, some random parameters
present standard deviation values that are significantly different
from zero, that is, the effect of some variables does vary across the

observations. Notice that for significant variables only random
parameters that have standard deviations that are significantly
different from zero have been shown in the table.

The analysis of the coefficients for the clearance methods
logistic regression needs to consider also method 4 (both police
and tow vehicle present), which is here the “default” method. For
example, a positive coefficient mk of the logistic regression, which
models the expected type of clearance, indicates that this incident
type is more likely to be cleared by clearance method k than
method 4. In the following sectionwe only analyze the factors that
significantly affect the clearance methods and duration time.

The coefficients in column 2 of Table 4 indicate that the incident
onweekdaysweremore likely to be cleared bymethod 1 (drive self
without police). With the increase in the number of incidents that
occur on the same road within a time interval, the current incident
is less likely to be cleared by method 1 than method 4. Incidents
under congested conditions, or with capacity reduction, shoulder
blocking, bikes, ambulances, fire, injuries, taxis, trucks, or motor-
cycles, are less likely to be cleared by clearance method 1 than
method 4; that is, these kinds of incidents are usually more severe
in comparisonwith the absence of these factors and aremore likely
to need towing and police arrival.

For clearance method 2, the coefficients of the logistic
regression in column 3 of Table 4 indicate that incidents with
bikes, ambulances, injuries, or motorcycles are less likely to be
cleared by method 2 than method 4.

The coefficient of variable weekday means that incidents on a
weekday are more likely to be cleared by method 3 (tow without
police) than clearance method 4, because the drivers may have no
time to wait for the police to arrive (Table 1 shows that the mean
duration of method 3 is approximately half that of method 4).
Under congestion conditions, incidents are more likely to be
cleared bymethod 3. Similar to clearancemethod 1, incidents with
capacity reduction, shoulder blocking, bikes, ambulances, fire,

Table 3
Goodness of fit of different models.

Distribution Model type �2 log likelihood AIC BIC

Generalized gamma Fixed parameters 85356 85610 86500
Random parameters 78084 78340 78173

Weibull Fixed parameters 79990 80236 81098
Random parameters 77811 78062 77896

Log-logistic Fixed parameters 79343 79589 80450
Random parameters 77518 77766 77604

Table 4
Maximum likelihood estimates (with t-stat in parenthesis) for competing risk mixture method (* denotes P-value<0.05).

Clearance methods Duration

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 Method 4

p̂1Tand m̂ 1 p̂2Tand m̂ 2 p̂3Tand m̂ 3 â 1; l̂1T; ĝ 1 â 2; l̂2T; ĝ 2 â 3; l̂3T; ĝ 3 â 4; l̂4T; ĝ 4

Contant (m̂ 1 or â ) 2.4495 (15.02)* �1.2621 (-3.84)* 1.1052 (8)* 0.7016 (0.95) 1.3655 (1.76) 1.9506 (2.65)* 2.8898 (3.94)*
Weekday 0.5321 (5.55)* 0.2532 (1.3) 0.293 (3.38)* �0.0157 (�0.35) 0.036 (0.21) �0.0299 (�0.69) �0.0327 (�1.17)
Sameroad �0.1608 (�2.34)* 0.0746 (0.69) �0.041 (�0.75) 0.0592 (1.55) 0.0007 (0.01) 0.0485 (1.97)* 0.0162 (0.99)
Standard deviationa – – – – 0.032 (3.26) – –

Less 100 �0.15 (�0.89) 0.1937 (0.66) �0.1574 (�1.09) 0.0138 (0.17) 0.1969 (0.97) 0.1829 (2.55)* 0.0145 (0.32)
Less 1000 0.2638 (2.36)* -0.0698 (�0.32) 0.081 (0.86) 0.0707 (1.29) �0.2484 (�1.44) �0.0236 (�0.52) 0.009 (0.31)
Less 5000 �0.2237 (�4.15)* �0.0554 (�0.56) �0.0073 (�0.17) 0.0649 (2.41)* 0.1963 (2.35)* 0.113 (5.49)* 0.0541 (4.09)*
Standard deviation – – 0.126 (4.67) – – 0.028 (2.17)
Congestion �0.5659 (�5.38)* �0.1293 (�0.58) 0.2079 (2.21)* 0.539 (12.08)* 0.3015 (1.79) 0.1542 (3.55)* �0.0228 (�0.76)
Standard deviation 0.298 (5.61) – – – – – –

Capacity reduction �4.1418 (�11.27)* �1.0789 (�1.72) �1.5133 (�6.1)* 0.5694 (3.28)* 0.4315 (1) 0.7469 (5.15)* 0.3438 (4.52)*
0.108 (4.31) – – 0.229 (3.16) – –

Block shoulder �2.0726 (�13.03)* �0.2834 (�0.92) �0.6485 (�4.96)* 0.4753 (6.89)* 0.7354 (3.13)* 0.1625 (2.33)* 0.092 (2.2)*
Bike �2.3147 (�10.5)* �2.2452 (�4.4)* �1.1793 (�9.07)* 0.1475 (0.87) �0.8456 (�1.67) �0.1898 (�2.38)* �0.1724 (�5.56)*
Standard deviation – – – – 0.024 (2.81) 0.018 (3.01)
Ambulance �3.5866 (�19.43)* �1.2568 (�6.23)* �2.123 (�22.41)* 0.6876 (5.3)* 0.3303 (1.96) 0.3613 (5.78)* 0.1854 (6.81)*
Standard deviation 0.089 (3.54) – – 0.076 (4.38) – –

Fire �3.0038 (�4.07)* �0.5056 (�0.81) �2.1229 (�4.61)* 2.3356 (5.96)* 0.9584 (2.34)* 0.7595 (2.97)* 0.5124 (4.87)*
Standard deviation 0.202 (3.68) – – – – 0.064 (3.49)
Injure �3.095 (�7.59)* �1.5698 (�3.91)* �1.1654 (�8.14)* 0.3705 (1.33) 0.5219 (1.5) 0.9262 (11.03)* 0.0791 (2.82)*
Standard deviation – – – – 0.198 (5.27) 0.013 (2.97)
Taxi �0.4397 (�1.99)* �0.9933 (�1.63) 0.1714 (1.04) 0.1289 (1.08) 0.4403 (0.75) �0.0335 (�0.44) 0.0759 (1.53)
Bus �0.5691 (�1.61) �0.5072 (�0.68) �0.3378 (�1.06) 0.2374 (1.34) 1.3055 (3.01)* 0.175 (1.17) 0.3381 (4.28)*
Standard deviation – – 0.487 (2.01) – – 0.236 (3.92)
Truck �2.5012 (�3.29)* �0.3989 (�0.52) �0.4446 (�1.28) 1.4225 (1.62) 1.0005 (2.06)* 0.1065 (0.62) 0.1518 (1.46)
Motor �1.5346 (�10.02)* �0.8698 (�3.25)* �1.109 (�9.18)* 0.2919 (3.03)* 0.204 (0.82) �0.1338 (�1.87) �0.1864 (�6.33)*
ĝ 2.3624 (51.44) 2.2112 (15.22) 2.3435 (48.31) 2.615 (64.64)

a Standard deviation and t-stat of normally distributed parameter.
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injuries, or motorcycles are less likely to be cleared by method 3
than method 4.

As expected, for all types of clearance methods, the results of
this study indicate that incidentswith capacity reduction, shoulder
blocking, or fire had longer duration. If there are more incidents in
the 5000m distance within a time interval, the current incident
durationwill be longer. These findings are consistentwith previous
studies (Kim et al., 2008; Vlahogianni and Karlaftis, 2013; Zhan
et al., 2011).

For incidents with clearancemethod 1, if the incidents occurred
under congestion condition or with ambulances, fire, or motor-
cycles, the duration will last longer. In incidents with clearance
method 2, if there are more incidents within 5000m during the
same time or if the incidents involved buses, the duration will be
longer.

As expected, for clearancemethod 3, if there aremore incidents
in the same road or within 100m or if the incident occurred under
congestion condition, the duration will be longer, which may be
due to heavy traffic hampering the towing work. Moreover, if the
incident involved injuries or needed an ambulance, the duration
will tend to be longer. For clearance methods 3 and 4, if bikes had
been involved in an incident, the durationwill last shorter, because
towing a bike is easier than other vehicles.

Finally, for incidents with clearance method 4, if an incident
involved an ambulances, fire, buses, or trucks, the incident
duration will be longer. However, if a bike had been involved in
the incident, the incident will be shorter.

Based on the observed and predicted results, the root mean
squared error (RMSE) and MAPE were calculated to investigate the
accuracy of the predictions. RMSE and MAPE are defined as
follows:

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðOi � PiÞ2
vuut (18)

MAPE ¼ 1
n

Xn
i¼1

jOi � Pi

Oi
j (19)

where Oi is the observed duration for ith traffic incident; Pi is the
predicted duration for ith traffic incident; and n is the number of
traffic incident records to be predicted. Lower RMSE and MAPE
values correspond to more accurate predictions by the model. The
classical accelerated failure time model was used to compare the
prediction performance of different models. Four distributions,
namely, Weibull, log-normal, log-logistic, and generalized gamma
(GG) distribution, were tested for the AFT models, for five dataset
of incidents with different clearance methods.

Table 5 shows the RMSE and MAPE calculation results of two
models for two data groups, with corresponding duration.

Similar to a previous study with the same dataset (Pereira et al.,
2013), durations less than 15min are difficult to predict. Table 6
shows that, for shorter durations 2–15min, both RMSE and MAPE
indicate that the developed models cannot provide reasonable
prediction results, similar to the results of previous studies
(Khattak et al., 2012; Pereira et al., 2013). For durations longer

than 15min, the developed mixture model can provide reasonable
predictions in accordance with the Lewis’ criteria (Lewis, 1982),
since it falls below 0.5; however, the developed AFT model cannot.
Total RMSE and MAPE show that the developed mixture model is
significantly better than the classical AFT model.

Another measure of effectiveness frequently used in traffic
incident duration prediction is related to a given tolerance of the
prediction error (Chung, 2010; Kim and Chang, 2012; Smith and
Smith, 2001; Zhan et al., 2011). In this study, three tolerance values
were used: 15, 30, and 60min. Table 6 shows the results for this
measure of the model. The performance measures “�15min”,
“�30min”, and “�60min” indicate that the error range between
observed and predicted total time durations are within a 15, 30,
and 60min, respectively. Moreover, 60.83% of the total duration of
incidents was predicted with less than 15min of prediction error.

Table 6 shows that approximately 5% of the prediction absolute
error is larger than 60min, which may be the effect of factors not
used in this study, such as the road alignment, traffic flow volume,
and weather condition.

6. Conclusion

This study presented a mixture model for competing risks data
to analyze and predict incident duration based on two years of
incident records from Singapore. All records were used to develop
the mixture model for analyzing the various factors that may
influence the probability and duration of different clearance
methods. Two-thirds of the dataset were then used to develop the
mixture model for predicting incident duration, and the rest were
used to test the prediction accuracy.

Empirical analysis shows that different characteristics of
incidents have significant effect on the clearance methods and
duration. For example, an incident involving injured people ismore
likely to be cleared by clearance method 4 (with tow and police
simultaneously) and the duration will be longer than those
without injured people. The findings highlight that an appropriate
model should be adopted in analyzing traffic incident duration
because of the existence of different clearance methods.

On the other hand, the model estimation results show that the
random parameter model is better than the fixed parameter
model, which highlights that it is important to consider the
unobserved heterogeneity in the traffic incident duration models.
The results also indicate that the durations of incidents with
different clearance method are different and result from different
factors. A related note concerns potential endogeneity associated
with certain clearance methods (e.g., police), as there may be
circular causality (e.g., long duration accidents may demand
presence of police, which in turn may imply a longer clearance
process). The available data does not provide clear information on
this issue, but it should be taken into consideration in future
developments.

RMSE and MAPE show that the developed competing risks
mixture model can provide reasonable predictions for incidents
with duration longer than 15min, which are better than the
prediction results of the classical AFTmodel. These findings can aid
in predicting the duration of traffic incidents with different

Table 5
RMSE and MAPE of two models.

Mixture model Classical AFT model

Duration range RMSE MAPE RMSE MAPE

2–15 13.71 1.857 13.68 2.185
>15 31.46 0.454 44.35 0.504

Total 26.61 0.947 37.23 1.096

Table 6
Summary of evaluation of prediction accuracy.

Performance measure Mixture model Classical AFT model

�15min 60.43% 59.46%
�30min 82.39% 79.12%
�60min 95.29% 93.76%

Mean prediction error 17.71min 20.15min
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clearance methods accurately and in managing traffic incident
clearance processes efficiently. For the extremely short duration
range (i.e., 2–15min), however, the developed model cannot
provide reasonable prediction results, which is consistent with
previous studies.

A concern with parametric methods used in this study is
whether the adopted distribution appropriately describes the
dataset characteristics. Three kinds of distributions were tested in
this study; however, a flexible parameter using a piecewise
hazard function may give greater flexibility, but is dependent only
on the number of defined intervals. How to adopt the most
appropriate distribution remains an important area for future
research.
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