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Abstract The development of activity-based models as a tool to analyse travel
behaviour and forecast transport demand has been motivated by the growing com-
plexity in activity patterns resulting from socio-economic changes, growing conges-
tion, and negative externalities, as well as the need to estimate changes in travel
behaviour in response to innovative policies designed to achieve sustainability. This
paper reviews how the trade-off between behavioural realism and complexity, one of
the main challenges facing the travel-demand modeler, is made in the best practical
activity-based models. It proposes an approach that captures key behavioural aspects
and policy sensitivities, while remaining practical with reasonable requirements of
computational resources. The three main model elements in this trade-off—model
structure, data, and application method—are analysed. Drawing on examples from a
model developed for Tel Aviv and from existing US models, this paper shows that
behavioural realism and policy sensitivity can be achieved with a reasonable level of
model complexity.
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1 Introduction

The growing complexity in travel patterns and the need to estimate changes in travel
behaviour in response to new policies call for a better understanding of such issues as
the effects of new information and communication technologies on travel behaviour,
the effects of land use and growth management on travel behaviour and travellers’
response to auto-restraining policies. Understanding such effects, which is essential
for an improvement in the design of new policies, is the main motivation behind the
development and advancement of activity-based models. The explicit modelling of
activities and the consequent tours and trips enable a more credible analysis of the
responses to policies and of the subsequent effects of policies on traffic and air quality
(Shiftan 2000).

A variety of research methods have been used to study activity behaviour, including
duration analysis, limited dependent-variable models, structural equation models and
computational processes models (Pas 2002). Different approaches have been used for
activity-based models (Henson et al. 2009), but they usually take one of two main
approaches: discrete choice analysis (DCA) and rule-based process (Jovicic 2001;
Bowman and Ben-Akiva 1997). This paper focuses on the discrete choice modelling
approach (Ben-Akiva and Bowman 1998a) as it is the more practical one and therefore
the one that is more commonly used in actual regional models.

Based on the DCA approach, Ben-Akiva et al. (1996) proposed a practical activity-
based, comprehensive, travel-demand modelling framework that captures the mobility,
activity and travel decisions of individuals and households. In addition, a correspond-
ing prototype system of models that can be used for planning and policy analy-
sis was developed by Bowman and Ben-Akiva (1997). Applications have followed
and have been demonstrated for policy analysis (Shiftan and Suhrbier 2002). In an
effort to enhance behavioural realism, however, and to make the applications sen-
sitive to a wide spectrum of current planning and policy needs, these applications
have reached a significant level of complexity, to the point of risking their practical
use.

Figure 1 shows conceptually how the move from trip-based (four-step) models to
more advanced models increases behavioural realism and computational complexity.
As the figure shows, the cost of model complexity increases exponentially. In contrast,
the benefits of behavioural realism increase at a decreasing rate. Figure 2 shows the
same concept. The difference is that the computational complexity curve has been
converted to computational simplicity so that both curves represent model benefits.
As Fig. 2 shows, there is an optimal level of behavioural realism that maximizes the
benefits of the model.

This paper addresses the issue of incorporating the process of household and indi-
vidual activity-scheduling into the models and the level of complexity required for
travel-demand forecasting and policy analysis. It considers recent advances in research
and how these lead to current best practice of activity-based models used or being
developed by planning agencies. It discusses the trade-offs between behavioural real-
ism, on the one hand, and complexity and practicality, on the other, made by these
models.
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Fig. 2 Benefits from behavioral realism and computational simplicity in travel-demand models

In the next section the paper first further discusses the policy issues that activity-
based models should be designed to analyse and the possible trade-offs for increased
sensitivity within the barriers of implementation. The paper subsequently analyses the
trade-off between behavioural realism and complexity in regard to key concerns in
this trade-off, the model structure in Sect. 3, data in Sect. 4 and model application in
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Sect. 5. Finally, it suggests on a balanced level of trade-off between model complexity
and behaviour realism for good practical policy sensitive models.

2 Policy sensitivity and the desired level of behavioural realism

One of the main motivations for the development of activity-based models is to provide
a model that is sensitive to emerging policies. Therefore, the design of the model should
take into consideration the types of policies to which the model should be sensitive.
Although policy needs can vary from region to region, the minimum set of policies
that activity-based models should and can be sensitive to are: (1) Demand Manage-
ment including responses to different demand-management strategies, such as parking
restrictions and congestion pricing. (2) Land-Use Policies including mixed devel-
opment, concentrated development in centres or corridors, and pedestrian-friendly
site design. (3) Information Communication Technology (ICT), and (4) Transit
Improvements.

In addition to their greater sensitivity to specific policy measures, activity-based
models have two other related important features: inclusion of variable (or latent)
demand and sensitivity to equity issues. By using an integrated approach, including
logsum variables that bring level-of-service variables up the structure to the activity
pattern model, they account for changes in all travel choices including activity partic-
ipation as a result of changes in level of service. For the model to be able to account
for equity considerations, it has to be able to report statistics for different sub-groups
in the population. Using the micro-simulation approach, described later in this paper,
enables such reporting for any number of demographics. The various impacts can be
segmented by income, geographical distribution and other measures. This capability
was demonstrated in the San Francisco County Transportation Model (SFCTA) where
the impacts were identified for several population groups, such as female heads of
household with children (Davidson et al. 2007).

For activity-based models to have the desired behavioural realism, they need to
be theoretically sound and at a sufficient resolution to explain policy impacts. An
activity-based model should predict activity participation and time allocation, with
explicit consideration given to spatial, temporal and social constraints, while account-
ing for inter-dependency among individuals in a household and among trips. To bet-
ter understand activity behaviour, we need to analyse the context of the activities,
including why, when, with whom, and how long, as well as the sequence of those
activities (Bhat and Koppelman 1999; Goulias et al. 2004). An understanding of how
households and individuals acquire and process information about their activities and
travel options and how this information is used in planning activities and travel is also
required as well as proper accounting of the interactions of the household members
and of within-person correlations over time (Goulias 2000).

Activity-based models should be integrated with lower-level decisions, such as
parking choices or route choice, and higher-level decisions, such as residential loca-
tion, work location and car ownership (Ben-Akiva et al. 1996). Figure 3 shows the
system of models used in travel-demand analysis, with the activity-based model as
one of its elements. The upper level of the figure shows aggregate applications, and the
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Fig. 3 A combined aggregate and disaggregate model system

lower level disaggregate applications. Full arrows show the current practice of most
activity-based models. The dashed arrows show additional required integration at a
disaggregate level with higher-level decisions, such as land use and auto ownership,
and with lower-level decisions, such as parking and route choice.

Various attempts have been made to develop these types of integration (e.g.
Ben-Akiva and Bowman 1998b). Roorda et al. (2009) developed an integrated model
of vehicle transactions, activity scheduling and mode choice. Shiftan (2008) integrated
activity-based models with residential choice models. Initial efforts have been made
to implement integrated land-use and activity-based travel-demand models as shown
by Dong et al. (2006), Miller et al. (2004), Salvini and Miller (2003) and Ettema et al.
(2006).

From the lower level, most current activity-based models have done little to account
for route-choice behaviour and the effects of that behaviour on activity participation
and duration and scheduling patterns. Most models use traditional aggregate assign-
ment models instead of utilizing all the benefits of activity-based models. Initial efforts
to integrate activity-based modelling with dynamic traffic assignment were presented
by Lin et al. (2009).

In the trade-offs between practicality and behaviour realism, emphasis should be
placed on aspects of the specific policies of interest. In the Tel Aviv model, great empha-
sis was on parking pricing and supply and congestion pricing. Accordingly, detailed
time-of-day and parking models were developed. A special model of supply, cost, and
availability of parking was also developed for San Francisco which also developed
a policy variable to measure the potential impacts of improved pedestrian systems
and the expected growth that would likely impact future travel demand (Outwater and
Charlton 2006).
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3 Model structure

3.1 From trip-based to activity-based models

Initial developments advancing from the traditional trip-based/four-step paradigm to
activity-based models started with the implementation of tour-based models that cap-
tured behavioural interactions across trips within tours (defined as a sequence of trips
that start and end at the same location, usually the home), but not across tours. (Adler
and Ben-Akiva 1979; Algers et al. 1995; Shiftan 1998; Rossi and Shiftan 1997). The
activity-based model, also known as the day-pattern approach, captures interactions
across tours. The advantages of behavioural realism in activity-based models outweigh
the extra complexities. However, within the activity-based approach, there are different
levels of behavioural realism and complexity, and they have increased over time. Early
applications include the Activity Mobility Simulator (Kitamura et al. 1996), applied
in Washington, DC (Kitamura et al. 1995), and models in the Netherlands (Gunn and
Van der Hoorn 1998), Denmark (Algers et al. 1995), Germany (Ruppert 1998) and
Italy (Cascetta and Biggiero 1997). More recent applications include San Francisco
(Bradley et al. 2002; Jonnalagadda et al. 2001), New York, Columbus, Ohio, Atlanta
(Bradley and Vovsha 2005), Dallas/Forth-Worth, Sydney, the Dutch Albatros model
(Arentze and Timmermans 2001) and the Travel Activity Scheduler for Household
Agents (TASHA) model in Toronto, Canada (Roorda et al. 2008). The following sec-
tions discuss some of the variations in the structure of various activity-based models
in regard to different aspects of the model design.

3.2 Household interactions

Most existing activity-based models of transport demand are based on individual
activity-travel choice instead of household activity-travel choices. While activities in
multiple person households need to be coordinated and sometimes synchronized in
time and space, most current models neglect this behavioural realism in trying to keep
the models simple and practical. Srinivasan and Bhat (2005) showed the complexity
associated with studying interactions between in-home and out-of-home activity in
the context of intra-household and group decision-making.

Early attempts to deal with the issue include Wen and Koppelman (1999) and
Goulias (2000). Scott and Kanaroglou (2002) developed an approach that incorpo-
rated interactions between household members and activity setting. Miller and Roorda
(2003) allowed for joint activities in the TASHA model. Zhang et al. (2005) developed
a household task-allocation and time-use model based on a multi-linear group utility
function. Srinivasan and Bhat (2005) studied the role of intra-household interactions on
maintenance activities. Pribyl and Goulias (2005) developed CetreSIM, which simu-
lates daily schedules accounting for within-household interactions. Bhat and Pendyala
(2005) edited a special issue on the topic for Transportation, and Timmermans and
Zhang (2009) edited another one for Transportation Research B.

Expansion of the discrete choice model of activity-based models to incorporate
chauffeuring and other joint activities (Vovsha et al. 2003; Gliebe and Koppelman
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2002, 2005) set the basis for their practical implementation. The Mid-Ohio Regional
Planning Commission (MORPC) model accounts for explicit modelling of intra-
household interactions and joint travel with particular interest in modelling share
ride as a travel model. However, it is based on the sequential modelling of household
members by a predetermined order of person types. The Atlanta (Georgia) Regional
Commission (ARC) model tries to estimate all household members’ activities simul-
taneously (Bradley and Vovsha 2005).

3.3 Tour and activity patterns

In designing the activity-pattern model, modellers have to consider various aspects of
the daily pattern: activity purpose, number of tours per day and the pattern of each
tour, including the number of stops, the definition of a primary destination and treat-
ment of work sub-tours (tours that start from work and return to work in the middle
of the day). Because of the large number of attributes in the activity patterns and the
large number of alternatives for each attribute, it is impossible to model all alternatives
jointly. To simplify the model, it is common to decompose the structure to three levels,
distinguishing among the activity pattern, tour-level models and trip-level models as
shown in Fig. 4. The activity pattern predicts the overall daily structure or charac-
teristics of the main activity of the day. Given the activity pattern, it is common to
include the tour structure and mode, as well as the destination and timing of the main
activity in the tour-level models. In many cases, the location, mode and timing of trips
to intermediate stops are applied at the trip level after all other tour-level models are
predicted. This is conditional on the tour-level choices, but without feedback from
the trip-level models to the tour-level models. Some models, like Portland, have a
work-based sub-tour, which is an intermediate level between the tour and trip levels.
This approach can significantly simplify the application of the models.

The model should cover all the activity patterns that appear in the data. In practice,
90–95% coverage is considered good. For example, the Tel-Aviv model considers up
to two tours per person, a primary tour and a secondary tour. The analysis of the data
showed that only 1.6% of the sample made three tours, 0.3% made four tours and only
0.1% made five or more tours (Shiftan et al. 2004). Therefore, by capturing up to two
tours per person, 98% of the population’s tour generation is covered accurately. When
the number of stops per tour is considered, there should be good coverage in terms
of Vehicle Miles of Travel (VMT). For example, the number of stops per tour in the
Boise model was limited to four. For travellers with more stops, the four chosen were
those that make the largest VMT. Ignoring the others had only a marginal effect on
the total VMT estimate (Shiftan 1998).

There are various differences in modelling the activity-pattern model. Table 1 shows
the definition of main activity types for various models.

In the San Francisco model, the full activity pattern is predicted by one nested logit
model (full information), including

• The purpose of the primary home-based tour.
• The trip-chain type (stops on the tour) of the primary home-based tour.
• The number of home-based secondary tours.
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Fig. 4 A three-level model
system
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Table 1 Main activity types in several models

San Francisco Tel Aviv Sacramento Portland

Work Work Work Subsistence at home

Education Education School Subsistence on tour

Other Shopping Escort Maintenance at home

Secondary Other Shopping Maintenance on tour

Sub-tour from work Home Personal business Discretionary at home

Meal Discretionary on tour

Social/recreation

Overall, there are 48 out-of-home activity patterns, composed of 16 primary tour
patterns times 3 categories of secondary tour frequencies.

The Portland activity pattern (shown in Fig. 5) determines the purpose of the primary
activity of the day and whether the activity occurred at home or on a tour. This allows
capturing trade-offs between at-home and on-tour activities. The primary activity is
one of six alternatives shown in Table 1. If the primary activity is on-tour, the activity-
pattern model also determines the trip-chain type for that tour as defined by the number
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Fig. 5 The Portland daily-activity pattern model

and sequence of stops on the tour. Simultaneously, with primary activity and primary
tour type, the activity-pattern model predicts the number and purposes of secondary
tours. Overall, there are 19 possible combinations of primary activity/tour types and
six secondary tour alternatives possible for each primary activity/tour types to a total
of 19 × 6 = 114 daily activity pattern alternatives.

Variance exists in modelling the order of the different choices. For example,
Portland and San Francisco model the number and purpose of intermediate stops
at the activity-pattern level, before any particular tours are simulated. The Columbus,
New York and Atlanta models predict the number and purpose of tours only at the
activity-pattern level. The number and purposes of intermediate stops on any partic-
ular tour are predicted at the tour level once the tour destination, time of day and
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main mode are known (Bowman and Bradley 2006). The MORPC model first predicts
mandatory activity patterns, including time of day, mode and destination. The subse-
quent details of the secondary tours are modelled, given the residual time window. The
model then estimates a trip-level model to predict stop frequency, trip-mode choice
and destination. A similar approach is used in the Florida Activity Mobility Simulator
(FAMOS) (Pendyala et al. 2005), in which mandatory activities are predetermined at a
higher-level module as part of the Household Attributes Generation System (HAGS).

The Tel-Aviv model presents further variances in model structure (Fig. 6). The
destination, mode and time of the primary destination are predicted before details of
the full-day pattern are modelled. Modelling the probability of additional stops and
of a secondary tour is conditional on the previous decisions. Activity patterns are
defined by four primary out-of-home activity types, and for each activity there are
four primary tour patterns according to the number and sequence of stops. For each
of these 16 combinations, there is an option to have a secondary tour, each of which
has a similar structure as the primary tour. This results in 16 alternatives of primary
tours plus the alternative of a no-primary tour for a total of 272 (16*17) out-of-home
activity patterns. A similar model structure estimates the potential of a secondary tour
and the detail of such tour but only after the main tour was determined. The logic is
that the duration of the main activity may have an effect on the propensity to undertake
a secondary tour. In the San Francisco and Portland models, decisions regarding des-
tination, mode and timing are made after the full-day structure is determined. These
examples show that there are many ways to model activity patterns. In designing a
model structure, therefore, modellers need to consider the trade-off between more
patterns without full information and fewer patterns with full information.

Bhat et al. (2004), in developing the Comprehensive Econometric Microsimulator
for Daily Activity-Travel Patterns (CEMDAP) model, defined the start and end time
of work as temporal pegs on which the worker’s complete activity pattern rests. These
pegs, along with commuting duration, determine the departure time to work and the
arrival time at home from work. Accordingly, the first set of models determines an indi-
vidual’s decision to participate in mandatory activities. Only then are other activities
modelled.

The specific structure for each model is assumed a-priori. Usually modellers do
not search for the best structure to fit their data, given the effort involved in such a
procedure. Davidson et al. (2007) found that placing the frequency of secondary activ-
ities down the hierarchy at the tour level yields better results as was also done in the
Tel-Aviv model. Ye et al. (2007) considered three different casual structures: one in
which trip-chaining structure is determined first and influences mode choice, one in
which the order is reversed and the third in which they are determined simultaneously.
Pendyala (1998) suggested that different model structures might suit different seg-
ments of the population but no such differentiation has been found.

3.4 Destination choice

Given the large number of TAZ in some regions, it is common to sample zones
for model estimation. In the San Francisco model, the sample included 40 zones
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Fig. 6 The Tel-Aviv model
structure
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(Jonnalagadda et al. 2001), which is similar to the number used in Boise, Idaho
(Shiftan 1998), and New Hampshire (Cambridge Systematics 1998). In Portland, the
destination and mode choice of the primary activity are modelled simultaneously as
a nested structure. A sample of 21 zones, drawn from the full set of 1,244 zones, was
used for each tour and estimated together with nine alternative modes.

In Tel Aviv, the full set of 1,244 zones was used for destination-choice models.
Using many alternatives does not complicate the estimation task per se and provides
more efficient estimates. However, data preparation requires calculation of arrays of
the number of zones cubed. This applies specifically to secondary destinations, for
which the level of service refers to the additional travel time that the second destination
imposes on the already-determined tour from home to main destination. These arrays
can be cumbersome to calculate for estimation and application.

None of the models estimate two or more destinations simultaneously. Instead, all
models estimate the main destination first. The additional destinations are estimated
one by one, given previously determined destinations. While most models predict loca-
tion choices at the TAZ level, the Sacramento model predicts location at the parcel
level. There are more than 700,000 parcels in the region and a sample of 100 parcels
was used for estimation.

3.5 Time of day

A behavioural time-of-day model is critical for analysing time-of-day pricing policies,
such as congestion pricing or parking policies. Ideally, the time component should
be modelled continuously. However, this is probably easier in the simulation/rule-
based-type models than in the discrete choice-type models. Even with only a few time
periods, the time-of-day model is an element that can highly complicate the model
because modelling different time-periods may create a large number of alternatives,
given multiple activities and the need to predict start and end time for each activity.

Most activity-based models use the two-level approach for time-of-day modelling.
The timing of the main activity is predicted first at the tour level. The timing of other
stops is predicted at the trip level in the remaining time window. This approach was
used in San Francisco and in Portland. The model simultaneously predicts when the
traveller will leave home to begin the primary tour together with the period when
the traveller will leave the primary destination to return home at a resolution of five
daily time periods. Excluding overnight tours, there are 15 possible combinations.
This approach was implemented in the Tel-Aviv model at the activity level. Given the
need for more detailed time-of-day information for congestion pricing and parking
policies, however, a much more detailed time-of-day model was developed at the trip
level.

The detailed time-of-day model for Tel Aviv is based on a model developed by
Cambridge Systematics for the US Federal Highway Administration (FHWA) to
advance the practice of forecasting individual travel demand by time of day
(Cambridge Systematics 1999; Abou Zeid et al. 2006; Popuri et al. 2008). The time-
of-day choice model is based on travellers’ demographic characteristics, as well as
the transportation level of service by period, which represents congestion and pricing
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levels. Since travel-time data are available from model skims for only a few time peri-
ods (three in the Tel Aviv case), a key aspect of this approach is the development of a
model that estimates travel time for all time periods to be used in choice models. The
basis for developing this model is to relate the reported travel time given in the house-
hold survey to the three model travel-time skims and to various other network variables
using ordinary least square regression. More specifically, the model relates the ratio of
reported speed to network free-flow speed and to various explanatory variables, such
as network delay (derived from peak and free-flow speed), trip distance and origin
and destination area-types. A cyclical function of time is used to ensure that the travel
time corresponding to a given departure time will be the same 24 h later. The Tel-Aviv
time of day is modelled at a fine level of resolution using half-hour time periods. This
enables to evaluate congestion-pricing strategies specific to a wider range of time seg-
ments. The model is applied only to auto trips in order to capture peak spreading and
accordingly comes after trip-mode choice and before traffic assignment. This position
makes the location (and purpose) of all stops on a tour known (or modelled) prior to
time-of-day modelling.

The MORPC model offers a detailed time of day for the tour-level time-of-day
choice model at a resolution of 1 h. However, given there are only four network
simulations, there are only four different level-of-service variables for the different
periods. A similar approach was applied in the ARC model (Davidson et al. 2007). The
Sacramento model predicts the time at which each trip and activity starts and ends
to the nearest 30 min, using an internally consistent scheduling structure that is also
sensitive to differences in travel time across the day (Bowman and Bradley 2006).

In summary, current activity-based models have progressed to the point of simul-
taneously predicting the start and end times of the primary activity and subsequently
determining the timing of other activities in the remaining time windows. However,
they are still far from being able to implement a detailed time-use allocation. To this
end, a two-tier approach is common. First, a tour-level model captures the behav-
ioural time constraints on individuals by predicting the start and end times of the main
activity. Next, a more detailed model, implemented at the trip level with detailed time
resolution, can support the analysis of various congestion-pricing policies and their
impact on auto-trip time shifts.

3.6 Travel mode

Most mode-choice models in activity-based models consist of two levels: A tour mode
choice model that determines the primary tour of the mode and a trip mode choice that
determines the mode for each individual trip given the tour main mode. In the Tel-Aviv
model the tour’s main mode was defined as the mode leaving home and allows for the
whole array of modes. The trip-level model is a nested model with a higher level of
choice whether to deviate from the main mode. If the person deviates, the lower level
determines the other modes, conditional on the main mode of the tour.

In Portland, based on data analysis showing that only 3% of the tours changed in
mode from trip to trip within the tour, just the main mode of the tour is predicted
assuming all trips within the tour use the same mode. In other cases, such as the
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Table 2 Modes in the tour-level models of different model systems

CEMDAP Commute Portland San Francisco Sacramento Tel Aviv

Drive alone + + +

Driver + +

Share-ride +

Driver +

Passenger + + +

Share-ride for 2 +

Share-ride for 3+ +

Transit +

Transit Walk + +

Premium Drive +

Park & Ride +

Kiss & Ride +

Premium Bus +

Premium Walk + +

Transit Drive + +

Bus Drive +

Park & Ride +

Kiss & Ride +

Bus Walk + +

Taxi +

Walk/Bike +

Walk + + +

Bike + + +

School Bus +

San Francisco model, the trip-level model also allows for further detailing of modes.
For example, it determines whether the share-ride mode that was predicted in the
main model is a share-ride for only 2 or for 3+ persons. Table 2 shows differences in
definitions of the modes that appear in the tour’s main mode-choice models in several
activity-based models.

4 Data

The perfect activity-based model calls for the collection of very detailed time-use data,
including the activity diaries of all household members over a period of time, whether
in or out-of-home activities; the detailed travel information should contain land-use
data and transportation level-of-service data. The detailed time-use data should also
comprise spatial and temporal constraints and opportunities, interactions in time and
space, as well as interactions among household members. The question is what data
are required for a good, practical, policy-sensitive model? In this section we discuss
some of the main data issues stemming from activity-based models.
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4.1 Activity travel diary

One of the main considerations in developing activity-based models concerns the type
and length of the activity and travel diary. Obviously, the Mobidrive data collected in
Germany (Axhausen 2000) over a 6-week period may be cumbersome for a planning
organization to use in developing a practical activity-based model. A multi-day diary
can enable the model to account for inter-day and inter-week interactions, but much
can still be achieved with simpler travel diaries. One-day diaries are sufficient for cur-
rent practice. Even when diaries cover a longer period of time, such as those used in
Tel Aviv (3 days) and Portland (2 days), the actual models do not deal with across-day
interrelations.

Collecting detailed activity and travel data is problematic and imposes a significant
burden on respondents. For practical models, therefore, it is best to keep surveys to a
minimum level of required complexity in terms of questionnaire design and to assign
appropriate resources for quality control and various logical checks.

The surveys conducted in Portland, Dallas-Fort Worth, Texas and the Research
Triangle, North Carolina included in-home activities. The Portland model uses the
survey information to capture trade-offs between in-home and out-of-home activities.
Since it is impossible to record all in-home activities, guidelines should be developed
regarding the types to be included in the diary. Davidson et al. (2007) suggested record-
ing activity duration in addition to time of travels in order to obtain better information
on time use.

The size of the sample can affect the number of segments that the model can identify
and should be designed together with the model design. These and other issues are
dealt with in the literature on surveys and data collection.

4.2 Geographic position systems (GPS)

GPS devices are helpful in collecting more accurate data for activity and travel surveys.
Linking GPS data with land-use data at the parcel level can provide a richer data layer
to support analyses. GPS traces provide more accurate information on activity loca-
tions and durations and minimize under-reporting of short and infrequent trips. GPS
can also reduce a respondent’s effort by not reporting some aspects of the diary, mainly
location and time. The respondent can concentrate on fewer items, such as mode, pur-
pose and occupancy. As GPS devices become cheaper, their use is spreading. Although
GPS has the potential to contribute meaningfully to activity-based models and to sim-
plifying data collection, further research and development is needed to make it a better
practical tool.

4.3 Combining data sources

Activity-based models contain a larger number of alternative choices and a greater
number of unknown parameters than do tour or trip-based models. Therefore, max-
imum use should be made of travel survey data, which should be combined with
other data sources, such as stated-preference data and auxiliary intercept surveys. The
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Fig. 7 The Tel-Aviv combined RP-SP model structure

combined analysis of disparate data sources and the integrated application of differ-
ent modelling methods and approaches that best fit each data set are features that
permit cost-effective model development. Ben-Akiva and Morikawa (1990) showed
how these features can be used to rigorously account for and reconcile complicated
travel behaviour characteristics.

The Tel-Aviv tour-level mode choice model estimated for Tel Aviv is a good exam-
ple of the efficient use of existing and new data. This model (see Fig. 7) consists of
two sets of RP data and two sets of SP data. The RP data include the National Travel
Habit Survey and an extension of it conducted specifically for the development of this
model in communities adjacent to a rail corridor. The SP data include a previous SP
survey conducted for the development of the Tel-Aviv rapid transit system and a new
tour-based driver SP survey focusing on drivers’ response to parking policing and con-
gestion pricing. The experiment was based on respondents’ actual tours and potential
alternatives included changes in mode, changes in the time of day and chaining of trips.

For the model to be sensitive to parking policies, special efforts were made to col-
lect meaningful parking data in Tel Aviv. The data, used to estimate parking supply
and demand models, consisted of the following elements:
• Parking inventory
• Parking occupancy for street and uncovered parking lots by time of day
• Parking occupancy for selected in-building parking lots.
• Interview with drivers who park in the area (trip purpose, arrival time, search time,

walk time, payment and personal data).
The lack of more detailed data collection, specifically more detailed activity and
travel diaries, forms a barrier to the research advancement of time-use data and activ-
ity participation. Nonetheless, much can still be done with the current practice in data
collection. Most activity-based models were developed with the same data sources
that are used for traditional trip-based models. The addition of limited main in-home
activities can contribute to improved model capability.

5 Model application

Applications of activity-based models offer a complicated task. It is also the task
that usually puts the most constraints on the level of behavioural realism achieved in
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such models. The application consists of several elements, among them an activity-
simulation program, the population synthesizer and the transportation networks and
assignment procedure.

5.1 Activity-simulation

The application of activity-based models for forecasting normally employs a “sam-
ple enumeration” or a “micro-simulation” approach, with a representative sample of
households or a synthetic population. In sample enumeration, the probabilities across
all possible alternatives are added across all individuals in the sample. In the micro-
simulation approach, the probabilities are used in a Monte Carlo approach to predict
specific choices for each individual in the sample. The key difference is that the
sample-enumeration approach enumerates all possible combinations of model out-
comes and multiplies probabilities. The Monte Carlo approach predicts a single out-
come per person, drawing randomly from the model probabilities (see Bradley et al.
(1999) for more on the differences between the two approaches and Vovsha et al.
(2002) and Jonnalagadda et al. (2001) on micro-simulation techniques).

There are various options for short-cuts and run-time reductions. For example, in
applying the Portland model with the sample enumeration approach, Bradley et al.
(1999) made the following short-cuts:

• Ran the model with only 10% of the sample.
• Applied destination-choice and stop-location models to only a subsample of the

1,244 possible zones.
• Applied the work-based sub-tour and intermediate stop locations at the zonal level

using sample enumeration and, therefore, without the use of logsum variables (see
also next section).

The Monte Carlo simulation introduces a random sampling error into the forecast.
However, this error decreases as the number of simulated households increases. Large
samples, as much as the size of the population, should be used to avoid such error. On
the other hand, by simulating choices for a specific individual, all that person’s char-
acteristics can be retained to provide a wealth of information for other purposes, such
as equity considerations. Outwater and Charlton (2006) specified this advantage as
the reason for choosing this approach for the application of the San Francisco model.

The consideration for the specific method to apply involves a trade-off between
computer run-time on the one hand and geographical coverage and the accuracy of the
results, on the other. Sample enumeration was used in some of the tour-based models
in combination with Monte Carlo simulations. The problem with sample enumera-
tion is that the more levels there are in the model systems, the more costly it is to
store the probabilities of all the possible combinations in the memory. In the Boise
model, sample enumeration was used in the high-level models, for which relatively
few alternatives were available, such as the tour purpose and patterns. However, for
lower-level models with many alternatives, such as destination-choice models, Monte
Carlo simulation was used to avoid book-keeping of large numbers of probabilities
resulting from multiplying probabilities by the different models (Shiftan 1998). With
the move to activity-based models, the number of alternatives significantly increased,
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and the book-keeping became more cumbersome. The current trend with the applica-
tions seems to be Monte Carlo simulation.

The model-application process may require excessive time and computational
resources. The main elements in the running time of the application are the model
structure and the sample size. Eliminating insignificant interactions or linkages among
sub-models may at this stage be considered a way of reducing running time (see next
section, on logsums). The required sample size depends on the nature of the appli-
cation. A flexible application procedure can be used to reduce running time when a
lower level of output resolution is required. This can be achieved by allowing the user
to select an appropriate sample size.

The literature on model application usually does not report running time. Bradley
et al. (1999) reported running time for the Portland model using both the sample-
enumeration approach and Monte Carlo simulation. Running the model system with
Monte Carlo simulation on the full sample of 600,000 households took 32 h on a
400 MHz Pentium II computer. Running the sample-enumeration approach with the
same model on only 10% of the sample also took 32 h. As Bradley et al. (1999) report,
75% of that time was needed to run the zonal enumeration to calculate the distribu-
tion of intermediate stop locations between every OD pair in the region. This shows
the advantage of the micro-simulation approach from a running-time point of view.
Rossi et al. (2009) surveyed various agencies regarding their modelling run time and
found it to vary from 2 h in New Hampshire, 10 h in San Francisco, to 1 or 2 days in
Sacramento and Columbus.

Although it is always desirable to use larger sample sizes with the micro-simula-
tion approach, it seems that the shorter running time compensates for this disadvan-
tage. Most recent applications, among them MORPC and the generic application of
CEMDAP, use the micro-simulation approach.

5.2 The use of logsums

Logsums constitute an integral part of an activity-based model system and its sim-
ulation application. However, they impose major computation complexity in model
applications resulting from the need to calculate the utility of every combination of the
many alternatives (there can be more than a million in the case of the entire daily activ-
ity model; see Bowman and Bradley 2006), starting from the bottom of the structure
and going up the tree and then calculating probabilities on the way back down. As indi-
cated by Bradley et al. (2002), logsum variables add a great deal of complexity to the
process of model application and require much more computer time to run. To reduce
this complexity, therefore, it is common to make various shortcuts and assumptions.
Thus, in the San Francisco model, the program first applies the work-tour mode-choice
model (at the highest level of the model) to calculate a mode-choice accessibility log-
sum across all modes to each alternative work location. However, since the tour type is
not predicted at this point, it is assumed to be an am peak-pm peak work tour with no
intermediate stops in either direction. In this model, logsums are also calculated from
the main mode-choice models and used in the primary destination-choice models for
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non-work tours (because work destinations are modelled as the highest decision in the
tree).

The Sacramento model uses two methods of approximating logsum variables. First,
instead of calculating the logsum for all possible conditional outcomes, the assumed
conditional outcome is selected by a Monte Carlo draw, using approximate proba-
bilities. Second, aggregate logsums that approximate the expected utility logsum are
calculated by adding up the exponentiated utilities of the multiple alternatives. The
amount of computation is reduced either by ignoring differences among decision-
makers or by calculating utility for a careful subset or aggregation of the available
alternatives (Bowman and Bradley 2006). However, aggregate logsums are not rec-
ommended, because of the unknown biases that measurement errors may have on
model estimation and that aggregation errors may have on model application.

To simplify the calculation process, simplified logsums were used in the application
of the Tel-Aviv model. The logsums were calculated only for four main modes and the
calculation used only the in-vehicle and waiting-time components of the utilities from
the mode-choice models. This reduced the computation effort significantly because
the mode-choice logsums varied only by origin and destination zones instead of by
each individual in the estimation data sample. Logsums used in the auto-ownership
model were calculated only for work trips at the AM peak hour under the assumption
that morning trips to work constitute the main determinant of the number of cars a
household needs. Other trips can be more easily accommodated with the number of
cars available.

Logsum variables allow for many of the advantageous features of an activity-based
model by providing the feedback/accessibility from low-level models to higher ones.
Given the role and computational complexity of logsums, one should think about how
many and which variables to include in the model. Models should be estimated with
as many logsum variables as possible. But one should then carefully consider which
ones are the most important to retain for model application, which ones affect specific
policy analysis and what kind of simplification can be made without introducing too
much error and without excessively hampering policy sensitivity.

5.3 Population generator

Another aspect of the application is the population generator, especially the dimension
of the marginal distributions that define the number of segments in the population that
are being controlled for. The San Francisco model uses 9 combinations of household
size and number of workers, 4 household-income levels, and 3 age categories for
head of household for a total of 108 combinations. Portland uses 4 household-size
categories, 4 household-income categories, and 4 age-of-household head categories
for a total of 64 combinations. This scale of combinations is similar in most mod-
els, with some variations in the categories used. For example, both Sacramento and
Columbus use 4 household-income categories and 4 number-of-workers categories.
But Columbus uses 5 household sizes, whereas Sacramento uses 4 such categories.
The Tel-Aviv model uses a slightly different approach, with 12 combinations of age of
head of household and gender; it also controls for average household size and average
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number of workers. Most models find household size and number of workers to be
good variables for distinguishing among the main household life-cycle groups.

The sample size generated by the population generator and used in model applica-
tion directly affects running time as discussed above. Portland uses a sample of 0.6
million households and 1.5 million inhabitants, matching the actual population for the
application base year of 1994. However, to save running time, many simulations were
run with only a partial sample, usually 10%. Model applications should be designed to
provide the user with the option to use a fraction of the complete sample in each run.
In this case, initial analysis or sketch-planning levels can be conducted with a smaller
sample. Only final analysis would be conducted with the entire sample to achieve
better accuracy. For additional comparisons of some of the population generators in
use, see Bowman (2004).

5.4 Networks

All practical models use network-assignment procedures with traffic-analysis zones
(TAZ) as the basic spatial element. Another aspect that complicates the application
of the models is the number of TAZs. Although there has been some discussion on
disaggregating destinations, all practical models use the TAZ system. The smaller
the TAZ and the more there are, the better spatial resolution they provide. However,
every operation has to be performed on more TAZs, thus increasing running time. The
San Francisco model has 1,728 TAZs in the metropolitan area; MORPC has 1,805
TAZs, Portland 1,244 and Tel-Aviv a little over 1,200. Overall, it seems common to
use between 1,000 and 2,000 zones. It may make sense to consider a two-level zone
system, such as alternative transit alignments, which require fine resolution system.
Other applications, though, such as an area-wide tax policy, may not require that level
of resolution. Finally, as shown in the Destination-Choice Model section, some appli-
cations use the entire zone, but sample a subset for specific applications. Some models
use a finer zone system to provide more accurate road and transit level-of-service vari-
ables, such as land use and parking. Sacramento uses 700,000 parcels, and Portland
20,000 “blocks” for this purpose (Bowman and Bradley 2006).

6 Conclusions

Before undertaking the detailed design of an activity-based model, one should define
the planning needs and policy issues to which the model needs to be sensitive. The
design of the model should address those needs.

In activity-based models, it is the application procedure that drives the complexity
of the model and, therefore, should be kept in mind in designing the model structure.
Given that more behavioural realism can be achieved in estimation than in application,
it is recommended to design and estimate the model at a higher level of complexity
than what is reasonable to apply. In this way, the main features and linkages can be
identified and maintained. Other features can be removed during application to obtain
a reasonable level of complexity and running time.
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Many of the elements of activity-based models can be estimated and applied with
data and effort that do not greatly exceed those needed for traditional trip-based mod-
els. The Tel-Aviv and San Francisco models were estimated with the same data needed
for trip-based models. The San Francisco model was developed and implemented in a
relatively short period of time (a little more than a year). These models already provide
a big step towards better policy sensitivity than do trip-based models.

With the development of more advanced model systems, such as MORPC and
Atlanta, there is need to test their actual contribution to demand forecasts and to
analyse their policy sensitivity. Interrelations among household members and among
days can clearly contribute to better behavioural realism, but the magnitude of their
complexity in practical models raises questions whether their contributions justify
this extra level of complexity. For applied planning studies, simpler activity-based
models may be used rather than waiting for perfect behaviour-realism models to be
feasible. As research advances and various tools, such as generic computer software
(Bhat et al. 2004) are developed, it is expected that better behavioural realism will be
easier to implement, thereby enhancing practical models.

The sections to follow will summarize the main conclusions and recommendations
regarding the three main elements of activity-based modelling: model structure, data
and model application.

6.1 Model structure

There are endless options for various model structures. There is also a lack of research
into what makes a better structure. However, several general conclusions may be draw,
based on the discussion in this paper.

A two-level is recommended for mode-choice and time-of-day decisions. This struc-
ture could also be extended to destination choice, in which the main decisions are
modelled at the tour level and secondary decisions at the trip level, given the tour-
level decision. More details and refined decisions can be modelled at the trip level.
A detailed time-of-day model with a resolution of half an hour is recommended for
auto trips to support the analysis of various congestion-pricing policies.

Logsum variables better enable capturing behavioural realism. Various logsum vari-
ables should be tested in estimation. However, because of their contribution to model
complexity, it is recommended to retain only the most important logsum variables for
application and consider various appropriate aggregation and approximation of these
logsum variables. Further research needs to be conducted to investigate the magnitude
of the error introduced by such aggregation and approximations.

6.2 Data

Much can be done in activity-based models with the same data used for trip-based
models. A 1-day diary seems sufficient for a good, practical, activity-based model.
Given the complexity of diaries, more effort and resources should be invested in qual-
ity control. It is recommended to add main in-home activities to diaries. However,
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further research is required on how to define these main activities. GPS is becoming
cheaper and should be used to enhance the accuracy of travel diaries.

6.3 Application

A Monte Carlo simulation approach of large samples, ideally equal to the size of
the population, is recommended. Various short-cuts may be considered to reduce
complexity and running time in applications. For example, it is reasonable to apply
destination-choice models on only a sub-sample of destinations to reduce running time
when simulating a single choice by a single individual. Further research regarding the
sensitivity of these types of short-cuts is still required. There is also need to further
investigate the extent of random-sampling error introduced into forecasts by using the
Monte Carlo simulation approach and its geographic coverage.

6.4 Concluding remarks

To better answer the questions posed in this paper, we need to compare predictions and
policy forecasts from complex models that capture the full spectrum of behavioural
realism with simpler, more practical models. However, opportunities to perform such
comparisons are rare. Future research should be conducted to assist in developing
guidelines to determine when a more realistic process model is warranted and when a
simpler, more practical model will suffice. Although research on activity-based models
has a history of several decades, it has advanced significantly only in the past decade.
Practical activity-based models have only recently become operational. The time has
come to test these models, use them for policy analysis and make the transition toward
their wider use.

References

Abou Zeid M, Rossi T, Gardner B (2006) Modelling time-of-day choice in context of tour- and activity-based
models. Transp Res Rec J Transp Res Board 1981:42–49

Adler T, Ben-Akiva M (1979) A theoretical and empirical model of trip chaining behavior. Transp Res B
13B:243–257

Algers S, Daly A, Kjellman P, Widlert S (1995) Stockholm Model System (SIMS): application. In: 7th
World conference of transportation research, Sydney, Australia

Arentze T, Timmermans H (2001) A co-evaluation approach to extracting and predicting linked sets of
complex decision rules from activity diary data. Paper presented at the 80th annual meeting of the
transportation research board, Washington, DC, January 2001

Axhausen KW (2000) Activity-based modelling: research direction and possibilities, draft paper.
In: Simmonds D, Bastes JJ (eds) New look at multi-modal modelling, a report for the Department of
Environment, Transport and the Regions, London (http://e-collection.ethbib.ethz.ch/eserv/eth:24387/
eth-24387-01.pdf)

Ben-Akiva M, Bowman JL (1998a) Activity-based travel demand model systems. In: Marcotte P, Nguyen
S (eds) Equilibrium and advanced transportation modeling. Kluwer, Boston

Ben-Akiva M, Bowman J (1998b) Integration of an activity-based model system and a residential location
model. Urban Stud 35(7):1131–1153

Ben-Akiva M, Morikawa T (1990) Estimation of switching models from revealed preferences and stated
intentions. Transp Res A 24A(6):485–495

123

http://e-collection.ethbib.ethz.ch/eserv/eth:24387/eth-24387-01.pdf
http://e-collection.ethbib.ethz.ch/eserv/eth:24387/eth-24387-01.pdf


A practical policy-sensitive, activity-based, travel-demand model 539

Ben-Akiva M, Bowman J, Gopinath D (1996) Travel demand model system for the information ear. Trans-
portation 23:241–266

Bhat CR, Koppelman FS (1999) A retrospective and prospective survey of time-use research. Transportation
26:119–139

Bhat CA, Pendyala RM (2005) Modeling intra-household interactions and group decision-making. Trans-
portation 32:443–448

Bhat CR, Guo J, Srinivasan S, Sivakumar A (2004) Comprehensive econometric microsimulator for daily
activity-travel patterns. Transp Res Rec 1894:57–66

Bowman JL (2004) A Comparison of population synthesizers used in microsimulation models of activity
and travel demand, working paper, available at http://JBowman.net

Bowman JL, Ben-Akiva M (1997) Activity based travel forecasting. In: Activity-based travel forecasting
conference, June 2–5, 1996: summary, recommendations and compendium of papers, New Orleans,
LA, USDOT Report #DOT-T-97-17

Bowman JL, Bradley M (2006) Disaggregate treatment of purpose, time of day and location in activity-
based regional travel forecasting models. Paper presented at the 2005 European transport conference,
Strasburg, France

Bradley M, Vovsha P (2005) A model for joint choice of daily activity pattern types of household members.
Transportation 32:545–571

Bradley MA, Bowman J, Lawton T (1999) A Comparison of sample enumeration and stochastic microsim-
ulation for application of tour-based and activity-based travel demand models. Paper presented at the
European transport conference, Cambridge, UK, September

Bradley M, Outwater M, Jonnalagadda N, Ruiter E (2002) Estimation of an activity-based micro-simulation
model for San Francisco. Paper presented at the 81st annual meeting of the transportation research
board, Washington, DC

Cambridge Systematics, Inc (1998) New Hampshire statewide travel model system—model documentation
report, prepared for the New Hampshire DOT, July

Cambridge Systematics Inc (1999) Time-of-day modeling procedures: state-of-the-practice, state-of-the-
art” Publication DOT-T-99-01. FHWA

Cascetta E, Biggiero L (1997) Integrated models for simulating the Italian passenger transport system.
In: Papageorgiou M, Poulezos A (eds) Transportation systems, preprints of the 8th IFAC/IFIP/IFORS
Symposium, Chania, Greece

Davidson W, Donnelly R, Vovsha P, Freedman J, Ruegg S, Hick J, Castiglione J, Picado R (2007) Synthe-
sis of first practices and operational research approaches in activity-based travel demand modeling.
Transp Res A Policy Pract 41(5):464–488

Dong X, Ben-Akiva M, Bowman J, Walker J (2006) Moving from trip-based to activity-based measures of
accessibility. Transp Res A Policy Pract 40(2):163–180

Ettema D, de Jong J, Timmermans H, Bakema A (2006) PUMA: multi-agent modeling of urban systems.
Transportation Research Board CD-ROM

Gliebe J, Koppelman F (2002) A model of joint activity participation between household members. Trans-
portation 29(1):49–72

Gliebe J, Koppelman F (2005) Modeling household activity—travel interactions as parallel constrained
choices. Transportation 32(5):449–471

Goulias KG (2000) Multilevel analysis of daily time use and time allocation to activity types accounting for
complex covariance structures using correlated random effects. Paper presented at the 9th international
conference on travel behavior research, Gold Coast, Australia, July

Goulias KG, Kim T, Patten M (2004) On activity type classification and issues related to the with whom
and for whom questions of an activity diary: preliminary findings and pattern classification. Paper
presented at the conference on progress in activity-based analysis, May 28–31, Vaeshastel Castle,
Maastricht, the Netherlands

Gunn HFAIJM, Van der Hoorn A (1998) The predictive power of operational demand models. Paper D14,
prepared for the European transport conference, Loughborough University, September. In: Proceed-
ings of the seminar in transportation planning methods, London

Henson KM, Goulias KG, Golledge RG (2009) An assessment of activity-based modelling and simula-
tion for application in operational studies, disaster preparedness, and homeland security. Transp Lett
1:19–39

Jonnalagadda N, Freedman J, Davidson W, Hunt J (2001) Development of a micro-simulation activity-
based model for San Francisco: destination and mode choice models. Transp Res Rec 1777:25–30

123

http://JBowman.net


540 Y. Shiftan, M. Ben-Akiva

Jovicic G (2001) Activity based travel demand modelling: a literature survey. Danmarks Transport Forsk-
ning. ISSN:1601-0841, ISBN:87-7327-055-5

Kitamura R, Pendyala RM, Pas EI, Reddy P (1995) Application of AMOS, an activity-based TCM evalua-
tion tool to the Washington, DC, metropolitan area. In: 23rd European transport forum: Proceedings
of seminar E transportation planning methods. PTRC Education and Research Services, London,
pp 177–190

Kitamura R, Pas EI, Lula CV, Lawton TK, Benson PE (1996) The sequenced activity mobility simulator
(SAMS): an integrated approach to modelling transportation, land use, and air quality. Transportation
23(3):267–291

Lin DY, Eluru N, Waller ST, Bhat C (2009) Evacuation planning using the integrated system of activity-
based modelling and dynamic traffic assignment. Paper presented at the 88th TRB annual meeting,
Washington, DC (CD-ROM)

Miller EJ, Roorda MJ (2003) A prototype model of household activity/travel scheduling. Transp Res Rec
1831:114–121

Miller EJ, Hunt J, Abraham J, Salvini PA (2004) Microsimulation urban systems. Environ Urban Syst
28:9–44

Outwater ML, Charlton B (2006) The San Francisco model in practice: validation, testing, and application.
Paper presented at the innovations in travel modelling 2006 conference, Austin, TX, 21–23, May 2006

Pas EI (2002) Time use and travel demand modelling: recent developments and current challengers. In:
Mahmassani H (ed) Perpetual motion: travel behavior research opportunities and application chal-
lenges. Elsevier Science, Oxford, pp 307–331

Pendyala R (1998) Causal analysis in travel behavior research: a cautionary note. In: Ortuzar JD,
Hensher D, Jara-Diaz S (eds) Travel behavior research: updating the state of play. Elsevier Science,
The Netherlands, pp 35–48

Pendyala RM, Kitamura R, Kikuchi A, Yamamoto T, Fujii S (2005) The Florida activity mobility simu-
lator (FAMOS): an overview and preliminary validation results. Paper presented at the 84th annual
transportation research board conference, Washington, DC, and CD-ROM

Popuri Y, Ben-Akiva M, Proussaloglou K (2008) Time-of-day modeling in a tour-based context: Tel Aviv
experience. Transp Res Rec J Transp Res Board 2076:88–96

Pribyl O, Goulias KG (2005) Simulation of daily activity patterns. In: Timmermans H (ed) Progress in
activity-based analysis. Elsevier Science, Oxford, pp 43–65

Roorda MJ, Miller E, Khandker MNH (2008) Validation of TASHA: a 24-h activity scheduling microsim-
ulation model. Transp Res A Policy Pract 42(2):360–375

Roorda MJ, Carrasco JA, Miller E (2009) An integrated model of vehicle transactions, activity scheduling
and mode choice. Transp Res B Methodol 43(2):217–229

Rossi T, Shiftan Y (1997) Tour-based travel demand modelling in the US. In: Proceedings of the 8th
IFAC/IFIP/IFORS symposium on transportation systems, Chania, Greece, June

Rossi T, Winkler B, Ryan T, Faussett K, Li Y, Wittl D, Abou Zied M (2009) Deciding on moving
to activity-based models (or not), Transportation research board annual meeting, Paper #09-1916,
http://pubsindex.trb.org/orderform.html Source Data

Ruppert E (1998) The regional transportation model “TRANSFER”. Paper presented at the 8th World
conference on transport research, Antwerp, Belgium, July

Salvini P, Miller E (2003) ILUTE: an operational prototype of a comprehensive microsimulation model
of urban systems. Paper presented at the 10th international conference on travel behavior research,
Lucerne, August

Scott DM, Kanaroglou PS (2002) An activity-episode generation model that captures interactions between
household heads: development and empirical analysis. Transp Res B Methodol 36(10):875–896

Shiftan Y (1998) A practical approach to model trip chaining. Transp Res Rec 1645:17–23
Shiftan Y (2000) The advantage of activity-based modeling for air quality purposes: theory versus practice

and future needs. Innovations 13(1):95–110
Shiftan Y (2008) The use of activity-based modeling to analyze the effect of land-use policies on travel

behavior. Ann Reg Sci 42(1):79–97
Shiftan Y, Suhrbier J (2002) The analysis of travel and emission impacts of travel demand management

strategies using activity-based models. Transportation 29(2):145–168
Shiftan Y, Ben-Akiva M, Proussaloglou K, DeJong J (2004) An advanced activity-based model for

Tel-Aviv. Paper presented at the EIRASS workshop on progress in activity-based analysis, Maas-
tricht, The Netherlands, May 28–31

123

http://pubsindex.trb.org/orderform.html


A practical policy-sensitive, activity-based, travel-demand model 541

Srinivasan S, Bhat CR (2005) Modeling household interactions in daily in-home and out-of-home mainte-
nance activity participation. Transportation 32(5):523–544

Timmermans H, Zhang J (2009) Modeling household activity travel behavior: examples of state-of-the-art
modeling approaches and research agenda. Transp Res B Methodol 43(2):187–190

Vovsha P, Petersen E, Donnelly R (2002) Micro-simulation in travel demand modeling: lessons learned
from the New York best practice model. Transp Res Rec 1805:68–77

Vovsha P, Petersen E, Donnelly R (2003) Explicit modeling of joint travel by household members: statistical
evidence and applied approach. Transp Res Rec 1831:1–10

Wen CH, Koppelman FS (1999) An integrated model system of stop generation and tour formation for the
analysis of activity and travel patterns. Paper presented at the 78th annual meeting of the transportation
research board, Washington, DC, January

Ye X, Pendyala R, Giovanni G (2007) An exploration of the relationship between mode choice and com-
plexity of trip chaining patterns. Transp Res B Methodol 41(1):96–113

Zhang J, Timmermans H, Borgers A (2005) A model of household task allocation and time use. Transp Res
B Methodol 39(1):91–95

123


	A practical policy-sensitive, activity-based, travel-demand model
	Abstract
	1 Introduction
	2 Policy sensitivity and the desired level of behavioural realism
	3 Model structure
	3.1 From trip-based to activity-based models
	3.2 Household interactions
	3.3 Tour and activity patterns
	3.4 Destination choice
	3.5 Time of day
	3.6 Travel mode

	4 Data
	4.1 Activity travel diary
	4.2 Geographic position systems (GPS)
	4.3 Combining data sources

	5 Model application
	5.1 Activity-simulation
	5.2 The use of logsums
	5.3 Population generator
	5.4 Networks

	6 Conclusions
	6.1 Model structure
	6.2 Data
	6.3 Application
	6.4 Concluding remarks

	References


