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Abstract

Evaluation of Intelligent Transportation Systems (ITS) at the planning level, as well
as various short-term planning projects, require the use of appropriate tools that can
capture the dynamic and stochastic interactions between demand and supply. The
objective of this thesis is to develop a methodological framework for such applications
and implement it in the context of an existing dynamic traffic assignment system,
DynaMIT. The methodological framework captures the day-to-day evolution of traffic.
Furthermore, it models traveler behavior and network performance, in response to
special events and situations such as incidents, weather emergencies, sport events
etc. The new planning tool DynaMIT-P, consists of a supply (network performance)
simulator, a demand simulator and algorithms that capture their interactions. The
supply simulator captures traffic dynamics in terms of evolution and dissipation of
queues, spill-backs etc. The demand simulator estimates OD flows that best match
current measurements of them in the network, and models travel behavior in terms
of route choice, departure time choice and response to information. DynaMIT-P is
particularly suited to evaluate Advanced Traffic Management Systems (ATMS) and
Advanced Traveler Information Systems (ATIS) at various levels of sophistication.
The results of a case study, focusing on the evaluation of alternative designs of Variable
Message Signs (VMS) using a network in Irvine, California, illustrate the functionality
and potential of the system.
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Chapter 1

Introduction

Traditionally, traffic planners have been addressing the problem of traffic conges-

tion and its mitigation. In order to alleviate traffic congestion, there are numerous

choices regarding the enhancement and improvement of an existing transportation

system. However, most of the alternatives involve a substantial amount of funding

from multiple sources. Needless to say, judicious care has to be employed in selecting

a particular alternative or a combination of various alternatives to enhance a par-

ticular transportation system. Recently, the emergence of Intelligent Transportation

Systems (ITS) places more importance on the management of existing resources to

increase the capacity of the system as opposed to new construction. In lieu of the

above facts, it is imperative to possess analytical capabilities that would give a sense

of the benefits of a particular project, especially ITS related. Thus stems the need

for planning tools.

1.1 Background

Ever-increasing congestion, limited financial resources, time constraints and lack of

proper tools to forecast the impact of proposed changes to the transportation system

have been some of the deterrents to traffic planners. Transportation systems are

complex systems involving various stake-holders; thereby making it impossible to

isolate the benefits of a possible project without carefully outweighing the negative
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consequences that may be thrust by this project to other components of the system.

Decisions made by traffic planners usually have a bearing on long-term social,

environmental and political consequences. An example of illustrating the above point

is to consider the possible long-term effects due to enhancement of the infrastructure,

say the addition of a new highway. Such a radical change in the transportation struc-

ture will perhaps lead to the establishment of new households and businesses along

the highway. Industrial development around the region will be promoted and this

may itself have both social and environmental consequences. Typically, these effects

are due to the connection between transportation and land use patterns. Therefore

planning tools are necessary to perform a thorough analytical analysis to measure

the effects of a proposed transportation investment and as in the case above, assess

long-term effects.

Recently, the focus of transportation planning has shifted from radical infrastruc-

tural changes to improvements of various components inherent to the system. The

advent of ITS has provided an exciting breakthrough in this regard. It has been

conjectured that developments in Advanced Traveler Information Systems (ATIS)

and Advanced Traveler Management Systems (ATMS) can be viable alternatives to

reduce congestion. However, it has generally been difficult to predict the benefits

of such systems since the outcome of these strategies is highly dependent on trav-

eler behavior and because of the fact that modeling traveler behavior in response to

various ATIS/ATMS strategies has not been fully comprehended. It is also worth

mentioning that effects due to information usually tend to be short-term and within-

day effects, rather than long-term, since information to travelers is provided primarily

during non-recurrent congestion conditions. Planning tools that would evaluate the

impact of ITS technologies and in particular the impact of traveler information on

the transportation system would be invaluable in this context.

In a nutshell, there is indeed a strong motivation to develop planning tools that

would address either short-term planning applications, long-term planning applica-

tions or both and which could capture analytically the impact of a whole gamut of

planning strategies, which may be infrastructural or operational in nature.
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1.2 Short-Term Planning Applications

As briefly mentioned in the previous section, planning for transportation applications

can address issues that are either long-term or short-term in nature. The focus of this

thesis is on short-term planning applications, which assume that long-term behavior

is not affected by the changes to the system.

1.2.1 Characteristics

Short-term behavior as the name suggests, refers to traveler behavior in response to

events which tend to be of relatively shorter duration. While discussing short-term

applications, some of the parameters that one usually addresses for transportation

network analysis are assumed to be constant. In particular, it is assumed that the

inputs to the short-term models consist of outputs from the long-term behavior. To be

more precise, the Origin-Destination flows matrix (OD matrix) is assumed to be fixed,

although unknown. Usually, determining the OD matrix constitutes the first three

steps of the four-step planning process, namely trip production, trip distribution and

modal split. Though there may be minor variations in the actual daily OD matrix,

the input OD matrix available must more or less capture the actual combination of

trip distribution and trip attractions.

In short-term planning, long term mobility decisions such as residential locations,

auto ownership and ATIS/IT ownership are assumed to be fixed. Also assumed con-

stant are long-term factors such as land-use and demographics. It is worth mention-

ing that any changes to the above factors, will initiate changes in travelers’ long-term

mobility decisions. Additionally, new business establishments can alter the trip gen-

eration and attraction process, thereby modifying the OD matrix.

Based on the above assumptions, one can think of short-term behavior as the

response of travelers to changes in the characteristics of the system, given long-term

decisions (day-to-day behavior) and it includes behavior of travelers in response to

disturbances in the transportation system (within-day behavior). The concept of

short-term behavior is expanded in the following chapter.
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1.2.2 Examples of Short-Term Planning Applications

Some of the most common examples involving short-term planning applications in-

clude:

• Given specific long-term decisions, household and activity patterns and an exist-

ing transportation infrastructure, what habitual patterns do travelers currently

follow? How is the traffic distributed on the network? Which areas are currently

prone to congestion? Such questions can usually be answered with the help of

a tool that focuses on short-term behavior and in this case on the day-to-day

behavior of travelers.

• Special events such as sports events, political meetings and campaigns are ideal

scenarios for the application of short-term planning tools. These events usually

tend to either spike the demand on the system or inhibit the supply character-

istics of the network or both. Planning tools can be used for the development

of strategies for dealing with such events.

• Work zone activity, usually due to infrastructure activity, highway construction,

maintenance or utility work tend to disturb the network features. Dealing with

traffic issues is an important activity in designing work zone operation. Planning

tools can come in handy to evaluate various work zone configurations and timing

of activities proposed to mitigate the effects of the activity.

• Closure of lanes for a short duration due to various reasons.

• Operational evaluation of ATMS such as ramp metering, signal coordination

and other control systems proposed to enhance the network can be examples of

short-term applications. Effects of such control systems can be assessed with

the help of short-term planning tools.

• Evaluation of ATIS strategies such as in-vehicle information and VMS infor-

mation. The benefits from such information are derived from their use in non-
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recurrent situations, such as incidents, severe weather etc. Predicting the impact

of information can be invaluable in the planning context.

• High occupancy vehicle (HOV) and High Occupancy tolls (HOT) are strate-

gies to reduce the number of vehicles on the network. HOV lanes are special

lanes earmarked for vehicles with multiple passengers such as car pools, buses

etc. HOT lanes refer to HOV facilities that are open to lower-occupancy ve-

hicles upon payment of a toll. As expected, HOV/HOT lanes usually have a

better level of service in both of speed and reliability in order to attract us-

age. HOV/HOT scenarios that planners may wish to test include converting a

general lane to a HOV lane, introducing preferential ramp treatments or imple-

menting various HOT pricing strategies.

• Strategies used to mitigate the effects of serious accidents, unusual weather etc,

can be studied and evaluated using short-term planning tools.

1.3 Literature Review

This section focuses on existing tools for transportation planning. A brief overview

of the functionality of the existing tools is described. Also certain inadequacies of

existing tools in dealing with short-term planning situations are presented. These

shortcomings highlight the need to develop more sophisticated planning tools, that

can handle a variety of situations, especially in the short-term context.

1.3.1 Features of Existing Planning Tools

Traditional planning tools are based on the well established four-step planning pro-

cess: trip production, trip distribution, modal split and assignment. Trip production

or trip generation as the name suggests, forecasts the number of trips that will be

made from particular locations. Trip distribution determines where the trips will be

destined to. Modal split is concerned with how the trips will be divided among vari-

ous modes of travel and finally trip assignment predicts the routes that the travelers
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will take resulting in traffic forecasts for the highway system and ridership forecasts

for the transit system.

The history of transportation tools dates back to the 1970’s when the UTPS

(Urban Transportation Planning System) was developed by the Urban Mass Trans-

portation Administration of the US Department of Transportation. This tool mainly

accommodated models to capture the four-step process. The basic idea of UTPS has

given rise to a plethora of other tools, which are aimed at capturing either one or

more steps of the four-step process. Several variations of the main approach have also

been proposed to correct limitations of the initial process. The general framework of

the four-step model is shown in Figure 1-1.

TRIP GENERATION

MODAL SPLIT

TRIP DISTRIBUTION

Highway
ASSIGNMENT

Transit
ASSIGNMENT

Highway and
Transit

Urban
Activity

Figure 1-1: Four-step transportation planning process (UTPS).

Tools available to obtain trip productions (including the UTPS) recognize the
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strong interconnection between transportation and land use patterns. During this

step, trip making ability is predicted based on the characteristics of the activity

and some measure of transportation service to or from a section of the study area.

These models typically employ statistical analysis and specifically regression analy-

sis to relate the number of trips to land use patterns, socio-economic characteristics

and activity patters of travelers. To facilitate this, the study area is usually divided

into several zones called as TAZ’s (Traffic Analysis Zones) and trips productions are

computed zone-wise. Recently, GIS tools to perform trip productions have gained

significance because of their ability to store and manipulate zonal data easily. Addi-

tionally, several new tools which incorporate sophisticated activity models of travelers

are available. Trip attractions are similarly determined by these tools through regres-

sion analysis.

Gravity models, which postulate that the number of trips between two zones is

directly related to the level of activities in each zones and inversely proportional to

the separation between the two zones (as a function of an impedance), are primarily

used to obtain trip distributions. Thus, trip distributions are determined by the

relative attractiveness and accessibility to all possible attraction zones. Most of the

tools used to perform trip distributions use variations of the gravity model such as

incorporating friction factors (that reflect the effect of travel time on trip distribution)

and/or socioeconomic factors (KF Factors). Separate gravity models based on trip

purpose are also usually employed.

Modal split analysis has been addressed through discrete choice analysis and travel

demand forecasting techniques. Modal split analysis models are usually based on the

level of transit in a particular area. For example, there exist different modal split

models based on whether the region falls under a non-transit, single-peak transit

region or multi-peak transit region.

Examples of planning tools, which perform one or more of these above steps in ad-

dition to UTPS are EMME2, TRANSIMS, TRANPLAN, TransCAD, POLYDROM,

OCTAM, FSUMTS etc.

The first three steps of the transportation planning process described above and
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the corresponding tools to address can be considered to fall under the category of

long-term planning tools. This is because these steps address travelers’ long term

decisions and determine the overall level of travel in the network. For instance, based

on the location of households and businesses and traffic zones, the first two steps

help to establish the long term OD matrix. Modal split analysis can be considered

to be sort of the transition analysis between long and short-term planning. This is

because this depends not only on the location and the availability of other modes of

travel, which is a long term aspect but also depends on short-term changes to the

transportation system, that may cause travelers to temporarily resort to transit. An

example of this is a severe weather day in which travelers may prefer transit for safety

and convenience.

The focus of this thesis is on short-term behavior and it is hence imperative

to understand the functionalities of existing short-term planning tools. This can be

discussed by considering the fourth step in the transportation planning process, which

tries to address the short-term nature of transportation planning. Traffic assignment

is the final step in the planning process and it tries to establish routes that individual

trips will follow. The objective of this step is to estimate what routes travelers follow

and the resulting implication of travelers’ decisions on the transportation network.

Thus performing traffic assignment is exactly representative of short-term planning,

wherein the focus is to establish travelers’ habitual behavior and their behavior in

response to various temporary events.

Traffic assignment has been the focus of intense research since its origin and the

foundation of traffic assignment techniques was established on the seminal paper by

Wardrop [54], which illustrated the concept of user and system equilibrium. Under

user equilibrium conditions specified by Wardrop, all chosen paths by travelers have

the same impedance. Thus under this principle, travelers tend to make decisions to

minimize their individual travel times and in the process lead to equilibrium travel

choices. System equilibrium on the other hand, although not attainable can be used

by traffic planners to establish certain thresholds for comparison. Thus under system

equilibrium, an optimization routine is usually employed to minimize system wide
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travel time. The key difference between the two techniques is that while establishing

system equilibrium, it may so happen that some travelers are assigned to paths other

than their preferred shortest paths.

In order to establish traffic assignment there are a variety of techniques and the

planning tools mentioned in the above paragraphs use methods such as the all-or-

nothing assignment, incremental-load assignment, incremental-reload assignment, as-

signment based on discrete choice models (e.g. the multinomial logit), price-time

assignment and the Frank-Wolfe technique. While it is beyond the scope of this the-

sis to indulge in the specific details of each of the above procedures, it is important to

mention that the above assignment techniques are static and do not explicitly model

traffic dynamics and traffic demand-supply interactions. This deficiency has led to

the development of tools based on Dynamic Traffic Assignment (DTA). The proposed

planning tool as part of this research is based on DTA and the literature review of

DTA systems is deferred to Chapter 2. As a final point, microscopic traffic simu-

lators such as MITSIM, PARAMICS can also be used to evaluate certain planning

strategies.

To summarize the discussion in this section, traditional transportation planning

is based on the four-step process and associated tools employ techniques to address

each of the four steps. In particular, traffic assignment (the final step of the process)

is the step that concerns itself with short-term planning. Further, it was highlighted

that there exist a new class of tools that employ dynamic assignment techniques,

which will be discussed in Chapter 2.

1.3.2 Limitations of Existing Planning Tools

This main limitations of the above tools for short-term planning applications, espe-

cially in the presence of ITS, is their inability to capture the following aspects:

• Traffic Dynamics

• Dynamic Demand-Supply Interactions

• Characteristics of ATIS/ATMS
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The ability of capture traffic dynamics and explicitly model congestion build up and

dissipation is critical for certain short-term planning applications. To illustrate this

further, suppose that the planning strategy being evaluated is a ramp metering strat-

egy. In this case, since the evaluation of the strategy requires explicit modeling of

queues and interactions at a detailed level; the usual planning tools which are static

are not adequate. Microscopic traffic simulators can be used for this purpose, but

they may not be able to capture all the effects over a large area as well as route

choices that may result from the strategy. Further, it is to be noted that, ultimately

the network performance is due to the individual decisions of travelers and it is nec-

essary to use disaggregate models to capture traveler behavior and also distinguish

between users based on their socio-economic characteristics. Such a rich and explicit

modeling of traveler behavior is not captured by existing planning tools.

One of the most important reasons for developing a new planning tool is to address

ITS in the planning context. It has been stressed before that the focus of transporta-

tion planning has shifted towards ITS deployments that will ease traffic congestion.

ATIS/ATMS deployments are specially useful only under non-recurrent congestion

conditions. Currently there are very few tools which give a sense of the benefits of

ITS deployments. IDAS (Intelligent Deployment Analysis Software) is a recent tool

that has been developed by FHWA (Federal Highway Authority Association, USA).

However, existing tools (including IDAS), which are based on static techniques are

not very effective in evaluating ITS strategies.

A brief review of various studies for evaluating ITS and other strategies and the

limitations of the techniques used to evaluate them are summarized below:

• Demand Management Strategies:

Common demand management strategies include the use HOV/HOT lanes. The

key difficulty in evaluating HOV/HOT lanes is to predict whether travelers will

perform mode shifts to justify the infrastructural costs and to assess the network

performance impacts.

26



Several studies have tried to assess the impact of HOV/HOT lane strategies.

Based on a queuing model, Dahlgren [28], illustrated that HOV lanes may

not always be more effective than general purpose lanes. He argues based on

the model that construction of a mixed flow lane is better than constructing

either a HOV/HOT lane if the initial delay is not high. Johnston and Ceerla

[35], used travel demand forecasting techniques to demonstrate that HOV lanes

may not be as effective as transit alternatives. However, the above approaches

do not explicitly consider traffic dynamics and it is very difficult to analyze

for example a strategy such as converting an already existing general purpose

lane into a HOV/HOT lane. Further, a range of pricing strategies cannot be

analyzed using these static techniques. Thus there is a need to develop tools

that would capture not only rich traveler choice models to estimate the mode

shift associated with HOV lanes but that would capture traffic dynamics that

will determine the network impacts of such strategies.

• ATIS Strategies:

It has been pretty well established in the literature that provision of information

is effective primarily under non-recurrent congestion conditions. Al-Deek and

Kanafani [2], modeled the benefits of information in traffic corridors and based

on a simulation study reported that travel time savings are significant of the

order of 30 percent in a network with two routes. Simulation results in the

Santa Monica Freeway corridor in Los Angeles (Gardes and May [29]), showed

that in the presence of an accident, information provision can bring about 6.2

percent reduction in travel times.

However, a few authors have questioned the significance of ATIS benefits (e.g.

Arnott et al. [5], Hall [30]). Arnott argues that ATIS may counter-productively

lead travelers to congested alternative routes. Hall questions whether the prob-

lem on non-recurrent congestion is as significant as claimed. The general con-

clusion however from available literature is that ATIS can be beneficial but this

statement has to be verified, either by observing actual ATIS deployments or
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by conducting further studies. The need to investigate the effects of ATIS on

complicated networks provides the motivation for a new planning tool.

Clearly, to analyze the impact of information either through in-vehicle guid-

ance, VMS messages or other means, it is necessary to explicitly model both

traveler behavior and traffic dynamics accurately. Existing planning tools lack

one or more of these critical features. Further, with emphasis also being on

traffic prediction and provision of predictive information to travelers, the static

planning tools are in-equipped to handle such scenarios.

Specifically regarding in-vehicle information, several authors have tried to ana-

lyze the impact of in-vehicle information with market penetration (e.g. Jayakr-

ishnan et al. [32], Walting and Van Vuren [52]). However, studies with respect

to market penetration effects were based either on surveys or on queuing models

and do not effectively capture traffic dynamics and traveler behavior in response

to information.

Impacts of VMS messages also typically depends on driver responses to these

messages and the resulting traffic conditions. Response behavior of drivers in

the presence of a VMS have been addressed by the use of logit models based

on SP (Stated Preference) surveys (e.g. Bonsall and Merall, [15]). The main

drawback of these surveys is the well known problem with SP surveys (i.e.

travelers do not usually respond in an actual situation in a manner concurrent

with their survey responses). An example of this, is the study conducted by

Chattergee et al. [26]. As reported in that study, only one-fifth of the drivers

diverted as opposed to results based on SP surveys in one area but SP results

were consistent with observed diversion rates in another location.

Based on the preceding discussion, there is indeed a strong motivation to develop

planning tools that will encapsulate traveler behavior, capture traffic dynamics and

can be used for a variety of planning applications (including ITS strategies).
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1.4 Thesis Objective and Problem Definition

The focus of the thesis is on development of a Dynamic Traffic Assignment tool

for short-term planning applications. The critical objective is to model day-to-day

evolution of travel demand and network conditions in the context of a DTA system

and capture the within-day dynamics in the case of stochastic events. With current

emphasis on ATIS/ATMS strategies and ITS investments to improve traffic condi-

tions, the developed planning tool must be capable of addressing these issues and be

sensitive to ATIS/ATMS design parameters.

1.5 Thesis Outline

The thesis is organized as follows. Chapter 2 deals with recent advances in planning

tools that are based on DTA, rather than the traditional static planning tools. Chap-

ter 3 deals with the framework of the planning system being developed. It discusses

in detail the various components of the planning tool and illustrates how day-to-day

and within-day behavior of travelers is modeled. An implementation of the planning

framework in a DTA system DynaMIT to obtain DynaMIT-P is then discussed in

Chapter 4. Chapter 5 presents results obtained using the planning framework ap-

plied in a case study related to a network in Orange County, Los Angeles. Directions

for further research and possible expansion of this planning tool to suit long-term

planning applications are presented in the concluding Chapter 6.
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Chapter 2

Dynamic Traffic Assignment

Systems for Short-Term Planning

Applications

As briefly mentioned in Chapter 1, there exist a new class of tools that are being used

for transportation analysis, based on the concept of Dynamic Traffic Assignment

(DTA). This chapter focuses on the advantages of using DTA tools for short-term

planning analysis. However, the concept of short-term planning is first broadened

to provide a better understanding of the issues involved. Following this, certain

key requirements that any system must satisfy to be useful for short-term planning

applications are presented. The advantages of using DTA systems in this context

are then highlighted, followed by a literature review of DTA systems and the model

components that DTA systems consist of.

2.1 Elements of Short-Term Planning

Decisions made by travelers vary with regard to the time horizon in which decisions

are made. This is depicted in Figure 2-1, which displays long-term, short-term and

within-day time horizons.

Long-term mobility decisions include, for example, residential location, auto and
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Figure 2-1: Levels of traveler behavior.

ATIS/IT ownership. Adjustments at this level are typically made only after observing

conditions over a period of months or years. The outputs from the long-term decisions

can be considered as inputs to the short-term behavior.

Short-term travel decisions include choices of departure time, mode, route choices

and responses to ATIS products. Adjustments in short-term decisions are sometimes

made in response to changes in long-term decisions such as land use, demographics and

infrastructural enhancements to the transportation network. An example of this is to

consider how auto ownership (a long-term decision), affects mode choice (a short-term

decision). Traffic conditions is another important factor for adjustments in short-term

behavior (e.g a longer travel time will cause a route-shift). Travelers may make these

adjustments every few weeks or days, depending on how quickly traffic conditions in

the network are evolving. Thus the short-term behavior can be considered as the

behavior that leads to “equilibrium” decisions. The short-term travel behavior is also

called the day-to-day behavior model. Short-term travel behavior results in habitual

travel patterns, which travelers usually follow on a day-to-day basis.
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The deviation of travelers from their habitual paths on a particular day is captured

by the within-day decisions that travelers make. There are a multitude of reasons as

to why travelers may depart from their habitual patterns. Examples of such events

could be special events, accidents on the network, closure of lanes, unusual weather

etc. Further, ATMS strategies and ATIS strategies such as traveler information (In-

vehicle/VMS) assume significance usually in the face of such unusual situations or

disturbances in the network. Responses to these ATIS/ATMS strategies constitute

within-day behavior.

To summarize, in short-term planning we need to model both the day-to-day

and within-day dynamics of travelers. Thus any tool to address short-term planning

applications has to capture the above dimensions of traveler behavior.

2.2 Requirements for Modeling Short-Term Be-

havior

The main requirements to capture day-to-day and within-day decisions are:

• Realistic Models for Traveler Behavior (Demand)

• Dynamic Network Performance (Supply)

• Demand-Supply Interactions and Dynamics

• Representation of Stochasticity

• Sensitivity to ATIS/ATMS Modeling

2.2.1 Realistic Models for Traveler Behavior (Demand)

The system should capture traveler behavior through travel behavior models that

are sensitive to the policy variables of interest, such as capacity, pricing and infor-

mation systems. These models must also reflect heterogeneity among travelers, both

to provide accurate forecasts of network performance and to estimate impacts across
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different classes of users. This necessitates the fact that the demand simulator has

to be microscopic, wherein a population of drivers is generated and each driver has

his/her own socio-economic characteristics and each driver makes his/her decisions

regarding route choice etc.

The demand models must be able to capture how travelers react to ATIS and

ATMS strategies.

2.2.2 Dynamic Network Performance (Supply)

The other important module that a system must possess to be valuable for short-term

planning applications is the representation of the performance of the network. This

is required because several planning applications usually involve assessing changes in

traveler behavior due to changes in the network characteristics. It is thus necessary to

simulate the real-life traffic conditions to accurately model day-to-day and within-day

behavior of travelers in response to a variety of scenarios. The level of detail required

in the representation of the supply depends on the planning scenario of interest.

For an alternative involving a major change to the infrastructure, a macroscopic

representation such as the average flow on a path may suffice for evaluation. However,

for an operational or informational planning alternative, such as ramp metering or

signal co-ordination, a finer level of detail is needed in which traffic dynamics such

as formation and dissipation of queues, link-specific effects of queuing, spill-backs

and speed-flow relationships with variations of traffic conditions along the links are

explicitly represented. Thus in order to cope with planning requirements, the system

must be able to represent these varying levels of network detail. To satisfy this

requirement, typically a mesoscopic traffic simulator is recommended that can capture

the necessary complexity without sacrificing computational time.

2.2.3 Demand-Supply Interactions and Dynamics

The level of service of the transportation network is endogenous to the system: trav-

elers make their decisions based on travel times and their decisions, in turn affect
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the travel times. In planning applications changes in the demand and/or the supply

side are made. Therefore the interaction between demand and supply is critical. The

demand-supply interactions are particularly important in the day-to-day behavior of

travelers. The tools employed for short-term planning applications must be able to

replicate the demand-supply interactions and must capture the intermediate states of

the system as it tends towards equilibrium. Furthermore, it is necessary to capture

the dynamics in the system such as the estimation of time-dependent OD matrices.

2.2.4 Representation of Stochasticity

Stochastic events, such as accidents or poor weather, can have major impacts on the

performance of a transportation network on a particular day and influence the within-

day behavior of travelers. Therefore the planning system must be able to represent

such stochasticity. This is particularly important in the context of ATIS evaluation,

in which much of the benefit derives from providing information under atypical travel

conditions.

2.2.5 Sensitivity to ATIS/ATMS Modeling

The planning system should be able to evaluate the impact of both ATMS and ATIS.

ATIS may have different levels of capabilities and sophistication. For instance, infor-

mation provided to travelers could be based on current network conditions (instanta-

neous information) or it could be based on anticipated network conditions (predictive

information). This information may be broadcast either through VMS signs on the

network or through in-vehicle units in equipped cars. The evaluation of ATIS sys-

tems requires a planning tool that can generate both the guidance and the traveler

response to guidance. Further, the system must be able to incorporate various design

parameters of ATIS strategies such as the frequency with which the information is

updated, delay of information and type of information (prescriptive or descriptive).

This concludes the discussion on the various requirements for effective short-term

planning analysis. The next section illustrates the advantages that DTA systems can
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have in addressing these planning issues instead of the static planning tools described

in Chapter 1.

2.3 Advantages of Dynamic Traffic Assignment Sys-

tems for Short-Term Planning Applications

Traditional planning methods, such as the widely used four-step process are primar-

ily composed of static and deterministic models. These methods treat demand as

uniformly distributed in a fixed time interval. Furthermore, due to limitations in an-

alytical models, they treat the network in a simplistic manner and at a very aggregate

level. This static representation fails to capture essential features of traffic congestion

(such as congestion build-up and dissipation), and therefore cannot predict network

performance accurately. Analyzing short-term behavior of travelers however, hinges

upon this very ability to capture traffic dynamics (as outlined in the previous section)

and hence traditional planning tools are not very effective for short-term planing ap-

plications, in the presence of ITS. The shortcomings of the traditional static planning

tools are overcome by DTA systems, which capture traffic dynamics in a realistic

manner by modeling time varying OD demands, queues and spill-backs.

DTA systems can be categorized into either analytical-based DTA systems or

simulation-based DTA systems. Analytical-based DTA tools usually formulate the

problem as an optimization problem and employ mathematical techniques to solve it.

However, as the problem size grows larger, these tools are computationally cumber-

some and are not practical. Furthermore, they are not capable, due to their analytical

nature, to capture all the details of the problem. The advent of large and powerful

computers has prompted simulation techniques to gain significance. One such promis-

ing improvement to traditional planning tools is the use of DTA and simulation to

model network performance. The key advantages of using simulation-based DTA

tools for planning applications include:

• Simulation-based DTA systems capture the time-dependent interactions be-
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tween the demand for the network and the supply of the network.

• Simulation-based DTA systems are able to predict the locations and impacts of

traffic congestion by modeling the dynamic nature of the network and explicitly

capturing critical aspects such as congestion buildup, queues, spill-backs and

congestion dissipation.

• Simulation-based DTA systems are able to capture the effects of segment-level

operational changes such as ramp meters and traffic lights by incorporating the

operation control logic (through its impact on link capacities) into the repre-

sentation of the supply simulator.

• Simulation-based DTA systems can model effectively various ITS strategies,

in particular ATIS/ATMS strategies and the impact of information. This is

possible by incorporating rich traveler behavior models to represent individual

travel behavior and simulation to model traffic dynamics at the required level

of detail.

• Simulation-based DTA systems can represent the travel choices in great detail.

2.4 Literature Review of DTA Systems

Several simulation-based DTA systems exist and they are reviewed in this section.

The literature review of is organized as follows:

• Simulation-based DTA systems

• Model components of simulation-based DTA systems

2.4.1 Literature Review of Simulation-Based DTA Systems

Examples of systems that employ DTA techniques in a simulation environment for

planning as well as real-time applications are CONTRAM, DynaMIT and DYNASMART-

P.
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CONTRAM developed by Taylor [50], is a DTA tool employing simulation to

model the congestion that occurs during the day and to represent the peaks of con-

gestion as well as off-peak conditions. It is a tool that can model unexpected events

such as incidents that reduce network capacity and specific scenarios such as modeling

special lanes for buses in certain situations. Additionally it provides fuel consumption

and emissions results. To achieve its functionality, CONTRAM divides the planning

horizon into time slices used to model the build up and decline of traffic. Vehicles

are assigned to their minimum cost routes, taking into account the traffic interactions

and delays caused by other vehicles on the network. A trip occurs across several

time slices during which traffic demand and network conditions can vary and over-

saturated conditions may occur temporarily. Some of the modeling features include

different vehicle classes, advanced intersection modeling and dynamic matrix estima-

tion. However, the drawback of this system in the context of the planning scenarios

of interest is that it does not explicitly capture individual traveler decisions and does

not model travel behavior. These elements are critical for accurate evaluation of the

impact of ATIS. Furthermore, the model does not capture the critical day-to-day

traveler learning experiences that are relevant for short-term travel decisions.

DynaMIT [44], is a state-of-the-art real-time computer system for traffic esti-

mation, prediction and generation of traveler information and route guidance. Dy-

naMIT supports the operation of ATIS and ATMS at Traffic Management Centers

(TMC). The key to DynaMIT’s functionality is its detailed network representation,

coupled with models of traveler behavior. Through an effective integration of his-

torical databases with real-time inputs from field installations (surveillance data and

control logic of traffic signals, ramp meters and toll booths), DynaMIT is designed to

efficiently achieve:

• Real time estimation of network conditions.

• Rolling horizon predictions of network conditions in response to alternative

traffic control measures and information dissemination strategies.

• Generation of traffic information and route guidance to steer drivers towards
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optimal decisions.

A more comprehensive review of DynaMIT is presented in Chapter 4.

DYNASMART-P, (Mahmassani et al. [40]) on the other hand is a planning

tool that models the evolution of traffic flows in a network that result from travelers

seeking to fulfill a chain of activities at different destinations over a planning horizon.

DYNASMART-P is a confluence of two major categories of tools; network assignment

tools which are used primarily in conjunction with demand forecasting procedures for

strategic (long-term) planning applications and traffic simulation tools, used primar-

ily for traffic operational studies. DYNASMART-P serves to support strategic and

operational planning decisions by helping to identify deficiencies, designing and eval-

uating the impact of alternative course of actions, in the context of the broader set of

policy objectives for the study area. It achieves its objective using richer representa-

tion of traveler behavior decisions than static assignment models, explicit description

of traffic properties and a more complete representation of network elements includ-

ing signal control strategies. Some of the applications of DYNASMART-P include

evaluation of HOV lane pricing schemes, HOT lane assessment (e.g. Abdelghany et

al. [28]), signal control strategies, VMS and incident management.

2.4.2 Literature Review of Model Components in DTA Sys-

tems

The key components of simulation-based DTA systems are the traveler behavior mod-

els(demand), models used to capture supply characteristics of the network and models

to capture demand-supply interactions (day-to-day learning models).

Demand Modeling

The models required pertain to mode, departure time and route choice. The standard

available models capture day-to-day behavior of travelers. However, with importance

being laid on ITS, there have been efforts to enhance traveler behavior models to

capture ATIS/ATMS strategies. Examples include route choice models and departure
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time models in lieu of information to travelers and mode choice models in light of

HOV lanes. In addition, the demand component of DTA tools may include an OD

estimation module which adjusts the OD flows to reflect the latest traffic counts in the

network. Ben-Akiva et al. [14], have proposed an overall framework for a dynamic

demand simulator, which can be implemented in simulation-based DTA systems. A

literature review of traveler choice models and OD estimation is presented below.

• Route Choice: Route choice models are typically based on the multinomial

logit structure (MNL), in which the choice is among the set of generated paths

for each OD pair. The utility for any path is a function of factors that influence

the route choice decision, including socio-economic characteristics of the trav-

eler, travel times, network topology and traveler information. Standard route

choice models suffer from the limitations due to the Independence of Irrelevant

Alternatives (IIA) property of the multinomial logit models (unobserved fac-

tors of the alternatives are uncorrelated). The example in Figure 2-2, which is

one of the classical examples of the IIA, illustrates this fact. The three routes

depicted in the figure all have the same impedance T. Paths 1 and 2 share a

common segment, with impedance T - d, and are distinct for d units. Assuming

that route utility is based on distance only, the MNL model will predict a share

of one-third for each of the routes irrespective of the value d. MNL is thus

consistent with our intuition when the overlap between Paths 1 and 2 is very

small. However as the value of d approaches T, we expect that Path 3 would

have a share of one-half, while Paths 1 and 2 would each receive one-quarter of

the traffic.

The above limitations lead to the development of the C-Logit route choice model

(Cascetta et al. [25]). The C-Logit model adds an adjustment to route util-

ities based on the amount of overlap with other routes. The model therefore

maintains the computational simplicity of the logit form, but produces more in-

tuitive route shares. There are several forms for the C-Logit commonality factor

correction, yet there has been a lack of theory or guidance as to which form of
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Figure 2-2: Overlapping path problem.

correction is to be used. The Path-size (PS) logit model (Ramming, [47])

represents an effort to incorporate behavior theory in the C-Logit adjustment

process. The key to path-size logit is that correction terms are derived from

discrete choice theory (Ben-Akiva and Lerman, [11]). For a detailed review of

standard route choice models, the reader is referred to Ramming [47].

The route choice models discussed above are standard models that focus pri-

marily on day-to-day behavior and do not take into account ATIS information.

However, en-route choices that travelers make in the presence of information is

a critical aspect regarding traveler response to ATIS and are required for evalu-

ation of within-day dynamics. There have been two main approaches employed

to model this behavior of travelers. One of them is based on discrete choice

analysis, in which additional factors that are thought to be critical in light of

information provision, are incorporated in the standard route choice models.

The other approach is based on the concept of bounded rationality, Simon [48].

Mahmassani and Chang [39], modeled response based on bounded rationality

concepts. According to bounded rationality concepts, travelers make en-route

decision simply based on their satisfaction level. Thus, if the travel time savings

on the recommended route exceed a threshold value, travelers will comply with

the information. Mahmassani et al. [40], explicitly modeled route-choice be-

havior using the bounded rationality concept. Other approaches such as Lotan
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and Koutsopoulos [37], are also proposed that employ fuzzy theory to model

route-choice in the presence of information.

Based on discrete choice analysis, Bonsall and Parry [16] and Abdel-Aty et al.

[1], tried to enumerate the important factors that travelers consider for perform-

ing en-route choice. They suggest that the nature of information (prescriptive or

descriptive), extent and the quality of information are important determinants

of driver response to information. Mahmassani et al. [27], used logit regres-

sion models to analyze compliance behavior of commuters. According to this

study, the quality of information was found to be a major factor toward com-

muters’ compliance. Additionally, commuters tend to comply with (in order)

predicted information, prevailing information, perturbed information, differen-

tial predicted, differential prevailing and lastly random information. The study

also revealed that drivers tend to comply when no switching is required and the

cost of switching (e.g additional delays) is very critical otherwise. Moreover,

it was reported that travelers in general comply more with information that

is prescriptive rather than descriptive and travelers who experience high vari-

ance in trip times tend to comply more with pre-trip information than en-route

information. Mahmassani and Srinivasan [49], discussed in detail inertia and

compliance mechanisms in en-route choice. Using multinomial probit models

and employing a simulation approach, they showed that inertia to shift from the

current path is reduced with increasing congestion and with decreasing infor-

mation quality errors. Compliance likewise, is increased with larger trip saving

and reduced cost of switching and is decreased with inaccurate information or

any negative experience recently faced by the traveler.

Specifically regarding in-vehicle systems, Mannering et al. [41], conducted or-

dered logit and regression analysis based on a Stated Preference (SP) survey

to quantify traveler ratings of the importance of in-vehicle system attributes.

Travelers’ socio-economic characteristics, their habitual travel patterns, conges-

tion levels are determinants of importance ratings. For examples, households
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with more vehicles per person, people with flexible work hours who perform fre-

quent departure time shifts, younger people, people with low income are more

likely to think that in-vehicle information is important. Thus these travelers

are more likely to comply with in-vehicle information.

Under VMS information, studies based on SP surveys by Wardman et al. [53],

Bonsall and Merall [15] and Peeta et al. [45], emphasize that relative journey

times, delay on the current route, age, sex and previous network knowledge

as being important factors that govern travelers’ route choice decisions. Mc

Arthur [42], used behavioral rules employed in PARAMICS-CM and found

that diversion is based on whether the savings that travelers perceive lie above

a threshold and on the travelers’ patience and trust in the system.

• Departure Time Choice:

A critical behavioral response to congestion, incidents or strategies such as pric-

ing, is that travelers adjust their times of departure. Therefore, the departure

time choice model is an important aspect. The important traveler character-

istic that determines departure time choice is the preferred arrival time of the

traveler. However, this attribute is usually measured with significant errors. A

key issue of departure time models is defining an acceptable range of departure

time intervals considered by an individual. This is an intricate problem, because

continuous time is usually discretized and hence the correlation of unobserved

effects among alternatives cannot be ignored. Secondly, the perception of the

alternatives depends upon travel time. In traditional planning methods, data on

this attribute are rarely available and it is conveniently assumed to be constant

across the peak period.

Regarding departure time choice models, typically probabilistic choice models

such as the Logit model and generalizations of the Logit model such as Gener-

alized extreme value, Logit kernel probit are employed. However, these Logit

models suffer from the IIA property, especially if departure times choices are

close together (in which case they may be correlated). Departure time switch-
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ing models are also common, particularly for ATIS applications, in which the

choices are to leave at a habitual departure time or to switch to an earlier or

later departure time slot. The appeal of these models is that they circumvent

the IIA property, even if the Logit model is used for this purpose. Choice mod-

els with latent variables in which the preferred arrival time is treated as a latent

variable are also employed. Finally, departure time choice models have been es-

timated using Revealed and Stated preference survey data (RP and SP). Logit

models based on RP surveys were estimated by Cascetta et al. [24]. Models

for departure time choice based on a Nested Logit model estimated from SP

data were proposed by Antoniou et al. [4].

• Mode Choice:

Planners are often interested in strategies that aim to reduce vehicle miles trav-

eled and/or increase use of transit and non-automated modes. To evaluate the

benefits of such strategies it is necessary to make mode choice decisions. The

corresponding models are random utility models (logit or nested logit) assess-

ing the choice between car, transit, and other available modes, Ben-Akiva and

Lerman [11]. Factors affecting mode choice include purpose of trip, in-vehicle

travel time, out-of-vehicle travel time, travel cost, car availability, destination

and travelers’ socio-economic characteristics.

Additionally, mode choice needs to be performed to model demand management

strategies such as HOV lanes. Typically, logit models which consider relative

attributes of the HOV and non-HOV lanes are employed for this purpose.

• OD Estimation:

OD estimation techniques serve the purpose of obtaining a set of OD flows from

historical OD matrices and field sensor counts which are desired to be matched.

OD estimation techniques are based on either a sequential or a simultaneous

approach. Common techniques of OD estimation are the Kalman Filter and

the Generalized Least Squares (GLS). Pioneering work in this area has been

reported by Cascetta [20], Cascetta et al. [23], Ashok and Ben-Akiva [7]. For
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a comprehensive literature on OD estimation, the reader is referred to Ashok

[6], Brandriss [18] and Balakrishna [8].

Supply Modeling

As mentioned earlier, the supply simulator has to capture traffic dynamics, has to be

flexible in order to represent varying levels of detail and it also has to be computa-

tionally efficient. Thus simulation approaches as in DynaMIT, DYNASMART-P and

CONTRAM employ a mesoscopic supply simulator that use aggregate macroscopic

relationships but at the same time have sophisticated models to represent traffic dy-

namics (e.g. queuing behavior). Further the supply component must be able to

interact with the demand component. Details on supply simulation techniques in a

DTA system can be found in Ben-Akiva et al. [12].

Further, the supply simulator models have been enhanced to simulate ATMS

strategies through their impact on intersection capacities. Tian [51], proposes a

model of such a capacity translator, which can be implemented in DTA systems.

Models of Demand-Supply Interactions

These models are particularly critical for establishing the day-to-day learning behav-

ior of travelers. In traditional planning applications, the demand-supply interaction

model takes a static or equilibrium approach, where the only state of interest is

the fixed point in which supply and demand are perfectly balanced. However, the

day-to-day learning approach for demand-supply interaction concerns itself with the

sequence of states that occur as the system works towards equilibrium. These in-

termediate stages are important for evaluation, because the transportation system is

often in disequilibrium due to travelers’ gradual response to non-standard conditions

such as incidents, weather, special events etc.

Horowitz [31], suggested an equilibrium model in which the travel choices on each

day are based on weighted averages of measured travel times on previous days. An

extension of the above model to specify different weights to different individuals was

also proposed.
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Mahmassani and Chang [38], proposed a myopic adjustment approach in which

driver’s travel choices are based on previous days experience. Further, the model

incorporates the schedule early or late arrival of a driver on the previous day (including

relative weights for early and late arrivals).

Cascetta and Cantarella [21], have developed day-to-day dynamic stochastic as-

signment models. The behavioral principle is that users make their choices according

to pre-trip expectations of travel times. These expectations are a result of experience,

memory and learning, and are generally different from actual path costs, which the

traveler will not know until the path is complete. The day-to-day model reflects the

travelers’ learning and forecasting mechanisms: it predicts the travelers’ expected

travel times for any given day based on his or her expected travel times and experi-

enced travel time in the previous days.

Ben-Akiva et al. [9], proposed a convex combination approach for information

integration in day-to-day learning models. According to this approach, the updated

estimation of travel time on a path is given as a convex combination of the driver’s

historical perception of information and information provided by ATIS.

Jha et al. [34], use Bayesian updating techniques to update driver’s perception

updating from one day to the next in light of experienced travel time and available

information. Their approach also tries to capture driver’s confidence in travel informa-

tion by considering both experienced and perceived travel times as random variables

with the variances of the travel time distributions representing driver’s confidence in

information.

2.4.3 Summary of Literature Review

Summarizing the discussion in the previous sections, simulation-based DTA system

presents the best technique to evaluate short-term planning applications. A few tools

such as DynaSMART-P and CONTRAM have tried to address such applications.

Various modeling issues regarding the components of simulation-based DTA systems

were discussed. However, the key functionality being addressed in this research is

the capability of the planning system to model various ATMS/ATIS strategies with
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varying levels of sophistication. This is particularly important in the event of in-

formation provided to travelers. This information provided to travelers can be of

completely contrasting natures. As mentioned earlier, this information could range

from instantaneous travel times to predictive travel times. The planning system, as

already mentioned must not only incorporate traveler behavior models that capture

response to information, but must also be able to generate instantaneous or predic-

tive travel times depending on the scenario being analyzed. Further, it is desired that

the planning system be sensitive to various design parameters of ATMS/ATIS. In-

corporation of the above features in the context of short-term planning applications

and developing a planning tool that encapsulates day-to-day behavior and within-

day dynamics (with emphasis on ITS strategies) is critical and is the objective of this

research.

2.5 Summary

So far in this thesis, we have described the nature of short-term planning applications

and have provided a summary of various static planning tools in Chapter 1. The

context of short-term planning applications was further expanded in this chapter and

various requirements that have to be met by tools to capture short-term planning were

highlighted. The advantages of DTA systems for planning as opposed to traditional

static planning tools were presented. Following upon the potential of such DTA

systems, a review of existing DTA systems was presented. Further, an in-depth

literature review of components in DTA systems pertinent to this study were described

with significant focus on ITS applications.

The next chapter presents a detailed framework of the planning tool being devel-

oped and describes how day-to-day and within-day dynamics (with ITS emphasis)

can be modeled using a DTA system.
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Chapter 3

Framework of the Planning Tool

This chapter develops a framework to address short-term planning applications. The

framework illustrates the mechanism of establishing the habitual behavior and pro-

vides the methodology to capture various scenarios, especially ITS related. The

framework described can be implemented in a simulation-based DTA system to re-

sult in a planning tool for short-term applications.

3.1 System Framework of the Planning Tool

Based on the levels of traveler behavior outlined in Chapter 2, the conceptual overall

system framework of the planning tool is presented in Figure 3-1.

The inputs to the system are the best available OD flows and the most recent

counts about flows in the network. These OD flows reflect long-term factors such as

residential locations, ATIS/IT characteristics and auto ownership. Land use factors

such as locations of activities (businesses, schools etc) and demographics are assumed

to be constant during the analysis. Further, actual field sensor counts are used to

update the available OD flows to flows best reflecting the current measurements. The

outputs from the system are the performance of the transportation and information

systems, which can be translated into consumption of resources and benefits.

The first stage of the model is the day-to-day behavior of travelers. This behavior

tries to establish the network conditions resulting from travelers’ habitual decisions.
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Figure 3-1: System framework of the planning tool.
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It establishes the network conditions that would be fairly typical of a normal day, in

the absence of special events, accidents, severe weather conditions etc. The model

depicted in the figure constitutes three main components for the day-to-day behavior

analysis, namely the demand simulator, the supply simulator and the learning models.

The demand simulator predicts the decisions regarding destination, departure time

and mode/route choice for each of the travelers. Further, the demand simulator

includes OD estimation capabilities. The resulting actual travelers with their trip

characteristics are then loaded onto the supply simulator, which results in a new level

of service. Learning models are utilized to perform adjustments to the habitual travel

characteristics from day-to-day, based on travelers’ experienced versus realized travel

times. The outputs from the day-to-day models are the habitual travel patterns.

Specifically, the outputs are a set of time-interval based link travel times referred to

as the Equilibrium travel times and the Planning OD matrix that best describes the

observed sensor counts.

The habitual travel patterns are then the inputs to the within-day behavior mod-

els. The within-day dynamics is the next stage of the planning tool and it captures

the network state that would result in the wake of unusual events that disturb the

travelers’ day-to-day equilibrium and measures employed to manage traffic in such

situations. Stochastic events are also input into the within-day models to represent

atypical conditions that might be present (e.g. poor weather or incidents). Any

particular network characteristics or information characteristics for the scenario of

interest may also be reflected in the inputs as modifications to the baseline scenario.

The demand-supply interaction is then performed iteratively to obtain consistency

between the two components. Further, one may want to sample stochastic events

according to their frequency to get an idea of the performance of the network. This

mechanism is indicated by the loop in Figure 3-1. The output from the short-term

models is the performance of the transportation and information systems, in the

presence of accidents, special events etc., as reflected by resource consumption and

benefits.
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3.2 Components of the Planning Tool

In order to achieve the functionalities described above, the main components required

by the planning tool are:

1. Demand Simulator: The function of the demand simulator is to estimate the

most up-to-date OD matrix and subsequently generate a population of travelers.

Based on the available demographic data, the demand simulator assigns each

traveler with socio-economic characteristics such as age, purpose of trip, value

of time etc. In addition, the demand simulator contains the following models:

• OD Estimation Algorithm: This algorithm updates the OD matrices to

match the field sensor counts. This algorithm is required primarily for

establishing the day-to-day behavior of travelers.

• Route Choice Models: Route choice models are of three types namely ha-

bitual route choice models (for day-to-day behavior) and en-route choice

models (for within-day dynamics). The habitual route choice model assigns

travelers to paths based on their perceived travel times. En-route choice

models represent traveler compliance in the case of prescriptive information

and capture en-route decisions in the case of descriptive information.

• Departure Time Choice Models: These models assign departure times to

travelers and model shifts in departure time of travelers in response to

information.

• Mode Choice Models: These models predict the mode choice for the trav-

eler, especially in the case of within-day behavior such as response to HOV

lane strategies or special events.

2. Supply Simulator:

The supply simulator has an input the list of travelers with their complete char-

acteristics from the demand component including travel behavior and simulates

their movement in the network in order to evaluate network performance and
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the level-of-service in the network. The supply simulator captures traffic dy-

namics and models the formation and dissipation of congestion (and queues) in

the network. The supply simulator also models the ATMS system in place or

under evaluation.

3. Learning Models:

As described in Figure 3-1, the learning models capture demand-supply inter-

actions. These models update the perceived travel time of travelers based on

their trip experiences.

3.3 Modeling Day-To-Day Behavior

The procedure to establish the basic equilibrium conditions in the network through

modeling day-to-day behavior is outlined in Figure 3-2.

1. Inputs: The main inputs to the process are

• Historical OD Matrices: The historical OD matrices are derived from long-term

planning analysis. However, usually planning OD matrices are static, but for

the purposes of the model discussed here, the estimated OD matrix is dynamic.

For accurate replication of actual traffic conditions, it is incumbent that the

input OD matrix adequately captures different OD flows during the morning

and the evening peaks and changes in OD Flow to reflect peak periods etc.

• Socio-economic Characteristics of Travelers: The socio-economic information

is required to assign the travelers with various characteristics, that are used in

modeling traveler behavior.

• Historical Travel Times: Historical travel times, if available are the first esti-

mate of the habitual travel times. However, unavailability of this data will not

be critical since free flow travel times can be assumed otherwise.

• Field Sensor Counts: Field sensor counts are important inputs to the planning

process and are used for updating the original (seed) OD matrix. Field sensor

53



START

INPUT
Historical OD

Matrix

INPUT
Historical

Travel-Times

Initial
Planning OD Matrix =
Historical OD Matrix

Equilibrium Travel
Times = Historical

Travel Times

STEP 1: Compute Equilibrium Travel-
Times given the Planning OD Matrix

STEP 2: Estimate OD Matrix given the
Planning OD as the seed, Equilibrium

Travel-Times and the Field Sensor
Counts.

INPUT
Field Sensor

Counts

Convergence ?

STOP

Update Planning OD

OUTPUTS
Planning OD and

Equilibrium Travel-
Times

Yes

No

Figure 3-2: Modeling day-to-day behavior.
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counts again must be time interval based to capture varying traffic volumes by

day. The availability of a good set of sensor data assumes greater significance

in the absence of accurate historical OD matrices.

2. Outputs: The outputs from the day-to-day behavior models are

• Equilibrium Travel Times: These are a set of time-interval based link travel

times representing equilibrium conditions.

• Planning OD matrix: These matrices result after updating the historical OD

matrices to match the field sensor counts and they reflect the current load on

the network.

3. The Process: The process of establishing the day-to-day behavior is iterative

in nature. The historical OD matrices and the corresponding set of travel times are

used as the starting values of the planning OD matrices and the equilibrium travel

times respectively. This is captured by the first two steps in Figure 3-2. The next

important step is the computation of the equilibrium travel times for the current

planning OD (which during the first iteration is the historical matrix). This compu-

tation, labeled as Step 1 in the flowchart, tries to establish the habitual behavior of

travelers, given the current planning OD. In other words, assuming that the planning

OD reflects the actual load on the network, this procedure arrives at an equilibrium

between the demand and the supply components of the system and establishes trav-

elers’ choices which include route, mode and departure time choice. The method to

obtain the equilibrium travel times is explained in greater detail in Section 3.3.1.

The next step, is to update the OD matrix to match the observed sensor counts,

given the equilibrium travel times so far. Hence during Step 2 in the flowchart, OD

estimation is performed based on available sensor counts, the current estimate of the

planning OD matrix and the equilibrium travel times recently computed in Step 1.

Specifically, these equilibrium travel times are necessary, since these affect traveler’s

route choice decisions, which in turn have a significant bearing on the simulated sensor

counts. Details of this procedure are outlined in Section 3.3.2.
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It is important to understand the need for several iterations of steps 1 and 2, in

the above methodology. The equilibrium travel times are computed assuming an OD

matrix (the planning OD) in Step 1, but this matrix is updated as a result of Step 2.

Therefore the set of equilibrium travel times is inconsistent with the estimated OD

matrix and hence a fresh computation of these times has to be performed. Further

Step 2 has to be performed again since the travel times have changed again. In

short, the current problem is a fixed point problem and thus repeated iterations are

necessary to establish the equilibrium conditions. The convergence criterion usually

depends on the available data and should be based on quantities that are exogenous

to the system. For example the convergence criterion could be based on the difference

between the simulated sensor counts and the field sensor counts. Further, if additional

data such as speeds or occupancies is available, it could be incorporated.

If the convergence criterion is not met, the planning OD matrix is updated based

on the estimated OD matrix just computed. There are several ways that one could

perform such an update, based on the judgment of the quality of data available.

Usually, a linear combination of the previous planning OD and the latest estimated

OD obtained from Step 2 can be performed. Further, the weights can be varied so

that the latest estimates are closer to the actual value.

Finally on convergence, the planning OD accurately reflects the actual loads on

the network and the equilibrium travel times reflect the current performance and

level-of-service attributes of the network, resulting from travelers’ habitual choices.

The following sections illustrate in greater detail steps 1 and 2 of the overall process

described in Figure 3-2.

3.3.1 Equilibrium Travel Times Computation

This section focuses on Step 1 (in Figure 3-2) during the process of establishing the

day-to-day behavior. Figure 3-3 outlines the procedure used to compute a set of

equilibrium travel times, given an input planning OD.

As is evident from Figure 3-3, the process to compute the equilibrium travel times

is an iterative one, involving multiple demand-supply interactions which are linked
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Figure 3-3: Computation of equilibrium travel times (Step 1).
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together by the learning models.

The first step in the process, is to obtain the list of travelers that will be used in

the supply simulator. This process of disaggregating the input planning OD matrix

and generating a set of actual travelers is performed by the demand simulator. The

input OD flows are disaggregated into individual travelers who are assigned socio-

economic characteristics such as trip purpose, information source and value of time.

Further departure time, mode choice and route choices for the travelers are performed

to provide the travelers with habitual travel behavior. It is critical to note that travel

times used as explanatory variables by the various travel behavior models are based

on the previous best estimate of the equilibrium travel times. For the first iteration in

Figure 3-2 the best estimate of equilibrium travel times is the input historical travel

times. In the absence of historical travel times, free flow travel time estimates may

be assumed. However, several iterations may be required to establish equilibrium

conditions, for a given OD matrix.

Once travelers have been disaggregated and supplied with habitual paths, the list

of actual travelers is loaded onto the supply simulator which models the movement

of the vehicles in the network for the planning horizon. The supply produces level

of service characteristics of the performance of the network such as link-travel times,

speeds, queues, densities etc. The results from the run of the supply simulator can

be conceptually thought of network conditions resulting from travelers’ behavior on a

particular day. Using the same analogy, the first iteration in this process of computing

the equilibrium travel times, may be thought as the first day during which travelers

base their choices on their previous best estimate of link travel times (the historical

travel times). Travelers’ perceptions of travel times will change based on their expe-

rienced vis-a-vis expected travel times. Based on the level of service characteristics

on the network, travelers will make adjustments to their choices. This is captured by

the learning models, which model travelers’ learning process. Thus, assuming that

the similar conditions hold the next day, travelers will make decisions based on their

new perceptions of travel times. These perceptions may be altered based on their ex-

periences on the second day and so on. The equilibrium travel times are established
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by this iterative procedure, until the travelers’ expected travel times (i.e the previous

estimate of the equilibrium travel times) match their experienced travel times (gen-

erated by the supply simulator). This may take several days (or several iterations in

Figure 3-3). At the end of each day (or every iteration), the equilibrium travel times

are updated to reflect travelers’ latest experience and expectations (from the supply

simulator). It is also obvious from the above description as to why this behavior of

travelers is referred to as the day-to-day behavior.

The convergence criterion follows naturally from the description above and is based

on the similarity between the previous equilibrium travel times and the latest travel

times obtained from the supply simulator. If the convergence criterion is satisfied,

a set of equilibrium travel times has been formed for the assumed planning OD.

Otherwise further demand-supply and learning model iterations are performed after

updating the equilibrium travel times.

The next step, after computing the equilibrium travel times is Step 2, involves

updating the planning OD matrix to reflect the latest observation of traffic loads.

3.3.2 OD Estimation

The aim of this step is to update the planning OD to reflect the field sensor counts.

Typically, the inputs to the OD estimation problem include a seed OD matrix, recent

observation of link counts and an assignment matrix which maps OD flows to sensor

counts (Ashok [6]). In this framework, the seed OD matrix is the best estimate

of the planning OD, the historical travel times are the computed equilibrium travel

times from Step 1. The assignment matrix, consists of the fraction of every OD pair

has been counted on each sensor by time period. The assignment matrix is usually

not available and has to be generated internally through the supply simulator. Hence

the problem of estimating an OD matrix is a fixed point problem. The solution

is an iterative process between two components, the OD estimation algorithm and

the supply simulator, linked by the assignment matrix. The process involving these

iterations is depicted in Figure 3-4.

A process of OD estimation and demand disaggregation is the first step in the
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process. During the first iteration of the current loop, there is no assignment matrix

available and hence no OD estimation is performed; thereby the estimatedOD is equal

to the planning OD. In subsequent iterations, an assignment matrix will be available

and an estimated OD is obtained using the OD estimation algorithm. The estimated

OD is disaggregated to create the list of travelers, as described in the previous section.

Once an estimated OD is available, the list of travelers loaded into the supply has

to be modified to reflect the new matrix. Therefore additional vehicles may have to

be generated or some vehicles may have to be removed. Further, new packets are

assigned paths according to the travel behavior models and the equilibrium travel

times. The new list of travelers is then loaded into the supply simulator. The output

from the supply simulator usually contains information regarding vehicles that passed

through a particular sensor and an associated time-stamp. Based on this information,

a time-dependent assignment matrix is generated.

Iterations of the above steps may be necessary, since the assignment matrix is

internally generated and depends on the OD matrix assumed initially. After each

iteration, the convergence criterion is examined. The convergence to be examined

ideally in this case is the convergence of the assignment matrix. However, successive

OD matrix estimates may also be used for this purpose.

At the end of this procedure (Step 2) we have a set of equilibrium travel times

computed from Step 1 and the final estimated OD obtained as a result of Step 2.

The planning OD is updated based on the discussion earlier and further iterations

of Steps 1 and 2 are repeated until the overall convergence criterion is satisfied, in

accordance with Figure 3-2.

3.4 Modeling Within-Day Behavior

This section focuses on modeling the within-day dynamics. The within-day behavior

is modeled only after the base-case or the day-to-day behavior has been established. It

is assumed that the habitual patters of travelers are not affected greatly by travelers’

within-day decisions. For a particular situation (scenario) the within-day behavior is
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established using the following inputs:

• Planning OD matrix (from the day-to-day analysis)

• Equilibrium travel times (from the day-to-day analysis)

• Stochastic events which form the basis of the scenario (sampled from a database)

• Characteristics of the ATIS/ATMS strategy being evaluated etc.

Within-day behavior is analyzed by simply performing iterations between the

demand and the supply components of the system in response to the stochastic

events/special events. Further details of using the within-day model is discussed

in the following sections.

3.5 Applications of the Planning Framework

Typically, transportation short-term planning concerns itself with evaluating the ex-

isting conditions in the network and the conditions in the presence of special events

or disturbing events. Further, evaluating the impact of proposed strategies such as

ATIS, ATMS and demand management strategies is another important aspect of

transportation planning. In typical applications, the planning framework can be ap-

plied for the analysis of the base-case and scenarios which include the changes to the

system to be evaluated.

3.5.1 Base-Case

This analysis tries to capture the existing conditions of the network and tries to

establish travelers’ habitual decisions. The base-case is evaluated using the planning

framework primarily by the use of the day-to-day behavior model. The use of the

day-to-day model captures the network conditions on “standard” days.

However, there are several days that are “non-standard” and occur less frequently

such as a major sport day or a holiday. Analyzing the network conditions under such

circumstances may also be a part of the base-case analysis. However, on these days
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travelers will differ from their habitual paths and hence their analysis requires the

within-day framework. The analysis of such events may require changes both on the

demand and the supply side. Certain links may have to be blocked in the network

due to parades, police patrol etc. The OD matrix has to be spiked up to reflect the

corresponding demand patterns. If actual field counts from similar events are avail-

able, the OD estimation algorithm could be used to update the planning OD matrix

to match the observed counts. Multi-modal strategies, such as the shift to transit

during such special events can be captured through the mode choice models. The

performance of the system in the base-case is the weighted average of its performance

under normal conditions and special events.

3.5.2 Scenarios

The scenarios to be analyzed can be classified into two broad categories: Infrastructure-

based scenarios and Traffic Management-based scenarios. Especially, traffic manage-

ment scenarios may include several ATIS/ATMS elements.

• Infrastructure-based scenarios include assessment of network conditions under

situations such as lane closures. These are the traditional planning scenarios,

which involve changes primarily at the network level. Work-zone management

is a typical example of such a scenario.

• Traffic management-based scenarios fall under the techniques of managing the

existing traffic conditions without the addition of major infrastructure. Traffic

management scenarios for example, consist of evaluating network impacts due

to converting a normal lane into HOV/HOT lane. Traffic management scenar-

ios also consist of evaluating the network performance as a result of traveler

behavior under ATIS/ATMS strategies. Further, ATIS scenarios modeled in

this planning framework are in-vehicle or VMS information and they could be

based either on instantaneous or predictive information.

Furthermore, since ATIS and traffic management related strategies are important

during non-recurrent congestion events, a combination of various scenarios can occur,
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such as evaluating the effect of a VMS message due a lane closure resulting from an

accident.

It is however critical to note that based on the planning framework outlined and

based on the application, certain scenarios can be analyzed using the day-to-day

behavior model, whereas some scenarios place more emphasis on the within-day dy-

namics component for analysis. The following sections illustrate the application of

the planning framework to evaluate various scenarios in more detail:

1. Infrastructure-Based Scenarios

Infrastructure-based scenarios cause changes to either the supply characteristics, the

demand characteristics or both. These scenarios can be evaluated using the day-to-

day behavior model. The effects of these scenarios can be captured by updating the

supply characteristics or the demand characteristics (through the inputs) and evaluat-

ing the network performance under the modified inputs. Additional demand/supply

iterations may be required to capture travelers’ adjustment to the infrastructure

change.

A typical example is lane closure and its effects for a temporary period (e.g con-

struction). In this case, the capacity of the corresponding segment/link is reduced to

account for the lane closure. The habitual list of travelers with their habitual routes

(obtained from the base-case) are then loaded into the supply and the effects of the

network under this lane closure are measured.

Another example could be the case of work-zone management. In this case, it is

typically required to analyze the state of the network under various work-zone config-

urations. Again, appropriate reductions in capacities of the corresponding segments

are performed on the supply side. No changes are required on the demand side. In this

case, demand-supply interactions through the learning models may be required since

travelers may change their travel patterns based on their knowledge of the work-zone

in the following days.
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2. Traffic Management-Based Scenarios

Various traffic management scenarios include demand-management strategies such as

HOV/HOT lanes and ITS strategies such as ATMS/ATIS deployments.

A. HOV Scenarios

The traffic management scenarios to be addressed using this planning tool are demand

management strategies involving HOV lanes as discussed in Chapter 1. Further, these

strategies can include assessing the impacts of currently functioning HOV lanes or

assessing the impacts of a new HOV lane construction (e.g. converting a normal flow

lane into an HOV lane).

To evaluate these strategies appropriate models and representation are required

both on the supply side and the demand side. On the supply side, changes in the

network are required to represent the HOV lanes. Changes in the demand side may

however depend on the scenario being analyzed. For instance, the mode choice model

is critical in the case of the scenario involving converting a normal flow lane into

an HOV lane, but is not as critical if the impact of existing HOV lanes is being

analyzed. In the latter case, instead of using behavioral disaggregate models of mode

(HOV) choice, a separate HOV matrix may be estimated (at the aggregate level),

using data collected by sensors on HOV lanes. The above observations will be made

clear during the discussion of the implementation of HOV lane scenarios in Chapter

4. It is important to note that the day-to-day model is required for the analysis of

HOV lane strategies because travelers will make changes to their travel choices in the

short-term as they experience the network conditions as a result of the HOV lane.

B. ATMS Scenarios

ATMS strategies are modeled in the supply simulator through their impact on link

capacities. Based on the ATMS strategy, this is achieved by dynamically updating the

capacities of various segments/links in the supply simulator. Modeling the capacities

according to various ATMS strategies (e.g adaptive traffic control system) is beyond
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the scope of this thesis and has been dealt with by Tian, [51].

The day-to-day model is required because travelers’ habitual decisions (for e.g.

route choice) may be influenced by the ATMS system in place. However, sometimes

we may want to analyze the performance of an ATMS strategy on a special event day.

In this case, we require the within-day analysis framework. Thus, in order to evaluate

ATMS, we may require day-to-day analysis or within-day analysis depending on the

application.

C. ATIS Scenarios

ATIS strategies are typically employed due to various stochastic events (such as inci-

dents) and in order to evaluate them, the within-day dynamics component is critical.

To evaluate such strategies, the planning tool should be capable of handling ATIS

at various levels of sophistication. For example, an ATIS may provide instantaneous

information or it may provide predicted information. Further, the tool must incorpo-

rate design parameters such as the frequency updating of the information etc. The

method to both generate instantaneous/predictive travel times and also use it to

evaluate the network performance is illustrated below:

ATIS with Instantaneous Information

Figure 3-5 represents the procedure to model an ATIS system with instanta-

neous travel times. The frequency with which the information is updated is a

design parameter and is an input.

The planning OD matrix is disaggregated to produce a list of travelers. Based on

the information available about the percentage of unguided and guided travelers,

the list of travelers is divided into two driver classes: informed and uninformed

drivers. The habitual paths of both the classes of drivers’ is obtained by the

standard route choice model using the equilibrium travel times. Uninformed

travelers are loaded into the supply with the habitual paths and do not make

en-route decisions unless they encounter a VMS message. Informed vehicles

on the other hand may change their routes dynamically based on the both
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Figure 3-5: Modeling instantaneous ATIS scenarios.
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in-vehicle and VMS information.

The instantaneous information is obtained by aggregating travel time informa-

tion from the supply, after every information-update period. For example, if the

frequency of the information updating is 5 minutes, every 5 minutes the travel

times provided by the supply simulator are broadcast to informed drivers. These

informed drivers then make en-route choices depending on the travel times sup-

plied to them, using appropriate compliance and en-route choice models. The

travel times provided to drivers can be on certain links, or on certain paths

depending on the characteristics of the ATIS. This mechanism is shown by the

dotted lines in Figure 3-5.

In the case of a VMS message, information could either be prescriptive (recom-

mended routes) or descriptive (with information regarding travel times/delays

on certain links or paths). During the supply simulation, whenever any vehicle

passes over a link which has a VMS message, a driver may respond to VMS with

certain probabilities. In this case, traveler behavior models in the demand com-

ponent are invoked to perform en-route choice. Typically, a compliance model,

(e.g a simple binary logit model) can be used to update the path in the case

of prescriptive information. In the case of descriptive information, the utilities

for the en-route choice models is computed based on the travel times provided

by the VMS (for the specific links or paths) and equilibrium travel times for all

the other links. A nested logit model could also be used for this purpose, where

the first decision level is to decide whether to comply with the VMS message

or not and the second level of decision making is to update the current path.
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ATIS with Predictive Information

The important aspect of traffic prediction is the concept of consistency. Based

on the guidance provided, travelers’ response to the guidance will influence

network conditions and hence the guidance strategy. Hence, the problem of

obtaining a consistent guidance is a fixed point problem. Thus any ATIS based

on predictive guidance has to iterate so that the outcome of the guidance strat-

egy matches the network conditions after travelers’ reactions to the guidance.

Based on this concept, evaluating a predictive ATIS scenario is based on the

algorithm outlined in Figure 3-6.

An initial set of predicted travel times is assumed (typically this is the equilib-

rium travel times) and network conditions are simulated. Based on the simu-

lated travel times, algorithms are used to obtain a new prediction of travel times

and which are used for guidance generation. The new set of predicted travel

times is provided either through in-vehicle or VMS information and travelers

update their paths. If the resulting travel times do not match the predictive

travel times provided to travelers, then consistency has not been achieved and

more iterations are necessary as indicated by the solid line in Figure 3-6. On

convergence, a guidance strategy that is consistent is obtained.

The guidance generating algorithm generates the new set of travel times by

a linear combination of the previous guidance and the latest simulated travel

times. The framework for this algorithm is the method of successive averages

(MSA) and is referred to as the time-smoothing (for more details see Bottom,

[17]).

3.6 Summary

This chapter developed a framework for modeling short-term planning applications

and described in detail the methodology to capture the day-to-day and within-day

behavior in simulation-based DTA systems. The establishment of the day-to-day be-
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havior involved the application of two steps, computing the equilibrium travel times

for a given OD matrix and OD estimation, in an iterative framework. Details regard-

ing each of the above steps were mentioned.

Further, application of the framework for the analysis of the base-case and sce-

narios (infrastructure-based and management-based) were discussed. Particularly,

the ATIS instantaneous and the ATIS predictive scenario were developed in detail.

The next chapter implements this framework in a real-time simulation-based DTA

system, DynaMIT.
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Chapter 4

Implementation of the Planning

Framework

This chapter focuses on implementing the framework developed in Chapter 3 to

develop a planning tool (DynaMIT-P) for short-term planning applications. The

planning framework is implemented in DynaMIT (Dynamic Network Assignment for

Management to Information to Travelers), a simulation-based DTA system that was

described briefly in Chapter 2. A detailed overview of DynaMIT is presented in this

chapter followed by a description of the basic components of DynaMIT-P. Details

regarding the implementation of day-to-day, within-day dynamics and the represen-

tation of the base-case and scenarios in DynaMIT-P are then provided.

4.1 A Brief Overview of DynaMIT

DynaMIT is a state-of-the-art real-time computer system for traffic estimation and

prediction, and the generation of traveler information and route guidance. DynaMIT’s

main functionality is to combine historical databases with real-time inputs from the

surveillance system to perform estimation of current network conditions and per-

form rolling horizon predictions of network conditions. To sustain users’ acceptance

and achieve reliable predictions and credible guidance, DynaMIT incorporates un-

biasedness and consistency into its guidance generation methodology. Unbiasedness
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guarantees that the information provided to travelers is based on the best available

knowledge of current and anticipated network conditions. Consistency ensures that

DynaMIT’s predictions of expected network conditions match what drivers would

experience on the network.

DynaMIT has the ability to trade-off level of detail (or resolution) and compu-

tational performance, without compromising the integrity of its output. Its main

features include:

• Estimation and prediction of origin-destination flows.

• Optimal use of historical, surveillance and OD data to generate reliable OD

estimates in real-time. The system records the results from previous OD esti-

mations to update OD databases.

• Iteration between predicted network state, driver response to information and

the resulting network state, towards the generation of a consistent information

strategy.

• Generation of information/guidance that is consistent and unbiased to maintain

drivers’ confidence in the system.

• Generation of information/guidance that avoids to incident congestion.

• Demand simulation using a micro-simulator, which generates individual travel-

ers and simulates their pre-trip and en-route decisions (choice of departure time

and route) in response to information provided by the ATIS.

• Simulation of driver behavior.

• Capability to distinguish between informed and uninformed drivers.

• Supply simulation using a mesoscopic traffic simulator that explicitly captures

traffic dynamics related to the development and dissipation of queues, spill-

backs, and congestion.
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• Capability to handle real time scenarios such as incidents, special events, weather

conditions, highway construction activities, fluctuations in demand, etc.

• Integration with the MITSIMLab microscopic traffic simulator for off-line eval-

uation and calibration.

• Deployment over a computer network, using its flexible and internally dis-

tributed CORBA architecture.

DynaMIT was used as the DTA system to implement the planning framework

developed in Chapter 3, because of its rich features and functionality.

4.2 Basic Components of DynaMIT-P

The basic components of DynaMIT-P (and DynaMIT) consist of the demand simu-

lator, the supply simulator and the learning models to capture the demand-supply

interactions.

4.2.1 Demand Simulator

The demand simulator in DynaMIT-P is a microscopic simulator of travel behavior.

In addition, the demand simulator includes an OD estimation algorithm. The models

in the demand simulator are:

• OD Estimation

• Demand Disaggregation

• Travel Choice Models

OD Estimation

The demand simulator in DynaMIT-P includes an OD estimation algorithm. The

OD estimation problem may be viewed as combining and reconciling information

from diverse sources and with various error characteristics. The external inputs to
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the model include link counts and the historical database of OD flows. The historical

matrices in DynaMIT-P are time dependent in order to capture varying levels of traffic

demand during the day. The key inputs generated internally in DynaMIT-P that are

required for OD estimation are the time-dependent assignment matrices generated by

the supply simulator.

The input OD flows are coupled with the concept of flow deviations in order

to effectively capture the information contained in the past estimates. The current

version of DynaMIT-P employs a GLS-based OD estimation algorithm. Though

DynaMIT-P is an off-line tool and a simultaneous estimation for ODmatrices of all the

time intervals can be performed, a sequential procedure is adopted for computational

efficiency. The OD estimation problem addressed in DynaMIT-P is based on the

equation below:
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where:

x̂
h
is the estimated flows for interval h,

x
a

h
are the target OD flows (a priori flows),

W
h
is the error covariance matrix associated with OD flow measurements,

y
h
is the counts that are measured by the surveillance for time interval h,

a
h
is the assignment matrix mapping flows from a departure interval p to the

current interval h,

V
h
is the error covariance matrix associated with the link counts and

p
′

is the length (in number of intervals) of the longest trip.

The constraints imposed on the OD flows are that they must be nonnegative.
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Demand Disaggregation

The role of the disaggregation component is to generate a population of drivers from

the OD matrices. Origin, destination, departure time interval and mode are assigned

to the travelers using information from the OD matrices. The origin and the destina-

tion come from the particular OD pair for which the driver is generated, the departure

time interval is the interval to which the OD matrix corresponds and the mode is the

car by default (since it is assumed that the OD matrices contain only car trips). The

disaggregation procedure also generates paths for travelers from their origin to their

destination and provides travelers with a preferred route using the travel choice mod-

els. A number of socio-economic characteristics (such as value of time, information

source) and trip characteristics (such as trip purpose) are generated and assigned to

each traveler.

Travel Choice Models

Travel choice models are very critical to be able to capture traveler behavior. The

primary travel choice models in DynaMIT-P are models to generate path choice sets

for travelers and and models to assign departure time, route and mode for travelers.

Further, these travel choice models capture response to ATIS information.

• Path choice set generation:

The choice set generation step involves the computation of a good set of feasible

paths connecting every OD pair of interest. The importance of this step can-

not be underestimated in demand simulation. While the set of shortest paths

between every OD pair might capture driver behavior, changing traffic patterns

can increase the attractiveness of other paths. Incidents, for example can block

the shortest route and force drivers onto less attractive paths. A good set of

paths for each OD pair is therefore essential in planning applications.

DynaMIT-P employs three steps in its path generation algorithm. The main

steps involved in the path generation algorithm are:
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– The shortest path computation step generates the shortest paths con-

necting each link in the network to all defined destination nodes.

– A link elimination step augments the paths from the shortest path set

with alternative paths. This step involves the elimination of each link in

the network and the subsequent re-computation of the shortest path, and

ensures that an incident on any link will still leave alternative paths open

for every OD pair.

– A random perturbation step is performed in order to obtain a richer

path set. The impedances of the links are perturbed randomly to simulate

varying travel times. Another set of shortest paths are now computed,

and appended to the existing set. The number of random perturbations

performed can be controlled by the user.

The algorithm also screens the final path set for uniqueness, and eliminates

unreasonably long paths.

• Route Choice:

Once a set of feasible paths has been obtained, the preferred path for a particular

traveler is obtained by means of a route choice model based on discrete choice

analysis and the concept of utilities. A Path-Size logit model is used to obtain

probabilities for each of the choices. Stated mathematically the PS-Logit is as

follows.

Pn(i) =
e

Vi+lnPSi

∑

j∈Cn
e

Vj+lnPSj
(4.2)

where Pn(i) is the probability of individual n choosing alternative i, V
i
is the

utility of alternative i, PS
i
is the size of path i, and Cn denotes the choice

set for individual n. The size of a path is defined as (Exponential Path-Size

formulation, Ramming [47]):
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where la is the length of link a, L
i
is the length of path i and δaj takes the value

1 if link a is a part of path j (and is zero otherwise). The inner summation is

computed over all paths in choice set Cn, while the outer summation is over all

links a in path Γi. γ is a parameter to be calibrated.

The utility V
i
of each path could be specified as a function of several explanatory

variables. Typically, the explanatory variables and their co-efficients in the route

choice models are identified during the process of model estimation, primarily

by means of surveys. The default utility specification used in DynaMIT-P is

given by:

Vi = β
1
tt
Ai

+ (β
2
β
1
)tt

Fi
(4.4)

where tt
Ai

and tt
Fi

are the arterial and freeway components of the travel time

along path i, β
1
is the coefficient of arterial travel time, and β

2
is the freeway

bias.

En-route choice models are employed to capture travelers’ response to in-vehicle

information and VMS information. The structure of these models depends on

the nature of the information system in place (e.g. prescriptive/descriptive).

• Departure Time Choice: During demand disaggregation, each traveler is

assigned a departure time interval during which he/she departs. Based on a

uniform distribution, the traveler is assigned a specific departure time in the

departure interval. In the current implementation, no departure time choice

model is used.

• Mode Choice: The default mode in DynaMIT-P is assumed to be the car.

However, DynaMIT-P also supports alternative modes such as HOV vehicles.

4.2.2 Supply Simulator

The supply simulator is a mesoscopic traffic simulator. For a given set of travelers

and control strategies, it predicts the performance of the network in terms of time-

dependent travel times, queue lengths, etc. The simulator is designed to operate at
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different levels of granularity, depending on the requirements of the application. The

flexibility in the design facilitates its use in a wide range of applications.

The complexity of the flows on the network is captured by integrating the classes

of models summarized below:

• Capacities associated with roadway features. The movement of vehicles from

one segment to the next is governed by a host of capacity calculations. The

primary quantities of interest are the input and output capacities of the various

segments. These capacities are compared with the available physical space on

the downstream segments before allowing vehicles to cross segment boundaries.

A constraint on either capacity or space would cause vehicles to queue.

• Incidents and intersection controls achieved through capacity controls.

• Deterministic queuing reflecting the effect of bottlenecks.

• Macroscopic speed-density relationships representing uninterrupted flow. Each

segment contains a moving part (with vehicles moving at certain speeds), and

a queuing part. The movement of vehicles in the moving part are governed by

macroscopic speed-density relationships that take the following form:

v = Max(vmin, vmax





1−





k − k
min

k
jam





β





α

) (4.5)

where v is the speed of the vehicle (in mph), vmax is the speed on the segment

under free-flow traffic conditions, k is the current segment density (in vehi-

cles/mile/lane), k
min

is the minimum density beyond which free-flow conditions

begin to break down, k
jam

is the jam density, and α and β are segment-specific

coefficients. v
min

is the minimum speed of a moving vehicle that is determined

by the network and vehicle attributes. These speed-density parameters are

obtained by a process of supply calibration for a particular network.

The supply simulator obtains aggregate measures of network performance by sim-

ulating the movement of drivers on the road network. Detailed mesoscopic models
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capture traffic dynamics and accurately model the build-up and dissipation of lane-

specific queues and spill-backs. The links in the network are subdivided into segments

to capture changing section geometries. Further, the lanes within each segment are

grouped into lane groups to account for turning-movement-specific capacities at di-

version and merge points and intersections.

The simulation of the traffic operations proceeds in two phases: the update phase

and the advance phase. During the update phase the most time consuming calcula-

tions are performed, where the traffic dynamics parameters (e.g. densities and speeds)

used in the simulation are updated. During the advance phase the vehicles are ad-

vanced to their new positions. The advance phase has a higher frequency than the

update phase. The exact time discretization, for both the phases depend on specific

the application and are selected to obtain the best compromise between accuracy of

results with respect to network performance (e.g. travel times) and computational

performance.

Various ATMS strategies can be simulated through their impact on intersection

capacities. For example, traffic actuated and adaptive control are modeled through

capacities that are determined dynamically as a function of the prevailing flows (Tian,

[51]).

4.2.3 Learning Models

The learning model in DynaMIT-P is used to update the average expected time of

travelers’ based on their experienced travel times. The average expected travel time

is computed by using the following filter:

T̄
t

k
= λT

t−1

k
+ (1− λ)T̄

t−1

k
(4.6)

where T̄
t

k
is the expected time-dependent travel time along path k on day t, and T

t

k

is the time-dependent travel time experienced along path k on day t. λ captures the

learning rate, and may vary across market segments. The value of λ lies between 0

and 1, and is affected by the use of ATIS.
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4.3 Implementation of Day-to-Day Behavior in

DynaMIT–P

1. Inputs:

The inputs required for the day-to-day behavior were described in Chapter 3. The

specific nature of inputs employed in DynaMIT-P are:

• Time Dependent Historical OD Matrices.

• Time Dependent Historical Link Travel Times: In DynaMIT-P, link travel times

for each of the links are stored based on the time of entry into the link. Thus

the travel time stored for a particular link and time interval, is the average

travel time that a vehicle will experience if it enters the link during that time

interval. This time interval is an user controlled parameter and can be varied

depending on how sensitive the travel times of links are to the entry time on the

link. However, as was discussed earlier in Chapter 3, this input is not necessary

to be provided and free flow estimates of travel times can be input instead.

• Field Sensor Counts: Field sensor counts received by actual surveillance sources

are used as inputs to the OD estimation algorithm.

• Socio-economic Characteristics: The socio-economic characteristics of potential

travelers (trip purpose, information source, value of time).

2. Outputs

The outputs from DynaMIT-P, after establishing the day-to-day behavior are:

• Equilibrium Travel Times:

• Planning OD Matrices:

3. Implementation

The implementation of the day-to-day behavior is based on the framework de-

scribed in Figure 3-2. However, some particular details are mentioned below:
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• Convergence Criterion:

The convergence criterion used in DynaMIT-P is given by:

√

√

√

√

√

∑T
t=1

∑S
s=1

(

SCt
s −FCt

s

)2

Nt.Ns

< ε (4.7)

where SCt
s is the simulated sensor count on sensor s in time interval t, FC t

s

is the corresponding field sensor count, Ns is the number of sensors reporting

counts in the network, Nt is the number of time intervals and ε is the threshold,

which is a user defined parameter.

In the presence of other data available such as speeds and densities, the con-

vergence criterion can be expanded to include these observations. Also from an

implementation standpoint, the process terminates either when the the stop-

ping criterion in Equation 4.7 is met or when a maximum number of iterations

has been performed.

• Updating the Planning OD:

In the current version of DynaMIT-P, the estimated OD obtained in Step 2 (in

Figure 3-2) is used as the planning OD for the next iteration.

Specific details regarding the computation of equilibrium travel times and OD

estimation are provided next:

4.3.1 Equilibrium Travel Times Computation in DynaMIT-P

Figure 4-1 shows the computation of the equilibrium travel times in DynaMIT-P. The

procedure to compute the equilibrium travel times for a particular planning OD is

based on the algorithm described in Chapter 3.

• Step 1:

Generate a list of travelers for the planning OD matrix and traveler path choices

based on their current perceptions of travel times in the network. During the
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Figure 4-1: Computation of equilibrium travel times in DynaMIT-P.
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first iteration of the outer loop, travelers’ best perceptions of travel times are the

initial historical travel times. This process of providing a list of travelers and

their behavior based on the current perceptions of the travel times is performed

by demand disaggregation as outlined in Section 4.2.1

• Step 2:

Run the supply simulator for the entire planning horizon to provide aggregate

link travel times that are experienced by the travelers based on their travel

decisions obtained in Step 1.

• Step 3:

Update the perceptions of the travelers’ expected travel times (equilibrium

travel times) based on their recent experiences that were simulated by the sup-

ply. The learning model described in Equation 4.6 is used for this purpose.

• Step 4:

Check for convergence based on the equation below to determine if the expected

travel times of travelers matches their experienced travel times:

√

√

√

√

√

∑L
l=1

∑T
t=1

(

EQl,t
i − EQl,t

i−1

)2

Nl.Nt

< ε (4.8)

where EQl,t
i is the equilibrium link travel time (or the expected link travel time)

in the current iteration i, on link l, for a vehicle that enters the link in time

interval t, EQl,t
i−1 is the corresponding link travel time in the previous iteration

i−1, Nl is the number of links in the network, Nt is the number of time intervals

with which the travel times are represented and ε is the threshold, which is a

user defined parameter. Further, there is also the provision of specifying a

maximum number of iterations to be performed.

If the convergence criterion is satisfied, then travelers’ latest perceptions of

travel times based on their most recent network experience matches their pre-

vious expectations. Thus under this scenario, travelers have established their
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“equilibrium decisions” and the expected travel times are hence the final equilib-

rium travel times for the input planning OD. If however, there is a discrepancy

in travelers’ expected vis-a-vis their experienced times, then Steps 1, 2 and 3

are repeated until convergence is achieved.

A few extensions to the basic idea are also mentioned in Figure 4-1. One of them

is to allow for the process described above to start from a loaded network. This is

achieved in DynaMIT-P by creating a list of travelers based on an input file that

describes the state of the network in terms of the travelers path, location, origin,

destination and so on. This input file for instance may be generated by running

DynaMIT-P from a start time at which the network is relatively empty until the start

of the planning horizon and utilizing functions in DynaMIT-P to dump the required

network characteristics. It is critical to note however that the habitual paths of these

travelers is not updated in each iteration and these travelers are assumed to have

already made their habitual travel choices.

4.3.2 OD Estimation in DynaMIT-P

The inputs to this procedure consist of the previous estimate of the planning OD

matrix and the latest set of equilibrium travel times.

The OD estimation procedure in DynaMIT-P is performed sequentially, for com-

putational reasons for each time period. Thus, an estimated OD matrix is generated

for each time period based on the previous estimate of the planning OD and the

observed sensor flows for that time interval. This sequential procedure is illustrated

by the outer loop in Figure 4-2.

Before the start of the sequential procedure, the network state corresponding to

the start of the planning horizon is loaded in a manner similar to that described in

the previous section.

The steps to estimate an OD matrix for a particular time interval is an iterative

procedure as and is described by the following steps:

• Step 1:
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Figure 4-2: OD estimation in DynaMIT-P.
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The planning OD matrix is disaggregated for the time interval is disaggregated

to produce an initial list of travelers using the same procedure described in the

previous section.

• Step 2:

The OD estimation algorithm is then used to provide a new estimate of the OD

for the time interval. In addition to the seed OD matrix and the field counts

for the corresponding time interval, an assignment matrix is required for the

OD estimation module described in Section 4.2.1. If no assignment matrix is

available the estimated OD matrix is equal to the seed OD matrix (such as in

the first iteration).

• Step 3:

Based on the updated OD matrix, the initial list of travelers (obtained in Step

1) is updated by a process of kill and clone. Additional travelers if required

for any OD pair are disaggregated in the usual manner by the clone process.

Travelers for a particular OD pair are removed from the list at random by the

kill process.

• Step 4:

The updated list of travelers is then loaded into the supply simulator. The

main purpose of the supply simulation is to generate the assignment matrix.

This matrix is generated based on the information obtained during the supply

regarding the time at which every vehicle crossed a traffic sensor. Based on this

data, the assignment matrix for the particular time interval is computed.

• Step 5:

The OD estimation algorithm in Step 2, requires an assignment matrix, which

however was obtained only in Step 4. Further, the assignment matrix depends

on the OD matrix, which is updated by the OD estimation algorithm. Thus the

establishment of the estimated OD is a fixed point problem. Several iterations
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of steps 2, 3 and 4 may be required to establish the convergence of the algorithm

(i.e. convergence of the assignment matrices in successive iterations. However,

in DynaMIT-P, the convergence criterion is based on successive OD estimates

generated for the particular time interval and is given by:

√

√

√

√

√

∑Nod
n=1

(

Fo,d,p
i −Fo,d,p

i−1

)2

Nod

< ε (4.9)

where F o,d,p
i is the OD flow in the current iteration i, from origin o to destination

d in time interval p, F o,d,p
i−1 is the corresponding OD flow in the previous iteration

i−1, Nod is the number of OD pairs and ε is the threshold, which is a user defined

parameter. The inner summation is carried out for all the OD pairs. There is

again a maximum number of iterations parameter, which can be supplied by

the user to terminate the iterations beforehand.

The iterative procedure just described is shown by the inner solid loop in Figure

4-2.

4.4 Implementation of Within-Day Behavior in

DynaMIT-P

The inputs to the within-day behavior are the equilibrium travel times and the plan-

ning OD matrix obtained from the day-to-day analysis. Various stochastic conditions

and characteristics of any particular ATMS/ATIS strategy are input. Further, in

order to implement within-day dynamics changes in both the supply and the de-

mand side may be required. Changes in the supply side are effected through the

link-capacities that DynaMIT-P uses and changes in the demand side are reflected

through the planning OD matrix or through the travel choice models.

Thus to implement the within-day analysis, these modified inputs are incorpo-

rated, the state of the network at the start of the planning horizon is loaded and the

demand and the supply simulators are used to obtain the resulting network conditions.
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4.5 Representation of the Base-Case in

DynaMIT-P

As was outlined in Chapter 3, establishing the base-case may require the day-to-

day model (for “standard” days) and within-day model (for “non-standard” days).

In DynaMIT-P, the day-to-day and within day framework described in the previous

sections are used with the relevant inputs in order to establish the base-case.

4.6 Representation of Scenarios in DynaMIT-P

Infrastructure-based and Traffic management-based scenarios are implemented in DynaMIT-

P in accordance with the framework developed in Chapter 3. The inputs to the

scenario evaluation consist of the equilibrium travel times and the planning OD ob-

tained from the base-case analysis. The analysis of these scenarios is described in

detail below.

4.6.1 Infrastructure-Based Scenarios

These scenarios are captured by modifying the relevant inputs used for establish-

ing the base line scenario that are specific to the scenario being analyzed and then

evaluating the network performance. The day-to-day model is used for this purpose.

Any changes to the demand side are performed on the planning OD matrix. Such

changes would be necessary to capture spikes in demand due to events such as sports,

special events etc. Changes on the supply side are made primarily on the segment

capacities that DynaMIT-P uses. Lane closures and work-zone configurations are

captured by appropriate capacity reductions.

Once the inputs have been modified to suit the particular scenario, the scenario is

evaluated by disaggregating the appropriate OD matrix using the equilibrium travel

times to evaluate travelers’ choices. As before, the initial network corresponding to the

start of the planning horizon is loaded. The supply simulation is then performed for

the planning horizon on the list of travelers to yield the network conditions. Iterations
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of the demand and supply may be required to account for travelers’ adjustments

made in response to network conditions. The impact of the scenarios is analyzed

by comparing the baseline network state with the obtained network state through

outputs produced by DynaMIT-P.

4.6.2 Traffic Management-Based Scenarios

Analysis of the impact of HOV/HOT lanes is the primary topic studied under traffic-

management strategies.

A. HOV Scenarios

The changes that are required to model such scenarios in DynaMIT-P involve the

following. As discussed briefly in Chapter 3, scenarios involving HOV lanes include

evaluation of existing HOV lane facilities or evaluation of proposed new HOV lane

strategies. The analysis of HOV lanes can be done either through a statistical ap-

proach (focusing on aggregate statistics such as OD flows) or through a behavioral

approach (focusing on disaggregate decisions such as mode choice). Based on the

scenario being analyzed and on the data available either one of the above approaches

can be adopted. If the scenario being analyzed involves existing HOV facilities and

the OD matrix specific to the HOV lanes is known, an aggregate approach may suf-

fice. On the other hand, if the scenario being analyzed involves the conversion of a

normal flow traffic lane into a HOV lane, behavioral models that capture travelers’

mode choice decisions are required. Some of the changes required in the system to

incorporate HOV strategies are described below:

• Changes to the supply side:

The network has to be modified to represent the conversion of the normal lane

into a HOV lane. This is achieved by removing the lane (that is to be converted)

from the existing link and adding a separate link to represent the HOV lane.

• Changes to the demand side:
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The changes required on the demand front can further be categorized below:

– The path choice set is regenerated based on the network changes resulting

from the supply. Further, the HOV paths are identified during this process

and are present in the choice set of HOV vehicles only. While HOV travel-

ers have access to all paths, non-HOV vehicles are restricted to non-HOV

paths.

– Mode choice models are enhanced to model the transition of travelers be-

tween HOV and non-HOV modes. This is relevant only for scenarios which

require the behavioral approach.

– For scenarios which require the aggregate approach, a separate HOV OD

table is used. OD pairs for which the HOV flows exist are modeled as

two separate OD pairs (by adding a dummy origin or a destination). One

of these OD pairs is devoted exclusively for non-HOV vehicles and the

other to HOV vehicles only. The usual process of OD estimation in the

day-to-day behavior, will yield flow for both the OD pairs. This change

is required for scenarios such as evaluating the network conditions under

existing HOV infrastructure in the presence of counts on HOV lanes.

B. ATMS Scenarios

ATMS scenarios, such as evaluation of ramp metering strategies, are also captured

by means of capacity modifications of the relevant facilities. Further DynaMIT-P has

algorithms that dynamically modify the capacities of various segments to model for

instance actuated signal controls. For more details regarding ATMS representation,

the reader is referred to Tian, [51]. However, the analysis of the ATMS systems can

be performed either by the day-to-day analysis or the within-day analysis depending

on the application.
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C. ATIS Scenarios

In order to deal with ATIS-related scenarios, travelers in DynaMIT-P are divided into

two classes: guided and unguided. This distinction is indicated in the socio-economic

characteristics assigned to each vehicle during disaggregation. While guided drivers

update their paths and make en-route decisions based on information broadcast to

them through in-vehicle units, unguided drivers make en-route decisions only in the

presence of a VMS message. The information provided by ATIS and VMS, as cur-

rently implemented in DynaMIT-P is descriptive.

In order to correctly represent the various travel times, the following impedance

tables are employed in DynaMIT-P:

• Equilibrium Travel Times: These are the travel times obtained from the day-

to-day behavior analysis.

• Current Guidance Travel Times: These are the travel times used by guided

travelers and by unguided travelers in the presence of VMS messages (for the

selected links covered by the VMS’s) to make en-route choice decisions. The

methodology to generate these travel times depends on the sophistication of the

system (instantaneous, predictive) and will be discussed shortly.

• Supply Simulator Travel Times: These are travel times generated by the sup-

ply simulator and represent the expected network performance for a given OD

matrix and assigned travel behavior.

The impedance tables described above store the travel times for every link in the

network and are time-dependent.

A brief description of in-vehicle and VMS representation in DynaMIT-P is pre-

sented next, followed by method used for the generation of instantaneous and predic-

tive information.

In-Vehicle Information:

Guided travelers who receive in-vehicle information continuously update their

paths using the en-route choice models in DynaMIT-P. The frequency with
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which they update their paths depends upon the nature of information and the

frequency with which this information is updated. As mentioned earlier, guided

travelers use the current guidance impedance tables to make en-route decisions.

Currently, in DynaMIT-P, in-vehicle travelers receive descriptive information.

VMS Information:

DynaMIT-P models two types of VMS:

• Path-VMS that displays information on specific paths or sub-paths

• Link-VMS that displays information on individual links

Both guided and unguided drivers may respond to the VMS messages and per-

form en-route decisions based on the VMS message. The implemented behavior

is captured by Figure 4-3, in which guided travelers respond to the VMS signs

with probability p1 and ignore with probability 1 - p1. Unguided travelers re-

spond with probability p2. The values of p1 and p2 are inputs to the model and

can be determined through calibration.

The path travel times for travelers making en-route decisions in the presence of

a VMS are computed based on the following rules:

1. In the case of a link-VMS, the latest travel times for the links provided by

the VMS are substituted for the habitual travel times. These latest times

are stored in the current guidance table. Thus, for example in Figure

4-4, assuming that the VMS is located on link 6 and that it provides

information about link 2, then for the path represented by a sequence of

links 6−4−2−5−8, the travel time on link 2 is obtained from the current

guidance table and the travel times of all other links are obtained from the

habitual travel time table.
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Figure 4-3: Travelers response to VMS.
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Figure 4-4: Example to illustrate link-VMS and path-VMS.
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2. In the case of a path-VMS, while computing path travel times for a par-

ticular path, it is checked whether sub-paths for which the VMS provides

guidance is a subset of the current path. If it does, then for all the links

in the sub-path the guidance provided by the VMS is employed to get

the link travel times. Otherwise the habitual travel times are used for the

entire paths. Thus, with reference to Figure 4-4, assuming that the VMS

located on link 6, gives path guidance for path 4− 2− 5, then for vehicles

following the path 6−4−2−5−8 use the current guidance table for links

4, 2 and 5 and the habitual travel times for all the other links. However,

if for example a vehicle is using the path 4 − 2 − 3, then it uses habitual

travel times for all the links on this path, since path 6− 4− 2− 3 does not

contain the sub-path 4− 2− 5.

ATIS scenarios that can be analyzed using DynaMIT-P may be based either on in-

stantaneous or predictive information. The details of these scenarios are provided

next:

ATIS with Instantaneous Travel Times:

The implementation in DynaMIT-P to capture the instantaneous ATIS scenario

is illustrated in Figure 4-5. The network state corresponding to the start of the

planning horizon is loaded, followed by the disaggregation of the planning OD

(using the equilibrium travel times) to produce the list of habitual travelers.

The supply simulator is then run for the time intervals p in succession. The

width of each interval is determined by the frequency with which information is

updated. It is critical to note that while running the supply simulator, travelers

make en-route decisions based on the latest information and according to the

rules specified earlier in this section. At the end of the current interval p,

the link travel times are calculated for that time interval. These travel times

represent the latest instantaneous information that is used by the VMS. For the

next interval (i.e. until the next VMS update travelers that view the VMS),

the travelers update their paths according to the displayed information (using
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Figure 4-5: ATIS instantaneous scenario in DynaMIT-P.
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the process described next). These steps are repeated in succession for each of

the time intervals p. For example if the planning horizon is from 7:00 AM to

8:00 AM and the frequency of information update is every 5 minutes, then the

above steps are repeated in succession for 7:00 to 7:05, 7:05 to 7:10 and so on.

The issue that needs to be discussed is the way travelers update their informa-

tion based on instantaneous information. To illustrate travelers’ behavior, as

implemented in DynaMIT-P, consider a traveler who looks at a VMS message

displaying a message that the travel time on link l is T minutes. If this link

is the travelers’ next link or very close to the VMS message, then the traveler

would probably assume the information as accurate and would base his route

choice based on the information. However, suppose that the traveler will reach

link l only 30 minutes later. In this case he/she would probably not consider

the travel time as reported by the VMS as accurate but will make a judgment

on the travel time based on when he/she would get to that link. Due to lack of

rigorous route choice model that capture the above behavior, the model based

in Figure 4-6 is employed to represent travelers’ perceptions of link travel times.

Assume that T0 is the current time, and a traveler is located on the link for

which the information is being supplied. Under such a scenario, a traveler will

use the instantaneous information and this is represented by the value of λ of 1.0.

However, suppose that the traveler will get to the link only much later than the

time of the broadcast information, then the traveler would probably ignore the

information. This scenario is represented by a λ value of 0 and hence travelers

will only base their choices based on the historical or the equilibrium travel

times. In between the two extreme cases, the value of λ is a decreasing function

as shown in the figure. It may be noted that λ reflects the importance of the

instantaneous information and hence decreases with time. The resulting travel

times based on the above implementation are stored in the current guidance

table as indicated in the figure and this table is used by the travelers to make

route choices (for the corresponding link or paths). Thus, the guidance is based
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Figure 4-6: Guidance generation in the presence of instantaneous information.
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on:

GTT
t

l
= λ(t).InstTT

l
+ (1− λ(t)).EqTT

t

l
(4.10)

where GTT
t

l
is the link travel time in the guidance table for link l for an entry

time interval t, EqTT
t

l
is the corresponding link travel time in the equilibrium

travel times table and InstTT
l
is the instantaneous travel time for link l.

ATIS with Predictive Travel Times:

Scenarios with predictive ATIS are implemented based on Figure 4-7.

As usual, the first step in the process consists of loading the initial network state

and disaggregating the planning OD to produce a list of travelers. The current

guidance table is initialized to be the same as the equilibrium travel time tables.

Incidents are reflected in the capacities input to the supply simulator.

An iterative procedure is employed to achieve a consistent guidance is illustrated

by the following steps:

• Step 1:

The list of travelers is loaded into the supply simulator, which is used for

the entire planning horizon to predict the state of the network. During

the supply simulation, if travelers encounter a VMS, they update their

paths based on en-route choice models. Guided travelers on the other

hand continually update their paths. These travelers perform route choice

based on the current guidance table.

• Step 2:

The next step involves updating the guidance based on the aggregated

link travel times from the supply simulator. A linear combination of the

previous current guidance and the latest aggregated travel time tables from

the supply is used as the guidance generating algorithm for this purpose (

this is similar to the learning model for the day-to-day behavior).

• Step 3:

100



Control and Incidents

Load network state corresponding
to the start of the Planning horizon

START

INPUTS
 Planning OD and
Equilibirum Travel

Times

Demand Simulation
Disaggregate Planning OD to

create a list of travelers

Current Guidance Table =
Equilibrium Travel Time Table

OUTPUTS
List of travelers and

habitual behavior

Capacities
Supply Simulation  with

en-route decisions (In-Vehicle/
VMS)

Update Guidance

STOP

Consistency ?

Yes

OUTPUTS
Network

performance (Link
Travel Times)

NO

Figure 4-7: ATIS predictive scenario in DynaMIT-P.
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It was mentioned that consistency was a key concept in the case of pre-

dictive information. Under consistency, the guidance provided to travelers

must take into account travelers’ reaction to the guidance. Thus, a consis-

tency check is made based on the following equation:

√

√

√

√

√

∑L
l=1

∑T
t=1

(

Gl,t
i − Gl,t

i−1

)2

Nl.Nt

< ε (4.11)

where Gl,t
i is the link travel time from the guidance table in the current

iteration i, on link l, for a vehicle with time of entry into the link t min-

utes after the start of the planning horizon, G l,t
i−1 is the corresponding link

travel time from the guidance table in the previous iteration i − 1, Nl is

the number of links in the network, Nt is the number of time intervals

corresponding to that of the impedance tables in DynaMIT-P and ε is the

threshold, which is a user defined parameter.

If the convergence criterion is not satisfied, then more iterations are per-

formed as indicated by the loop in Figure 4-7 and Steps 1 and 2 are repeated

in sequence.

4.7 Summary

This chapter focused on implementing the planning framework outlined in Chapter

3. A brief overview of a DTA system DynaMIT was presented followed by the basic

components of DynaMIT-P (the planning tool being developed). The specific details

of implementing the day-to-day behavior and within-day dynamics was illustrated in

DynaMIT-P. Further, the use of the day-to-day and within-day model for the analysis

of the base-case and the scenarios were discussed. The next chapter discusses some

of the applications of DynaMIT-P to a network in Irvine, California.
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Chapter 5

Case Study

This chapter demonstrates some of the functionalities of DynaMIT-P, the tool that

was developed in the previous chapter for short-term planning applications. The

case study used to demonstrate the capabilities of DynaMIT-P is based on an actual

large-scale network in Irvine, California. A brief description of the Irvine network is

first provided and the data obtained from various sources are summarized, followed

by a brief review of input files required for DynaMIT-P. Critical tasks that are to be

performed before the use of DynaMIT-P such as calibration are briefly mentioned.

Base-case results are provided and the impact of a VMS displaying instantaneous and

predictive travel times during a hypothetical incident is analyzed.

5.1 Description of the Irvine Network

The data used in this research was collected from a network at Irvine in Orange

County, California, USA. The main features of this network and the surveillance data

recorded for this network are discussed in this section.

5.1.1 Network Description

The study network (Figure 5-1) is comprised of three major freeways and a dense

network of arterial segments. The I-5 and I-405 Interstates, along with State Route
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133, define a wedge that is criss-crossed by several major arterials. It lies along

the heavily traveled corridor connecting Los Angeles and San Diego. It is a major

commercial and business center, and has an important regional airport.

Figure 5-1: The Irvine network.

The network is represented as a set of 298 nodes connected by 618 directed links.

These links represent the physical links on the network, and are further subdivided

into 1373 segments to model changing link characteristics. Almost all of the 80 inter-

sections within the study area are signalized, and are controlled by vehicle-actuated

signal logic. A high fraction of the signals along the primary arterials (Barranca

Parkway, Alton Parkway and Irvine Center Drive) are co-ordinated to minimize the

number of stops.
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5.1.2 Data Description and Preliminary Analysis

The available data was derived primarily from four sources:

• Network geometric characteristics files

• OD flows from OCTAM planning study

• Time-dependent detector data

• Signal timing and coordination plans

The network files included descriptions of network geometry, link and lane connec-

tivity, sensor locations and signal phase timing plans. The OCTAM planning study

generated a static matrix of OD flows from 61 zones covering the morning peak pe-

riod. Time-varying freeway and arterial detector data recorded over 5 working days

was available from California Department of Transportation (Caltrans). This data

consisted of counts and occupancies. The freeway detectors reported data every 30

seconds and the arterial detectors reported data every 5 minutes. Signal timing and

coordination charts from the city of Irvine specified the details regarding signal phas-

ing, timing, actuation and co-ordination.

The input files required for DynaMIT-P are included in Appendix A.

5.2 Calibration

Before DynaMIT-P is employed, a critical task is the calibration of the system. Cal-

ibration in DynaMIT-P involves:

1. Calibration of the Demand Simulator: The various items to be calibrated in the

demand component are:

• Parameters in the utility models for route choice, departure time choice

etc.

• Autoregressive and Covariance matrices that are used in the OD estimation

algorithm
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• Historical OD Flows

2. Calibration of the Supply Simulator: The parameters that need to be calibrated

for the supply simulator are:

• Various speed-density relationship parameters such as the jam density, the

parameters in the speed-density equations such as α, β etc.

• The capacities of the lane-groups in each segment

A joint calibration of the demand and the supply components is usually performed

to account for the strong interaction between the two components. Calibration usually

involves obtaining parameter estimates in order to match observed data such as flows

and speeds. For a detailed description of the calibration methodology, the reader is

referred to Balakrishna [8] for calibration of the demand simulator and Kunde [36]

for calibration of the supply simulator.

5.3 Base-Case

For the purpose of the case study, a peak demand period lasting from 7:15 AM to

8:15 AM was chosen. In order to establish the base-case for this period, we need to

obtain a set of equilibrium travel times and the planning OD matrix for that period.

The demand calibration exercise (Balakrishna, [8]) established the base-case. Some

of the key results are presented below and the reader is referred to Balakrishna [8]

for a comprehensive review of the results obtained during calibration.

5.3.1 Equilibrium Travel Times

The computation of the equilibrium travel times and the results obtained are illus-

trated with respect to an important OD pair for the Irvine network. Figure 5-2

illustrates this OD pair (1 − 2) along with a sample of paths in the path choice set.

The flow for this OD pair comprises of about 8000 vehicles per hour.
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Figure 5-2: Example of paths for the OD pair 1− 2.

The procedure to establish the equilibrium travel times is identical to the proce-

dure described in Section 4.3.1. Figures 5-3 to 5-6 illustrate the process by which

equilibrium was achieved. These figures represent travelers’ experienced travel times

as a function of their departure times. As can be seen, in Figure 5-3, the first it-

eration (using free flow travel times) resulted in a wide range of experienced travel

times. The reason for the wide distribution in travel times is attributed to the fact

that, based on the free flow path travel times, travelers were distributed on all the

paths. Travelers who chose arterial paths experienced significant delays (due to lower

capacities, signalized intersections etc.), while travelers who chose the freeway path

arrived at their destination earlier. However, during subsequent iterations, the learn-

ing model captures travelers’ experiences and updates their travel time perceptions.

Based on these new sets of travel times, fewer vehicles chose the arterial paths. Thus

by this process, the travel times on the freeway paths increase, but the travel times

on arterial paths decrease. By the fourth iteration, the travel times on the paths start

converging.
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Figure 5-3: Travelers’ experienced travel times (Iteration 1).
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Figure 5-4: Travelers’ experienced travel times (Iteration 2).
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Figure 5-5: Travelers’ experienced travel times (Iteration 3).
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Figure 5-6: Travelers’ experienced travel times (Iteration 4).
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Finally after 10 iterations, convergence was achieved and the experienced travel

times of travelers are shown in Figure 5-7. The average travel time for these travelers

who departed in the interval 7:15 AM to 8:15 AM is 961 seconds and the number of

completed trips in the interval is 6891. Further, Figure 5-8 illustrates the frequency

of experienced travel times. As can be seen from this figure a significant number of

travelers experienced travel times between 1000−1500 seconds. However, a few trav-

elers experienced low travel times (500− 1000 seconds) and some of the experienced

high travel times ( greater than 2000 ) seconds. The relative number of travelers who

experienced these travel times are in accordance with the probabilities associated with

choosing the corresponding paths (computed from the utility models based on path

travel times).

Further evidence of convergence can be obtained by comparing the input path

travel times for this OD pair, (from the previous estimate of the equilibrium travel

times, Figure 5-9) and their latest experienced path travel times (Figure 5-10), during

the last iteration. The similarity between the input and output path travel times

suggests that travelers have made their “equilibrium” decisions and that convergence

has been achieved.
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Figure 5-7: Travelers’ experienced travel times (after convergence).
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Figure 5-8: Frequency of experienced travel times.
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Figure 5-9: Convergence. Input travel times.
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Figure 5-10: Convergence. Output travel times.
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5.3.2 Estimation of the Planning OD

The planning OD matrix was established during the process of calibration and the

details are not discussed in this thesis. The reader is referred to Balakrishna, [8] for

further details.

5.4 VMS Scenario

This section presents the impact of an incident on the network. The impact of VMS

based on instantaneous and predictive travel time is then evaluated.

Figure 5-11: Location of the incident.

The planning OD and the equilibrium travel times obtained from the base-case

during the time period 7:15 AM to 8:30 AM were used as inputs for the scenario

evaluation. The scenarios that are discussed in this section are based on the impact of
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predictive and instantaneous VMS on the network performance, during a hypothetical

incident. An incident is introduced into the system at the location shown in Figure

5-11. The time of the incident is from 7:17 AM to 7:40 AM and sixty percent of the

segment capacity is unavailable during the incident.

The analysis focuses on OD pair 1− 2 which is the primary OD pair affected by

the incident. The demand for this OD pair is as follows:

Time OD Flow (veh/hr)
7:15 - 7:30 8600
7:30 - 7:45 7000
7:45 - 8:00 7000
8:00 - 8:15 5600

Table 5.1: OD flow for pair 1− 2.

5.4.1 Impact of the Incident

To illustrate the impact of the incident alone, the incident was introduced into the

system, without the VMS sign and the network performance was analyzed assuming

that travelers follow their habitual paths (established by the equilibrium process).

The resulting plot of the travel times experienced by the travelers based on their de-

parture time is shown in Figure 5-12. Figure 5-13 shows the frequency of experienced

travel times.

In order to illustrate the impact of the incident and as a reference for future

comparisons, the frequency of experienced travel times is further analyzed based on

the departure time. (i.e. the diagram such as the one in Figure 5-13 is repeated for

the 15 minute time intervals starting from 7:15 AM. These results are presented in

Figures 5-14 to 5-16.
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Figure 5-12: Base-case with incident. Travelers’ experienced travel times.
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Figure 5-13: Base-case with incident. Frequency of experienced travel times.
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Figure 5-14: Base-case with incident. Frequency of experienced travel times for de-
parture time interval 7:15 AM - 7:30 AM.
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Figure 5-15: Base-case with incident. Frequency of experienced travel times for de-
parture time interval 7:30 AM - 7:45 AM.
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Figure 5-16: Base-case with incident. Frequency of experienced travel times for de-
parture time interval 7:45 AM - 8:00 AM.

Some important statistics regarding the OD pair 1 − 2 in the presence of the

incident are:

• 5919 packets completed their trips

• The average travel time for these travelers who departed in the interval 7:15

AM to 8:15 AM is 1455 seconds

• The average travel times and numbers of completed trips based on the departure

time intervals are shown in Table 5.2:

Departure Time Interval Average Travel Time (s)
7:15 - 7:30 1088
7:30 - 7:45 1637
7:45 - 8:00 1717
8:00 - 8:15 1538
7:15 - 8:15 1455

Table 5.2: Base-case with incident. Average travel times based on departure time
interval.
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A comparison with the equilibrium conditions presented in Section 5.3.1, yields

the following:

• As a result of the incident, 972 less travelers completed their trips

• The travel time for the OD pair has increased by 494 seconds. This is also

evident from Figure 5-8 and Figure 5-13. The majority of travelers experienced

travel times is in the range of 1500 − 2000 seconds as opposed to 1000 − 1500

seconds under incident-free conditions.

5.4.2 VMS with Instantaneous Information

This section analyzes the impact due to a VMS display instantaneous information for

a frequency of information updating of 5 and 10 minutes respectively.

Figure 5-17: Location of VMS message.

The VMS message is located as shown in Figure 5-17. The VMS message sign is

placed strategically so that travelers on the OD pair 1−2, which is most affected by the
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incident can divert in response to the VMS message. The VMS chosen for this purpose

is a path-VMS (Chapter 4), that gives information on the travel times of alternative

paths. The path VMS is further assumed to provide guidance for the freeway paths

and for the arterial paths. Link-VMS in this case would have very little impact, since

travelers may divert in response to the link-VMS which completely ignores travel

times on the arterials. In this case a degradation of network performance may even

occur (due to high congestion on the arterials).

Instantaneous VMS: 10-Minute Information Update Frequency

The experienced travel times of travelers plotted as a function of their departure times

is shown in Figure 5-18. The frequency of experienced travel times is shown in Figure

5-19.

Further, as was done for the base-case with incident, the frequency of experienced

travel times for various intervals is shown in Figures 5-20 to 5-22.
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Figure 5-18: Instantaneous VMS (10-minute update). Travelers’ experienced travel
times.
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Figure 5-19: Instantaneous VMS (10-minute update). Frequency of experienced travel
times.
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Figure 5-20: Instantaneous VMS (10-minute update). Frequency of experienced travel
times for departure time interval 7:15 AM - 7:30 AM.
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Figure 5-21: Instantaneous VMS (10-minute update). Frequency of experienced travel
times for departure time interval 7:30 AM - 7:45 AM.
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Figure 5-22: Instantaneous VMS (10-minute update). Frequency of experienced travel
times for departure time interval 7:45 AM - 8:00 AM.

Again, some important statistics regarding the OD pair 1− 2 under this scenario

are illustrated below:

• 6021 packets completed their trips

• The average travel time for these travelers who departed in the interval 7:15

AM to 8:15 AM is 1410 seconds

• The average travel times based on the departure time intervals are shown in

Table 5.3:

Departure Time Interval Average Travel Time (s)
7:15 - 7:30 1102
7:30 - 7:45 1584
7:45 - 8:00 1679
8:00 - 8:15 1310
7:15 - 8:15 1410

Table 5.3: Instantaneous VMS (10-minute update). Average travel times based on
departure time interval.
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A comparison of the results obtained with the other scenarios is made finally in

Section 5.5.

Instantaneous VMS: 5-Minute Update Frequency

The experienced travel times of all the travelers is presented in Figure 5-23. Figure 5-

24 shows the bar graph illustrating the frequency of experienced travel times. Finally,

Figures 5-25 to 5-27 further show the frequency of experienced travel times on a

departure time interval basis.

Some important statistics regarding the OD pair 1− 2 are:

• 6047 packets completed their trips

• The average travel time for these travelers who departed in the interval 7:15

AM to 8:15 AM is 1404 seconds

• The average travel times based on the departure time intervals are shown in

Table 5.4:

Departure Time Interval Average Travel Time (s)
7:15 - 7:30 1110
7:30 - 7:45 1602
7:45 - 8:00 1640
8:00 - 8:15 1278
7:15 - 8:15 1404

Table 5.4: Instantaneous VMS (5-minute update). Average travel times based on
departure time interval.
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Figure 5-23: Instantaneous VMS (5-minute update). Travelers’ experienced travel
times.
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Figure 5-24: Instantaneous VMS (5-minute update). Frequency of experienced travel
times.
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Figure 5-25: Instantaneous VMS (5-minute update). Frequency of experienced travel
times for departure time interval 7:15 AM - 7:30 AM.
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Figure 5-26: Instantaneous VMS (5-minute update). Frequency of experienced travel
times for departure time interval 7:30 AM - 7:45 AM.
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Figure 5-27: Instantaneous VMS (5-minute update). Frequency of experienced travel
times for departure time interval 7:45 AM - 8:00 AM.

5.4.3 VMS with Predictive Information

Finally, under the same setting as before, a predictive VMS scenario is analyzed.

Several iterations were performed to achieve consistency in the prediction and the

best guidance was chosen based on criteria such as the number of finished trips, the

average travel time during the planning horizon and the distribution of the travel

times experienced by travelers. Figure 5-28 shows the travel times experienced by

the travelers. Figure 5-29 shows the frequency of experienced travel times. Further,

the frequency of experienced travel times is shown on a departure time interval basis

in Figures 5-30 to 5-32.
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Figure 5-28: Predictive VMS. Travelers’ experienced travel times.
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Figure 5-29: Predictive VMS. Frequency of experienced travel times.
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Figure 5-30: Predictive VMS. Frequency of experienced travel times for departure
time interval 7:15 AM - 7:30 AM.
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Figure 5-31: Predictive VMS. Frequency of experienced travel times for departure
time interval 7:30 AM - 7:45 AM.
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Figure 5-32: Predictive VMS. Frequency of experienced travel times for departure
time interval 7:45 AM - 8:00 AM.

The important statistics regarding the OD pair 1− 2 are:

• 6075 packets completed their trips

• The average travel time for these travelers who departed in the interval 7:15

AM to 8:15 AM is 1401 seconds

• The average travel times based on the departure time intervals are shown in

Table 5.5:

Departure Time Interval Average Travel Time (s)
7:15 - 7:30 1089
7:30 - 7:45 1583
7:45 - 8:00 1628
8:00 - 8:15 1361
7:15 - 8:15 1401

Table 5.5: Predictive VMS. Average travel times based on departure time interval.
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5.5 Comparison of VMS Designs

In the discussion that follows, I-VMS denotes the instantaneous VMS and P-VMS

denotes the predictive VMS

5.5.1 Comparison Based on Aggregate Statistics

Table 5.6 summarizes the number of completed trips and the average travel times for

the various scenarios. Further, the percentage change of the average travel times in

indicated in brackets.

Base-Case I-VMS 10-Min I-VMS 5-Min P-VMS
Completed trips 5919 6021 6046 6075
Avg. TT (s) 1455 1410(-3.1%) 1404(-3.5%) 1401(-3.7%)

Table 5.6: Comparison based on aggregate statistics.

As can be observed from Table 5.6, in the presence of a VMS during the incident

some savings in travel times were obtained. However, the savings in travel time

were only of the order of 3.1 to 3.7 %. Moreover, from among the various VMS

scenarios, the predictive VMS resulted in marginally better savings in travel time (54

seconds as opposed to 45 and 51 seconds for the 10 and 5-minute instantaneous VMS

respectively). VMS with instantaneous information updated every 5-minute update

was more effective than the one with an update every 10-min. Regarding the number

of completed trips in the time interval 7:15 to 8:15, the predictive VMS resulted in

156 more trips being completed and was again marginally superior to both the 10-

minute and the 5-minute instantaneous VMS. However, the average travel times after

implementing the VMS were still much larger than the average travel times without

the incident (961 seconds).

The reasons for the reduced impact of the VMS signs is primarily because of the

fact that given the location and the severity of the incident, the primary freeway

path that captured a majority of the flow was largely affected. Furthermore, a closer

look at the alternative paths which circumvent the incident location revealed that

these paths are primarily arterial paths. However, it was not possible in this case,
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due to capacity constraints on the arterials to divert sufficient number of vehicles so

as to cause significant savings in travel time. This fact is made clear by observing

the experienced travel times of the travelers with and without a VMS message (for

instance by comparing Figures 5-12 and 5-28). Particularly, though the travel times

on the freeway reduced significantly after using the predictive VMS (as seen by the

lower band in Figure 5-28), some travelers who diverted to arterial paths experienced

travel times greater than 2000 seconds. Any further diversion on the arterials would

result in travelers experiencing even higher travel times on the arterial paths. The

travel times on the freeway however may be reduced significantly as a result of these

diversions to arterials. Hence, though an improvement in the average travel times

might occur, the resulting guidance would not be consistent. The instantaneous

VMS (5 and 10 minute) are not as effective in utilizing the available paths, as evident

from Figures 5-18 and 5-23.

The critical question at this point, is whether the use of the VMS is advocated

in this scenario. Though the VMS did not yield significant benefits by means of the

aggregate statistics, it is nevertheless useful in this case as will be illustrated by more

rigorous analysis (discussed next).

5.5.2 Comparison Based on the Frequency of Trip Travel

Times

The comparison based on frequency of trips within various ranges of travel times is

summarized in the table below.

Base-Case I-VMS 10-Min I-VMS 5-Min P-VMS
Less than 500 sec 20 58 80 88
500 - 1000 sec 861 823 815 829
1000 - 1500 sec 1657 2724 2915 2799
1500 - 2000 sec 3314 1967 1767 1986

Greater than 2000 sec 67 449 469 373

Table 5.7: Comparison based on the frequency of trip travel times.

The comparison reveals that the number of trips with travel time less than 1000
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seconds, do not vary much across the scenarios. The reason for this is that the low

travel times are associated with an early departure time in the planning horizon and

hence are not largely affected by the incident (given that it takes about 8-10 minutes

to reach the incident). However, it can be seen that the VMS has caused a large

number of travelers to experience travel times between 1000-1500 seconds as opposed

to the base-case with the incident where most of travelers experienced travel time of

the order of 1500-2000 seconds. Thus the VMS has been largely beneficial in this

regard. However, the use of the VMS has also increased the number of travelers’

experiencing travel times greater than 2000 seconds as compared to the base case.

This is primarily due to the diversion on capacity constrained arterial paths. When

compared to the number of travelers who experienced lower travel times, this shift is

not as significant.

Further comparing the alternative VMS strategies, the 5-minute instantaneous

VMS scenario succeeded in shifting a large number of travelers to the lower travel

time band. However, under this strategy more travelers experience high travel times

as compared to the other two VMS strategies. Among the three VMS strategies, the

predictive VMS strategy is most effective because it not only causes a large number of

travelers to experience lower travel times, it also does it so at the expense of relatively

fewer travelers.

5.5.3 Comparison Based on Departure Time Interval

The following table compares the average travel times under each of the scenarios,

as a function of the departure-time interval. The percentage change in travel time is

also indicated in brackets.

Base-Case I-VMS 10-Min I-VMS 5-Min P-VMS
Avg. TT (s) Avg. TT (s) Avg. TT (s) Avg. TT (s)

7:15-7:30 1088 1102 (+1.3%) 1110 (+2.0%) 1089 (0.0%)
7:30-7:45 1637 1584 (-3.2%) 1602 (-2.1%) 1583 (-3.3%)
7:45-8:00 1717 1679 (-2.2%) 1640 (-4.5%) 1628 (-5.1%)
8:00-8:15 1538 1310 (-14.8%) 1278 (-16.9%) 1361 (-11.5%)

Table 5.8: Comparison based on departure time interval
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Interestingly, the average travel times on a departure interval basis holds promise

for the use of VMS in this situation. Though marginal benefits were obtained in the

average travel time for the second interval, the travel time saving is about 89 seconds

for the predictive VMS in the third interval (which is a 5 % improvement) to about

177 seconds (11.5 % improvement in the last interval). The travel time saving in the

last interval was even larger for the instantaneous VMS with 5-minute update (about

17 %).

Based on the above comparisons, some conclusions are summarized below:

• Though overall, the average savings in travel times were of the order of 3 to 4

%, the VMS scenarios resulted in a large number of travelers experiencing lower

travel times at the expense of relatively fewer travelers. Further, depending on

the departure time interval, travel time savings ranged from 3 % to 17 %.

• Based on alternative VMS strategies, the predictive strategy resulted in the

best overall network performance, both in terms of the number of travelers

who completed their trips and the average travel time. It yielded an overall

improvement of 3.7 % in travel time as opposed to 3.1% and 3.5% for the

instantaneous scenario. Further, during the planning horizon, 156 additional

travelers completed their trips using the predictive guidance (as opposed to 102

and 127, in the case of the 5 and 10-minute instantaneous scenario respectively).

• The instantaneous scenarios may cause travelers to experience longer travel

times, since this strategy does not take into account future network conditions

and may lead to overreaction. This effect may be avoided by using the predictive

VMS scenario with a consistent guidance strategy.

• Instantaneous strategies with the 5-minute information update frequency was

found to be better than the strategy with 10-minute update frequency.

• Last but not the least, the potential of VMS to mitigate network conditions

during a particular incident depends to a large extent on the incident location,

its severity and on the alternative paths that circumvent the incident location.
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5.6 Summary

This chapter illustrated the potential of the planning tool in evaluating a VMS case

study based on a network in Irvine, California. The base-case was first established

based on the calibration exercise. Various scenarios involving a VMS message were

then evaluated based on a hypothetical incident on the irvine network. DynaMIT-

P was used to evaluate both predictive and instantaneous information through the

VMS. Further, in the instantaneous case, the analysis was performed for a frequency

of information update of 5 and 10 minutes. The planning tool was found to be

extremely useful in analyzing various scenarios and capturing the relevant details

critical. The case-study was intended to give a sense of the potential of DynaMIT-P

and illustrate the benefits of deploying such planning tools. The next chapter focuses

on areas where further research may be employed to improve the functionality of the

planning tool.
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Chapter 6

Conclusion

This thesis focused on the the development of a DTA planning tool to address short-

term planning applications. A framework for short-term planning applications in

simulation-based DTA systems was developed. This framework captures the day-

to-day and within-day dynamics of travelers. An implementation of the framework

DynaMIT (which is a real-time DTA system) to obtain DynaMIT-P was discussed.

Case studies on an actual network in California, Irvine demonstrated the potential of

the planning tool to address short-term planning applications (especially in evaluating

ITS scenarios).

6.1 Research Contribution

The contributions of the research can be identified by the following key points:

• Traditional planning tools for short-term planning applications are static in

nature and thus are not adequate to evaluate a whole gamut of planning strate-

gies; especially those that warrant explicit modeling of traffic dynamics and

traveler behavior. This research, however used the concept of Dynamic Traffic

Assignment and combined it in a simulation environment to develop a planning

framework that counters the drawbacks of the traditional planning tools.
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• This research modeled a framework to address both day-to-day and within-day

behavior of travelers. Such a tool that encompasses both the above aspects of

traveler behavior in the DTA context are uncommon.

• The methodology proposed in this research for the establishment of the day-to-

day behavior included an OD estimation module that updated the planning OD

matrix to reflect recent sensor counts. Thus, the modeling framework presented

in this research, establishes not only the equilibrium travel conditions in the

network but at the same time provides an OD matrix that best reflects the

observed sensor counts. A planning tool with this feature is more effective in

addressing short-term planning applications as it captures the baseline scenario

more accurately.

• An important feature of the planning framework developed is its capability

to model ATIS/ATMS at various levels of sophistication. With recent focus

on planning applications shifting from infrastructural enhancements to traffic

management and ITS deployments, a planning tool to address a range of traffic

management and ITS scenarios is invaluable for traffic planners.

The use of ATIS strategies to provide information to travelers during non-

recurrent conditions such as incidents, has assumed enormous importance in

the current transportation environment. Further as mentioned earlier, ATIS

strategies can be of various levels of sophistication (e.g. instantaneous or pre-

dictive information). A planning tool to evaluate such strategies must be able

to generate the information and also model travelers’ responses to the informa-

tion. The planning framework developed as part of this research achieves this

objective. For example, the generation of consistent predictive information was

implemented in DynaMIT-P for both in-vehicle and VMS information systems.

Further, the framework is sensitive to design parameters such as the frequency

of the information update etc. and it has a lot of flexibility and potential to in-

clude sophisticated traveler behavior models that will capture traveler response

in a wide variety of situations.
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In a nutshell, the planning framework addresses comprehensively a range of ITS

and traffic management scenarios that have not been dealt with successfully in

the past.

6.2 Future Research

The research presented in this thesis can be extended in the future in the following

directions.

• The planning tool developed in this research focused on short-term planning

applications. A natural extension of the tool is to expand it to include long-

term planning applications. The planning framework currently assumes that the

OD matrix is a given input (though it may be adjusted in the OD estimation

procedure). However, the scope of the planning tool can be broadened so as to

forecast OD flows based on behavioral models. A step towards achieving this

objective will be to integrate an activity schedule model with DynaMIT-P. For

a discussion on activity-based disaggregated travel demand model system with

activity schedules, the reader is referred to Ben-Akiva and Bowman [10].

• Another important research direction is to enhance the components of the plan-

ning tool, specifically with respect to the traveler choice and behavior models.

For instance, the mode choice model can be expanded to model changes in mode

from car to transit and vice-versa.

• A third important requirement is to understand and model traveler behavior

in response to information. Though numerous studies have been conducted

in this regard, there is still significant scope for improvement to the existing

techniques. Incorporation of traveler behavior models that will closely mimic

traveler response to information will enhance the importance of planning tools

such as the one developed in this research.
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Appendix A

DynaMIT-P Input Files

A brief review the input files required by the DynaMIT-P system are described.

• The network file describes the locations of nodes, links, segments and sensors,

and defines the connectivity between individual lanes in the network. Changing

section geometry within links was modeled by dividing the links into smaller

segments.

• The supply parameter file contains segment-specific relationships that are

used by DynaMIT-P’s supply simulator while simulating the movement of ve-

hicles on the network. Specifically, this file contains the parameters of the

speed/density function and segment capacities.

• The OD demand file specifies the time-varying origin-destination flows for

each OD pair.

• DynaMIT-P also requires information regarding driver socio-economic charac-

teristics that are used while generating the population of drivers. These in-

clude trip purpose, access to ATIS and value of time, and are defined for each

origin-destination pair that appears in the demand file. The socio-economic

characteristics are used by DynaMIT-P’s route choice models.

• A file containing time-varying traffic sensor counts.
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• DynaMIT-P uses historical estimates of link travel times while assigning ini-

tial routes to drivers.

• In addition to the inputs discussed above, DynaMIT-P’s demand simulator

requires error covariance and autoregressive matrices that are used during

OD Estimation. These matrices result from a process of calibration.

140



Bibliography

[1] Abdel-Aty, M. A., Vaugnh, K. M., Kitamura, R. K., Jovanis, P. P. and Manner-

ing, F. Models of Commuters’ Information Use and Route Choice : Initial Results

Based on Southern California Commuter Route Choice Survey. Transportation

Research Record, 1994.

[2] Al-Deek, H. and Kanafani, A. Modeling the Benefits of Advanced Traveler In-

formation Systems in Corridors with Incidents. Transportation Research, 1993.

[3] Antoniou, C. Demand Simulation for Dynamic Traffic Assignment. Master’s

thesis, Department of Civil and Environmental Engineering, Massachusetts In-

stitute of Technology, Cambridge, MA, 1992.

[4] Antoniou, C., Ben-Akiva, M. E., Bierlaire, M. and Mishalani, R. De-

mand Simulation for Dynamic Traffic Assignment. In Proceedings of the 8th

IFAC/IFIP/IFORS Symposium on Transportation Systems, 1997.

[5] Arnott, R., de Palma, A. and Lindsey, R. Does Information to Drivers Reduce

Traffic Congestion? Transportation Research, 1991.

[6] Ashok, K. Estimation and Prediction of Time-Dependent Origin-Destination

Flows. PhD thesis, Department of Civil and Environmental Engineering, Mas-

sachusetts Institute of Technology, Cambridge, MA, 1996.

[7] Ashok, K. and Ben-Akiva, M. E. Estimation and Prediction of Time-Dependent

Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link

Flows. Resubmitted to Transportation Science, 1999.

141



[8] Balakrishna, R. Calibration of the Demand Simulator in a Dynamic Traffic

Assignment System. Master’s thesis, Department of Civil and Environmental

Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2002.

[9] Ben-Akiva, M., de Palma, A. and Kaysi, I. Dynamic Network Models and Driver

Information Systems. Transportation Research, 1991.

[10] Ben-Akiva, M. E. and Bowman, J. L. Activity-based Disaggregate Travel De-

mand Model System with Activity Schedules. Transportation Research, 2000.

[11] Ben-Akiva, M. E. and Lerman, S. Discrete Choice Analysis: Theory and Appli-

cation to Travel Demand. MIT Press, Cambridge, MA, USA, 1985.

[12] Ben-Akiva, M. E., Bierlaire, M., Koutsopoulos, H. N. and Mishalani, R. Real

Time Simulation of Traffic Demand-Supply Interactions within DynaMIT. Tech-

nical report, ROSO-DMA-EPFL, 2000.

[13] Ben-Akiva, M. E., Koutsopoulos, H. N. and Walker, J. DynaMIT-P: Dynamic

Assignment Model System for Transportation Planning. In WCTR, 2001.

[14] Bierlaire, M., Mishalani, R., and Ben-Akiva, M. E. General Framework for

Dynamic Demand Simulation. Submitted to Transportation Research B, 2000.

[15] Bonsall, P. W. and Merrall A. C. Analyzing and Modeling the Influence of

Roadside Variable Message Display on Drivers’ Route Choice. In Hensher, D. A.,

King, J., Oum, T. H.(Eds.), World Transport Research: Proceedings of the 7th

World Conference on Transport Research, vol. 1: Traveler Behavior. Elseveir,

Oxford, 1997.

[16] Bonsall, P. W. and Parry, T. Using an Interactive Route Choice Simulator to In-

vestigate Drivers’ Compliance with Route Guidance Information. Transportation

Research Record, 1991.

[17] Bottom, J. Consistent Anticipatory Route Guidance. PhD thesis, Department

of Civil and Environmental Engineering, Massachusetts Institute of Technology,

Cambridge, MA, 2000.

142



[18] Brandriss, J. J. Estimation of Origin-Destination Flows for Dynamic Traffic As-

signment. Master’s thesis, Department of Civil and Environmental Engineering,

Massachusetts Institute of Technology, Cambridge, MA, 2001.

[19] Cantarella, G. and E. Cascetta, E. Dynamic Processes and Equilibrium in Trans-

portation Networks: Towards a Unifying Theory. Submitted to Transportation

Science, 1995.

[20] Cascetta, E. Estimation of Trip Matrices from Traffic Counts and Survey Data:

A Generalized Least Squares Estimator. Transportation Research, 1984.

[21] Cascetta, E. and Cantarella, G. A Day-to-Day and Within-Day Dynamic

Stochastic Assignment Model. Transportation Research, 1991.

[22] Cascetta, E. and Cantarella, G. Modeling Dynamics in Transportation Networks.

Part II. Within-Day Dynamic Models. Submitted to Transportation Science,

1991.

[23] Cascetta, E., Inaudi, D. and Marquis, G. Dynamic Estimators of Origin-

Destination Matrices using Traffic Counts. Transportation Science, 1993.

[24] Cascetta, E., Nuzzolo, A. and Biggiero, L. Analysis and Modeling of Commuters’

Departure Time and Route Choice in Urban Networks. In Proceedings of the 2nd

International CAPRI Seminar on Urban Traffic Networks, Capri, Italy, 1992.

[25] Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. A Modified Logit Route

Choice Model Overcoming Path Overlapping Problem: Specification and Some

Calibration Results for Inter-urban Networks. Transportation and Traffic Theory,

1997.

[26] Chatterjee, K., Hounsell, N. B., Firmin, P. E. and Bonsall, P. W. Driver Response

to Variable Message Sign Information in London. Transportation Research, 2000.

[27] Chen, P. S-T., Srinivasan, K. and Mahmassani, H. S. Effect of Information Qual-

ity on Compliance Behavior of Commuters under Real-Time Traffic Information.

143



Submitted for Presentation at the 78th Annual Meeting of the Transportation Re-

search Board and Publication in Transportation Research Record, 1998.

[28] Dahlgren, J. High-Occupancy/Toll Lanes: Where Should they be Implemented?

Transportation Research, 2002.

[29] Gardes, Y. and May, A. D. Simulation of IVHS on the Santa Monica Free-

way Corridor using the INTEGRATION model. Phase 2: Preliminary ATIS and

ATMS Experiments. PATH Research Report UCB-ITS-PWP-93-6, 1993.

[30] Hall, R. W. Non-recurrent Congestion: How Big is the Problem? Are Traveler

Information Systems the Solution? Transportation Research, 1993.

[31] Horowitz, J. H. The Stability of Stochastic Equilibrium in a Two-Link Trans-

portation Network. Transportation Research, 1984.

[32] Jayakrishnan, R., Cohen, M., Kim, J., Mahmassani, H. S. and Hu, T-Y. . A

Simulation-Based Framework for the Analysis of Traffic Networks Operating with

Real-Time Information. PATH Research Report UCB-ITS-PRR-93-25, 1993.

[33] Jha, M. Day-To-Day Travel Choice Dynamics in Transportation Networks: Mod-

els and Computational Issues. PhD thesis, Department of Civil and Environmen-

tal Engineering, Purdue University, West Lafayette, IN, 1998.

[34] Jha, M., Madanat, S. and Peeta, S. Perception Updating and Day-To-Day Travel

Choice Dynamics in Traffic Networks with Information Provision. Transportation

Research, 1998.

[35] Johnston, R. A. and Ceerla, R. The Effects of New High-Occupancy Vehicle

Lanes on Travel and Emissions. Transportation Research, 1996.

[36] Kunde, K. Calibration of a Mesoscopic Traffic Simulator for Dynamic Traffic As-

signment . Master’s thesis, Department of Civil and Environmental Engineering,

Massachusetts Institute of Technology, Cambridge, MA, 2002.

144



[37] Lotan, T. and Koutsopoulos, H. N. Approximate Reasoning Models for Route

Choice Behavior in the Presence of Information. In Daganzo, C. (Ed.), The

12th International Symposium on Transportation and Traffic Theory (ISTT),

Berkeley, CA, 1993.

[38] Mahmassani, H. S. and Chang, G. Experiments with Departure Time Choice

Dynamics of Urban Commuters. Transportation Research, 1986.

[39] Mahmassani, H. S. and Chang, G. L. Dynamic Aspects of Departure-Time

Choice in a Commuting System: Theoretical Framework and Experimental Anal-

ysis. Transportation Research Record, 1985.

[40] Mahmassani, H. S., Hu, T-Y. and Jayakrishnan, R. Dynamic Traffic Assignment

and Simulation for Advanced Network Informatics (DYNASMART). In Proceed-

ings of the 2nd International CAPRI Seminar on Urban Traffic Networks, Capri,

Italy, 1992.

[41] Mannering, F., Kim, S-G., Ng, L. and Barfield, Woodrow. Travelers’ Preferences

for In-Vehicle Information Systems: An Exploratory Analysis. Transportation

Research, 1995.

[42] Mc Arthur, D. The PARAMICS-CM (parallel microscopic traffic simulator for

congestion management) behavioral model. In Transportation Planning Methods.

Proceedings of Seminar E held at the 23rd European Transport Forum, University

of Warwick, England, 11-15 September, P392. PTRC Education and Research

Services, London, 1995.

[43] Massachusetts Institute of Technology. Development of a Deployable Real-

Time Dynamic Traffic Assignment System, Executive Summary: DynaMIT and

DynaMIT-P, Version 0.90. Technical report, Submitted to Oak Ridge National

Laboratories, June 2000.

[44] Massachusetts Institute of Technology. DTA System Enhancement and Evalua-

tion at Traffic Management Center, Task P: Framework for the Use of DynaMIT

145



in Transportation Planning Applications (DynaMIT-P). Technical report, Sub-

mitted to Oak Ridge National Laboratories, March 2000.

[45] Peeta, S., Ramos, J. L., and Pasupathy, R. Content of Variable Message Signs

and On-Line Driver Behavior. Submitted for Presentation at the 79th Annual

Meeting of the Transportation Research Board and Publication in Transportation

Research Record, 2000.

[46] Polydoropoulou, A. Modeling User Response to Advanced Traveler Information

Systems. PhD thesis, Department of Civil and Environmental Engineering, Mas-

sachusetts Institute of Technology, Cambridge, MA, 1998.

[47] Ramming, S. Network Knowledge and Route Choice. PhD thesis, Department

of Civil and Environmental Engineering, Massachusetts Institute of Technology,

Cambridge, MA, 2001.

[48] Simon, H. A Behavioral Model of Rational Choice. Q. J. Econ, 1955.

[49] Srinivasan, K. and Mahmassani, H. S. Modeling Inertia and Compliance in Route

Choice Behavior under Real-Time Information. Submitted for Presentation at the

79th Annual Meeting of the Transportation Research Board and Publication in

Transportation Research Record, 1999.

[50] Taylor, N. B. CONTRAM 5: an Enhanced Traffic Assignment Model. TRLL

Research Report 249, 1990.

[51] Tian, Z. Capacity Analysis of Traffic-Actuated Intersection. Master’s thesis,

Department of Civil and Environmental Engineering, Massachusetts Institute of

Technology, Cambridge, MA, 2002.

[52] Walting, D. and Van Vuren, T. The Modeling of Dynamic Route Guidance

Systems. Transportation Research, 1993.

[53] Wardman, P., Bonsall, P. W., and Shires, J. D. Driver Response to Variable

Message Signs: A Stated Preference Investigation. Transportation Research,

1997.

146



[54] Wardrop, J. G. Some Theoretical Aspects of Road Traffic Research. In Proceed-

ings of the Institute of Civil Engineers, Road Paper, 1952.

147


