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Abstract

This thesis proposes a framework and method for dynamic origin-destination demand
estimation. OD estimation is a critical component of a Dynamic Traffic Assignment
system in that it determines the frequencies of drivers’ trips through a network.

The OD estimation method presented here allows for tunable optimization to
three classes of objectives: Assigned traffic flows, deviation from historical data, and
relative proportions in historical data. The method can be easily extended to make
use of other sources of information such as direct measurements of OD flows from
probe vehicles. The framework is extended to allow for nonnegativity and capacity
constraints on the OD flows.

As OD estimation is intended for use in a real-time setting, computational is-
sues are critical, and several simplifications to increase computational efficiency are
propsed and evaluted, called the Exact-Match estimator and the Large-Flow estima-
tor.

The algorithms presented are implemented as part of the DynaMIT (Dynamic
Network Assignment for the Management of Information to Travelers) traffic estima-
tion and prediction software, which incorporates models for driver route choice and
traffic movement simulation.
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Chapter 1

Introduction

As the nation’s highways become more congested for larger and larger parts of the day,

much research is being done in the area of Intelligent Transportation Systems (ITS)

and Dynamic Traffic Assignment (DTA). It has become clear that the old solutions

of building more highways and widening existing ones are too costly or physically

infeasible and cannot keep up with increasing demand. ITS aims to alleviate traffic

congestion by making more efficient use of the existing infrastructure, and providing

tools for planning for future road construction.

Two important ITS elements are advanced traveler information systems (ATIS)

and advanced traffic management systems (ATMS). ATIS systems assist travelers

with pre-trip planning and enroute decision making. ATMS systems are traffic control

systems which can adapt to changing traffic conditions in real-time.

DTA systems, also known as traffic estimation and prediction systems (TrEPS),

use advanced traffic models along with surveillance and historical data to estimate

and predict conditions in a road network. Output from TrEPS can then be sent

to ATIS and ATMS to provide better traffic information and generate better traffic

management strategies.
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1.1 DynaMIT Overview

Researchers at the MIT ITS Laboratory, under the direction of Professor Moshe Ben-

Akiva, have undertaken the development of DynaMIT (Dynamic Network Assignment

for the Management of Information to Travelers). DynaMIT is a simulation-based

DTA software system which is meant to be installed in traffic management centers

(TMCs). DynaMIT generates guidance information based on predicted traffic con-

ditions. Guidance can be either prescriptive or descriptive. Descriptive guidance is

the easier to provide; it is simply information on the current state of traffic, such as

expected travel times and road link densities. Prescriptive guidance consists of actual

recommendations to travelers, such as which route to take in avoiding a congested

area. With reliable information as to the current and future states of a road network,

drivers can plan their trips better and choose to take an alternate route or decide to

make the trip at another time.

To be able to deliver guidance, DynaMIT must first be able to estimate the state of

the road network,1 and then predict the way the traffic situation will unfold. Typically,

we are interested in traffic conditions on the order of an hour or two into the future.

Users of DynaMIT-produced guidance will then know about a developing traffic jam

and be able to plan accordingly.

Figure 1-1 illustrates the overall structure of the system. This diagram shows

the interaction of DynaMIT with a traffic network. Figure 1-2 diagrams the state

estimation function of DynaMIT in more detail.

The state of a road network is never known in complete detail and with complete

accuracy. Rather, sensors will have been deployed at locations throughout the net-

work which collect data on the traffic they observe. Since there are normally many

1In this thesis, ‘network’ refers to the subset of roads and highways under consideration.
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1.1. DYNAMIT OVERVIEW

Historical Data

Surveillance
System

Traffic Network

Guidance
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Supply
Simulation

Guidance
Generation

Figure 1-1: The DynaMIT System.

fewer sensors installed than road links, state estimation is required to provide a more

complete picture of the traffic situation.

Sensors can be of several types, including optical, camera-based sensors and in-

ductive loop detectors, which consist of a wire loop embedded in the roadway. Sensors

will usually provide information such as vehicle counts and speeds and the percentage

of that time during which the sensor was occupied by a vehicle.

Clearly, the more sensors there are in a network, the better, but there are practical

limits to the number of sensors that can be installed. Furthermore, the most common

type of sensors, loop detectors, have reliability issues.

The key modules in DynaMIT used in estimating the state of the network are

the supply simulator and the demand simulator. The supply simulator simulates the

15
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actual movement of vehicles on the network, and the demand simulator simulates

the number of vehicles desiring to use the network and the choices of their drivers

as to route and departure time. These modules are used iteratively to further refine

the estimate of the network state. The supply simulator in DynaMIT is mesoscopic

traffic simulation model which uses speed-density relationships and queuing models

to capture traffic dynamics. (See Ben-Akiva et al, 2001.)

The demand simulator incorporates information about historical flows and predic-

tions about driver choices into the profile it provides to the supply simulator. There

is also a distinction in the demand simulator between aggregate and disaggregate

16



1.2. THESIS FOCUS

models. The OD matrix itself in an example of aggregate data, since it expresses

traffic demand in the aggregate, as flows per unit time. Microscopic, or disaggregate

models are used when simulating individual driver decisions – each driver’s choices as

to departure time and path are simulated individually. DynaMIT makes use of both

types of models since historical information is generally available in the form of OD

matrices, while the supply simulator requires information about individual drivers.

Figure 1-2 shows the interactions among the various components of DynaMIT’s

state estimation. The objective of state estimation is to estimate the current state of

the network expressed in terms of flows, queues and travel times on the network, and

to provide an estimate of the demand on the network. This data is then used in the

second major part of DynaMIT, the prediction-based guidance generation.

Prediction-based guidance generation uses the current state of the network and

the just-estimated OD vectors to predict future conditions of the network. DynaMIT

provides predictions in the form of flows, queues and travel times, which can be used

to provide any type of guidance required by the network for the ATIS that might be

in place.

1.2 Thesis Focus

The OD Estimation component is the main focus of this thesis. Basically, the problem

of OD estimation is to use available data, in the form of historical information and

measurements of traffic, to estimate the numbers of travelers per unit time from each

origin to each destination in the network. While many methods for OD estimation

have been developed, few have been implemented as a working component in large-

scale, real-time dynamic traffic assignment system. Therefore, in addition to the usual

issues of the accuracy of the estimation, problems such as computational efficiency

17



have to be explored.

Typically, OD matrices were generated using data collected in surveys of drivers.

Unfortunately, these surveys are expensive to do and so they take place infrequently.

Therefore, the data is usually too outdated for use in real-time applications. In

addition, a survey might only represent a “typical” day, but cannot take into account

changes in demand such as those resulting from temporary changes in the network,

including closing of roads, unusual weather conditions, or special events. So, while

historical OD matrices can be used as a starting point, it is beneficial to refine them

in real time as current network data becomes available.

This thesis presents a model for estimating OD flows using traffic counts and

historical OD data. It is also shown how the model can be extended to use other

types of information such as probe vehicles and relative proportions of OD flows

to produce more accurate estimates. A constrained version of the OD estimation

model is proposed which provides more accurate estimates. Several simplifications

are introduced to reduce the computational complexity of the OD estimation problem.

It is shown that the speed-up gained by using the simplified models can justify the

less-accurate estimates they necessarily will produce.

1.3 Notation

We have attempted to use a uniform notation so that it is easily apparent to what

type of data a variable refers. A vector will be indicated by a lowercase letter, such

as xh or yh. A capital letter, such as A or B is a matrix. A calligraphic letter, such as

X or Y indicates an augmented vector formed by concatenating individual vectors,

and a boldfaced capital letter, such as A or B indicates an augmented matrix. A hat

above a vector variable, such as x̂ refers to an estimate. Normally, in this thesis, all

18



1.3. NOTATION

vectors will be subscripted to indicate the time period they belong to. Occasionally,

an unsubscripted vector will refer to a suite of time-period-related vectors, but this

will be made clear from the context.

When we wish to indicate a single entry in a vector or matrix, we use parenthesis,

such as xh(j) to indicate the jth entry of xh and Ah(i, j) to indicate the (i, j)th entry

of Ah.
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Chapter 2

Background and Literature Review

The purpose of this chapter is to formally present the OD estimation problem and

related issues in the context of this research, and to review previously developed

approaches to the problem. A most comprehensive review can be found in Ashok

(1996).

2.1 Estimation Theory

This section gives an introduction to the basic concepts of estimation theory that are

used in DynaMIT.

OD estimation relies on results from estimation theory,1 the body of research

involved in the estimation of the values of a group of parameters. The first tasks

in estimation are choosing a model for the data and choosing an estimator. For our

purposes, we will only choose the linear model for the data; that is, all measurements

are linearly related to the data. All of the easiest (that is, closed-form) methods for

estimation arise when the linear model is used. The key equation, which we will see

1Much of this section is based on material from Kay (1993) and Willsky et al (1999).
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

again and again, is

y = Ax + v.

y ∈ RN is a vector of observable measurements, x ∈ Rp is the parameter to be

estimated, and A ∈ RN×p is called the observation matrix, which maps x to y and

represents the system whose parameters we are trying to estimate. v is a noise vector

with zero mean and covariance C.

The approach we use is to find the estimator which minimizes the error between

the actual observation and the observation that would result if our estimate is applied.

The error should be minimized in the least squares sense. That is, we would like to

find the x which minimizes

J(x) =
N−1∑
n=0

(y(n) − a′
nx)2 = ||y − Ax||22 = (y − Ax)′(y − Ax)

where a′
n is the nth row of A. N is the number of data points to be estimated.

The least squares estimator does not make any assumptions about the probability

distribution of the noise v, just that we know its first- and second-order statistics.

The least squares minimizer can be found in closed form. If we assume that the

noise is white with each component of the noise vector uncorrelated with the other;

that is, it has covariance matrix C = I, the derivation proceeds as follows. First, we

expand the function J(x):

J(x) = y′y − x′A′y − y′Ax + x′A′Ax

= y′y − 2x′A′y + x′A′Ax

since the middle terms are scalars. The gradient of this is

∂J(x)

∂x
= −2A′y + 2A′Ax.

Setting this to zero gives the ordinary least squares estimate (OLS):

x̂ = (A′A)−1A′y

22



2.1. ESTIMATION THEORY

Of course, this assumes that A′A is of full rank, which will come into play in later

discussion. In addition we assume that for A ∈ RN×p that N > p. If not, the problem

is underdetermined and the model parameters cannot be uniquely identified. To see

this, consider

y = Ax

where A ∈ R2×3 and x ∈ R3. Then y can be seen as a projection of x, a vector in

three dimensions, onto a two dimensional subspace, and many vectors x can produce

the same y. (Please see figure 2-1 for an illustration). In our context, the solution

produced from an underdetermined system will not tell us anything about the true

situation.

y

column space of A

?x̂

?x̂

O

Figure 2-1: Least squares: The underdetermined case.

What about the overdetermined case, where N > p? If we were trying to solve the

system exactly, we would in general have no hope. However, when we are just trying

to find the optimal x in the least squares sense, we need only find the best x such
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

that y ≈ Ax. The geometrical situation can be seen in figure 2-2. Here, the situation

is reversed. The observed measurements y can be anywhere in y’s N -dimensional

space. The estimate x̂ is chosen so that the measurements ŷ = Ax̂ (that would result

if x̂ were the true input to the system, and which must be in the column space of

A) are as close as possible to y. Note that the error in the least squares estimate’s

measurement (not to be confused with the estimation error x̂ − x) is the minimum

over all Ax̂, which must lie in A’s column space. Note also that this minimum error

is a vector which is orthogonal to the column space of A. The other vector shown,

which is the measurement resulting from a suboptimal estimate, has error which is

not orthogonal to A’s column space.

column space of A

y

xAy ˆˆ  

error

O

=

Figure 2-2: Least squares: The standard overdetermined case.

The preceding derivation of the OLS estimator made no assumptions as to the

distribution of the measurement errors (noise) v. However, we often do have ad-

ditional statistical information about the errors in the form of the noise covariance

matrix C mentioned above. If this additional source of information is available, and
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2.1. ESTIMATION THEORY

not exploited, the estimates produced will be inefficient; that is, they do not make

efficient use of all available data. This motivates the generalized least squares(GLS)

estimator. GLS allows for the incorporation of information about the reliability of

measurements in the form of a weighting or covariance matrix. Simple scalar weights

can also be used if control over the different parts of the objective function is desired.

In addition, if statistical analysis has been performed on the measurement error, a

full covariance matrix can be calibrated. For GLS, the objective becomes

J(x) = ||B−1(y − Ax)||22 = (y − Ax)′W (y − Ax),

where W is an N ×N positive definite weighting matrix. Since W is positive definite,

it has a Cholesky factorization W = BB′. C = W−1 is then the covariance matrix

for the measurement noise. The factor B acts as a filter to whiten the noise v. The

covariance of the noise transformed by B, or Bv, is then

E[(Bv)(Bv)′] = BE[vv′]B′

= BCB′

= B(B−1B′−1)B′

= I

Realizing this, the model y = Ax + v can be transformed by multiplying both sides

by B:

By = BAx + Bv

where the noise Bv is now white, so the OLS estimator can be used. So we have

x̂ = [(BA)′BA]−1(BA)′By

= (A′B′BA)−1A′B′By

= (A′C−1A)−1A′C−1y

25



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Then the GLS estimator is

x̂ = (A′WA)−1A′Wy. (2.1)

A further extension of the least squares (LS) problem involves the addition of side

constraints, in the form of inequalities of linear combinations of the estimate. These

constraints express prior knowledge we have as to the allowable range of x. The LS

problem with linear inequality constraints (LSI) can be expressed as follows:

min
x

||Ax − y|| subject to Gx ≥ h

An important special case is nonnegative least squares (NNLS):

min
x

||Ax − y|| subject to x ≥ 0. (2.2)

A closed-form estimator is unfortunately not available for these problems. There

have been a number of algorithms proposed, however. Lawson and Hanson (1974)

give an algorithm for NNLS, and show how LSI can be transformed and solved using

an algorithm for least distance programming (LDP), which makes use of the NNLS

algorithm. The LDP problem is to minimize ||x|| subject to linear inequality con-

straints.

Other algorithms are presented in Stoer (1971), Liew (1976), Escobar and Skarp-

ness (1984), Werner (1990) and Bierlaire et al (1991).

2.2 Direct and Indirect Measurements

Ben-Akiva (1987) presents a framework for organizing the types of data available for

OD estimation. He refers to direct measurements, which is information about the OD

flows themselves which can be used directly as a preliminary estimate, and indirect

measurements, which are data that are used to infer the OD flows.
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2.2. DIRECT AND INDIRECT MEASUREMENTS

A direct measurement can be expressed as

x̂h = xh + uh (2.3)

where x̂h is the estimate of xh (OD flows for the time period h) and uh is a vector

of random errors. As described in Ashok (1996), there are several ways to use these

direct measurements to generate the estimate x̂h. The two major sources of direct

measurements are historical OD tables and information from probe vehicles.

Indirect measurements come from information that is readily observable, but has

come from a mapping of the actual OD flows to a range space. The most common,

readily available type of indirect measurements are the link counts from roadway

sensors. Conveniently, there is a linear mapping from the OD flows to the link counts,

which is expressed as follows:

yh(l) =
h∑

p=h′

nOD∑
r=1

Ap
h(r, l)xp(r) + vh(l)

where vh is the vector of measurement errors from the link sensors and Ap
h is the

assignment matrix, which maps the OD flows from time period p to the link counts

of time period h. Ap
h(r, l) is the fraction of travelers from the rth OD flow which are

detected by sensor l reported during the period h. (More on the assignment matrix

later.) h− h′ + 1 is the maximum number of time intervals needed to travel between

any origin and destination on the network. We must sum over all of these time periods

since OD vectors from the past contribute to the current state of the network. Of

course, if other types of indirect measurements are used, the format of the assignment

matrix will change.

The assignment matrix itself is difficult to obtain since it depends on the route

choices of the drivers and the traffic conditions in the network, both of which them-

selves must be estimated. Ashok and Ben-Akiva (2001) present a comprehensive
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model for estimation of the assignment matrices while accounting for errors in travel

time and route choice models. The authors present models for both offline and real-

time estimation. The offline models presented there are more robust, but are imprac-

tical for real-time applications.

In DynaMIT the assignment matrix is estimated using the pre-trip demand mod-

ule and the supply simulator: The historical OD tables are used to generate an initial

population of drivers, whose paths are determined using the route choice models.

(See Antoniou, 1997.) Then, the supply simulator moves these drivers through the

network. The purpose of using the supply simulator is to be able to provide the set

of assignment matrices that is needed; for each measurement period h, we require

assignment matrices starting at the period h′. This method is the least computa-

tionally complicated method available, but suffers serious drawbacks in that it does

not take into account the statistical properties of the assignment matrix that can be

investigated using Ashok and Ben-Akiva’s offline model. Cascetta et al (1993, 2001)

discuss an iterative method of estimating the assignment matrix, which is discussed

in more detail in the next chapter.

The use of other types of direct and indirect measurements have been explored in

the literature. Van der Zijpp (1997) uses additional measurements such as OD data

from automatic vehicle identification (AVI) which uses image processing technology

to recognize license plate numbers at fixed locations in the network to track vehicles’

paths. Bottom (1999) and Niver et al (2000) propose the use of electronic toll collec-

tion (ETC) equipment to record OD data and travel times and speeds. Sun (1999)

discusses the use of traffic density rather than traffic flow (that is, vehicle counts) as

the key indirect measurement for OD estimation. In congested networks, flows can

be misleading. Above a critical level of density, flows begin to decrease, and so flow

and travel time do not have a monotonic relationship. On the other hand, the use of
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density maintains a convex travel time cost function, and can thus be an indication

of whether a road link is in the congested or non-congested regime. Densities can

be measured using standard loop detectors by calculating the fraction of time that

a loop detector is occupied. Sun introduces an OD-link matrix B which relates OD

flows to link densities.

2.3 State-Space Model

A useful abstraction for working with dynamic systems is the state-space model.

(See Stefani, et al (1994) for more.) The state-space model describes the behavior

of a system using two simple linear equations, the measurement equation and the

transition equation. The measurement equation relates the unknown state of the

system to observable data, and the transition equation describes the evolution of the

system’s state over time. A standard form for a state-space model is

yh = Ahxh + vh (2.4)

xh+1 = Φhxh + uh + wh (2.5)

where yh is the measured data and xh is the state of the system. vh and wh are

vectors of random errors. u is a deterministic input sequence which also contributes

to the evolution of the system state. Ah maps the data to the measurements; it is

the observation matrix. Φh is the transition matrix, which encapsulates the dynamic

behavior of the system. In other words, it describes how the previous states of the

system have bearing on the current state.

In our situation, a state space model is useful since many methods have been

developed for dealing with this generic type of system. One of the most prominent

and computationally feasible for real-time applications is the Kalman filter.
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2.3.1 Kalman Filtering

Using the state space model above, it is possible to derive an efficient recursive al-

gorithm for calculating the linear LS estimate xh. This algorithm, the Kalman filter

algorithm, is summarized here. The derivation is presented in Appendix A. Some

new notation is required; let r̂n|k denote the linear LS estimate of r at time period n

based on observations through time period k.

Let the noise wh be white and zero-mean, with positive semidefinite covariance

matrix Qh. Similarly, let the measurement noise vh have positive definite covariance

matrix Ch. We assume that the initial state x0 has a known mean and covariance µ0

and Λ0 = C0. Then, we initialize the estimator using:

x̂0|0 = µ0

Λ0|0 = Λ0

For each iteration of the filter, we have the following four steps:

1. Generate the next estimate and its associated error covariance. These are the

predictor equations, using information only from the state transition equation.

x̂h|h−1 = Φh−1x̂h−1|h−1 + uh−1

Λh|h−1 = Φh−1Λh−1|h−1Φ
′
h−1 + Qh−1

2. Compute the Kalman gain matrix:

Kh = Λh|h−1A
′
h(AhΛh|h−1A

′
h + Ch)

−1

3. Generate the filtered estimate and its associated error covariance. These are the

corrector equations, using information only from the measurement equation.

x̂h|h = x̂h|h−1 + Kh(yh − uh − Ahx̂h|h−1)

Λh|h = Λh|h−1 − KhAhΛh|h−1
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4. Increment h and go back to step 1.

Figure 2-3: The Kalman filter.

There exist a number of variations on the basic Kalman filter algorithm which are

worth exploring, one of which bears mentioning here. Chui and Chen (1991) discuss

a variant of the Kalman filter algorithm known as the square-root algorithm, which is

of interest when implementing a numerically robust OD estimation algorithm. The

idea involves the Cholesky factorization, which for any positive definite symmetric

matrix finds the factorization

A = Ac(Ac)′.

Ac can be viewed as the generalized square root of the matrix A. In a special case, if

A = diag(a11, . . . , ann),

then the Cholesky factorization gives

A = Ac(Ac)′ =




√
a11

. . .

√
ann







√
a11

. . .

√
ann
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The advantage of going to the square-root is that small numbers become larger and

large numbers become smaller, so that number are of more of the same order, and

computations can be more accurate.

An advantage of the Kalman filter algorithm is that generating a new estimate

does not require any inversions. Each iteration of the algorithm requires 4 matrix-

matrix multiplications and 3 matrix-vector multiplications, compared to 2 and 2 for

the GLS estimator. Note that the Kalman gain matrix Kh and the error covariances

do not depend on the real-time measurements coming in, and can be pre-computed

and stored if computational speed is an issue.

The Kalman filter has an additional advantage in that the estimates that it pro-

duces incorporate the dynamic behavior of the system as described by equation 2.5.

The one-step GLS estimator as described above does not incorporate any system

dynamics; rather, it focuses on the measurements obtained during the current time

interval and ignores knowledge about any other points in time. A GLS estimator can

be derived which takes the entire record of system behavior into account, but this

requires the solution of all the time intervals simultaneously at each subsequent time

interval. Ashok (1996) shows the equivalence of this batch GLS estimator with the

Kalman filter estimates. We will, however, derive a version of the single-time-interval

GLS estimator which does take the system dynamics into account.

32



Chapter 3

Estimation Model

In this chapter the theoretical basis for the OD estimation model is presented. First,

the DynaMIT demand simulation model is presented in greater detail. Then, for

OD estimation, we start with the most basic model that can be implemented, one

which estimates the OD flows based on link counts from sensors and historical OD

information. We then proceed with enhancements to the model based on additional

information sources, and simplifications to reduce computing time.

3.1 Demand Simulation in DynaMIT

3.1.1 Flow of Execution

DynaMIT begins a new execution cycle at set intervals. Each execution cycle contains

two major steps: state estimation and prediction-based guidance generation. Please

see figure 1-2 for a block diagram of state estimation. Please also see figure 3-1 for a

block diagram of the demand simulation component of DynaMIT.

To review, the function of state estimation is to provide estimates of the current
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Figure 3-1: Demand Simulation.
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3.1. DEMAND SIMULATION IN DYNAMIT

network state in terms of OD flows, link flows, queues, densities and travel times.

The demand estimation, using inputs from historical databases and network surveil-

lance (sensors, etc.), provides the input to the traffic simulator. The traffic (supply)

simulator then provides an estimate of variables such as flows, speeds and queues.

It may be necessary to go through several iterations of state estimation until

a consistent estimate is obtained. This is because there are two main sources of

uncertainty in the OD estimation module: the OD vector itself, and the assignment

matrix. To estimate the assignment matrix it is necessary to have a good idea of the

OD vector, and to estimate the OD vector one must have a good assignment matrix.

So some feedback is necessary to achieve convergence between the two.

The prediction-based guidance generation uses predicted OD vectors to predict

future traffic conditions. There can also be feedback and several iterations in this part

of the program, as different guidances are tried until one is selected with the desired

effects. After the OD vector is estimated for the current time interval, the prediction

process is run to generate predicted OD vectors for the number of time intervals in

the prediction horizon, as described in section 3.2.1. The supply simulator is then

used to provide predictions of flows, queues and travels times in the network.

It is useful for the purposes of this discussion to give concrete examples for the time

intervals used. For reporting sensor counts and estimation OD vectors, it is useful

to choose a time interval length that is short enough to capture reasonable tempo-

ral variations in the network conditions while not so short as to make computation

unwieldy. A reasonable time interval length is 15 minutes.

3.1.2 Assignment Matrix

Typically DynaMIT would be executed whenever there is a need for traffic prediction,

such as during rush hours, special events, or whenever an incident is detected on the

35



CHAPTER 3. ESTIMATION MODEL

7;45 8:00 8:15 8:30

State Estimation

Prediction Horizon

At 8:00

��
Comp. Delay

8:07

7;45 8:00 8:15 8:30

State Estimation

Prediction Horizon

At 8:15

��Comp. Delay

8:22 8:45

Figure 3-2: The rolling horizon in DynaMIT.

network. For example, for the morning rush hour DynaMIT could be started at 6:15

AM. The state estimation would then perform its estimation for the 15-minute period

6:00 – 6:15. Since this is the first interval of the day for DynaMIT, the only OD data

available is from the historical database, which, again, could come from survey data

or a database built from previous days’ runs. Also, no current assignment matrix is

available.1 Therefore, at least one “dry run” of the supply simulator must be done

before OD estimation can be performed.

1Ashok (1996) envisions a framework for estimating a stochastic assignment matrix from travel
time and route choice models in a closed loop with OD estimation. With speed of computation as a
priority, however, we have implemented the following ad hoc approach for estimating the assignment
matrix.
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3.1. DEMAND SIMULATION IN DYNAMIT

The assignment matrix is estimated after each run of the supply simulator. Good

results here depend heavily upon the route choice model and the accuracy of the

supply simulator. DynaMIT currently generates a set of reasonable paths (which don’t

contain any cycles). Each driver generated is assigned a path based on calibrated

discrete choice (logit) models. Developing new route choice models is an area of

ongoing intense research.

DynaMIT keeps track of every driver in the supply simulator, so in DynaMIT

itself, the assignment matrix can be computed with complete accuracy. Each driver

is tagged with its origin, destination, current location and departure time. Suppose

we want to compute the assignment matrix Ah
h of effects of the current OD vector to

the current interval. Then we can look at each link in turn and count the number of

drivers on each link from each OD pair. For a given link, we then know the proportion

of drivers each OD pair contributes to that link.

To illustrate, suppose we have a simple network shown in figure 3-3.2 This network

contains 10 links and 10 nodes. There are then 10× (10− 1) = 90 possible OD pairs.

In most cases, however, not all OD pairs are active. For OD estimation, DynaMIT

only considers the OD pairs for which there are entries in the historical database.

Even though on any given day trips can be made for an OD pair which had not been

considered before, the proliferation of OD pairs would make computation prohibitively

slow.

Suppose that in our example that the only loaders (active origins and destinations)

are the leaves of the network (that is, at notes 1, 4, 7, 8, 9 and 10). Suppose we have

3 active OD pairs: (1,4), (1,7) and (8,10), each with equal demand, and that every

driver traverses the network in a single time interval. For each of the first two OD

2This will be referred to as the “Florian Network,” and it is an example courtesy of Prof. Mike
Florian of the University of Montréal.
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Figure 3-3: A Simple Network.

pairs, only one path is possible, but two paths are possible for OD pair (8,10). Suppose

drivers are equally likely to take either path. Consider link 8, which goes from node

3 to node 5. Then row 10 of the assignment matrix will be

[
0 1 1

2

]

since no drivers from pair (1,4) take this link, all the drivers from pair (1,7) take

the link and half of the drivers from (8,10) take the link. For this example we have

assumed that all drivers finish their trips within a single time interval. Actually, of

the drivers detected on the link, some may have departed during a previous time

interval, but DynaMIT can take this into account as stated previously.

3.1.3 Iterative Estimation of Assignment Matrix and OD Flows

Once an assignment matrix has been generated, OD estimation can begin. By the

time DynaMIT executes after 6:15 for the 6:00 – 6:15 interval, we already should have
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real-life sensor data from that interval. The OD estimation process, as described later,

produces an OD vector which can be fed back into the supply simulator to produce

a new estimate of the assignment matrix, and so on. Once a satisfactory OD vector

has been generated (if the error between the estimated assigned sensor counts and

actual sensor counts is below a certain threshold, or after a maximum number of

iterations) the prediction is run for the desired horizon length. If, for example, the

horizon length is 30 minutes, the 2 OD vectors for 6:15 – 6:30 and 6:30 – 6:45 would

be generated by the OD prediction process, and the supply simulator would be run

for 6:15 – 6:45.

The goal of the iteration between the supply simulator and OD estimation is that

the assignment matrix estimates and OD vector estimates will both converge to a fixed

point, which is the optimum solution when both estimation problems are considered

together. As of now, DynaMIT feeds the estimated OD vector back into the supply

simulator directly, with no preprocessing of the OD vector. In fact, it is possible to

use some intelligent processing to aid in the convergence of this estimation scheme.

Cascetta et al (2001) suggests some methods, including a smoothing algorithm known

as the method of successive averages (MSA), and criteria for the existence of a fixed

point.

The following is an intuitive derivation of the smoothing algorithms based on

estimation theory. The MSA is based on a simple estimation problem known as “DC

Level in White Noise” presented in Kay (1993). It is posited that there exists a

certain target true OD vector x∗
h, and the successive OD estimates that are obtained

are noisy measurements of the true vector x∗
h, or

x̂k
h = x∗

h + wk

where k is the current iteration of the estimation, and wk is a vector of white noise,
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where wk is assumed to be uncorrelated with estimates produced at previous iter-

ations, and the individual components of wk are uncorrelated with each other. We

could estimate x∗
h by taking the current “measurement” x̂k

h, like is currently done in

DynaMIT, but this a statistically inefficient estimator in that it ignores all of the

previous measurements of x∗
h. In fact, for a single component of the vector to be

estimated, the variance of the simple estimate is k times that of the MSA estimator.

Suppose we concentrate on just a single element of the target OD vector, where

we are trying to estimate a constant level x∗
h(j) in the presence of white noise, so that

x̂k
h(j) = x∗

h(j) + w(j)

where x̂k
h(j) is the current “measurement” (really, the current estimate) of OD flow j

and w(j) is white noise with variance σ2. The simple estimator x̃∗
h(j) = x̂k

h(j) has vari-

ance σ2. The MSA estimator involves taking the average of all of the measurements

received, or

x̂∗
h(j) =

1

k

k∑
l=1

x̂l
h(j)

Its variance is

var(x̂∗k
h (j)) = var

(
1

k

k∑
l=1

x̂l
h(j)

)

=
1

k2

k∑
l=1

var(x̂l
h(j))

=
σ2

k

which is much smaller than the simple estimator’s variance, indicating that the MSA

provides a better estimate.

Here, we have successive vector observations of a target assumed to be a fixed

point. The LS estimate is

x̂∗k
h =

1

k

k∑
l=1

x̂l
h
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To save us from recalculating the average at each step, which would also involve

storing the estimates from all previous iterations, we realize that the estimate can be

written

x̂∗k
h =

1

k

(
k−1∑
l=1

x̂l
h + x̂k

h

)

=
k − 1

k
x̂∗k−1

h +
1

k
x̂k

h

This method is optimum if it is the case that each estimate of the OD vector

(or “measurement” in this context) from the first and on, has the same variance

properties (that is, that the noise process w has the same variance at each iteration).

We know this is far from the truth, since we expect that the first estimate will be

worse than successive ones, suggesting that each successive wk has smaller variance

than the previous. In this case we have a linear model with a noise process whose

covariance matrix is not the identity, but ΣkI, where Σk = [σ2
1 . . . σ2

k] is generated by

some decaying function of l, such as σ2
l = ae−al.3 In this case, the LS estimate is (see

Kay (1993) section 8.7 for a derivation)

x̂∗k
h = x̂∗k−1

h +
1/σ2

k∑k
l=1

1
σ2

l

(x̂k
h − x̂∗k−1

h )

This algorithm is similar to what Cascetta et al call the method of successive averages

with decreasing refreshing (MSADR).

This method could of course also be used to smooth the assignment matrix esti-

mates, but would be less computationally efficient due to the larger size of this matrix.

Cascetta et al have shown experimentally that the simple algorithm converges faster,

3Note the distinction between the covariance matrix of the noise wk and the noise process for a
specific OD pair w(j). Here, we are saying that the covariance matrix of the noise wk is σ2

kI, and
the covariance matrix of the noise wk−1 is σ2

k−1I. The covariance matrix of the noise process w(j)
(which has been observed until the current time interval k) is ΣkI.
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but the MSA and MSADR have better convergence properties. Cascetta prefers the

MSADR because of its more-intelligent smoothing properties.

3.2 Basic Model Formulation

Consider a network with nOD OD pairs and nl available sensors to provide link counts.

Following the notation of Ashok et al, we write:

• xh is the OD vector for time interval h; that is, it represents the number of

vehicles departing during time interval h for each OD pair. This is the vector

to be estimated.

• xH
h is the corresponding historical OD vector available.

• x̂h is the estimated OD vector from time interval h.

At the most basic level, the information available to us is in the form of link

counts. We express the counts recorded for all of the sensors in the time period h

by yh. As stated before, there is a linear relationship between the OD flows and the

sensor counts, expressed by:

yh(l) =
h∑

p=h′

nOD∑
r=1

Ap
h(r, l)xp(r) + vh(l)

where h′ is the earliest departure time interval for which vehicles remain on the

network. In matrix form this becomes

yh =
h∑

p=h′
Ap

hxp + vh. (3.1)

where Ap
h ∈ Rnl×nOD is the assignment matrix of contributions of xp to yh. Each

entry Ap
h(r, l) is the ratio of drivers from OD pair r which are detected by sensor l
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during time period h to the total demand for OD pair r. The ratio is calculated for

each departure time interval p for which vehicles remain on the network, resulting in

a suite of h − h′ + 1 assignment matrices for each time interval.

Here, we clearly have a linear model for the system, so linear least squares esti-

mation can be used. However, as it stands, the system is underdetermined. That is,

in general a network will have many fewer sensors than possible OD pairs, and so

without further information we have no hope of getting a meaningful estimate of the

OD vector.

An easy first step is to include direct measurements in the formulation. One cate-

gory of direct measurements is historical OD vectors, which can be from the historical

database containing survey data and previous estimation results. For the first iter-

ation of the first time interval, of course, the only historical OD vector available is

from the historical database. In any case, the objective function now becomes

arg min
x̂h′ ,...,x̂h


 w1

∣∣∣∣∣∣
∣∣∣∣∣∣yh −

h∑
p=h′

Ap
hx̂p

∣∣∣∣∣∣
∣∣∣∣∣∣ + w2

h∑
p=h′

∣∣∣∣∣∣xH
p − x̂p

∣∣∣∣∣∣

 (3.2)

We may choose weights w1 and w2 to indicate the relative confidence we would like

to ascribe to either form of measurement. If more fine control is desired over the

weighting, we can, instead of using the scalars w1 and w2 use diagonal weighting

matrices W1 and W2. For example, if we know that a certain sensor is malfunctioning,

and we have less confidence in its output, we can assign its entry a lower weight in

W1. After a network is well-calibrated, and a good historical database is available, we

would have calibrated covariance matrices for the errors, which should incorporate

such information as the presence of a faulty sensor. In that case, the scalar weights

can still be used.
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If full variance or covariance matrices are available, the objective function becomes

arg min
x̂h′ ,...,x̂h





yh −

h∑
p=h′

Ap
hx̂p




′

R−1
h


yh −

h∑
p=h′

Ap
hx̂p


 +

h∑
p=h′

(
xH

p − x̂p

)′
Q−1

p

(
xH

p − x̂p

)


where Rh is the covariance matrix of the indirect measurements, and Qh is the co-

variance matrix of the direct measurements.

3.2.1 Prediction and the Idea of Deviations

This section discusses an enhancement to the direct measurement equation just pre-

sented which incorporates information about the dynamics of the system. Once the

OD vector has been produced for time interval h, DynaMIT must then predict the

state of the network for a certain horizon length into the future. This is done using

the supply simulator, which requires OD vectors as inputs. In the state-space model,

we have proposed that the OD vectors develop through time according to

xh+1 = Φhxh + wh + uh. (3.3)

We additionally refer to this development of the OD flows in time as the autore-

gressive process. The matrix Φh expresses the relationship between the OD vectors

from time interval h and h + 1. This matrix must be calibrated off-line using his-

torical data. Note that we have assumed for the purpose of our state-space model

that only the immediately previous OD vector is related to the current one through

the transition equation. In the simplest form of the transition equation, we assume

that effects from other OD vectors are negligible.4 In the absence of good estimates

for the Φ’s, we can simply use the latest OD estimate for the prediction intervals,

which is equivalent to setting Φh to the identity matrix. This can still provide good

4Additional research on offline calibration and building the historical database can be found in
Balakrishna (2001).
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results for the prediction, since the supply simulator for the prediction horizon starts

with an already-loaded network; that is, all of the congestion that is known to exist

is perpetuated during the prediction interval. However, this does not make use of all

of the information available to us, and results in a statistically inefficient estimator.

Ashok and Ben-Akiva propose the idea of deviations to mitigate this deficiency

of the simple state-space prediction model. As it stands, the objective function of

equation 3.2 strives to keep the estimate close to the historical OD flows. However,

this obscures more valuable information that is available about the development of

OD flows over the course of a day. We might know, in a holistic sense, that rush

hour starts at 7:00 AM and continues until 9:00, and that there is an evening rush

hour from 4:30 PM until 6:30. People leave for lunch around noon, and may travel

to events in the evening. So we can observe trends in travel demand over the course

of many days. This knowledge is expressed numerically in the transition equation

(equation 3.3) of the state-space model for use in the prediction of the OD vectors.

Since the deviations subsume important information about the system dynamics,

they must also be incorporated into the GLS formulation. Rather than use the simple

for for direct measurements as expressed in equation 2.3, we can write, in deviations

form,

xh − xH
h =

h−1∑
p=1

F p
h (xp − xH

p ) + wh (3.4)

where F p
h ∈ RnOD×nOD is the matrix of effects of the previous time intervals’ devia-

tions on the current time interval’s deviations. Note that now we have enhanced the

definition of the F matrices to indicate the effects of any previous time interval on

the current time interval.

This new formula gives us freedom from blindly following the historical OD flows

in our estimates. For instance, if today is an abnormally high-traffic day, the true OD

flows will exceed the historical tables. However, the estimator as expressed earlier
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will contradict the knowledge gained from the sensor measurements which indicates

the increased demand. The use of deviations allows the estimator to “realize” that

previous time intervals have deviated from the historical flows, and that today is not

a normal traffic demand day. To make this more concrete, suppose that DynaMIT is

started at 6:00 AM on a high-traffic day. The sensors indicate a high demand, but

the historical tables pull the estimate down. Suppose we have set the weights on the

estimator such that the two conflicting sets of data are met halfway. Then a deviation

is recorded at the first time interval, 6:00–6:15. Knowing through the F p
h ’s how the

deviation is to propagate, the estimate of 6:15–6:30 will be further refined.

Even if we do not have a calibrated historical database of the F p
h ’s, the method of

deviations can still allow us to refine the estimates. We can, as described above, set the

F p
h ’s to be diagonal matrices, and still have the objective that tries to agree with the

deviations. For the F matrices to be diagonal means that we are assuming that only

the temporal relationships between specific OD flows matter, and that contributions

from other OD pairs do not matter much. For an ad hoc estimate of the F ’s, in the

absence of a historical database, we could additionally hypothesize that as we look

farther back in time, previous intervals’ deviations have less and less relevance to the

current time interval, and set the scaling of the F matrices accordingly.

Notice that equation 3.4 is expressed in a very general form. We have allowed

for each interval of the day to be included in the calculation of the latest estimate.

What this is saying is that we believe that the deviations of 6:00–6:15 AM have some

relevance to those of, say, 7:00–7:15 PM. As we get later in the day, this means that

the right hand side of equation 3.4 will become more and more time-consuming to

calculate. And so far we have only assumed that DynaMIT is to be run on a day-by-

day basis, but theoretically deviations from 7:00–7:15 PM on the previous day have

an effect on the deviations of 6:00–6:15 AM today. For this discussion we define the
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degree of the autoregressive process to refer to the number of intervals back into the

past we consider. If we set the degree of the process to be 4, we indicate that we only

consider deviations of the past hour in our estimation and prediction. The optimal

degree of the autoregressive process can also be calibrated off-line.

The degree of the process is important if we want to use the simplification that the

F p
h ’s be diagonal matrices. Again, this simplification may be needed for two reasons:

• in the absence of a well-calibrated historical database of F matrices, or

• if computational speed is an issue.

In general, the calibrated F matrices will be full, and therefore each estimation per-

formed will require a full matrix-vector multiplication as many times as the degree of

autoregressive process used. If computation time is at a premium, it may be desirable

to use diagonal F matrices even if full ones can be obtained.

We can now revise the objective function of equation 3.2:

min
x̂p


 w1

∣∣∣∣∣∣
∣∣∣∣∣∣yh −

h∑
p=h′

Ap
hx̂p

∣∣∣∣∣∣
∣∣∣∣∣∣ + w2

∣∣∣∣∣∣
∣∣∣∣∣∣xH

h − x̂h +
h−1∑

p=max(h−da,1)

F p
h (xH

p − x̂p)

∣∣∣∣∣∣
∣∣∣∣∣∣

 (3.5)

where da is the degree of the autoregressive process used. As before, we write the

weights in the objective function as scalars for simplicity, but full covariance matrices

can be used in the estimator. Note that for the direct measurements we have the

summation index p start from max(h − da, 1). This is because for the first da time

intervals there are fewer than da previously-estimated OD vectors.

In addition, we rewrite the autoregressive process with its degree:

xh = xH
h +

h−1∑
p=h−da

F p
h (xp − xH

p ) + wh (3.6)
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3.2.2 Standard Estimator

Note that in this formulation, each execution of OD estimation requires the estimation

of multiple OD vectors. This is because link counts at a specific time interval include

not only those vehicles which departed during that interval, but also vehicles which

have departed during past intervals that remain on the network and have not yet

reached their destinations. Specifically, we must reestimate all of the OD vectors

xh′ , . . . , xh. Let us define the vector

Xh = [xh xh−1 . . . xh′ ]′

This formulation can be expressed as a linear least squares problem of the form

Y ≈ AX as discussed above. It is important to now view Y in the canonical form

as the vector of all measurements available, whether direct or indirect. X is still the

vector to be estimated, but now A must be constructed properly so that the mapping

from X to Y is correct.

Specifically, Y is the vector of sensor counts, concatenated with the historical (or

previously estimated) OD vectors from time intervals h′ through h. So, we write

Yh =




yh

xH
h +

∑h−1
p=max(h−da,1) F p

h (xH
p − x̂p)

x̂h−1 +
∑h−2

p=max(h−1−da,1) F p
h−1(x

H
p − x̂p)

...

x̂h′ +
∑h′−1

p=max(h′−da,1) F p
h′(xH

p − x̂p)




At the beginning of the day, there will be fewer previous estimates than the degree of

the autoregressive process. For those terms, just set x̂p = xH
p . For example, for the

first time interval of the day, we have no previous estimates and therefore we have no

choice but to use the objective that the deviation between the current estimate and

the historical vector approach 0.
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Ah is constructed like so:

Ah =


 Ah

h . . . Ah
h′

I(pnOD)


 ∈ Rnl+pnOD×pnOD (3.7)

For convenience, define p = h− h′ + 1 as the number of time intervals which have an

effect on the current state. To check the dimensions, note that Yh ∈ RpnOD+nl and

Xh ∈ RpnOD . The upper section of Ah is of dimension nl × pnOD, while the lower

section an identity matrix of dimension pnOD.

We must consider the computational feasibility of this problem. In the GLS

method, (see equation 2.1) each estimation involves inverting the matrix A′WA, where

W = C−1, and C is the error covariance matrix. It is possible that the assignment

matrix by itself is too sparse for the matrix A′WA to be invertible. Consider, for

example, a test case one wants to run, in which few of the possible OD pairs in the

network are active. Many links on the network may not be used at all in this test

case, leaving rows of zeros in the assignment matrix. Suppose that W is a diagonal

weighting matrix. Then, even if there is a single row of zeros in A, the product A′WA

will be badly conditioned, close to singular, and therefore not invertible. This can be

seen most easily through an example. Suppose A is a 5×6 full-rank matrix, and then

the third row is set to all zeros. Then A′ is a 6 × 5 matrix with the third column all

zeros. Both A′ and A then have rank 4, and the product A′WA has rank no greater

than 4, and is therefore not invertible.5

However, augmenting the problem with the direct measurements will always have

the added bonus of resolving this difficulty. The matrix Ah as defined in equation

3.7 clearly has rank pnOD because of the presence of the identity matrix in its lower

sector. Therefore, the product A′
hAh, which is a pnOD × pnOD matrix, will be of full

rank and consequently invertible.

5since we know concerning the rank of a product that r(AB) ≤ r(A) and r(AB) ≤ r(B).
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3.3 Key Simplifications

At this point, we have enough information to estimate the p latest OD vectors using

a GLS estimator or the Kalman filter algorithm. However, it is important to con-

sider the computational cost involved in the estimation as formulated. Since flows

from p time intervals contribute to the measurements (sensor counts) of the current

time interval, we simultaneously estimate all OD vectors for these intervals. The

key computations in the GLS method involve the inversion of the matrix A′WA

and matrix-matrix multiplications, both of which have complexity O(n3), where n

is the size of the matrix. As the network gets larger, computation time increases

dramatically because of the size of the matrix, but there is another factor as well: the

number p can grow larger since it takes vehicles more time to traverse the network.

In addition, if the network becomes more congested, the number p will also increase.

Therefore, we use an approximation which is well-suited to the design of DynaMIT.

Basically, we would like to take the previous OD vectors out of the estimation

formulation. Ashok (1996) has demonstrated that this approximation does not add

significantly much to the estimation error.

We can rewrite the measurement equation (3.1) as follows:

yh = Ah
hxh +

h−1∑
p=h′

Ap
hx̂p + vh

The rightmost term should now be treated as a constant; given the previously esti-

mated OD vectors and assignment matrices, we can subtract the vehicles from those

periods which remain on the network.

In DynaMIT, as it turns out, this is quite straightforward to implement, not even

requiring any matrix-vector multiplications. As DynaMIT runs, all of the estimated

OD vectors are fed into the supply simulator. Each vehicle on the network has

identifying information, including its departure time, origin and destination. So,
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directly from the supply simulator’s list of drivers, those drivers which have departed

in previous time intervals can be tallied by OD pair. These totals are then subtracted

from the sensor counts reported by the surveillance system. We indicate these totals

as ph, the vector, by link, of vehicles remaining on the network in time interval h

which have departed prior to h. Now, the measurement equation becomes

yh − ph = Ah
hxh + vh (3.8)

and we would like to find

arg min
x̂h


 w1

∣∣∣∣∣∣(yh − ph) − Ah
hx̂h

∣∣∣∣∣∣ + w2

∣∣∣∣∣∣
∣∣∣∣∣∣xH

h − x̂h +
h−1∑

p=max(h−da,1)

F p
h (xH

p − x̂p)

∣∣∣∣∣∣
∣∣∣∣∣∣

 .

(Again, w1 and w2 are used for notational convenience. The above equation can be

written in a dot-product formulation using full covariance matrices.) Note that in this

case, though we use deviations from previous time intervals in the objective function,

the previous estimates x̂p are now considered to be constants. We can now redefine

the augmented vectors and matrix used in the least squares estimator:

Xh = xh (3.9)

Yh =


 (yh − ph)

xH
h +

∑h−1
p=max(h−da,1) F p

h (xH
p − x̂p)


 (3.10)

Ah =


 Ah

h

InOD


 (3.11)

The estimator is then

x̂h = (A′
hC

−1
h Ah)

−1A′
hC

−1
h Yh (3.12)

where

Ch =


 1

w1
Rh 0(nl×nOD)

0(nOD×nl)
1

w2
Qh
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The covariance matrix Ch should be block diagonal, indicating that the indirect

measurements and direct measurements are uncorrelated. The block components Rh

and Qh are the covariance matrices associated with the indirect measurements and

direct measurements, respectively. These matrices are calibrated off-line and become

part of a historical database. The weights w1 and w2 indicate the level of confidence

in the sensor counts and assignment matrix as opposed to the historical database

and deviations. Again, if the historical database has not yet been developed, or more

computational efficiency is desired, then the matrices Rh and Qh can be set to the

identity matrix, causing C−1
h to be simply a diagonal weighting matrix. For a diagonal

Ch, instead of 4 matrix-matrix multiplies, the estimator requires only 2.

The prediction is run according to the autoregressive process. We use the notation

x̌g to indicate a predicted OD vector. For each interval g for which a prediction is

desired, we have

x̌g = xH
g +

h∑
p=max(g−da,1)

F p
g (x̂p − xH

p ) +
g−1∑

p=h+1

F p
g (x̌p − xH

p )

This formula is broken into two sums to indicate that we may be predicting several

intervals beyond the last estimate, so that the deviations can only be calculated

between predicted and historical OD vectors.

3.3.1 Alternative Formulation: Matching Counts Exactly

Since DynaMIT is real-time traffic prediction software, computational efficiency is

always an issue, it is important to explore any simplifications to the OD estimation

algorithm that could bring the benefit of reduced execution time. Then, one can weigh

the benefit of faster execution against the reduced accuracy of the simplified estimator.

Thus we motivate this section, which explores a potentially useful simplification.
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Another way of setting up the model is to view the indirect measurements as being

absolute constraints; in other words, we require that the assigned estimated OD flows

exactly match the sensor counts, and minimize the difference between the estimate

and the historical flows (or previous estimate). A closed-form estimator is readily

available (Kay, 1993) if equality constraints are linear. Here, we require

Ah
hxh = (yh − ph) (3.13)

and the objective is to minimize

J(x) = ||xH
h − x̂h + ∂xh||2

or, with an error covariance matrix,

(xH
h − x̂h + ∂xh)

′Q−1
h (xH

h − x̂h + ∂xh).

where ∂xh =
∑h−1

p=max(h−da,1) F p
h (xH

p − x̂p). The following derivation, however, is based

on an error covariance matrix 1
σ2 I, for simplicity. The GLS version is stated as well.

To find the LS estimator we use the method of Lagrange multipliers. We instead

minimize

L(x, λ) = (xH
h − x̂h + ∂xh)

′(xH
h − x̂h + ∂xh) + λ′[Ah

hx̂h − (yh − ph)]

where λ ∈ Rnl is a vector of Lagrange multipliers, subject to no constraints. The

idea here is instead of enforcing the hard equality constraints, we allow them to be

violated. However, we associate a Lagrange multiplier, or price, incurred for the

violation of each constraint. With the right choice of prices (also called the dual

vector) the solution to the unconstrained optimization is the same as that of the

constrained problem.

The expression above is expanded to

L(x, λ) = (xH
h + ∂xh)

′(xH
h + ∂xh) − 2x̂hx

H
h + x̂′

hx̂h + λ′Ah
hx̂ − λ′(yh − ph)
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Taking the gradient with respect to x̂h gives

∂L

∂x̂h

= −2(xH
h + ∂xh) + 2x̂ + (Ah

h)
′λ

Setting this equal to 0 gives

x̂h = xH
h + ∂xh − 1

2
(Ah

h)
′λ

To find λ we must re-impose the constraint of equation 3.13. Multiplying both sides

by Ah
h gives

Ah
hx̂h = (yh − ph) = Ah

h(x
H
h + ∂xh) − 1

2
Ah

hA
h
h

′
λ

and so
1

2
λ = (Ah

hA
h
h

′
)−1[Ah

h(x
H
h + ∂xh) − (yh − ph)].

Therefore our estimator is

x̂h = xH
h + ∂xh − Ah

h

′
(Ah

hA
h
h

′
)−1[Ah

h(x
H
h + ∂xh) − (yh − ph)] (3.14)

The GLS version, from a parallel derivation, is

x̂h = xH
h + ∂xh − Q−1

h Ah
h

′
(Ah

hQ
−1
h Ah

h

′
)−1[Ah

h(x
H
h + ∂xh) − (yh − ph)]

This is called the “Exact-Match” estimator.

Note that as discussed before, the matrix (Ah
hA

h
h
′
)−1 will in general not be invert-

ible, since there could be sensors which do not record and therefore introduce a row

of zeros into the assignment matrix. This problem can be solved by removing that

sensor, and hence that row of the assignment matrix, for the calculation.

Also, if the number of OD pairs is less than the number of sensors, the matrix

(Ah
hA

h
h
′
)−1 will certainly not be invertible, and this formulation cannot be used. Since

this formulation requires that the assigned estimated flows match the sensor counts

exactly, if the system is overdetermined this will not be possible.
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This estimator is more computationally efficient than the GLS estimator described

above. This estimator requires the inversion of a much smaller matrix, one that

is nl × nl rather than (nOD + nl) × (nOD + nl). It does require 3 matrix-matrix

multiplications as opposed to 2 for the GLS, but these multiplications are on much

smaller matrices.

The drawback to this method is that it assumes that the assignment matrices are

perfect, and that the estimate of cars on the network which have departed during the

current time interval, yh−ph, is accurate as well. There is no tunability in this method

whereby we can give more or less credence to the historical database. Instead, here,

the historical database is necessarily given less priority than the sensor constraints,

which are satisfied exactly.

3.3.2 Kalman Filter Formulation

Using the Kalman filter methodology of section 2.3.1, we can develop a Kalman filter

algorithm for computing the OD vector estimates. As before, we create augmented

vectors Yh and augmented matrices Ah which can be used directly in the Kalman filter

equations. The initial covariance matrix Λ0|−1 is set to C0 and the initial estimate is

set to x̂0.

What remains to be determined are the transition matrices. We require that the

transition equation be of the same form as the basic state-space transition equation

of equation 2.5. From equation 3.4, we can write

x̂h+1 = F h
h+1x̂h − F h

h+1x
H
h + xH

h+1 +
h∑

p=h+1−da

F p
h+1(x̂p − xH

p ) + wh

which is of the same form; a transition matrix times the previous estimate plus a

constant

uh = −F h
h+1x

H
h + xH

h+1 +
h∑

p=h+1−da

F p
h+1(x̂p − xH

p )
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The modified Kalman filter algorithm is then

1. Compute the Kalman gain matrix:

Kh = Λh|h−1A
′
h(AhΛh|h−1A

′
h +

1

w1
Rh)

−1

2. Generate the filtered estimate and its associated error covariance:

x̂h|h = x̂h|h−1 + Kh(Yh − uh − Ahx̂h|h−1)

Λh|h = Λh|h−1 − KhAhΛh|h−1

3. Generate the next estimate and its associated error covariance6

x̂h+1|h = F h
h+1x̂h|h + uh

Λh+1|h = F h
h+1Λh|hF h

h+1

′
+

1

w2
Qh

3.3.3 Choice of Estimator

The main advantage of the Kalman filter formulation is that the entire record of the

system’s behavior is taken into account when generating each new estimate. This

behavior is incorporated into the construction of each additional covariance matrix.

The GLS formulation, on the other hand, provides the next estimate looking only at

the current sensor data and an autoregressive process on the da previous estimates.

The estimates provided using the GLS approach presented here, while not the most

statistically efficient, may still be acceptable.

Another advantage of the Kalman filter algorithm is that Kh, the Kalman gain

matrix, and the error matrices can theoretically be precomputed to save on real-

time computations. Unfortunately, in our case, we rely on updated data in order to

6Normally, in a Kalman filter algorithm, the “noise” processes v and w are expected to be zero-
mean. However, we now introduce a bias corresponding to deviations in previous estimates. This
does not affect the covariance update though.
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estimate the assignment matrices Ah
h. Thus, using the Kalman filter algorithm in our

case can actually be detrimental, since it requires the computation of the covariance

matrices as well as the estimates. We have no use for the covariance matrices in

themselves, in that they are only used for the internal operation of the filter. In our

formulation we can select the covariance matrix to be diagonal, further saving on

computations, while in the Kalman filter algorithm, every covariance matrix after the

first will necessarily be full.

The Kalman filter algorithm could be computationally more efficient if we agree

to sacrifice on the accuracy of the assignment matrices. Instead of using our ad hoc

assignment matrix estimator (based on today’s OD estimates) we could periodically

update the Kalman gain and covariance matrices off-line, or in parallel.

In the sections that follow, several enhancements to the OD estimation model are

presented. These enhancements are discussed in terms of a GLS estimator formulation

for convenience, but they can just as easily be incorporated into an enhanced Kalman

filter using the framework of the previous section. One exception is the constrained

estimation. Further investigation is necessary to derive a constrained Kalman filter

formulation.

3.4 Enhancements to the Model

We have presented an OD estimation model which results in an estimate which both:

• agrees with the measured sensor counts, and

• makes use of the historical structure of OD flows.

There are other measurement sources and objectives which can be included in the

model, and those are explored in this section. The philosophy here is that the basis of
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a good OD estimation algorithm is agreement with sensor counts, which is the most

accurate set of measurements available. The sensor counts are physically measured

quantities that are collected in real time, as opposed to previously estimated OD

vectors or OD vectors based on surveys. Any enhancements to our model must use

this philosophy as a basis from which to build. A caveat is always that: while adding

more measurements and objectives to the estimator makes the model more

robust, there is always a price to pay in terms of increased computation

time.

Our tool for deciding which objective is relatively more important is W , the

weighting matrix in the GLS estimator. By adjusting the values on the diagonal

of W , we are stating which set of measurements we have more confidence in. For

example, in the basic model, if we are not very confident in the historical OD vectors

then we would set the entries W (i, i), i < nl, which correspond to the sensor counts,

to be higher than the entries for i > nl, which correspond to the deviations objective.

If we were more confident in one sensor’s accuracy, then its individual entry could be

set higher.

This can also be explained from a probabilistic perspective, if we recall the mea-

surement equation with noise, equation 3.1. Each component of the noise vector

vh(k) expresses “noise,” or inaccuracies present in measurement k. If we assume each

element of the noise vector to be a zero-mean random variable, then each has a vari-

ance σ2
k. If the noise for one element has larger variance than another, it means we

should have less confidence in its corresponding measurement. Also, if we further

assume that the noise (errors) is uncorrelated from measurement source to measure-

ment source, then the covariance matrix C of the noise vector will be diagonal, since

only the variance entries are present.
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3.4.1 OD Flow Proportions

It has been observed in Ashok (1996) that the “shares,” or the relative proportions of

flows from a single origin to various destinations, will remain stable over the course of

a day, even as the overall demand fluctuates such as during rush hour. This suggests

another objective to add to the estimator in our model. It is debatable which objective

is more important: agreement with historical OD flows or share stability. Certainly

we would like our OD estimator to be able to handle unforeseen spikes in demand,

such as for a special event or incident. Such an event might not be accounted for in

the historical database, so just using the historical database as an objective would

be misleading. Adding the share fractions allows for unlimited scaling of demand in

the real network, since the sensor measurements should indicate the total demand

objective required for the estimator. In the following discussion, three variants of the

proportions estimator are presented.

A straightforward formulation is as follows. Suppose we focus on the OD pairs with

origin i. Suppose there are d such OD pairs, which are numbered sequentially. Then

we would desire that the ratio of an OD flow to the total flow from an origin remain

constant over time. This ratio would be extracted from the historical database– just

as a historical database of absolute flows can be calibrated, so too can a database of

flow proportions. The objective is then, for each j ∈ (1, . . . , d) that

xH
h (i → j)∑

k∈[1,d] x
H
h (i → k)

≈ x̂h(i → j)∑
k∈[1,d] x̂h(i → k)

remain constant. Rearranging, we have

[ψh(i → j) − 1]x̂h(i → j) + ψh(i → j)
∑

k∈[1,d], k 6=j

x̂h(i → k) ≈ 0

where ψh is a vector of flow proportions, with each element defined as

ψh(i → j) =
xH

h (i → j)∑
k∈(1,...,d) xH

h (i → k)
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These objectives can be added to the estimator realizing that a column of zeros

will be concatenated to the end of the Yh measurement vector, and nOD more rows

will be added to the observation matrix Ah, of the following form:




...

· · · ψh(i → j) − 1 ψh(i → j) 0 0 · · ·
· · · ψh(i → k) ψh(i → k) − 1 0 0 · · ·
· · · 0 0 ψh(m → n) − 1 ψh(m → n) · · ·
· · · 0 0 ψh(m → o) ψh(m → o) − 1 · · ·

...




Here, we have assumed for simplicity (although this is not necessary) that OD pairs

from the same origin are grouped together. For a given origin i which has d destina-

tions, we add d rows. Recall that each column of Ah corresponds to an OD pair, and

so the entries for origin i’s rows will be zero, except for the columns corresponding

to origin i. For the row corresponding to OD pair (i → j), column (i → j)’s entry

is ψh(i → j) − 1, while the entries corresponding to origin i’s other OD pairs are

ψh(i → j).

A second formulation calls for the ratios between pairs of flows from the same

origin remain the same. We would like for each j, k ∈ (1, . . . , d) that

xH
h (i → j)

xH
h (i → k)

≈ x̂h(i → j)

x̂h(i → k)

Rearranging, we have

x̂h(i → k)
xH

h (i → j)

xH
h (i → k)

− x̂h(i → j) ≈ 0

These objectives can be added to the estimator realizing that a column of zeros

will be concatenated to the end of the Yh measurement vector, and more rows will

be added to the observation matrix Ah. Each row will be all zeros, except for two
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entries, (xH
h (i → j))÷ (xH

h (i → k)) at the column for OD pair (i → k) and −1 at the

column for OD pair (i → j).

The drawback is that the dimension of the estimator is now quite large. Focusing

on a single origin, suppose that k unique OD pairs are active. Then we must add
(

k
2

)
additional lines to the augmented assignment matrix. This number increases even

faster than n(n − 1), which is the maximum number of OD pairs. Still, we do not

expect that every possible OD pair for a given active origin will be active, and so in

many cases this objective can be added to the model with an acceptable increase in

computing time.

A third idea is for the ratio of the total flow from one origin to another origin

remain constant. By itself, this objective allows variation in the ratios of individual

flows from the same origin, but this objective can be combined with one of the first

two mentioned above, if both types of proportions can be calibrated. The objective

is ∑
k∈[1,di] x

H
h (i → k)∑

k∈[1,dj ] x
H
h (j → k)

≈
∑

k∈[1,di] x̂h(i → k)∑
k∈[1,dj ] x̂h(j → k)

where we assume that there are di possible destinations for origin i and dj possible

destinations for origin j. This is again linear in the variables to be estimated, and the

estimator can be augmented accordingly. Here, we require that
(

nO

2

)
rows be added

to the observation matrix Ah and
(

nO

2

)
zeros be concatenated to Yh, where nO is the

number of origins.

Among these three formulations of the proportions objective, several comparisons

can be made. Since the calibration of the proportions is done off-line, each formulation

is equivalent in terms of the preparation of the observation matrices. The third is the

least computationally intensive, but provides the least information about the flows.

The second is the most computationally intensive, adding the most to the dimension of

the estimator, and provides the most information about the relationships of the flows
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to each other. The first formulation strikes a balance between statistical efficiency

and computational efficiency. Ashok (1996) has demonstrated the validity of the

objectives of the first type, and further research is necessary to verify the others’

validity and usefulness.

3.4.2 Probe Vehicles

A very promising development in the ITS field is the increasing possibility of using

probe vehicles to provide direct measurements of OD flows. A probe vehicle is a

vehicle equipped with a device that enables a traffic management center to track its

progress through the network. If probe vehicles are a statistically significant portion

of the driver population, we can then estimate that

x̂h =
1

fh

xprobe
h

where fh is the percentage of the drivers which are probe vehicles. To express this in

the LS estimation context, we write

xprobe
h = Fhxh + εh

where Fh is a diagonal matrix whose diagonal entries are the percentages of drivers

for each OD pair which are probe vehicles. εh indicates error in this formulation. Of

course, this assumes that a calibrated estimate of Fh is available. It is straightforward

to incorporate these additional direct measurements by following a procedure like the

one above for augmenting the least squares formulation

Y ≈ AX .

The data from probe vehicles can also be used to refine the estimation of the

assignment matrices. Estimation of the assignment matrix currently relies on the
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supply simulator to give an estimate of the travel times in the network, which could

be improved by the sample of travel times provided by the probe vehicles.

One exciting application of probe vehicle technology is being implemented in

Westchester County, New York by the New York State Department of Transporta-

tion (NYSDOT). In the New York City area, there is a high penetration rate of the

EZ-Pass electronic toll collection (ETC) system. According to the Port Authority of

New York and New Jersey, over 60% of drivers used ETC at its bridges and tunnels

during off-peak hours, which increased to over 75% during peak hours. With this

in mind, NYSDOT is in the process of installing 24 EZ-Pass detectors at locations

throughout the Westchester County network. A similar array of detectors has already

been installed along the Garden State Parkway and New York State Thruway near

the New York / New Jersey border. Guidance generation systems such as DynaMIT

are particularly suited to the Westchester network, which is shown schematically in

figure 3-4. With 5 or more major north-south routes available to passenger cars, and

2 major east-west connectors, there are many feasible paths for travelers through the

area.

3.4.3 Constrained Estimation

Nonnegativity Constraints

The previous presentation has ignored the fact that the OD flows may not take on any

value. Most obviously, no OD flow can be negative. It has been found that given the

parameters of the OD estimation problem, there are cases where the algorithm will

estimate an OD vector with negative entries. This is more likely to happen if some

OD flows are very small compared to others, since we expect reasonable variation

around the true flow.
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Figure 3-4: Schematic of Westchester County highways.
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Lawson and Hanson (1974) present an algorithm for the NNLS (nonnegative least

squares) estimation problem, defined as in equation 2.2. Let x have n elements, and

let A be a m × n matrix, so that y has m elements.

An optimal solution to the NNLS problem must satisfy what are known as the

Kuhn-Tucker optimality conditions. A vector x̂ is a solution if and only if there exists

a vector f̂ and a partitioning of the integers 1 through m into subsets E and S such

that

f̂ = A′(Ax̂ − y)

x̂(i) = 0 for i ∈ E , x̂(i) > 0 for i ∈ S
f̂(i) ≥ 0 for i ∈ E , f̂(i) = 0 for i ∈ S

The vector f̂ is known as the dual vector. These conditions give the basic idea for

most available solution algorithms: An optimal partitioning of the components of the

estimate is determined. In one partition, the variables can be optimized in the least

squares sense, and in the other partition, the variables must be set to zero.

For the NNLS algorithm, we define index sets Z and P, which list the variables

that are set to 0 and those that are free, respectively. At each major iteration of the

algorithm, if a variable in the set P becomes negative, it will be forced positive or

transferred to the set Z. Please see Appendix B for the algorithm as presented by

Lawson and Hanson.

One ad hoc method for preventing negative OD flows is to simply set those flows

which have been estimated to be negative to zero, or to some small positive value.

This will result, however, in the estimate being suboptimal in the data available.

If it is determined that the performance of the estimator using the ad hoc method

is unacceptable, then one of the constrained LS estimation methods must be used.
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The ad hoc method described essentially chooses the partitioning by assigning every

variable that has come out negative to the set of variables that is set to zero.

Capacity Constraints

Another possibility is that an estimate is produced which has the total flows from a

certain origin which exceed the input capacity of that node. The input capacity is

used by the supply simulator to restrict the number of vehicles allowed to enter the

network per time period. This would suggest constraints of the following form:

∑
k|(i→k)∈OD

x̂h(i → k) ≤ ci (3.15)

Violation of these constraints could potentially cause serious problems in DynaMIT’s

OD estimation system due to the iterative process used to reach consistency between

the estimated OD vector and the assignment matrix. As explained earlier in section

3.1.2, entries Ah
h(i, j) in the assignment matrices are obtained by dividing the number

of vehicles counted on sensor i from OD pair j by the total OD flow xh(j). It is

always possible for a sensor to detect a larger number of vehicles in real life than is

anticipated by the historical OD vectors and the supply simulator. For instance, if

we have been consistently underestimating the demand for an OD pair, there may

be drivers from that pair which have departed in previous time intervals which are

not subtracted as part of the ph vector. If the supply simulator is miscalibrated, it

could be simulating unrealistic congestion at an earlier point along the drivers’ paths

causing fewer drivers to be simulated at the sensor point. If the route choice models

are faulty, then DynaMIT might simulate fewer drivers from other OD pairs crossing

the sensor, while in fact more take that path in real life. Additionally, it has been

observed that the solution to the LS problem may exceed what would be expected

simply because this, in combination with all of the other variables, minimizes the
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given objective function.

Continuing with the example of the Florian network, suppose loader node 1 has

an input capacity of 2000 vehicles. Suppose for simplicity that only a single OD pair

is active. Suppose that while the surveillance system shows 2500 vehicles crossing

the sensor on link 9, the historical database shows that only a demand of 2000 is

expected on OD pair (1,4). The assignment matrix estimated the first time the

supply simulator is run is A1
1 = [2000/2000] = [1]. The estimate computed will be

x̂1
1 = 1× 2500 = 2500 vehicles per period. Then, as the first estimate is fed back into

the supply simulator to iterate and reestimate the assignment matrix, the demand

of 2500 exceeds the input capacity, and only 2000 vehicles are simulated to cross the

sensor. The next assignment matrix, A2
1 = [2000/2500] = [0.8]. So, instead of further

iterations refining both the assignment matrix and OD estimate, the process diverges,

producing the estimates shown in table 3.1.

Iteration Assignment Matrix OD Estimate

1 [1] 2500
2 [0.8] 3125
3 [0.64] 3906
...

...
...

10 [0.086] 18626

Table 3.1: Unstable iterations of demand estimation.

This instability is due to the presence of capacity constraints in the supply simu-

lator, but a lack of the same constraints in the demand simulator. There are several

possible methods for controlling this instability. The simplest is to not allow any

estimated flows to exceed loader input capacities by adjusting the OD flows from

that loader to be lower. This would be done while keeping the relative proportions
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of those OD flows the same. So if for some loader i we have

∑
k|(i→k)∈OD

x̂h(i → k) > ci

we would adjust the flows to

x̂
adj
h (i → j) =

x̂h(i → j)∑
k|(i→k)∈OD x̂h(i → k)

× ci

However, as mentioned in the discussion of the nonnegativity constraints, simply

truncating the estimated flows could result in a suboptimal solution. This would

suggest the use of an LSI (least squares with inequality constraints) algorithm using

the constraints of equation 3.15 and possibly the nonnegativity constraints as well.

In matrix form, the capacity constraints would be written

Cx ≥ b

where −b is the vector of loader capacities and C ∈ RnO×nOD is the capacity mapping

matrix, and O is the number of origin loaders. C will be of the form

C = −




1 1 0 0 0 0 . . . 0

0 0 1 1 1 0 . . . 0
...




Constraints of this form can be used with the algorithms such as the one described in

Lawson and Hanson (1974) which involves a transformation of the LSI problem into an

LDP (least distance programming) problem which can then be solved using a variant

of the NNLS algorithm. The drawback of this method is that it is computationally

intensive, since all solutions to the LSI problem involve iterative convergence to a

solution.

The following discussion describes how to transform the OD estimation problem

with capacity (and nonnegativity) constraints into a form that can be solved using
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an LDP algorithm. One must first obtain the orthogonal transformation (by using a

singular-value decomposition (SVD) algorithm) of the matrix

A = [Q1 Q2]


 R

0


 K ′

where Q is m×m and orthogonal, K is n×n and orthogonal, and R is n×n and full

rank. Q can be partitioned into Q1 ∈ Rm×n and Q2 ∈ Rm×m−n. We then introduce

the change of variables

x = Kw.

We can then write, since multiplying the objective function by a constant matrix Q

does not change the optimal solution,

Q′(y − Ax) = Q′y − Q′[Q1 Q2]


 R

0


 K ′Kw

= Q′y −

 Rw

0




since K and Q are orthogonal, and therefore K ′K = Q′Q = I. The objective function

to be minimized becomes

min ||y − Ax|| =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

 Q′

1y

Q′
2y


 −


 Rw

0




∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= ||Q′
1y − Rw|| + ||Q′

2y||

If we let z = Q′
1y − Rw, and realizing that minimizing ||z|| plus a constant is

equivalent to minimizing ||z|| alone, we have the LDP problem

min ||z||
subject to Cx ≥ b
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We then have Cx = CKw, and w = R−1(z −Q′
1y), and then multiplying this out

gives the LDP problem

min ||z||
subject to CKR−1z ≥ b − CKR−1Q′

1y

Lawson and Hanson give an algorithm for solving the LDP problem, which can be

found in Appendix B. The optimal OD vector x can be found using the transformation

x = KR−1(z − Q′
1y).

3.4.4 Holding Small Flows Fixed: Large-Flow Estimator

DynaMIT estimates the OD flow for each OD pair present in the historical database.

It is possible that many OD pairs have very small demand relative to other OD

pairs. The presence of these OD pairs in the problem has several adverse effects on

the estimation problem, which will be described below. If these small-flow OD pairs

could be removed from the estimation, an immediate benefit would be a reduction

in computation time. Of course, these OD flows are still present in the network,

contributing to sensor counts. In order to accommodate their presence in the sensor

count totals, the measurement equation 3.8 should be modified to

yh − ph − sh = Ãh
hx̃h + ṽh

where sh is a vector of the sensor counts due to the vehicles from small-flow OD pairs.

The assignment matrix and OD vector are written with tildes to indicate that these

do not contain entries corresponding to the small-flow pairs. Ãh
h can be formed by

deleting the columns corresponding to the small-flow OD pairs. sh can be computed

in the same way that ph is, since the DynaMIT supply simulator keeps track of all

simulated vehicles according to their OD pairs.
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The presence of the small-flow OD pairs causes several problems with the OD

estimation algorithm, which are also explored in the case studies. Firstly, it can be

argued that measurements for a single time interval (of, for example, 15 minutes)

cannot give useful information about small flows. In other words, such small flows

might not be observable. The problem is quite sensitive to inaccuracies in the supply

simulator and route choice model. If in the assignment matrix estimation phase of

DynaMIT it happens that while we expect 4 vehicles to be detected by a certain

sensor, only 1 actually is, the entry in the assignment matrix would be significantly

different. The estimate x̂h(j) = xH
h (j) would be more reasonable in this case.

It has been observed experimentally that negative OD flows are more likely to be

estimated when there are some small-flow OD pairs in the historical database. Since

we have to either set the negative flows to zero, causing the solution to be perhaps

suboptimal, or reestimate using a computationally intensive NNLS algorithm, this is

a serious nuisance. Taking the small-flow OD pairs out of the formulation would solve

these problems, and only involve some easy computations to determine sh.
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Chapter 4

Case Studies

To demonstrate the correctness and effectiveness of the OD estimation model pre-

sented above, a number of tests have been performed using three networks: The Flo-

rian network of figure 4-1, the Central Artery / Tunnel (CA/T) network in Boston,

Massachusetts, and the Irvine, California, ITS testbed. The networks present issues

of increasing complexity due to the number of OD pairs, available paths, and more

complicated traffic dynamics.

The objective of the experiments is to:

• Verify the accuracy of the basic GLS formulation with the simplification that

requires only the current time interval’s OD vector be estimated.

• Evaluate the performance of the Exact-Match estimator of section 3.3.1.

• Evaluate the loss of accuracy incurred when holding small flows fixed, and weigh

this against the benefit of reduced computation time.

• Determine the benefits of using OD flow proportions in the GLS estimator, and

weigh these benefits against the increase in computations required.
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Figure 4-1: The “Florian” network.

• Evaluate the need for introducing nonnegativity and / or capacity constraints,

and describe the situations in which violations of these constraints are likely to

occur.

Sensor counts were generated using MITSIMlab, a microscopic traffic simulator,

described in Yang and Koutsopoulos (1996), using the historical or synthetic OD flows

available. MITSIMlab can simulate traffic at a high level of detail. The network file,

which is the same format for DynaMIT and MITSIMlab, can represent individual

lanes, ramps and toll plazas. Different vehicle types can be simulated, including cars,

trucks and buses. Varying driver behavioral characteristics, such as speed preference

and lane-changing behavior, can be simulated.

As a general note, the accuracy of the OD estimation depends heavily on the ac-

curacy of the assignment matrix. The accuracy of the assignment matrix is influenced

by the route choice models used to assign vehicles to alternative paths and by the

supply simulator used to capture traffic dynamics.
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Figure 4-3: A view of the Central Artery.
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Figure 4-4: The Irvine, California, network. From the City of Irvine Annual Traffic
Management Report, 1999–2000.
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Figure 4-5: The Irvine network as coded in MITSIMlab.

DynaMIT’s supply simulator requires calibration using data from MITSIMlab. In

addition, for the output of DynaMIT to be comparable to MITSIMlab’s, the route

choice models in both should be comparable. As we will see below, the assignment

matrices generated by MITSIM and DynaMIT have differences. Therefore, while

we do compare the OD matrix used in MITSIM with the output of DynaMIT’s

OD estimation using DynaMIT’s assignment matrix, more meaningful results can be

observed when we take MITSIM’s assignment matrix as our estimate. This approach

is reasonable, since our objective in these case studies is to evaluate how well the

different approaches perform.
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In order to compare the results of the various approximations and algorithms

discussed in chapter 3,, we use the following statistics:

• Root mean square (RMS) error:

√∑
j [xh(j) − x̂h(j)]2

nOD

• Root mean square, normalized (RMSN) error:

√
nOD

∑
j [xh(j) − x̂h(j)]2∑

j xh(j)

4.1 Networks Considered

Synthetic data was generated for use in the Florian and CA/T networks, while some

survey OD data was available for use in the Irvine network.

Based on the OD profile generated, four scenarios are considered:

1. The “true” demand levels are independently perturbed by a random amount

uniformly distributed between 95% and 105% of the original demand.

2. The demand levels are perturbed to within 90% and 110% of the original de-

mand.

3. The demand levels are increased by 10%.

4. The demand levels are decreased by 10%.

The transition matrices are assumed here to be a scalar times the identity matrix.

For all cases, an autoregressive process of degree 2 is used, so that deviations from
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only the prior 2 time intervals are considered in the estimator. The transition matrices

are set to (1/3)I, an ad hoc choice. So we assume the transition equation is

xh = xH
h +

1

3
I(xh−2 − xH

h−2) +
1

3
I(xh−1 − xH

h−1)

The error covariance matrices are assumed to be diagonal weighting matrices, nomi-

nally identity matrices.

The Florian network has already been described. (See figure 4-1.) Nine OD pairs

are considered here, with nodes 1, 8 and 9 as the origins and nodes 4, 7 and 10 as the

destinations. The surveillance system consists of one sensor per link. The historical

tables used as inputs to the OD estimation are generated synthetically for five 15-

minute intervals from 7:00 A.M. until 8:15. The peak demand occurs at the third

interval (7:30–7:45). The second and fourth intervals have 90% of the peak demand,

and the first and fifth have 80% of the peak. The OD matrix for the 9 OD pairs and

the 5 time intervals is illustrated in table 4.1. Note that while OD pairs 1–3 have

only one path available, the other OD pairs have two paths apiece.

OD Pair 7:00 7:15 7:30 7:45 8:00

1 (1 → 4) 320 360 400 360 320
2 (1 → 7) 320 360 400 360 320
3 (1 → 10) 320 360 400 360 320
4 (8 → 4) 240 270 300 270 240
5 (8 → 7) 240 270 300 270 240
6 (8 → 10) 240 270 300 270 240
7 (9 → 4) 280 315 350 315 280
8 (9 → 7) 280 315 350 315 280
9 (9 → 10) 280 315 350 315 280

Table 4.1: Generated OD matrix for the Florian network.

The CA/T network consists of several major highways which go through Boston,
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including I-93 (the Central Artery), the Sumner, Callahan and Ted Williams tun-

nels, and the Massachusetts Turnpike (MassPike). This network connects downtown

Boston and Cambridge with Logan Airport and MA-1A (East Boston). Parts of this

network are currently under construction as Boston’s “Big Dig” project, which is ex-

pected to be completed by 2004. This network is shown in figure 4-2. This network

has 182 nodes and 211 links, and can be considered a network of medium complex-

ity. The surveillance system consists of 35 sensors. We consider five origins and two

destinations, for a total of 10 OD pairs.1 The origins, labeled A through E in figure

4-2, are located in East Boston, while the destinations, labeled F and G. Destination

F represents travelers going to the south and west, while destination G represents

travelers going to the north and west.

The 10 OD pairs are summarized as follows:

1. (A → F ) Logan Airport to the MassPike. Two paths are possible, one through

the Sumner Tunnel and the other through the Ted Williams Tunnel, which is

shorter.

2. (A → G) Logan to I-93 North. Two paths are possible: Sumner, which is

shorter, or Ted Williams.

3. (B → F ) Logan to the MassPike. Only one path is possible, since drivers enter

directly onto the Ted Williams.

4. (B → G) Logan to I-93 North. Only one path is possible, as above.

5. (C → F ) Route 1A (East Boston) to the MassPike. Two paths are possible,

and the Sumner Tunnel is slightly shorter.

1The demand profile considered here is the same as for previous tests of DynaMIT using the
CA/T network.
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6. (C → G) Route 1A to I-93 North. Two paths are possible, and the Sumner

Tunnel is about 44% shorter.

7. (D → F ) Similar to OD pair 5, but only the Sumner Tunnel path is available.

8. (D → G) Similar to OD pair 6, but only the Sumner Tunnel path is available.

9. (E → F ) Like OD pair 1, but only the Sumner Tunnel path is available.

10. (E → G) Like OD pair 2, but only the Sumner Tunnel path is available.

The historical tables used as inputs to the OD estimation are generated syntheti-

cally for five 15-minute intervals from 7:00 A.M. until 8:15. The peak demand occurs

at the third interval (7:30–7:45). The second and fourth intervals have 90% of the

peak demand, and the first and fifth have 80% of the peak. The OD matrix for the

10 OD pairs and the 5 time intervals can be seen in table 4.2.

OD Pair 7:00 7:15 7:30 7:45 8:00

1 (A → F ) 240 270 300 270 240
2 (A → G) 240 270 300 270 240
3 (B → F ) 120 135 150 135 120
4 (B → G) 120 135 150 135 120
5 (C → F ) 180 202.5 225 202.5 180
6 (C → G) 180 202.5 225 202.5 180
7 (D → F ) 60 67.5 75 67.5 60
8 (D → G) 60 67.5 75 67.5 60
9 (E → F ) 120 135 150 135 120

10 (E → G) 120 135 150 135 120

Table 4.2: Generated OD matrix for the CA/T network.

The Irvine network is part of the new ITS testbed in Irvine, California. The

network contains the major highways I-5, I-405 and CA-133, as well as all of the
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arterial roads, in a triangular area defined by I-5, I-405 and Jeffrey Road. (Please see

figure 4-4 for a map of the network.) The Irvine network is quite complex, with 296

nodes and 618 links. The surveillance system consists of 214 sensors which provide

information about 626 possible OD flows. The OD flows available were generated from

survey data by the California Department of Transportation. The flows available for

use span the period from 6:45 A.M. to 7:00, and are static over that period. The

complexity of the demand profile of the Irvine network can be seen in figure 4-6,

where each active OD pair is indicated by a line drawn from origin to destination.

Figure 4-6: Irvine OD schematic.
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4.2 Alternative Formulations and Algorithms

4.2.1 Basic LS Estimator

This section describes the performance of the basic OD estimation algorithm, with

the simplification described in section 3.3. This estimator uses the sensor counts and

deviations from historical flows as its objectives.

The results for the Florian network are shown in table 4.3. For the CA/T network,

the results are shown in table 4.4. For the time intervals in question, the errors are

given for the estimated OD flows, as well as for the historical flows.

For the second scenario, the errors in the historical flows will increase, as does

the estimation error. For the third scenario, in which the “real-life” OD flows have

been perturbed to be 10% higher than the historical, as expected, the errors in the

historical database will increase. The estimation error does not increase at all. (See

figure 4-7 which shows the historical, true and estimated OD flows for the first OD

pair, (1 → 4) of the Florian network.) The results for the fourth scenario are similar

to the third.

For comparison, if the supply simulator assignment matrix estimate is used in time

interval 1 of scenario 1 on the Florian network, the RMS error is 4.5470, indicating

that more calibration of the route choice models and supply simulator needs to take

place.

For the Irvine network, the basic estimator under scenario 3 achieves an RMS

error of 92.6938, and an RMSN error of 6.5218. Poor results using the Irvine network

can be attributed to the lack of a thorough calibration of the network. It was observed

using the MITSIMlab simulator that large queues develop at the network’s loaders,

with the result that many fewer vehicles than indicated by the historical demand

enter the network. This causes errors in the estimation of the assignment matrix and
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Time RMS Error RMSN Error
Scenario Int. Estimate Historical Estimate Historical

1 1 1.2906 2.2531 0.0185 0.0324
2 2.6496 2.6523 0.0345 0.0345
3 1.9178 1.8911 0.0219 0.0216
4 2.0841 2.8149 0.0352 0.0353
5 0.9569 2.1490 0.0138 0.0309

2 1 3.5420 4.7792 0.0510 0.0688
2 3.8889 4.6800 0.0490 0.0590
3 2.1085 3.3166 0.0245 0.0385
4 2.6963 4.5361 0.0351 0.0591
5 2.4310 4.1433 0.0352 0.0600

3 1 0.9219 7.0475 0.0120 0.0915
2 0.8055 7.9284 0.0084 0.0915
3 1.0414 8.8093 0.0108 0.0915
4 0.6936 7.9284 0.0080 0.0915
5 0.9172 7.0475 0.0119 0.0915

Table 4.3: Estimation performance in Florian network; basic estimator.

in the simulated vehicle counts.

We also perturb the assignment matrix in the case of scenario 3 of the Florian

network, to give an idea of how sensitive the estimation is to assignment matrix errors.

Each nonzero entry of the perturbed assignment matrix is randomly chosen from a

uniform distribution of the said percentage around the true assignment matrix. The

results for these experiments are contained in table 4.5. Only after the assignment

matrix has been perturbed by 30% does the estimation error exceed that of the error

in the historical OD vector. For scenario 1 the results are different, since there was less

leeway between the estimation and historical error to begin with, and the estimate is

worse than the historical by the time the assignment matrix is perturbed 15%.
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Figure 4-7: Flows for Florian network, OD pair (1 → 4).

4.2.2 Exact-Match Estimator

In this section we present results for the Exact-Match estimator of section 3.3.1. This

formulation decreases computational complexity by requiring that the sensor counts

be matched exactly, and then optimizing to reduce the deviations from the historical

database.

Note that a single estimation takes approximately 100 × 103 flops (floating point

operations) for the CA/T network. The exact-match formulation saves a lot on

computation time, taking only 5000 flops for an estimation in the CA/T network,
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Figure 4-8: Assignment matrix structure for Irvine network. Dark points indicate a
non-zero entry.

a savings of a factor of 20 in this case. The basic estimator on the Irvine network

requires 500 Mflops, where 1 Mflop is 1 million flops. If one concentrates on just

the size of the matrix inversion required, the exact-match formulation has a clear

advantage. Recall that the exact-match formulation is only usable if there are more

OD pairs than sensors. Matrix inversion is considered to be an O(n3) operation,

where n is the dimension of the matrix. The speed advantage for the exact-match

formulation is then (nOD+nl

nl
)3 to 1. So for a case such as the Irvine network, in which

there are 626 OD pairs and 214 sensors, the speedup is on the order of 60 times.

A result from the use of the exact-match formulation on the CA/T network is

shown in table 4.6. Although for the experiment shown the estimator performance

is quite good, this can be considered to be a fortuitous accident caused by judicious

selection of the sensors to be considered. In the case of the CA/T network, where there

are 35 sensors and only 10 OD pairs, the exact-match formulation is not applicable

unless sensor counts are ignored, which would never be done in a real situation. If

a different subset of the sensors is considered, the performance is worse, with the

estimate’s RMS error approaching twice that of the historical error in some cases.
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Time RMS Error RMSN Error
Scenario Int. Estimate Historical Estimate Historical

1 2 2.8360 4.8425 0.0198 0.0339
2 1 4.0189 9.3511 0.0475 0.0629

2 6.2502 10.2777 0.0390 0.0642
3 7.2354 15.6109 0.0402 0.0867
4 6.9550 10.9533 0.0435 0.0685
5 5.5205 11.8089 0.0380 0.0812

Table 4.4: Estimation performance in CA/T network; basic estimator.

The real benefit of using the exact-match formulation is seen using the Irvine net-

work, in which there are many more OD pairs than sensors. To deploy this algorithm

in the Irvine network, duplicate sensors must be removed from the measurement equa-

tion. A sensor is considered a duplicate sensor if its output is the same as another

sensor; or, more generally, if its output is equal to some linear combination of the

other sensors’ output.

4.2.3 OD Flow Proportions

Testing of an estimation algorithm using OD flow proportions shows promising results

on the Florian network. The first variation of the “proportion algorithm” is imple-

mented using only the sensor counts and proportions as targets in the estimator. In

the third scenario of demands increased by 10%, for the first time interval we have

an RMS error of only 0.1608. For the second time interval the RMS error for the

estimate is 0.2556. These results are better than the standard estimator using the

deviations as a target, but mostly because the proportions are in fact fixed through

each time interval. When the same algorithm is run on the first scenario, in which
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Scenario Amount RMS Error RMSN Error

1 0 1.2906 0.0185
1% 1.3417 0.0193
5% 1.5807 0.0227

10% 1.9888 0.0286
15% 2.8052 0.0403

3 0 0.9219 0.0120
1% 0.9301 0.0121
5% 1.2992 0.0169

10% 2.7704 0.0360
20% 2.9061 0.0377
30% 7.9885 0.1037

Table 4.5: Estimation performance with perturbed assignment matrix.

Time RMS Error RMSN Error
Scenario Int. Estimate Historical Estimate Historical

2 1 2.1727 9.3511 0.0146 0.0629

Table 4.6: Estimation performance in CA/T network; exact-match formulation.

the flow proportions vary, the RMS error jumps to 14.2852.

The second variation of the proportion algorithm uses three targets: sensor counts,

deviations from historical flows, and flow proportions. In this case, for the first

scenario, the RMS error drops to 9.0282. These results do not look promising in

these cases because in this scenario, the historical flows are quite close to the actual

flows. If the historical flows were not as reliable, but the historical proportions were

reliable, such as in the case of the third scenario, this algorithm would be preferred.

The issue of computational efficiency is important when considering this algo-
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rithm. If we consider the historical flow proportions to be very reliable but the

historical flows to be not reliable at all, the first variation of the algorithm could

be used, which involves the inversion of a matrix of dimension nOD + nprop, where

nprop is the number of terms in the proportions target vector. nprop in itself could be

much larger than nOD, as described before, depending on which of the three types of

objectives is used. The second variant requires the inversion of a matrix of dimension

nOD + nl + nprop which is even larger. In the case of the Florian network, we have 9

OD pairs, 10 sensors, and 9 terms in the proportions target vector,2 requiring us to

invert a matrix of dimension 28 for the proportion algorithm as opposed to dimension

19 for the standard algorithm, roughly tripling the computation required.

In conclusion, adding OD flow proportions to the estimator can be useful if there

is a source of historical calibrated flow proportions. The covariance matrix used in

the estimator will be calibrated to indicate the relative confidence in the OD propor-

tions or OD flows themselves. The gain in accuracy realized by the incorporation of

additional information in the estimator must be weighed against the computational

cost.

4.2.4 Constrained Estimation

The basic estimator for the Irvine network invariably produces an estimate with

some negative flows. We have already seen the accuracy of the basic estimator.

Using the NNLS algorithm requires a vastly larger number of computations, on the

order of 185 Gflops, almost three orders of magnitude more than the basic algorithm.

This involves many iterations of partitioning the variables and re-estimating. Each

2For the first two variations of the proportions objective discussed in section 3.4.1, 9 terms are
added in the proportions target: 9 OD pairs, or 3 × (

3
2

)
= 9 pairs of flows. If the third variation

were to be used,
(
3
2

)
= 3 terms would be added.
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re-estimation requires another 500 Mflops, so for this example approximately 370

iterations were performed. The estimate produced has an RMS error of 90.3326,

which is only marginally better than the ad hoc version.

It appears from these results that ad hoc methods for ensuring constraints are

not violated are preferred to the constrained algorithms. The constrained algorithms

produce estimates which are only slightly more accurate than the ad hoc algorithm,

while experiencing a severe penalty in computation speed.

4.2.5 Large-Flow Estimator

In the case studies considered here, holding small flows fixed is only applicable to the

case of the Irvine network. (The Florian and CA/T networks do not have enough OD

pairs to warrant the loss in accuracy that would result.) One task is to determine

the threshold of what is considered a small flow. Of the 626 OD pairs in the Irvine

network, 350 have flows which are less than 10 vehicles per hour. 456 have flows

which are less than 20 vehicles per hour. Using the 10 vehicles per hour cutoff, the

estimate has an RMS error of 92.6938 and an RMSN error of 6.5218. This error is

better than that of the standard estimator, and the large-flow estimator requires only

64 Mflops, a speedup of a factor of almost 8. These results are summarized in table

4.7.

One caveat about these results: while it appears that the error decreases as we

remove more and more variables from the estimator, this is only because we are

approaching an estimator which uses only deviations from historical flows as its ob-

jective. The RMS error for using the historical database as the estimate is 8.5909.

So, the higher the threshold is raised, the closer the estimation error will get to this

value. As the representation of the Irvine network is stabilized, and a full calibration

is performed, it will be possible to make better judgments as to which algorithms to
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Number of Approx.
Cutoff Small Flows RMS Error RMSN Error Speedup

0 0 92.6938 6.5218 1
10 250 90.3044 6.0865 8
20 456 90.4478 6.0962 24
30 494 88.1943 5.9443 42

Table 4.7: Performance of large-flow estimator on Irvine network.

deploy under what circumstances.
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Chapter 5

Summary and Conclusions

This chapter summarizes the main conclusions of this thesis and proposes areas for

further research.

The objective of this research was to evaluate alternative formulations and algo-

rithms for real-time OD estimation. Building on the basic OD estimation algorithm

and the associated theory, we have:

• developed algorithms to take advantage of additional measurement data and

historical databases that might be available

• proposed algorithms with an eye to computational efficiency

• proposed algorithms with nonnegativity and capacity constraints

The various algorithms have been tested on three networks: a simple toy network,

Boston’s CA/T network, and the ATMS testbed of Irvine, California. The algorithms

have been implemented as a component of DynaMIT, the traffic prediction software

under development at MIT’s ITS laboratory.

We can make some judgments as to which algorithms to deploy under which

circumstances. Any algorithm that is tested should be compared to the basic LS
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estimator as a base case. In a large, complicated network such as the Irvine network,

one or more of the following two possibilities can be implemented: the alternate

formulation or holding the small OD flows fixed. In a smaller network, such as the

CA/T network, the loss of estimator accuracy is not worth the increase in computation

time. As for the constrained algorithms, although their use would be called for in a

more complicated network such as Irvine, for which the basic estimate has a higher

incidence of negative flows and flows which exceed the capacity constraints, the loss

of computational efficiency is too severe. Instead, the ad hoc method of setting the

negative flows to zero (or appropriately adjusting the flows downwards) should be

used. In a less-complex network, a constrained algorithm would be appropriate.

5.1 Research Directions

There are many areas which should be explored in order to develop a more robust

OD estimation model. Several of them will be outlined in this section.

Estimation of Assignment Matrix

Currently the assignment matrix is estimated through an iterative process with OD

estimation. However, the estimation of the assignment matrix as it is currently imple-

mented in DynaMIT is quite error-prone. Further research is necessary into real-time

estimation methods for the assignment matrix, expanding upon Ashok and Ben-Akiva

(2001). In addition, it would be useful to determine under what conditions the it-

erative process described in section 3.1.3 converges, and to determine an optimal

weighting or covariance matrix for the errors in the iterative process.
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Placement of Sensors

The discussion in this thesis has assumed that DynaMIT is to be applied to a network

where the number of sensors and their locations are fixed. Certainly if there are more

OD pairs than sensors, and even possibly if there are more sensors, the estimation

performance is at the mercy of the historical database. If the historical database is

unreliable, then the estimates will automatically be poor. Also, if it would be desired

to use the alternative formulation of matching the counts exactly, it is necessary to

remove duplicate sensors or sensors whose counts are multiples of another’s from

the estimator. With suggestions from the DTA implementer, this pitfall could be

avoided. It is important in a planning context when deciding where to install sensors,

and how many to install, that the performance of a DTA be taken into account. An

important area of research would be to determine the optimum placement of sensors

which makes the OD estimation perform the best.

Calibration

While the theoretical model developed in this thesis is sound, much work needs to

be done to be able to deploy an accurate version of DynaMIT at a TMC. A compre-

hensive model for calibrating the DynaMIT input parameters is given in Balakrishna

(2001). That study covers all of the important DynaMIT models including route

choice parameters, measurement error covariances, transition matrices, and modeling

stochasticity in the assignment matrices. In addition, it is necessary to have a good

calibration of the supply simulator’s speed/density and queuing models.
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Appendix A

Kalman Filter Derivation

We derive the Kalman filter solution to the state-space estimation problem1 of equa-

tions 2.4 and 2.5, summarized here:

yh = Ahxh + vh

xh+1 = Φhxh + uh + wh

where:

• yh is the measured data,

• xh is the state of the system,

• vh and wh are vectors of random errors,

• uh is a deterministic input vector,

• Ah, the observation matrix, maps the system state to the measured data, and

1This derivation is based on Willsky et al (1999).
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• Φh is the transition matrix, which encapsulates the dynamic behavior of the

system.

We assume, for ease of derivation, that vh and wh are independent from time interval

to time interval, so that E(vmv′
n) = 0 for m 6= n. Individual vectors vh and wh

assumed to be zero-mean Gaussian with the measurement noise vh ∼ N (0, Ch), and

wh ∼ N (0, Qh). The initial state x0 is assumed to be of a Gaussian distribution (for

simplicity), with mean µ0 and covariance Λ0|0 = C0.

We would like to estimate the state of the system xh|h = E(xh|y0, y1, . . . , yh),

the expected state of the system given all of the measurement data. In order to

avoid storing all of the previous measurements, we desire a recursive estimator which

combines a one-step prediction of the current state of the system with an estimate

based on the current measurement data.

As before, we let r̂n|k denote the linear LS estimate of rn based on all measurements

through time period k. The cross-covariance function for a pair of vector processes q

and r is indicated by

Kqr[n, k] = cov (qn, rk)

which, for zero-mean processes (such as the error processes here) have

Kqr[n, k] = E(qnr′k).

So for the noise processes v and w we have

Kvv[n, k] = Cnδ[n − k]

Kww[n, k] = Qnδ[n − k]

Kvw[n, k] = Kwv[n, k] = 0

where

δ[n − k] =




0 n 6= k

1 n = k
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We let Λn|k denote the covariance of the error

en|k = xn − x̂n|k

based on measurements through time period k, so that

Λn|k = E
(
en|ke′n|k

)
.

One important result from estimation theory is the orthogonality principle:

Theorem 1 (Orthogonality) A linear estimator x̂L(·) is the linear least-squares

estimator if and only if the associated estimation error e(x, y) = x̂L(y)− x is orthog-

onal to any vector-valued linear function of the data; that is

E [(x̂L(y) − x)(Fy + g)′] = 0

for any constant matrix F and any constant vector g.

From this theorem we have that the filtered estimates x̂n|n satisfy

E
[
(x̂n|n − xn) y′

k

]
= 0

for all k ≤ n and the predictions also satisfy

E
[
(x̂n|n−1 − xn) y′

k

]
= 0

We define the innovation

zn = yn − ŷn|n−1

as the part of the current measurement that is uncorrelated with the previous mea-

surement samples.2 The innovations process is white, (each innovation is uncorrelated

2This notion of an “estimate” of the next measurement is used to express the idea that measure-
ments are correlated from time interval to time interval. Then, there is a part of the measurement
that we can predict from the previous data, indicated by ŷn|n−1 and a part, the innovation, (zn)
that is uncorrelated with the previous data, and that we cannot predict.
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with the previous ones) so that

Kzz[n, k] = Λzδ[n − k].

Willsky et al (1999) demonstrate that the estimate x̂n|n based on the observations

of the innovations, can be written as the output of a linear filter, or

x̂n|n =
n∑

k=0

h[n, k]zk.

This results in the Wiener-Hopf equation, which states that the cross-covariance of

the estimate and innovations must satisfy

Kxz[n, k] =
n∑

s=0

h[n, s]Kzz[s, k]

Rearranging this equation using techniques of Fourier analysis gives what is known

as the Wiener filter for the estimate x̂n|n. Realizing that the deterministic input

sequence u also contributes to the estimate, we can write

x̂n|n =
n∑

k=0

Kxz[n, k]K−1
zz [k, k](zk − uk)

= x̂n|n−1 + Kn(zn − un) (A.1)

where

Kn = Kxz[n, n]K−1
zz [n, n] (A.2)

This is the form of the “corrected” estimator, which is the sum of the “predicted”

estimate x̂n|n−1 with a correction term based on the new measurements.

Also, the predicted estimate, before the new measurement data is received, can

be written

x̂n|n−1 = un−1 +
n−1∑
k=0

Kxz[n, k]K−1
zz [k, k]zk
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The filtered error covariance can be written

Λn|n = Λx,n|n −
n∑

k=0

Kxz[n, k]K−1
zz [k, k]K ′

xz[n, k]

= Λe,n|n−1 − KnK ′
xz[n, n] (A.3)

since

Λn|n−1 = Λx,n −
n−1∑
k=0

Kxz[n, k]K−1
zz [k, k]K ′

xz[n, k]

The transition equation gives us the estimate

x̂n+1|n = Φnx̂n|n + un. (A.4)

Then the error for this estimate is

en+1|n = xn+1 − x̂n+1|n

= (Φnxn + wn + un) − (Φnx̂n|n + un)

= Φn(xn − x̂n|n) + wn

= Φnen|n + wn,

a nice simplification, since the error follows the same dynamic process (with the

absence of the deterministic input un) that the state does. So then

Λn+1|n = E[en+1|ne′n+1|n]

= ΦnE[en|ne′n|n]Φ
′
n + E[Φnen|nw′

n] + E[wne′n|nΦ
′
n] + E[wnw′

n]

= ΦnΛn|nΦ′
n + Qn (A.5)

since the state estimation error is uncorrelated with the noise process, and so the

cross terms drop out.

Using the measurement equation, and the fact that the measurement noise process

is uncorrelated with the prior measurements, we have

ŷn|n−1 = Anx̂n|n−1.
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Using the definition of the innovation from above, we have

zn = yn − Anx̂n|n−1 (A.6)

= yn − An(xn − en|n−1)

= Anen|n−1 + vn

since yn = Anxn + vn. We can use this expression for the innovation to derive that

cross-covariances

Kxz[n, n] = E[xnz′n]

= E[xne′n|n−1]A
′
n + E[xnvn]

= E[(x̂n|n−1 + en|n−1)e
′
n|n−1]A

′
n + 0

= Λn|n−1A
′
n (A.7)

by the orthogonality principle. Also,

Kzz[n, n] = E[znz′n]

= AnE[en|n−1e
′
n|n−1]A

′
n + cross terms + E[vnv′

n]

= AnΛn|n−1A
′
n + Cn

and so the Kalman gain matrix as defined above in equation A.2 becomes

Kn = Λn|n−1A
′
n

(
AnΛn|n−1A

′
n + Cn

)−1
(A.8)

Using the above derivation we can produce the Kalman filter algorithm. The “pre-

dicted” estimate, based solely on the prior state and measurements, can be written

using equation A.4, and its associated covariance using equation A.5. The Kalman

gain matrix was given just above. The “corrected” estimate, based on the new mea-

surements as well as the prior state and measurements, can be written from equation
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A.1 and the definition of the innovation, and its associated covariance is found in

equation A.3 using equation A.7. In summary, for each iteration of the filter, we have

the following four steps:

1. Generate the next estimate and its associated error covariance. These are the

predictor equations, using information only from the state transition equation.

x̂h|h−1 = Φh−1x̂h−1|h−1 + uh−1

Λh|h−1 = Φh−1Λh−1|h−1Φ
′
h−1 + Qh−1

2. Compute the Kalman gain matrix:

Kh = Λh|h−1A
′
h(AhΛh|h−1A

′
h + Ch)

−1

3. Generate the filtered estimate and its associated error covariance. These are the

corrector equations, using information only from the measurement equation.

x̂h|h = x̂h|h−1 + Kh(yh − uh − Ahx̂h|h−1)

Λh|h = Λh|h−1 − KhAhΛh|h−1

4. Increment h and go back to step 1.
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Appendix B

Constrained Least Squares Algorithms

B.1 Nonnegative Least Squares

The following is the nonnegative least squares algorithm as presented by Lawson and

Hanson (1974) to solve the problem

min ||Ax − y|| subject to x ≥ 0

with A ∈ Rm×n and y ∈ Rm. P is the index set of variables of the estimate x ∈ Rn

which are positive, and Z is the index set of variables which are set to 0.

The algorithm consists of the following steps:

1 Set P = ∅, Z = {1, 2, . . . , n}, and x = 0.

2 Compute the dual vector w = A′(y − Ax).

3 If the set Z is empty or if w(j) ≤ 0 for all j ∈ Z, go to step 13.

4 Find the index t ∈ Z such that w(t) = maxj∈Z w(j).

5 Move the index t from set Z to set P.

6 Let AP be the m × n matrix which is the same as A except that the

columns of AP which are indexed in Z are set to columns of zeros.
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7 Compute z as a solution of the LS problem APz ≈ y. Let z(j) = 0 for

j ∈ Z.

8 If z(j) > 0 for all j ∈ P, set x = z and go to step 2.

9 Find an index q ∈ P such that x(q)/(x(q) − z(q)) is minimized, with

z(q) ≤ 0.

10 Set α = x(q)/(x(q) − z(q)).

11 Set x = x + α(z − x).

12 Move from set P to set Z all indices j for which x(j) = 0. Go to step

6.

13 The computation in complete. x is the solution.

B.2 Least Distance Programming for the LSI Problem

Lawson and Hanson also give an algorithm for solving the LDP problem

min ||z|| subject to Cx ≥ b

The algorithm can detect when the inequality constraints are inconsistent; that is,

when there is no solution space. The algorithm proceeds as follows:

1 Define the (n+1)×m matrix E = [C b]′ and the vector f = [0 . . . 01]′

of length n + 1.

2 Use the NNLS algorithm to compute a vector û ∈ Rm to solve

min ||Eu − f || subject to u ≥ 0.

3 Compute r = Eû − f .

4 If ||r|| = 0 then the constraints are inconsistent, and the computation

terminates.

5 Compute the optimal solution x̂ with x̂(j) = −r(j)/r(n + 1).
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