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Abstract 
 

Ramp meters are special traffic signals at the end of a freeway on-ramp that regulate the 
flow of traffic onto the mainline.  The main purpose of ramp meters is to keep the 
mainline of the freeway from becoming overly congested, and to maximize the efficient 
use of freeway capacity.  The first use of ramp metering was in Chicago, in 1963, and 
today ramp meters are becoming more popular in both the US and in Europe. 
 
Although the original ramp metering controllers used pre-timed ramp meters, nearly all 
modern ramp metering algorithms are traffic responsive.  Traffic responsive ramp meters 
can be divided into two categories: local or coordinated.  Local ramp metering algorithms 
only take into account traffic conditions near a single ramp, while coordinated algorithms 
try to optimize traffic over an area.  Four algorithms are evaluated in this thesis.  
ALINEA is a local ramp metering algorithm.  ALINEA / Q is a local algorithm based on 
ALINEA, but handles ramp queues in a more efficient manner.  FLOW is a coordinated 
algorithm that tries to keep the traffic at a predefined bottleneck below capacity.  The 
Linked Algorithm is a coordinated algorithm that seeks to optimize a linear-quadratic 
objective function. 
 
Each of these four algorithms was tested on the M27 Motorway near Southampton, UK.  
Because none of the algorithms showed any significant benefits, different scenarios were 
tested, both on the M27 network, and on a generic network.  The effect of four variables 
was studied: total demand, ramp spacing, proportion of traffic using ramps, and traffic 
distribution among ramps.  A regression analysis was performed on each algorithm to 
determine the sensitivity to each variable.  The most significant result was that ramp 
metering, especially the coordinated algorithms, was only effective when the ramps are 
spaced closely together.  It was also observed that ramp metering was only effective at 
relatively high demand levels, and that ALINEA / Q and the coordinated algorithms were 
more effective than regular ALINEA when the volume was extremely high. 
 
Thesis Supervisor: Moshe E. Ben-Akiva 
 Edmund K. Turner Professor of Civil and Environmental Engineering 
 
Thesis Supervisor: Tomer Toledo 
 Research Associate, Center for Transportation Studies
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Chapter 1 
 

Introduction 

Ramp metering is one of the most frequently used methods of freeway control intended to 

reduce congestion.  Ramp meters are special traffic signals on a freeway on-ramp that 

allow one vehicle or a platoon of vehicles to enter the freeway.  The first use of ramp 

control was on the Eisenhower Expressway (I-290) in Chicago, Illinois, in 1963, where a 

police officer directed the traffic to allow one vehicle to enter at a time, at a 

predetermined rate.  Today, ramp metering has evolved and expanded, and is used 

throughout the US, with notable applications in Minnesota, California, New York, and 

Washington state.  Ramp metering is also becoming popular in Europe, with applications 

including Amsterdam, Paris, and Glasgow. 

 

1.1 Freeway Congestion 

When traffic on surface streets became too congested, freeways were constructed, in an 

effort to relieve the congestion.  Freeways were intended to allow long distance travel 

between cities at high speed without interference of local traffic.  However, in the later 

half of the 20th century, as Americans became increasingly dependent on automobiles, 

and as commuters moved to the suburbs, freeways began mixing intercity travel with 

commuter traffic.  The freeways then became very congested, and the problems that 

existed on the surface streets not exist on the freeways too. 
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In order to understand what causes freeway congestion, it is important to understand the 

theory of traffic flow.  The following traffic flow parameters are defined: 

• Flow (q) = Number of vehicles passing a certain point during a given time period.  

Given as vehicles per hour (veh / hr) 

• Speed (s) = The rate at which vehicles travel (mph) 

• Density (k) = Number of vehicles occupying a certain space.  Given as veh / mi.  

k = q / s 

 

The fundamental diagram relates flow and density.  Although the exact shape of the 

curve can vary based on the situation, the typical form of the fundamental diagram is 

shown in figure 1.1: 

 

Figure 1.1: Fundamental Diagram of Traffic Flow 

 

When the density reaches a certain point, the critical density (kc), the freeway reaches its 

maximum flow (qmax).  When the density increases beyond the critical density, the flow 
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actually decreases, until the density reaches the jam density (kjam), where the flow 

becomes zero, and all traffic is stopped.  When the density is below the critical density, 

the flow is said to be stable, or uncongested.  When the density exceeds the critical 

density, the flow is said to be congested, or unstable, and the freeway capacity decreases.  

Because more vehicles are processed when the flow is stable, it is best for the density to 

be as close as possible but below to the critical value so the freeway can operate at its full 

capacity.  Ramp metering regulates the flow so that the density remains below the critical 

value, and the full capacity can be used. 

 

1.2 Application of Ramp Metering 

In the past, when roads became congested, either the existing roads were widened, or new 

roads were built to handle the demand.  Unfortunately, road building is expensive, 

usually requires expensive and disruptive property taking and construction, and can cause 

negative environmental impacts.  Also, the new roads often become just as congested as 

the old road.  Because of these reasons, highway building and improvements are often 

opposed, and can be politically, economically, and environmentally unfeasible.  

Fortunately, there are other methods available to manage congestion. 

 

Intelligent transportation systems, or ITS, can be defined as “A joint public-private 

venture involving the use of integrated communications and electronic technologies in 

mitigating surface transportation related problems” (Hunter, 2000).  ITS involves 

managing existing facilities more effectively, rather than building new facilities.  Ramp 

metering is an example of ITS. 



 13

 

1.2.1 Ramp Metering Advantages 

Ramp metering has many potential advantages (Roess et al, 1998): 

• Improvement of freeway mainline flow, due to access control and traffic diverting 

to other, less congested roads (such as parallel frontage roads) 

• Metering smoothes out the traffic flow and breaks up platoons, allowing more 

efficient merging 

• Reduction of accidents, fuel consumption, emissions, and vehicle operating costs 

• Network routings may be altered to achieve greater balance and efficiency 

1.2.2 Ramp Metering Disadvantages 

The main disadvantage to ramp metering is that it can lead to long queues on the ramps, 

and lead to delays for on-ramp traffic.  However, once the vehicles enter the freeway, 

their speed and travel time should be improved.  Another disadvantage is that network 

rerouting can possibly have negative effects on alternate routes.  If no method of 

controlling ramp queues is used, then ramp traffic can back up onto surface streets.  Also, 

although ramp meters make it difficult to accelerate to high speed on the ramp, this is 

rarely a problem, since ramp meters should only be used when congestion exists and the 

highway speed is fairly low. 

 

1.2.3 Types of Ramp Metering Algorithms 

The first ramp metering systems used pre-timed controllers.  These controllers would 

choose a metering rate based on the time of day, and would be based on historical data.  

Because these controllers do not use real-time data, they are unable to respond to changes 
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in traffic patterns.  If demand at a particular time is unusually high or low, or if an 

incident occurs, the metering rate may be ineffective. 

 

Because of this limitation of pre-timed ramp meters, virtually all modern ramp metering 

systems are traffic responsive.  Traffic responsive ramp metering algorithms can fit in 

one of two categories: 

• Local or Isolated control: Local ramp metering control takes into account traffic 

measurements only near a single ramp, and controls only a single ramp.  The 

metering rate at one ramp does not take into account metering rates at other 

ramps. 

• Area-wide or Coordinated control: Area-wide algorithms take traffic 

measurements and control several ramp meters as a system in order to optimize 

traffic over an area, rather than just at a single ramp. 

 

Traffic responsive ramp metering controllers require real-time traffic surveillance.  A 

variety of devices are available for traffic surveillance, although magnetic loop detectors 

are by far the most common.  Loop detectors typically measure traffic flow, speed, and 

occupancy.  Occupancy refers to the proportion of the time that a vehicle is located on the 

sensor, and is used as a measure of traffic density. 

 

1.3 Objective 

The purpose of this thesis is to compare various local and area-wide ramp metering 

strategies, and to determine under what situations ramp metering, and coordination are 
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useful.  Four strategies will be evaluated: a local strategy known as ALINEA 

(Papageorgiou et al, 1991); an enhanced version of ALINEA that more effectively 

controls ramp queues, known as ALINEA/Q (Smaragdis and Papageorgiou, 2003); a 

bottleneck based area-wide algorithm known as FLOW (Jacobson et al, 1989), and an 

area-wide algorithm based on proportional-integral plus, linear quadratic (PIP-LQ) 

optimal controllers (Taylor et al, 1998).  These algorithms were chosen because they are 

representative of various classes of ramp metering algorithms that are in use today, as 

discussed in the literature review.  This thesis will be concerned with measuring the 

effects of demand level, traffic patterns, and ramp spacing on both the corridor travel 

time and the total travel time for all vehicles.  Because field testing is not feasible for this 

project, a microscopic traffic simulator known as MITSIMLab will be used for the study. 

 

 

1.4 Organization of Thesis 

This thesis is organized into six chapters.  Chapter 2 is a literature review, describing 

existing ramp metering algorithms and prior field studies and simulation studies.  Chapter 

3 describes the MITSIMLab simulation laboratory, as well as the case study being used, 

and the MITSIMLab enhancements necessary for the project, and a method of calibration 

and validation.  Chapter 4 shows the results and conclusions from the M27 network in the 

UK, used as the case study for this project.  Chapter 5 shows the design and results from 

study using a generic freeway network.  Finally, Chapter 6 presents conclusions, as well 

as ideas for future work in the area of ramp metering. 
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Chapter 2 
 
Literature Review 

Ramp metering is a very effective method of freeway traffic control, which uses a traffic 

signal on an on-ramp, to regulate the flow of traffic.  Ramp metering was first used in the 

1960s.  The original ramp meters were pre-timed, and were not sensitive to real-time 

traffic conditions.  These controllers would choose a program based on the time of day, 

with cycle lengths based entirely on historical traffic volumes (Blosseville, 1985).  

Today, however, nearly all ramp meter controllers are based on real-time traffic 

surveillance. 

 

2.1 Local Ramp Metering Algorithms 

Ramp metering controllers can be divided into two broad categories: local or isolated, 

and area-wide or coordinated.  Local ramp meters take into effect only the traffic 

conditions at a single ramp, whereas coordinated ramp meters take into account traffic 

conditions over an area. 

 

2.1.2 Demand-Capacity 

One traffic responsive local ramp metering algorithm is known as demand-capacity 

(Masher et al., 1975, Koble et al., 1980).  This works by measuring the downstream 

occupancy (Oout), and if it is above the critical occupancy (Ocr), congestion is assumed to 

exist, and the metering rate is set to the minimum rate (rmin).  Otherwise, the volume is 



 17

measured upstream of the merge (qin), and the metering rate is set to the difference 

between the downstream capacity (qcap) and the upstream volume.  The equation used is: 











 ≤−

= otherwiser

OOifrqqMax
r

croutincap

min

min ),(
      (2.1) 

 

2.1.3 Percent-Occupancy 

A second example of a local ramp metering algorithm is the percent-occupancy strategy 

(Masher et al., 1975, Koble et al., 1980).  The advantage to this strategy is that it does not 

require calculation of freeway capacity, and thus has potentially lower implementation 

cost.  This strategy uses only upstream sensor occupancy measurements, and uses the 

occupancy as the sole means to identify and measure congestion.  The critical occupancy 

is measured using historical data (Hadj Salem et al., 1988).  This algorithm involves 2 

constants: K1 is the capacity flow, and K2 is a constant based on slope of a straight line 

approximation of the uncongested part of the fundamental diagram.  The metering rate is 

determined by: 

)1()( 21 −−= koKKkr in         (2.2) 

 

2.1.4 ALINEA 

Both demand-capacity and percent-occupancy are examples of open loop, or feedforward 

control.  These strategies do not use the system output as input for the next iteration.  In 

contrast, closed loop, or feedback control, the control input is based on the system output.  

Generally, closed loop systems are more robust than open loop systems. 
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The most widely used closed-loop local ramp metering algorithm is known as ALINEA 

(Papageorgiou et al, 1991).  ALINEA is based on the linear quadratic (LQ) feedback law.  

A fairly simple equation is used to calculate the metering rate: 

)]1([)1()( −−+−= kOOKkrkr outR        (2.3) 

 

Note that the metering rate, r(k) is a function of the metering rate for the previous 

iteration, r(k-1), therefore ALINEA is a closed loop algorithm.  The metering rate is also 

a function of the difference between the measured occupancy (Oout) and a target set point 

occupancy (O).  KR  is a regulator parameter.  ALINEA is one of the most commonly 

used and one of the most effective algorithms, and will be described in greater detail in 

Section 2.5.1. 

 

2.1.5 Recent work on local closed loop strategies 

Recently, there has been research to enhance the ALINEA algorithm.  Oh and Sisiopiku 

(2001) proposed a modified version, known as MALINEA.  MALINEA addresses two 

main disadvantages to ALINEA.  The first is that although ALINEA optimizes the 

occupancy downstream of the entrance ramp, congestion can still occur upstream of the 

ramp.  The second is that the optimal detector location can be difficult to determine.  

MALINEA measures the upstream occupancy, Ou, and accepts as parameters a regulator 

parameter K, the slope of the curve relating the downstream and upstream occupancies 

(A), and the time lag between the upstream and downstream measurements (n).  The 

equation that MALINEA uses is: 

)(/)]()1([)1( ntQAKtOntOtQ r
uu

r −+−++=+      (2.4) 



 19

Smaragdis and Papageorgiou (2003) expanded the applications of ALINEA-based 

algorithms.  The traditional ALINEA algorithm requires occupancy measurements on 

downstream detectors, which are unfortunately not always available.  FL-ALINEA is an 

algorithm that uses flow measurements from downstream detectors, rather than 

occupancy measurements.  Its formula is identical to the formula used for traditional 

occupancy-based ALINEA, except that it measures flow, and tries to reach a set point 

flow rather than a set point occupancy.  However, when the occupancy is over the critical 

occupancy, the metering rate is set to the minimum rate, since the freeway is already over 

capacity. 











 ≤−−+−

=
otherwiser

OOifkqqKkr
kr croutoutF
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^

)]1([)1(
)(      (2.5) 

 

  UP-ALINEA uses occupancy measurements, but from upstream detectors, and estimates 

the downstream occupancy.  This is useful in cases where a feedfoward algorithm (such 

as demand-capacity or percent-occupancy) was previously used.  This algorithm uses the 

following equation to estimate the downstream occupancy, outO
~

 using the upstream 

occupancy, and incorporating the effects of the ramp traffic: 

ouy

in

in

ramp
inout

kq

kq
kOkO

λ
λ









+=

)(

)(
1)()(

~

       (2.6) 

where ëin is the number of lanes upstream of the ramp, and ëin is the number of lanes 

downstream of the ramp. 
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The algorithm is then identical traditional ALINEA in all other ways, using the estimated 

downstream occupancy from equation 2.6: 

)]1([)1()(
~^

−−+−= kOOKkrkr outR        (2.7) 

 

UF-ALINEA is a variation based on upstream flow measurements.  This algorithm 

simply uses the sum of the upstream flow and the ramp flow to estimate the downstream 

flow: 

rampinout qqkq +=)(
~

         (2.8) 

 

The equation used for the algorithm is then virtually identical to the equation used for 

FL-ALINEA, equation 2.5. 
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X-ALINEA/Q is where any of the modified ALINEA algorithms are used with queue 

control.  All of these algorithms, except for X-ALINEA/Q are less efficient than the 

traditional ALINEA algorithm, but are useful when downstream occupancy 

measurements are not available.  X-ALINEA/Q will be described in greater detail in 

Section 2.5.3. 
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2.2 Area-wide Ramp Metering Algorithms 

Although the ALINEA local ramp metering algorithm is widely used, the current trend is 

toward area-wide, or coordinated algorithms.  Area-wide algorithms are designed to 

optimize traffic flow over a section of the freeway rather than just a single ramp, in order 

to achieve greater efficiency.  Area-wide algorithms can be further divided into three 

classes: incremental or cooperative algorithms; bottleneck or competitive algorithms; and 

integral algorithms (Kwon et al, 2001; Zhang et al, 2001). 

 

2.2.1 Incremental algorithms 

Cooperative, or incremental algorithms work similarly to local algorithms.  However, 

when a ramp is metered very restrictively, the upstream ramps are also metered more 

restrictively, in order to increase efficiency, and to avoid congesting a single ramp.  A 

cooperative algorithm is used in Denver, Colorado (Lipp et al, 1991). 

 

2.2.2 Bottleneck Algorithms 

Bottleneck, or competitive algorithms calculate both a local metering rate and a 

bottleneck metering rate.  The bottleneck metering rate is calculated to keep the flow of 

traffic at a defined bottleneck below capacity.  For each ramp, the more restrictive of the 

two rates is chosen.  A well known and widely used competitive algorithm is known as 

FLOW, and was formerly used in Seattle, Washington (Jacobson et al, 1989).  FLOW 

will be described in greater detail in Section 2.5.4. 
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Another example of a competitive algorithm is System Wide Adaptive Ramp Metering, 

or SWARM, used in Irvine, California (Paesani et al, 1997).  Unlike FLOW, SWARM 

uses predicted volumes, rather than just measured traffic conditions to locate bottlenecks.  

Empirical results comparing FLOW versus SWARM are inconclusive, and indicate that 

the performance of SWARM is very sensitive to the accuracy of the predictions (Zhang et 

al, 2001). 

 

2.2.3 Integral Algorithms 

The third class of coordinated ramp metering algorithms is integral algorithms.  Integral 

algorithms have a well-defined objective function to optimize.  According to Zhang et al 

(2001), these algorithms are the most theoretically sound and potentially the most robust, 

however, they are also the most complex to calibrate and operate. 

 

2.2.3.1 METALINE 
 
Papageorgiou et al (1990) extended the ALINEA algorithm into an integral coordinated 

algorithm known as METALINE.  METALINE was used in Paris, France.  The equation 

for METALINE is basically a vectorization of the ALINEA equation, which uses vectors 

of occupancy, and 2 control gain matrices to return a vector of metering rates.  The 

equation is basically a vectorization of the ALINEA equation: 

))(())1()(()1()( cr21 OOKOOKrr −−−−−−= kkkkk     (2.10) 
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2.2.3.2 Fuzzy Logic Controller (FLC) 
 
Another, more recent example of an integral algorithm is the fuzzy logic algorithm 

(Taylor and Meldrum, 1998), used today in Seattle, Washington.  This algorithm uses 

qualitative measurements and a method similar to human reasoning to divide 

measurements into categories.  A set of fuzzy rules, with different weighting factors, 

converts the fuzzified measurements into a metering rate.  Empirical tests show that this 

algorithm performs favorably compared to other algorithms, can prevent congestion 

before it occurs, and can effectively use imprecise detector data (WSDOT, 2000).  

According to Zhang et al (2001) this algorithm is theoretically very attractive, but very 

complicated to configure, and performs very poorly when not configured properly, which 

limits the practical value of this algorithm in the field. 

 

2.2.3.3 Lancaster University – Linked Algorithm 
 
As part of the Lancaster University coordinated ramp metering project, a linked ramp 

algorithm, based on nonminimal state space (NMSS) approach to control system design 

was developed (Taylor et al 1998).  This algorithm is based on adaptive proportional-

integral-plus, linear quadratic (PIP-LQ) optimal controllers.  The objective of this 

algorithm is to minimize a linear-quadratic cost function.  The equation used to determine 

the metering rates is: 

)()( ,11 tttttt yyKOOFuu dI −+−−= −−       (2.11) 

Where: 

• ut, ut-1 = vector of on-ramp flows (metering rate) for current and previous time 

period 
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• F = feedback matrix 

• Ot, Ot-1 = vector of occupancy measured at each sensor over entire control area, 

for current and previous time period 

• KI = matrix of integral gains 

• yd,t = vector of set point occupancies downstream of each on-ramp 

• yt = vector of occupancies measured downstream of each on-ramp 

 

This algorithm is described in greater detail in Section 2.5.5. 

 

2.3 Queue Control and Equity Concerns 

One potential problem with ramp metering is that, although it can significantly improve 

corridor travel time, it can cause long queues on entrance ramps, leading to long delays.  

These delays also may affect local streets when the ramp queues spill on to them.   

 

2.3.1 Queue Adjustment and Queue Override 

Many ramp metering algorithms are used in conjunction with either queue adjustment 

and / or queue override.  Queue adjustment increases the metering rate to a less restrictive 

rate when a ramp queue becomes excessively long.  Queue override completely disables 

ramp metering when a ramp queue becomes too long. 

 

A problem with both queue adjustment and queue override is that most of them are 

algorithms separate from the main control algorithm, and compete with it.  This can lead 
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to oscillation, where the freeway will become congested, causing ramp to be metered 

very restrictively, leading to a long queue, and activate queue adjustment or override.  

This will then allow vehicles to flood the freeway, leading to congestion, and causing an 

even more restrictive metering rate, and the cycle continues.  Gordon (1996) proposed an 

algorithm to take into account both the mainline traffic and the ramp queues in order to 

avoid having two competing algorithms that lead to oscillation.  This algorithm works by 

calculating a smoothed occupancy for the ramp queue detectors, and raising the metering 

rate when the smoothed occupancy is above a certain threshold. 

 

 

2.3.2 BEEX Algorithm 

Another side effect of ramp queues is that they can lead to inequity.  Often, from a 

system point of view, the most efficient situation is where a particular ramp is metered 

very restrictively.  This, however, is also the least equitable situation, since the users of 

one on-ramp will experience long delays while everyone else experiences very little 

delay.  The most equitable situation would be where every ramp, and the mainline, has 

the same delay.  Unfortunately, this is rarely the most efficient strategy. 

 

Although most ramp metering algorithms have focused on reaching optimal efficiency, 

Zhang and Levinson (2003) developed a series of coordinated algorithms that seek to 

balance efficiency and equity.  These BEEX (Balanced Efficiency and Equity) algorithms 

seek to minimize the total weighted travel time, which involves weighting both the 

freeway mainline travel time and the ramp delays.  The weighted travel times take into 
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account human perception of delay by using a non-linear function to increase the weight 

when the delay increases. 

 

2.4 Evaluations of Ramp Metering 

2.4.1 Field Testing 

Several recent field evaluations of ramp metering centered around the Minneapolis-St. 

Paul metro area, in Minnesota.  Minnesota has one of the largest ramp metering systems 

in the world.  MnDOT started using ramp meters in 1970, and currently uses a 

coordinated ramp metering algorithm that divides the freeway into zones.  Cambridge 

Systematics (2001) estimates that ramp metering saves the motoring public $40 Million,  

increasing mainline mean freeway speeds from 46 mph to 53 mph, and significantly 

reducing accidents. 

 

2.4.1.1 Minnesota Evaluation 
 
Unfortunately, despite the fact that ramp metering can have great benefits, the public 

often opposes the use of ramp metering.  For this reason, MnDOT needed evidence that 

ramp metering is beneficial.  Two highways were selected for evaluation: Trunk 

Highway 169, a circumferential highway; and I-394, a downtown highway.  Traffic was 

studied in March, 2000.  The ramp meters were shown to reduce total travel time between 

6% and 16%, with speeds increasing between 13% and 26%.  Because of the improved 

traffic flow, traffic stops on ramps were cut to one third when ramp metering were 

implemented.  Ramp metering was also shown to reduce both fuel consumption and 

pollutant emissions by between 2% and 47% (Hourdakis and Michaelopoulos, 2002). 
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2.4.1.2 Minnesota Shut-off Experiment 
 
The Minnesota state legislature passed a bill requiring ramp meters to be shut off for 

evaluation for eight weeks in the fall of 2000.  This experiment showed that shutting off 

the ramp meters increased congestion and increased accidents, and changed travel 

patterns.  However, on certain test sites, the ramp meters were also shown to significantly 

increase travel time for short trips, despite improving travel time for longer trips.  

Because of this, MnDOT will now focus on equity, rather than simply improving 

mainline efficiency (Levinson et al, 2002). 

 

2.4.1.3 European Evaluations 
 
Ramp metering field evaluations have also occurred in Europe.  ALINEA and several 

other local ramp metering algorithms were tested on the Boulevard Peripherique in Paris, 

France, as well as the A10 Motorway in Amsterdam, Netherlands.  These tests showed 

ALINEA to be the superior local ramp metering algorithm.  ALINEA was also compared 

to METALINE, a coordinated algorithm.  ALINEA and METALINE showed similar 

results, although METALINE is by far more difficult to set up and calibrate 

(Papageorgiou et al, 1997). 

 

2.4.2 Simulation Testing 

Although field testing can be a useful method of evaluating ramp metering algorithms, it 

has many limitations.  Field testing can be expensive, difficult, and time consuming.  The 

impossibility of changing detector locations in real time can limit flexibility.  Also, it is 
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difficult to isolate the effect of ramp metering from other uncontrollable factors, such as 

weather, incidents, construction, or changes in traffic patterns.  For these reasons, traffic 

simulation has become a valuable tool used as an alternative to field evaluation. 

 

 

2.4.2.1 Paris, France 
 
A macroscopic traffic simulator known as METANET was used to study the Boulevard 

Peripherique, in Paris, France.  The test was to compare ALINEA and METALINE.  The 

results showed that the two algorithms performed similarly for recurring congestion, 

although METALINE performed slightly better for non-recurring congestion 

(Papageorgiou et al, 1991). 

 

2.4.2.2 Twin Cities, Minnesota 
 
Kwon et al (2001) used a macroscopic simulator at the University of Minnesota in order 

to compare a coordinated algorithm from each of the three classes: the incremental 

algorithm used in Colorado; the zone algorithm used in Minnesota, and the fuzzy logic 

algorithm used in Seattle, Washington.  Because the Minnesota algorithm did not use 

queue control, it resulted in the most restrictive metering rates, the lowest amount of 

mainline congestion, but the longest ramp queues.  In contrast, the Denver algorithm and 

the Seattle fuzzy logic algorithms both showed that queue control can reduce the 

mainline efficiency.  Furthermore, this test showed that the fuzzy logic algorithm is very 

sensitive to the weights used for each rule. 
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2.4.2.3 Orange County, California 
 
The PATH program at the University of California (Zhang et al., 2001) used Paramics to 

compare four algorithms: ALINEA, Bottleneck, Zone, and SWARM.  The tests showed 

that all of the algorithms tested improve traffic flow.  Also, there was very little 

difference in the performance of each algorithm, perhaps due to the difficulty in 

calibrating the more complex coordinated algorithms.  Also, the performance of 

SWARM was very sensitive to the accuracy of the predictions that it makes. 

 

2.4.2.4 Central Artery / Tunnel, Boston, MA 
 
Hasan (1999) used MITSIMLab to study ramp metering on the Central Artery / Tunnel 

(Big Dig) network, and compared the local strategy ALINEA with the coordinated 

strategy FLOW.  The results showed that ramp metering deteriorated system performance 

at low demands, and that coordination was only effective at very high demand levels.  

However, ramp metering almost always improved the mainline traffic flow.  He also 

showed that queue control always improved system performance, and that coordination 

significantly improved performance when a bottleneck existed downstream of the on-

ramp. 

 

2.5 Ramp Metering Algorithms Studied 

Of the ramp metering algorithms described in this chapter, four will be studied in greater 

detail: ALINEA, ALINEA/Q, FLOW, and the Linked Algorithm.  Additionally, the local 

Ramp Metering Pilot Scheme (RMPS) currently used in Southampton, which is loosely 

based on ALINEA, will also be discussed. 
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2.5.1 ALINEA 

ALINEA (Papageorgiou et al, 1991) is a local, closed loop ramp metering algorithm.  It is 

a closed loop algorithm because the metering rate is a function of the metering rate that 

was used in the previous time interval.  ALINEA works by measuring the occupancy at a 

loop detector downstream of the ramp, and measuring the difference between the 

measured occupancy, and the optimal set point occupancy.  The set point occupancy is 

generally set slightly lower than the critical occupancy, in order to ensure that the 

freeway is always operating below capacity.  The equation used to calculate the metering 

rate for time interval k is: 

)]1([)1()( −−+−= kOOKkrkr outR        (2.12) 

The parameters are as follows: 

• r(k), r(k-1): metering rate for the current, and previous interval 

• KR: regulator parameter 

• O: set point occupancy 

• Oout: measured occupancy 

 

Papageorgiou et al (1991) recommend that the regulator parameter, KR, be set to 70 

veh/hr.  Experimentation shows that the operation of the algorithm is not very sensitive to 

the value for KR, so 70 veh/hr is almost always used. 

 

If the controller measures that the occupancy is lower than the set point occupancy, then 

the metering rate is increased, and more vehicles are allowed to enter the freeway.  If the 



 31

controller measures that the occupancy is higher than the set point occupancy, then the 

metering rate is decreased, so fewer vehicles can enter the freeway, so that it can be less 

congested. 

 

When the calculated metering rate is greater than the maximum rate (1320 veh / hr in this 

implementation), the ramp meters shut off.  When the calculated metering rate is less than 

the minimum rate (240 veh / hr in this implementation), the metering rate is set to the 

minimum rate.  Also, in order to prevent excessively long queues, queue override is used.  

When the ramp’s queue detector exceeds a set occupancy, the ramp meter shuts off. 

 

2.5.2 ALINEA/Q 

ALINEA/Q (Smargdis and Papageorgiou, 2003) is an enhancement to the traditional 

ALINEA algorithm, using a more sophisticated queue control strategy.  This algorithm 

uses video detectors, rather than loop detectors, to measure the length of the ramp queue.  

The advantage of video detectors is that they are area detectors, rather than point 

detectors, and can measure the length of the queue over an area. 

 

This algorithm calculates two metering rates.  The first rate is calculated exactly the same 

as in the traditional ALINEA algorithm.  The second rate that is calculated is the 

minimum rate needed to keep the ramp queue at or below the maximum allowable queue 

length.  This rate is calculated as: 

)1()]([
1
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kr        (2.13) 

where: 
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• r’(k): minimum metering rate to prevent queue buildup 

• 
^

w : maximum allowable queue length 

• w(k): number of vehicles in ramp queue 

• T: time period over which measurements are taken 

• d(k-1): number of vehicles entering ramp 

 

The final calculated rate is the greater of either the ALINEA rate or the queue control 

rate: 

)}('),(max{)( krkrkR =         (2.14) 

 

Using this algorithm has several advantages over using a simple on / off queue override 

method.  The metering rate is adjusted more smoothly, and the oscillation of the simple 

method is avoided.  Also, by calculating the queue length at each interval, the algorithm 

can potentially keep queues from forming by always having a sufficiently high metering 

rate, rather than waiting for a long queue to develop before taking any action. 

 

2.5.3 Ramp Metering Pilot Scheme (RMPS) 

Currently, on the M3 and M27 freeways in the UK, a local ramp metering strategy, 

loosely based on ALINEA is used (Gould et al, 2002).  This algorithm has the following 

components: 

• Calculation of smoothed flows, speeds, and occupancies 

• Switch on / off algorithm 

• Calculating cycle lengths 
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• Queue control 

• Queue override 

 

This algorithm calculates smoothed flows, speeds, an occupancies.  The equation for 

smoothed flow is: 

)()1(]1[)( tFKtFKtF FSFS +−−=        (2.15) 

 

The formulas for smoothed speed and smoothed occupancy are the same, substituting 

speed or occupancy for flow. 

 

The switch on / off algorithm uses mainline smoothed flows and speeds downstream of 

the ramp.  During the times of day in which the controller is operation, the ramp meter 

switches on only when the smoothed flow is above the rising flow, and the smoothed 

speed is below the falling speed.  When the ramp meter is switched up, a start up 

sequence is invoked.  This cycle has a pre-timed green phase (usually 30 seconds), a 3 

second stopping amber phase, followed by a red phase.  After the red phase, the normal 

cycle begins.  The ramp meter shuts off when the smoothed flow falls below the falling 

flow, and the smoothed speed rises above the rising speed. 

 

Figure 2.1, below, shows a flowchart showing when the ramp meters switch on or off.  

Note that TMO refers to the loop detectors: 
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Figure 2.1: RMPS Switch On / Off Algorithm 

 

During the normal operation of the algorithm, a cycle length is calculated once each 

minute, based on the smoothed occupancy of the downstream mainline loop detectors.  A 

lookup table of up to 5 predetermined cycle lengths is used.  Each cycle length has a 

rising threshold occupancy and a falling threshold occupancy associated with it.  When 

the occupancy rises above the rising threshold occupancy, the next highest cycle length is 

selected.  When the occupancy falls below the falling threshold occupancy, the next 

lowest cycle length is selected.  This lookup table is designed to approximate the 
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ALINEA algorithm.  Figure 2.1, below, shows a flowchart showing how the cycle 

lengths are selected: 

 

Figure 2.2: RMPS Cycle Length Selection 

An English traffic signal cycle is slightly different than an American traffic signal cycle.  

In England, after the green phase, a 2 second stopping amber phase (equivalent to the 

American yellow phase) is invoked, followed by the red phase.  After the red phase, a 2 

second starting amber phase (which has no equivalent in the US) is invoked, followed by 

the green phase. 
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The timing of the green phase is determined by the use of a release detector, located 

slightly beyond the stop line.  When a predetermined number of vehicles cross the release 

detector, the green phase ends and the stopping amber phase begins.  The time of the red 

phase is calculated as whatever time is left of the cycle length that is not taken up by the 

green, stopping amber, or starting amber phases.  Also, there is a pre-set minimum red 

time.  The minimum red time and the cycle length are used to calculate a maximum green 

time, and the green phase will end once the maximum green time is exhausted, regardless 

of whether or not enough vehicles crossed the release detector. 

 

This algorithm a queue adjustment algorithm to prevent queues.  The occupancy at 

several queue detectors on the ramps is measured and weighted to calculate an 

adjustment score.  Depending on the adjustment score and the thresholds that are set, the 

cycle length may be increased by as many as 3 cycle levels from the lookup table.  Figure 

2.3, below, shows how the queue adjustment algorithm works: 
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Figure 2.3: RMPS Queue Adjustment Algorithm 

 

2.5.4 FLOW 

FLOW (Jacobson et al, 1989) is a competitive, bottleneck-based, area-wide ramp 

metering algorithm.  For each ramp, FLOW calculates both a local metering rate and a 

bottleneck metering rate, and selects the more restrictive of the two rates. 

 

The local metering rate uses a percent occupancy algorithm.  A lookup table is used to 

relate upstream occupancies with metering rates.  The lookup table is determined using 
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historical volume-occupancy relationships.  The metering rate associated with each 

upstream occupancy is the difference between the capacity and volume associated with 

the occupancy on the fundamental diagram. 

 

For the bottleneck metering rate, bottleneck locations on the freeway must be determined.  

Each bottleneck must have an influence zone with one or more on-ramps associated with 

it.  Each metered on-ramp has a weighting factor associated with it, determined both by 

the distance of the ramp from the bottleneck, and the historical volume on the ramp.  

Loop detectors must be located both upstream and downstream of the influence zone, as 

well as on all on-ramps (both metered and un-metered) and off-ramps.  In order for the 

bottleneck algorithm to be invoked, two conditions must be met.  The first condition is 

that the downstream occupancy must be greater than a threshold occupancy, indicating 

that the freeway section is operating above capacity.  The second condition is that the 

freeway section must be storing vehicles, meaning that the sum of the vehicles entering 

the section and entering via on-ramps must be greater than the sum of the vehicles exiting 

the section and leaving via off-ramps.  If both conditions are met, the metering rate 

reduction for section i for time interval t+1 is determined as follows: 

)()()1( itititit OFFOUTONINti qqqqU +−+=+       (2.16) 

 

The volume reduction calculated using equation 2.16, and the weighting factors, are then 

used to calculate the bottleneck metering rate reduction for each ramp within the 

influence zone: 
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The bottleneck metering rate for each ramp is then calculated by subtracting the 

bottleneck metering rate reduction from the measured on-ramp flow during the previous 

interval: 

)1()1( ++ −= tjiONtji BMRRqBMR
jt

       (2.18) 

 

Because influence zones may overlap, each ramp may have more than one bottleneck 

metering rate associated with it.  In that case, the most restrictive bottleneck metering rate 

is chosen.  Finally, either the most restrictive bottleneck metering rate, or the local 

metering rate, which ever is more restrictive, is selected. 

 

FLOW uses a two step queue control process.  The first part is queue adjustment.  When 

the queue for a ramp reaches a certain length, the metering rate for that ramp is increased 

slightly.  The second step is advance queue override.  When the queue reaches its 

maximum permissible length, the ramp meter is shut off. 

 

2.5.5 Linked Algorithm 

The Linked algorithm (Taylor et al, 1998) is based on Proportional-Intergral-Plus (PIP) 

control theory (McKenna, 2003).  PIP control theory is an example of state variable 

feedback (SVF) controllers.  The basis of the control design is the non-minimal state 

space (NMSS) description of the system to be controlled.  The NMSS is formulated using 
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the states, past value of outputs, past value of inputs, and additional integral-of-error 

states.  A description follows, and is from McKenna (2003). 

 

For application to traffic, a special form of the NMSS description is formulated based on 

the local linear model (LLM) for each point in the network.  With LLM, each point in the 

network where measurements are obtained is modeled using the previously sampled 

measurements at the current location, as well as the upstream and downstream locations.  

This allows the model to handle both congested and uncongested traffic conditions.  For 

the on-ramps, the on-ramp flow is used as an additional variable.  The LLM for a point 

with an onramp is: 

, , 1 1, 1 1, 1 , 1j k j k j k j k on ko ao bo co dq− − − + − −= + + +        (2.19) 

Where: 

• oj,k = occupancy measured at location j, time k 

• oj,k-1 = occupancy measured in previous time interval, location j 

• oj-1,k-1 = occupancy measured in previous time interval, downstream of location j 

• oj+1,k-1 = occupancy measured in previous time interval, upstream of location j 

• qon,k-1 =  on-ramp flow in previous time interval 

• a, b, c, d: parameters that are estimated 

 

1 1 1 , 1 , 1k k k k up k down ko o− − − − −= + + + +d 2 3x Fx Gu Dy g g      (2.20) 

k k=y Hx           (2.21) 

Where: 

• xk-1 = state vector at time k 
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• uk-1 = vector of controlled inputs (on-ramp flows) at time k-1 

• ydk-1 = vector of set-point occupancies 

• oup,k = boundary condition of upstream occupancy 

• odown,k = boundary condition of downstream occupancy 

• yk = vector of controlled outputs 

 

The matrices F, G, D, and H, as well as the vectors g2 and g3 are all defined based on the 

parameters obtained for each LLM at each location, using equation 2.19.  Suppose, for 

example, there is a network that has 11 sensors, numbered 0 through 11, and 4 on-ramps, 

which are upstream of sensors 3, 5, 7, and 9.  Sensors 0 and 10 will be used for the 

upstream and downstream boundary conditions.  The state vector for this example would 

be: 

T
1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 5, 7, 9,k k k k k k k k k k k k k ko o o o o o o o o z z z z =  x  

 

The last four elements of this vector are the integrals of error.  The integrals of error are 

calculated as: 

( ), ,, , 1 j k j kj k j k dz z y o−= + −         (2.22) 

 

The other inputs for this example would be defined as: 

T
3, 5, 7, 9,

T
3, 5, 7, 9,

, 0,

, 10,

k on k on k on k on k

k d k d k d k d k

up k k

down k k

q q q q

o o o o

o o

o o

 =  
 =  

=

=

d

u

y
 



 42

 

By using the parameters from equation 2.19, the matrices defining the NMSS are defined 

as: 

1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9
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5 5 5

7 7 7
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0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

 
 
 =
 
 
 

H  

 

The vectors for xk and yk are then calculated using equations 2.20 and 2.21.  The SVF 

control law is then defined as: 

k k= −u Kx           (2.23) 

Where K is the control gain matrix. 

 

The control gain matrix can be obtained using a number of different SVF control 

approaches.  One method is to use Linear Quadratic (LQ) control, where the matrix is 

chosen to minimize the following cost function: 

{ }
1

T T
k k k k

k

J
∞

=

= +∑ x Qx u Ru         (2.24) 

 

Q and R are symmetric positive semi-definite and symmetric positive definite matrices 

respectively (Taylor et al, 1998).  Often, the identity matrix may be used as a starting 

point for the Q and R matrices. 

 

This algorithm is a theoretical design which does not explicitly take into account queue 

lengths.  For the UK implementation of this algorithm, the queue adjustment algorithm in 

the RMPS strategy was modified to be included with this algorithm. 
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2.6 Summary 

A large number of ramp metering algorithms have been proposed.  Limited field and 

simulation studies have been performed, mostly focusing on testing existing 

implantations, or various algorithms at a single location.  Very little research has been 

done to identify conditions under which ramp metering is effective.  Furthermore, little 

work has been performed to determine under which conditions coordination is especially 

useful. 
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Chapter 3 
 
Simulation Study 

 
Because of the difficulties and limitations of field study, traffic simulation was chosen as 

the method of study for this thesis.  A simulation package known as MITSIMLab 

developed at MIT (Yang and Koutsopolos, 1996; Yang, 1997; Ben-Akiva et al, 1997) 

was used for the study. 

 

3.1 Case Studies 

The major case study for this thesis is the project “Coordination of Ramp Metering Sites” 

(Taylor et al, 2002).  The project involves a section of the eastbound Motorway M27, 

near Southampton, UK.  This case study involved both calibrating MITSIMLab to 

accurately model the traffic in Southampton, as well as enhancements to MITSIMLab to 

handle the ramp metering algorithms used in the study. 

 

3.1.1 M27 Network 

The M27 network currently has two on-ramps that are metered.  The current algorithm is 

the RMPS algorithm, a local ramp metering algorithm, which is loosely based on 

ALINEA (Gould et al, 2002).  The purpose of this project is to determine under what 

circumstances the linked algorithm (Taylor et al, 1998) would be beneficial.  Figure 3.1, 

below, shows a diagram of the network: 



 46

 

Figure 3.1: M27 Network 

 

3.1.2 Generic Network 

Because the M27 network only has two metered ramps that are spaced relatively far 

apart, the tests that could be run on it are somewhat limited.  In order to test the effects of 

geometry and ramp traffic distribution, a generic network was created.  Figure 3.2, below, 

shows a diagram of the generic network: 

 

Figure 3.2: Generic Network 

3.1.3 Measures of Effectiveness 

In order to test the effectiveness of ramp metering, three measures of effectiveness 

(MOEs) were chosen.  Because the primary purpose of ramp metering is to improve the 

mainline traffic flow, the first MOE that was used was mainline travel time.  Because 

ramp metering can sometimes improve mainline travel time while hurting the ramp 
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traffic, the other MOEs that were used are ramp travel time, and total travel time for all 

vehicles.  Travel times were chosen for all three MOEs because they are a factor that 

drivers are sensitive to. 

 

3.2 MITSIMLab 

MITSIMLab is a powerful simulation tool that was developed at MIT by Yang (1997), 

and uses a variety of models to simulate various traffic networks.  MITSIMLab is 

organized into three modules: 

• Microscopic Traffic Simulator (MITSIM) 

• Traffic Management Simulator (TMS) 

• Graphical User Interface (GUI) 

A description of each of these modules, and how they communicate with each other 

follows. 

 

3.2.1 Microscopic Traffic Simulator (MITSIM) 

MITSIM is the module that creates the network, and controls the flow of vehicles through 

the network.  MITSIM is a microscopic traffic simulator: this means that individual 

vehicles are modeled, and individual driver behavior, such as lane changing and car-

following are modeled.  The main components of MITSIM are: 

• Network Components: The road network is built using nodes, links, segments, 

and lanes.  The network also consists of sensors, which measure and collect data 

such as flow, speed, and occupancy.  Traffic control devices (such as ramp meters 
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or traffic signals) are also represented, although their operation is controlled by 

TMS. 

• Travel Demand and Route Choice: MITSIM accepts as input time-dependent 

origin-destination (OD) trip tables.  MITSIM then uses a probabilistic route 

choice model to assign vehicles to different paths. 

• Vehicle Movement and Driving Behavior: The OD matrix is translated into 

individual vehicles, which enter the network at a specific time.  Each vehicle is 

assigned behavior characteristics (such as desired speed, aggressiveness, critical 

gaps for lane changing, compliance rate to control devices, etc), and vehicle 

characteristics (such as size, and acceleration and deceleration capabilities).  The 

simulator then moves vehicles according to the car-following and lane-changing 

models.  The car-following model captures the effects of the conditions ahead of 

the vehicle.  The lane-changing model distinguishes between mandatory and 

discretionary lane changes. 

 

3.2.2 Traffic Management Simulator (TMS) 

TMS is the component that operates the traffic control devices in the network.  

MITSIMLab allows MITSIM and TMS to communicate with each other, so TMS can use 

the traffic surveillance data generated by MITSIM, to simulate traffic responsive control.  

The traffic control systems that TMS can simulate include: 

• Ramp meters 

• Intersection Traffic Signals 

• Lane Control Signs (LCS) 
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• Variable Speed Limit Signs (VSLS) 

• Portal Signals (PS) at tunnel entrances 

• Variable Message Signs (VMS) 

• In-vehicle route guidance 

 

3.2.3 Graphical User Interface (GUI) 

The GUI provides a graphical display to allow the user to watch the traffic flow.  It is 

useful for testing, debugging, and demonstration purposes. 

 

3.2.4 Communication between MITSIM, TMS, and GUI 

Figure 3.3 shows a diagram of how MITSIM, TMS, and GUI communicate with each 

other. 

Figure 3.3: Communication Between MITSIMLab Components 
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Both MITSIM and TMS can either be run independently, or they can be run together.  

For the purposes of traffic responsive ramp metering, it is nessesary to run MITSIM and 

TMS together, to allow them to communicate.  Also, MITSIM and TMS can be run either 

with or without the GUI. 

 

3.3 Enhancements to MITSIMLab 

In order to simulate the UK implementation of ALINEA, the ALINEA/Q algorithm, and 

the linked algorithm, it was nessesary to add new modules to MITSIMLab.  All of these 

enhancements were made to the TMS component of MITSIMLab. 

 

3.3.1 Ramp Metering Pilot Scheme (RMPS) Algorithm 

Although this algorithm is based on ALINEA, it’s actual implementation is quite 

different than the traditional algorithm.  This algorithm is explained in Section 2.5.2, and 

in Gould et al (2002).  The heart of the module is the function that cycles through each of 

the conditions, and if the condition is met, the appropriate action is performed.  For more 

information, see the flowcharts in section 2.53.  The conditions that are checked are: 

• Determine if ramp metering needs to be switched on or off, and perform the 

appropriate start-up or shut-down sequence 

• Determine if a new cycle length needs to be calculated 

• Determine if queue adjustment is necessary 

• Determine if the signal needs to be switched from stopping amber to red 
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• Determine if the signal needs to be switched from red to starting amber (in the 

UK, starting amber is a short phase before the signal turns green) 

• Determine if the required number of vehicles were released, and switch the signal 

from green to stopping amber 

• Determine if the maximum green time has been exceeded, and switch the signal to 

stopping amber 

• During the startup sequence, determine if the initial green time has been 

exceeded, and switch the signal to stopping amber 

 

The other significant functions in this module are the functions that calculate the 

smoothed flow, speed, and occupancy required by this algorithm.  An example of an 

input file is shown in Appendix A. 

 

3.3.2 ALINEA/Q 

The ALINEA/Q algorithm uses video detectors to measure the number of vehicles in a 

queue.  This new module contains a function to count the number of vehicles in a ramp 

queue, as well as to determine the number of vehicles entering a ramp, both of which are 

required inputs for this algorithm.  An example of an input file for this algorithm is 

shown in Appendix B. 

 

3.3.3 Linked Algorithm 

Because of its superior ability to perform mathematical computations involving matrices 

and vectors, the code for this algorithm was written in MATLAB.  The MATLAB engine 
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(Mathworks, 2003) was linked to MITSIMLab in order to allow MATLAB and 

MITSIMLab to communicate with each other.  This procedure is described in Appendix 

D. 

 

The MATLAB program requires as input a vector of occupancy measurements from each 

sensor.  It returns as output, a vector of metering rates, which are converted into cycle 

lengths.  This module works by calculating the occupancy measurements, and sending 

them to MATLAB, which it receives as a vector.  MITSIMLab then calls the MATLAB 

program, which calculates the desired metering rates, and converts it into a cycle length.  

MITSIMLab then receives the cycle lengths from MATLAB, and then it proceeds just 

like any other ramp metering algorithm in MITSIMLab.  The set point occupancies, the 

control gain matrix, and the function to convert the flow rates to cycle lengths are all 

entered in the MATLAB code, and can be very easily changed simply by modifying the 

MATLAB script file.  An example of a MITSIMLab input file for the linked algorithm is 

shown in Appendix C.  Figure 3.4, below, shows how MITSIMLab and MATLAB 

communicate with each other: 

 

Figure 3.4: Communication between MITSIMLab and MATLAB  
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3.4 Calibration and Validation of MITSIMLab 

In order for simulation results to be useful, it is necessary to calibrate and validate the 

model, comparing it to field data.  This is necessary because drivers in different areas 

behave differently, and similar roads may have very different operating characteristics.  

The calibration process has two main steps: 

• Origin-Destination Flow Estimation 

• Parameter Calibration 

 

3.4.1 Origin-Destination Flow Estimation 

MITSIM requires as input a table of origin-destination (OD) flows.  Because it is 

extremely difficult and costly to accurately measure OD flows in the field, it is often 

necessary to estimate them by using point flows.  Traffic data from the loop detectors was 

obtained from the UK Highway agency.  The first five weeks of data, in the spring of 

2001, the ramp meters were switched off, making this convenient data to use for 

calibration purposes.  To use as field data input, the data was aggregated into 15-minute 

intervals, during the peak traffic period, 6 AM – 9 AM, Monday through Friday.  In order 

to insure that the model represents typical conditions, any data which was affected by an 

incident, according to the incident log, was excluded, times when a sensor was 

malfunctioning, according to the sensor log, were excluded, and UK bank holidays were 

excluded. 

 

In order to estimate the OD flows, a procedure involving the least-squares optimization 

method was used (Cascetta et al, 1993).  This method was implemented in MATLAB.  
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This program works by iteratively calling MITSIMLab, and then reading the 

MITSIMLab output files after each iteration.  The program requires as input a file 

containing the field count data for each day, a variance-covariance matrix, and a seed OD 

matrix.  The seed OD matrix was calculated using the average counts, but not taking into 

account the travel time between sensors (which the OD estimation program does).  

MITSIMLab returns traffic counts at each sensor, as well as returning an assignment 

matrix.  The assignment matrix, contains the proportion of vehicles from each OD pair 

for each time interval that crosses a sensor during a given interval.  The assignment 

matrix is weighted by multiplying by a weighting matrix, W.  Each day of measured 

flows and the seed OD flows are also weighted by multiplying by the variance-

covariance matrix, and placed in a vector Y.  The simulated traffic counts are placed in a 

vector X.  The OD flows is then calculated by minimizing the error, using the least 

squares method: 

)]()()()([min  arg seedseed XXUXXYAXWYAXOD −−+−−= TT   (3.1) 

 

 

This process is then repeated for a set number of iterations, until a final OD matrix is 

created.  For more information, see (Darda, 2002). 

 

3.4.2 Calibration of Parameters 

In addition to estimating the OD flows, it is also necessary to calibrate parameters that 

affect traffic flow.  This is needed because drivers on different roads in different areas 
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will drive differently.  An iterative, probabilistic algorithm known as the Box (1956) 

method was used for the calibration. 

 

A sensitivity analysis was performed, showing that there are three parameters that have 

the most effect on traffic flow.  Two of these parameters, the sensitivity parameters for 

acceleration and deceleration, are from the car-following model (Ahmed, 1999).  These 

sensitivity parameters capture network conditions, weather conditions, road geometry, 

and other information not captured by the other explanatory variables.  The third 

parameter that was calibrated was a scaling factor to adjust a driver’s desired speed, 

based on the speed limit.  Because the M27 network has only one path between any two 

points, there was no need to calibrate the route choice parameters. 

 

The Box method was implemented in MATLAB.  A matrix containing traffic speed at 

each sensor for the days (similar to the counts matrix), as well as a variance-covariance 

matrix was needed for input.  The Box algorithm works as follows: 

 

1. MITSIM is run K times, to determine a complex of K points.  The user defines the 

parameters used in the first run, and a random number generator determines the 

parameters used in the next K-1 runs.  For each run, the objective function is 

calculated and saved.  The objective function is defined as:  

∑∑ −=
i

s
d

h divisdivdiskF 2)),(*)(),(*),(()(      (3.2) 

where: 
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),( dish = historical speed for sensor-time combination i, on day d 

),( div  = variance for sensor-time combination i, on day d 

)(iss = simulated speed for sensor-time combination I 

 

2. If an explicit constraint is violated, the point is moved a small distance ä inside 

the limit.  If an implicit constraint is violated, the point is moved one half of the 

distance to the centroid of the other points. 

3. The data point with the highest objective value is removed from the complex.  

That point is replaced by a point with parameters á times as far from the centroid 

of the remaining points as the distance of the rejected point, on the line joining the 

rejected point and the centroid.  A value of á = 1.3 was used, as recommended by 

Box.  MITSIM is then run again to obtain the objective function for the new data 

point. 

4. If the same point repeats as the point with the highest objective function on 

consecutive trials, it is moved one half of the distance to the centroid of the 

remaining points. 

5. If the new point violates the constraints, it is adjusted, as in step 2. 

6. The algorithm converges when the objective function is within â units for ã 

consecutive iterations.  Also, the algorithm is stopped when a predefined number 

of iterations are completed.  In either case, the parameter combination with the 

lowest objective function value becomes the selected parameters. 

 

For more information on this algorithm, see (Darda, 2002). 
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3.4.3 Calibration Results 

Figures 3.5 through 3.11 plot the simulated counts versus the actual counts for each 

sensor location. 

Figure 3.5: Sensor 9252B - Start of study area
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Figure 3.6: Sensor 9376A2 - Junction 10 On-ramp
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Figure 3.7: Sensor 9376A3 - West of Junction 10
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Figure 3.8: Sensor 9385A - East of Junction 10
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Figure 3.9: Sensors 9394A1 / 2 - Between Junctions 10 and 11
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Figure 3.10: Sensor 9396A2 - Junction 11 Onramp
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Figure 3.11: Sensor 9413A - East of Junction 11
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Figures 3.12 through 3.15 plot the simulated versus actual speeds for each sensor 

location. 

Figure 3.12: Sensor 9376A3 - West of Junction 10
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Figure 3.13: Sensor 9385A - East of Junction 10
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Figure 3.14: Sensors 9394A1 / 2 - Between Junctions 10 and 11
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Figure 3.15: Sensor 9413A - East of Junction 11
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3.4.4 Validation 

The final step is validation.  Validation is a process where different scenarios are 

simulated, to determine that the calibrated model accurately reflects reality, under 

different conditions than what was used in the calibration.  There were two criteria 

checked: 

 

• Comparison of the simulated traffic counts with the actual traffic counts 

• Comparison of the simulated traffic speeds with the actual traffic speeds 

 

Figures 3.16 through 3.22 show the simulated counts versus the actual counts: 
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Figure 3.16: Sensor 9252B - Start of study area
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Figure 3.17: Sensor 9376A2 - Junction 10 On-ramp

0

50

100

150

200

250

0 50 100 150 200 250

Actual counts

S
im

u
la

te
d

 c
o

u
n

ts

 

 

 

 

 

 



 64

Figure 3.18: Sensor 9376A3 - West of Junction 10
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Figure 3.19: Sensor 9385A - East of Junction 10
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Figure 3.20: Sensors 9394A1 / 2 - Between Junctions 10 and 11
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Figure 3.21: Sensor 9396A2 - Junction 11 Onramp
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Figure 3.22: Sensor 9413A - East of Junction 11
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Figures 3.23 through 3.26 plot the simulated speeds against the actual speeds: 

Figure 3.23: Sensor 9376A3 - West of Junction 10
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Figure 3.24: Sensor 9385A - East of Junction 10
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Figure 3.25: Sensors 9394A1 / 2 - Between Junctions 10 and 11
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Figure 3.26: Sensor 9413A - East of Junction 11
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Chapter 4 
 
Results From M27 Network 

The local ALINEA-based RMPS strategy, as well as the other four ramp metering 

strategies being studied were tested on the M27 network.  Because none of the strategies 

showed any great improvements, various scenarios were tested to determine if and when 

ramp metering was ever effective for this network. 

 

4.1 Results Using Average Demand Level 

Data on travel time was collected in MITSIMLab in order to evaluate the effectiveness on 

ramp metering.  In order to ensure statistical significance, the simulation was run 10 

times, and the results were averaged, and the average travel time for vehicles traveling 

the mainline, vehicles entering from an on-ramp, as well as the total average travel time 

for all vehicles were calculated. 

 

Table 4.1, below, shows the percentage of time savings for both the RMPS algorithm, as 

well as each of the four algorithms being studied: 

 Mainline Ramps Total 
RMPS Algorithm -0.4% -3.8% -1.0% 
ALINEA -0.3% -0.1% -0.2% 
ALINEA / Q -0.1% 0.1% 0.0% 
FLOW -0.6% -8.2% -2.1% 
Linked Algorithm -0.2% -2.9% -0.7% 
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Note that most of these values are negative, meaning that ramp metering actually 

increased travel time.  This is due to the fact that at the average demand level, traffic is 

not too congested, so ramp metering cannot do much to improve traffic flow.  Also, due 

the heavy on-ramp volumes (particularly at Junction 11), the queue adjustment algorithm 

was activated most of the time, and this reduced the efficiency of the ramp metering 

algorithm. 

 

4.2 Testing Other Scenarios 

Because ramp metering was shown to hurt traffic when average demand existed, other 

scenarios were tested to determine if and when ramp metering is effective for this 

network.  Because the average traffic volume was too light to cause much congestion, 

scenarios were tried with 10% and 20% increase in traffic demand.  Also, because the 

average scenario had very high ramp volumes, scenarios were tested with medium and 

low percentages of traffic on the ramps. 

 

4.2.1 Experimental Design 

Since there are 3 demand levels and 3 ramp to mainline traffic ratios, there are a total of 

3x3, or 9 combinations.  Because this is a relatively small number of combinations, a full 

factorial design, testing all 9 combinations, can be run.  In order to ensure statistical 

significance, each scenario was run 10 times. 
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Table 4.2, below, shows the parameters used for each scenario: 

Scenario Demand Level Ramp Volume 
1 100% 100% 
2 110% 100% 
3 120% 100% 
4 100% 80% 
5 110% 80% 
6 120% 80% 
7 100% 60% 
8 110% 60% 
9 120% 60% 

 

 

4.2.2 Results 

Table 4.3, below, shows the percent time savings for mainline traffic for each algorithm: 

 

 Corridor Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Volume RMPS ALINEA ALINEA / Q Flow Linked 

1 100% 100% -0.4% -0.3% -0.1% -0.6% -0.2% 
2 110% 100% -0.5% -0.4% -0.2% -0.8% -0.9% 
3 120% 100% 1.1% -2.1% -1.5% -2.9% -3.8% 
4 100% 80% -0.2% 0.0% -0.5% -0.4% -0.2% 
5 110% 80% 0.2% -1.0% -0.2% -1.1% -0.7% 
6 120% 80% 0.2% 1.7% 1.9% 1.5% 1.9% 
7 100% 60% -0.4% 0.0% -0.2% -0.7% -0.5% 
8 110% 60% -1.4% -1.6% -1.9% -1.2% -0.6% 
9 120% 60% 1.4% 1.4% 1.7% 1.5% 1.8% 

 

Table 4.4, below, shows the percent time savings for ramp traffic for each algorithm: 

 Ramp Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Volume RMPS ALINEA ALINEA / Q Flow Linked 

1 100% 100% -3.8% -0.1% 0.1% -8.2% -2.9% 
2 110% 100% -8.1% -1.2% -0.6% -11.2% -3.8% 
3 120% 100% -23.4% -3.2% -4.6% -15.1% -6.4% 
4 100% 80% -4.6% 0.0% -0.9% -5.9% -2.7% 
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5 110% 80% -8.5% -2.8% -1.2% -10.3% -3.7% 
6 120% 80% -9.1% -4.0% -4.2% -14.3% -1.2% 
7 100% 60% -5.4% 0.1% -0.2% -5.4% -2.5% 
8 110% 60% -13.4% -2.5% -3.8% -11.6% -2.6% 
9 120% 60% -13.1% -2.1% -1.8% -12.5% -1.1% 

 

Table 4.5, below, shows the percent time savings for total traffic for each algorithm 

 Total Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Volume RMPS ALINEA ALINEA / Q Flow Linked 

1 100% 100% -1.0% -0.2% 0.0% -2.1% -0.7% 
2 110% 100% -2.0% -0.6% -3.0% -2.9% -1.5% 
3 120% 100% -3.9% -2.4% -2.2% -5.5% -4.4% 
4 100% 80% -0.9% 0.0% -0.5% -1.2% -0.6% 
5 110% 80% -1.2% -1.3% -0.4% -2.6% -1.2% 
6 120% 80% -1.2% 0.9% 1.0% -0.8% 1.4% 
7 100% 60% -1.0% 0.0% -0.3% -1.2% -0.7% 
8 110% 60% -2.8% -1.7% -2.1% -2.5% -0.8% 
9 120% 60% -0.2% 1.0% 1.3% -0.1% 1.5% 

 

 

4.3 Analysis of Results 

These results show that for the M27 network, ramp metering does not significantly 

improve traffic under any situation, and significantly hurts it under most.  The best results 

were when the ramp volumes were moderate or low, and the total volume was high.  The 

main reason is because the network has only two ramps and they are so far apart, that 

ramp traffic is not a major cause of delays.  When the volume was at 120% and the 

network was congested, ramp metering showed some benefits, as long as the ramp 

volume was low enough to not constantly invoke the queue control algorithm. 

 

One particularly surprising result was that in some cases, most notably at the highest total 

volume (120%) and the highest ramp volume (100%), ramp metering actually increased 
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the mainline travel time.  There are two possible reasons for this.  The first reason, 

specific to M27, is that since this freeway is near a port, it has very high truck traffic.  

Because trucks often accelerate slowly, especially on an upgrade, they have a very 

difficult time reaching freeway speed after being stopped at a ramp meter.  The heavy 

truck traffic also causes instability in the measured occupancies, leading to an unstable 

metering rate.  If one cycle has a very restrictive rate, it could cause a queue to build up 

on the ramp.  In the next cycle, if the metering rate is much less restrictive, it can spill the 

queue onto the freeway, causing more vehicles to enter in a shorter period of time than 

would have without the metering.  The second reason is that at very high mainline 

volumes and very high ramp volumes, the ramp meters spend much of their time in queue 

override mode.  Figure 4.1, below, shows a plot of the ramp metering performance over 

time.  Notice how it shows some slight benefits early in the simulation, but once the 

queue override mode is activated, the freeway is flooded with vehicles, traffic seriously 

degrades, and is unable to recover for a while: 
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Because ramp metering did not show much benefit on this network, a generic network 

was created in order to test more variables.  In particular, this network will test the effects 

of geometry, which cannot be tested on the M27 network, and is likely to be a major 

factor in the performance of ramp metering.  This case study is discussed in Chapter 5. 
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Chapter 5 
 
Results from Generic Network 

The generic network was created in order to allow greater flexibility to test various 

scenarios to determine if and when ramp metering is effective.  Four variables were 

tested: demand level, spacing between ramps, distribution of traffic among ramps, and 

percentage of traffic using the ramps.  Four levels of demand were tested, four ramp 

spacings were tested, three distribution patterns were tested, and three ramp traffic 

percentages were tested.  Four ramp metering strategies were tested: ALINEA, ALINEA 

/ Q, Flow, and Linked.  All four algorithms were described in great detail in Chapter 2. 

 

5.1 Experimental Design 

This experiment has 4 OD levels, 4 ramp spacings, 3 distribution patterns, and 3 ramp 

traffic percentages.  That is a total of 4x4x3x3, or 144 combinations.  Due to time 

constraints and constraints of computing power, it was not possible to test all 144 

combinations.  Therefore, a fractional factorial design was needed.  In order to insure that 

there was no interaction between variables, an orthogonal matrix, with 16 scenarios was 

used (Addelman, 1962).  In order to ensure statistical significance, each scenario was run 

10 times, and the results were averaged. 
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Table 5.1, below, shows the 16 combinations that were used: 

Scenario Demand Level Ramp Spacing Ramp Distribution Ramp Percentage 
1 6600 vph 2000 ft 1 25% 
2 6600 vph 4000 ft 2 35% 
3 6600 vph 8000 ft 3 30% 
4 6600 vph 16,000 ft 2 30% 
5 6900 vph 2000 ft 2 30% 
6 6900 vph 4000 ft 1 30% 
7 6900 vph 8000 ft 2 35% 
8 6900 vph 16,000 ft 3 25% 
9 7200 vph 2000 ft 3 35% 

10 7200 vph 4000 ft 2 25% 
11 7200 vph 8000 ft 1 30% 
12 7200 vph 16,000 ft 2 30% 
13 7500 vph 2000 ft 2 30% 
14 7500 vph 4000 ft 3 30% 
15 7500 vph 8000 ft 2 25% 
16 7500 vph 16,000 ft 1 35% 

 

Note that for the ramp distribution, #1 means that the upstream ramps have the heaviest 

volume, #2 means that all ramps have equal volume, and #3 means that the downstream 

ramps have the heaviest volume. 

 

5.2 Results 

Table 5.2, below, shows the average mainline travel time savings for each scenario: 

  Corridor Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Spacing 

Ramp 
Distribution 

Ramp 
Percentage ALINEA ALINEA / Q Flow Linked 

1 6600 vph 2000 ft 1 25% -0.6% -0.3% 0.0% -0.4% 
2 6600 vph 4000 ft 2 35% 0.8% 0.2% 0.5% 0.3% 
3 6600 vph 8000 ft 3 30% -0.7% -1.2% -1.1% -1.0% 
4 6600 vph 16,000 ft 2 30% 0.1% 0.0% -0.4% 0.2% 
5 6900 vph 2000 ft 2 30% 2.3% 2.5% 2.4% 0.9% 
6 6900 vph 4000 ft 1 30% -0.5% 1.1% 0.8% -0.1% 
7 6900 vph 8000 ft 2 35% -0.8% 0% -0.3% -0.7% 
8 6900 vph 16,000 ft 3 25% 0.5% 0.4% 0.5% 0.7% 
9 7200 vph 2000 ft 3 35% 7.6% 8.6% 8.1% 5.2% 

10 7200 vph 4000 ft 2 25% 3.0% 2.0% 2.7% 1.1% 
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11 7200 vph 8000 ft 1 30% -0.4% 0.2% 0.0% -1.0% 
12 7200 vph 16,000 ft 2 30% -0.2% -0.1% -0.2% -0.3% 
13 7500 vph 2000 ft 2 30% 3.4% 5.6% 8.0% 2.9% 
14 7500 vph 4000 ft 3 30% 1.9% 3.2% 3.3% 2.5% 
15 7500 vph 8000 ft 2 25% 1.1% 0.9% 0.5% 0.2% 
16 7500 vph 16,000 ft 1 35% -0.3% -0.2% 0.0% -0.1% 

 

 

Table 5.3, below, shows the average ramp travel time savings for each scenario: 

  Ramp Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Spacing 

Ramp 
Distribution 

Ramp 
Percentage ALINEA ALINEA / Q Flow Linked 

1 6600 vph 2000 ft 1 25% -16.5% -17.6% -10.9% -14.0% 
2 6600 vph 4000 ft 2 35% -6.2% -9.1% -14.0% -6.0% 
3 6600 vph 8000 ft 3 30% -3.2% -4.2% -4.1% -3.2% 
4 6600 vph 16,000 ft 2 30% -2.1% -1.9% -2.1% -1.4% 
5 6900 vph 2000 ft 2 30% -92.9% -108.0% -55.2% -75.9% 
6 6900 vph 4000 ft 1 30% -15.5% -17.0% -26.3% -10.4% 
7 6900 vph 8000 ft 2 35% -5.6% -8.1% -5.1% -2.9% 
8 6900 vph 16,000 ft 3 25% -1.6% -1.8% -1.9% -0.9% 
9 7200 vph 2000 ft 3 35% -106.3% -114.4% -108.6% -101.7% 

10 7200 vph 4000 ft 2 25% -28.7% -34.1% -40.3% -24.2% 
11 7200 vph 8000 ft 1 30% -8.5% -13.7% -12.0% -4.2% 
12 7200 vph 16,000 ft 2 30% -3.3% -3.9% -4.8% -2.0% 
13 7500 vph 2000 ft 2 30% -113.3% -121.3% -115.9% -107.2% 
14 7500 vph 4000 ft 3 30% -51.5% -59.4% -68.5% -35.8% 
15 7500 vph 8000 ft 2 25% -9.0% -13.7% -12.1% -3.3% 
16 7500 vph 16,000 ft 1 35% -8.6% -10.5% -8.1% -3.7% 

 
 

 

Table 5.4, below, shows the average total travel time savings for each scenario: 

  Total Travel Time Savings (%) 

Scenario 
Demand 
Level 

Ramp 
Spacing 

Ramp 
Distribution 

Ramp 
Percentage ALINEA ALINEA / Q Flow Linked 

1 6600 vph 2000 ft 1 25% -2.6% -2.4% -1.4% -2.0% 
2 6600 vph 4000 ft 2 35% -0.4% -1.3% -1.9% -7.2% 
3 6600 vph 8000 ft 3 30% -1.1% -1.6% -1.5% -1.3% 
4 6600 vph 16,000 ft 2 30% -0.5% -0.5% -0.8% -0.3% 
5 6900 vph 2000 ft 2 30% -11.2% -13.2% -5.8% -10.0% 
6 6900 vph 4000 ft 1 30% -2.6% -1.4% -3.0% -1.5% 
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7 6900 vph 8000 ft 2 35% -1.7% -1.4% -1.1% -1.1% 
8 6900 vph 16,000 ft 3 25% 0.0% -0.1% 0.1% 0.4% 
9 7200 vph 2000 ft 3 35% -7.9% -8.0% -7.7% -9.4% 

10 7200 vph 4000 ft 2 25% -0.5% -2.0% -2.1% -1.7% 
11 7200 vph 8000 ft 1 30% -1.6% -1.9% -1.8% -1.4% 
12 7200 vph 16,000 ft 2 30% -0.8% -1.0% -0.8% -0.6% 
13 7500 vph 2000 ft 2 30% -8.8% -7.5% -4.6% -8.4% 
14 7500 vph 4000 ft 3 30% -4.7% -4.5% -5.5% -2.3% 
15 7500 vph 8000 ft 2 25% -0.1% -0.8% -1.0% -0.3% 
16 7500 vph 16,000 ft 1 35% -2.5% -3.4% -2.1% -1.2% 

 

5.3 Analysis of Results 

These results show that ramp metering can potentially cause great improvements to the 

mainline travel time, although the conditions under which it is beneficial are relatively 

narrow.  The most important factors affecting the usefulness of ramp metering are the 

ramp spacing and the demand level.  Ramp metering is only useful when the ramps are 

spaced relatively close together.  This is because when the ramps are close together, the 

bottleneck caused by the traffic merging has a significant impact on the mainline traffic.  

However, when the ramps are spaced further apart, the ramp traffic has less of an effect 

on the mainline, and thus ramp metering has less potential to be effective.  This was 

shown in both the generic network, and in the M27 network (where the two on-ramps are 

spaced very far apart).  Also, ramp metering was shown to be useful only at the higher 

OD levels, where congestion occurred.  At the lower OD levels, ramp metering causes 

vehicles to unnecessarily stop before entering the freeway, and this reduces the efficiency 

of the traffic flow. 

 

In all cases, ramp metering caused an increase in the travel time for ramp vehicles, as 

well as the total travel time.  However, the numbers are misleading for several reasons.  
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First of all, particularly in the networks with the short ramp spacing, vehicles spend a 

disproportionate amount of time on the ramps, and not much time on the network.  Once 

they finally enter the network, their travel time would be faster than it was with no ramp 

metering.  In real life, vehicles entering a freeway will remain on the freeway for a while, 

rather than just disappearing when they reach an artificial end of network. 

 

Also, in the real world, ramp metering has side effects that are beneficial to traffic flow 

that are not captured in the simulation.  In real life, decreasing the travel time for 

mainline vehicles while increasing travel time for ramp vehicles encourages drivers 

taking short trips to find an alternate route.  This encourages use of the freeway for 

distance travel, where it is intended to be, while encouraging local traffic to use local 

roads.  This leads to greater efficiency of the total network.  Also, in real life, when one 

ramp has a very long queue, drivers are encouraged to instead use another nearby ramp, if 

one is available, in order to decrease traffic on a ramp that is over capacity, while making 

use of other ramps that are below capacity.  Another side effect is that ramp meters 

decrease accidents on the freeway, which further improves travel time, but is not captured 

in the simulation.  One more solution that could be used to improve ramp traffic would be 

to add an HOV priority lane, in order to allow buses and carpools to bypass the queue and 

enter the freeway with little delay.  HOV priority lanes would encourage drivers to switch 

to modes with greater occupancy, and would reduce the number of cars on the freeway, 

and decrease congestion and decrease travel time. 
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The results showed that there was little difference between the algorithms, and that 

coordination generally did not significantly improve travel time.  This is consistent with 

other studies.  Generally, ALINEA/Q improved mainline traffic, but hurt ramp traffic, 

relative to the traditional ALINEA algorithm.  This is because the traditional ALINEA 

algorithm uses a binary queue control algorithm, where once the queue rises above a 

certain threshold, ramp metering is completely suspended, causing vehicles to flood the 

freeway.  However, the ALINEA/Q algorithm only increases the metering rate enough to 

maintain the maximum allowable queue length, in order to improve the mainline traffic 

flow as much as possible, without completely backing up the ramp traffic. 

 

The results were consistent with Hasan (1999) showing that FLOW was most useful at 

very high traffic volumes.  The FLOW algorithm has two major flaws.  The first flaw is 

that the local part of the algorithm is based on percent occupancy, which, according to 

Smaradgis and Papageorgiou (2003), is the least effective local algorithm.  This 

algorithm measures only upstream occupancy, and is an open loop algorithm, not taking 

into effect the actual performance of the traffic downstream of the ramp.  The second 

flaw is that it requires the operator to predetermine where a bottleneck can occur, and 

requires the ramp weighs to be determined offline, using historic data, with no theoretical 

formula to determine the weights. 

 

The Linked algorithm is theoretically the most promising algorithm, although the results 

showed that it was not very effective.  Since the Linked algorithm has not yet ever been 

used in the field, all that was developed was a theoretical algorithm, with no field 
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implementation.  In particular, no queue control was developed for the theoretical 

algorithm.  In this implementation, the same queue control algorithm used in the RMPS 

algorithm was used, which is not based on any theoretical framework.  The linked 

algorithm may performed better if it was refined to field use, and if a more robust queue 

control algorithm was used. 

 

It is also important to note that most simulation studies of ramp metering were performed 

on macroscopic simulators, while MITSIMLab is a microscopic simulator.  The 

macroscopic simulators are not able to model the effects of individual vehicles.  

Smaradgis and Papageorgious (2003) used a macroscopic simulator, and shows the 

ALINEA algorithm to be very effective, since it kept the downstream occupancy at the 

set point, with very little deviation.  However, in MITSIMLab, as well as in real life, 

congested traffic flow is unstable, and individual drivers behave differently, and thus it is 

not possible for the downstream occupancy to always be at the optimal level.  Also, many 

studies involving ALINEA study ALINEA with no queue control at all, whereas the 

traditional ALINEA algorithm studied here used a binary queue control algorithm. 

 

 

5.4 Regression Analysis 

For each of the four algorithms, a regression analysis was performed on the corridor 

travel time in order to determine the sensitivity of each parameter.  Each parameter is 

converted to dummy variables, and the following equation is used: 

εββββββββββα +++++++++++= 10109988776655443322110 XXXXXXXXXXY  (5.1) 
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Where: 

• Y = Corridor Travel Time Savings (%) 

• X1 = 1 if OD Demand at 6900 vph, 0 otherwise 

• X2 = 1 if OD Demand at 7200 vph, 0 otherwise 

• X3 = 1 if OD Demand at 7500 vph, 0 otherwise 

• X4 = 1 if Ramp Spacing at 4000 ft, 0 otherwise 

• X5 = 1 if Ramp Spacing at 8000 ft, 0 otherwise 

• X6 = 1 if Ramp Spacing at 16000 ft, 0 otherwise 

• X7 = 1 if Upstream Ramps have most traffic, 0 otherwise 

• X8 = 1 if Downstream Ramps have most traffic, 0 otherwise 

• X9 = 1 if 30% of total traffic enters from on-ramps 

• X10 = 1 if 35% of total traffic enters from on-ramps 

 

5.4.1 ALINEA 

Table 5.5, below, shows the results of the regression analysis for ALINEA 

  Coefficients Standard Error t-statistic 

á 1.945 1.203 1.616 
â 1 0.475 0.949 0.501 
â 2 2.600 0.949 2.740 
â 3 1.861 0.993 1.873 

â 4 -1.875 0.949 -1.976 

â 5 -3.375 0.949 -3.556 
â 6 -2.914 0.993 -2.934 

â 7 -1.427 0.873 -1.635 
â 8 1.113 0.822 1.354 
â 9 -0.321 0.802 -0.401 

â 10 0.943 1.172 0.805 
Adjusted R2 = 0.629 
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The intercept coefficient, á, shows that in the case of a total demand of 6600 vph, ramp 

spacing of 2000 ft, even distribution among on-ramps, and 25% ramp traffic, the corridor 

travel time improves by nearly 2% when ALINEA is used.  The t-statistics show that 

performance substantially increases when the total demand reaches 7200 vph, by 2.6%, 

and less so when the demand reaaches 7500 vph, by only 1.9%.  This makes sense, 

because at a demand level of  7200 vph, ramp metering has a chance to improve travel 

time, while at the greater congestion of 7500 vph, ramp metering is less effective, since 

traffic will always be congested.  The t-statistics also show that larger ramp spacings 

significantly reduce the effectiveness of ramp metering, while ramp traffic distribution 

and percentage of ramp traffic do not have any significant effect on performance.  When 

the ramp spacing reaches 8000 ft, the ramp metering performance decreases by 3.4%, 

making ramp spacing the most sensitive parameter. 

 

5.4.2 ALINEA / Q 

Table 5.6, below, shows the regression analysis for the ALINEA / Q algorithm: 

  Coefficients Standard Error t-statistic 

á 1.138 1.279 0.889 
â 1 1.325 1.009 1.313 
â 2 3.000 1.009 2.973 
â 3 3.225 1.056 3.054 

â 4 -2.475 1.009 -2.453 

â 5 -4.125 1.009 -4.088 
â 6 -3.550 1.056 -3.362 

â 7 -0.663 0.928 -0.714 
â 8 1.363 0.874 1.559 
â 9 0.750 0.853 0.879 

â 10 2.100 1.246 1.686 
Adjusted R2 = 0.685 
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This analysis, as expected, shows that ALINEA / Q behaves similarly to ALINEA.  With 

a total demand of 6600 vph, ramp spacing of 2000ft, 25% ramp traffic, and even 

distribution among ramps, ramp metering improves corridor travel time by 1.1%.  As 

with ALINEA, the ramp spacing and OD level have the strongest impact on performance.  

The major difference between ALINEA and ALINEA / Q is that ALINEA / Q performs 

best at, the highest OD level, 7500 vph, where it improves travel time by an additional 

3.2%.  This is because at the highest OD level, the queue control algorithm is invoked 

more frequently, and thus ALINEA / Q’s more efficient queue control algorithm has 

more of an effect on performance. 

 

5.4.3 FLOW 

Table 5.7, below, shows the regression analysis for the FLOW algorithm: 

  Coefficients Standard Error t-statistic 

á 1.900 1.451 1.309 
â 1 1.100 1.145 0.961 
â 2 2.900 1.145 2.533 
â 3 3.633 1.198 3.033 

â 4 -2.800 1.145 -2.446 

â 5 -4.850 1.145 -4.236 
â 6 -4.217 1.198 -3.519 

â 7 -1.017 1.053 -0.966 
â 8 1.050 0.991 1.059 
â 9 0.750 0.968 0.775 

â 10 1.733 1.413 1.227 
Adjusted R2 = 0.667 

 

This analysis shows that FLOW performs similarly to the other algorithms.  With a total 

demand level of 6600 vph, ramp spacing of 2000 ft, 25% ramp traffic, and even 

distribution among ramps, FLOW improves mainline travel time by 1.9%.  These results 
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are consistent with Hasan (1999) showing that FLOW is most effective at very high OD 

levels, with a total demand of 7500 vph improving the performance of ramp metering by 

an additional 3.6%.  As with the other algorithms, of all the parameters, ramp spacing had 

the most effect on the travel time savings.  When the ramp spacing reaches 8000 ft, the 

effectiveness of the ramp metering is reduced by 4.9%, which is a greater decrease than 

in the local algorithms.  This is because when the ramps are spread far apart, the traffic at 

one ramp has little impact on the traffic at another ramp, which makes coordination less 

useful. 

 

5.4.4 Linked Algorithm 

Table 5.8, below, shows the regression analysis for the Linked Algorithm: 

  Coefficients Standard Error t-statistic 

á 0.657 0.757 0.868 
â 1 0.425 0.597 0.712 
â 2 1.475 0.597 2.471 
â 3 1.902 0.625 3.046 

â 4 -1.200 0.597 -2.011 

â 5 -2.775 0.597 -4.649 
â 6 -1.723 0.625 -2.758 

â 7 -0.673 0.549 -1.226 
â 8 1.275 0.517 2.467 
â 9 0.179 0.504 0.354 

â 10 1.210 0.737 1.642 
Adjusted R2 = 0.735 

 

This regression shows that the Linked algorithm performs fairly similarly to the other 

algorithms.  A total demand of 6600 vph, a ramp spacing of 2000 ft, 25% ramp traffic, 

and even ramp traffic distribution shows that the linked algorithm improves mainline 

travel time by 0.7%.  Like FLOW, the other coordinated algorithm, this algorithm is 
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shown to perform best under highest demand levels, where at a demand level of 7500 

vph, the linked algorithm improves travel time by an additional 1.9%.  One result unique 

to this algorithm is that it performs significantly better when the downstream on-ramps 

have the most volume, improving performance by an additional 1.3%.  This can be 

explained that due to the fact that this is a preventative (rather than reactive) algorithm, it 

can use the upstream conditions to predict congestion at the downstream end of the 

network, while the other algorithms do not have this ability.
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Chapter 6 

Conclusions 

This project showed that under the right conditions, with closely spaced ramps and heavy 

traffic, ramp metering can be very beneficial to the mainline traffic.  However, the 

conditions under which ramp metering is beneficial are fairly narrow.  Although ramp 

metering may increase delays to the ramp traffic, this can actually promote more efficient 

use of the network. 

 

6.1 Summary of Findings 

• Ramp metering has the most significant impact on mainline traffic flow when the 

ramps are spaced closely together.  Ramp metering can significantly improve 

traffic when the ramps are spaced at 2000 ft.  However, once the ramp spacing 

reaches around 8000 ft, ramp metering ceases to have any significant benefits.  

This is because closely spaced ramps can significantly impact the flow of traffic 

on the mainline, whereas if the ramps are spread farther apart, they have less of an 

impact 

• Ramp metering is only useful at high volumes, where flow breaks down.  In order 

for ramp metering to be effective, the traffic volumes upstream of the ramp must 

be below capacity, while the traffic volumes downstream of the ramp must be 

above capacity 
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• The traditional ALINEA algorithm performs best when the total demand is 

slightly above capacity, 7200 vph in this case.  When the volume reaches 7500 

vph, the controller spends much of its time in queue override, which causes ramp 

metering to shut off, and defeats any benefits. 

• ALINEA / Q performs significantly better than ALINEA at very high traffic 

volumes, 7500 vph.  This is because rather than using a binary on / off queue 

algorithm, this algorithm takes into account both mainline traffic conditions as 

well as queue length in calculating the metering rate.  The queue override 

algorithm raises the metering rate just enough to maintain the queue at its 

maximum allowable length, making maximum use of the ramp queue storage 

space. 

• The coordinated algorithms: FLOW and the Linked Algorithm, also perform 

better at very high traffic volumes, 7500 vph.  This is because the coordinated 

nature of these algorithms make them better able to handle highly congested 

traffic at locations away from the ramp, and allows ramps upstream of a 

bottleneck to be metered more restrictively, rather than placing all the burden on a 

single ramp. 

• For coordinated algorithms, the performance degrades at higher ramp spacings, 

starting around 8000 ft, even more than the local algorithms.  This is because 

when the ramps are spaced further apart, traffic at one ramp has very little impact 

on the traffic at another ramp, thus defeating the purpose of coordination. 

• When the downstream ramps have the most traffic, the Linked algorithm performs 

significantly better, while the other algorithms are not sensitive to traffic 
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distribution.  This is due to the predictive nature of the linked algorithm, which 

allows it to use upstream measurements to predict the downstream conditions, and 

meter each ramp accordingly 

• Ramp metering, by itself, significantly increases delay to ramp traffic and to the 

total traffic.  However, this encourages more efficient use of the network.  It 

encourages long distance traffic to use the freeway, while local traffic would be 

encouraged to use local streets. 

 

6.2 Future Work 

Because ramp metering by itself was shown to increase total travel time, due to increased 

ramp travel time, further studies can be performed to study the side effects of ramp 

metering, and how they can improve overall traffic: 

• The effect of diversion to local streets could be studied.  Currently, many drivers 

enter a freeway, and exit only a few exits later.  This frequent entering and exiting 

causes turbulence in the traffic stream.  A long ramp queue may encourage some 

drivers who would only be entering the freeway for a short distance to divert to a 

local street, thus leaving more space on the freeway for long distance traffic, 

which it is intended to serve. 

• The effect of traffic diverting to less congested ramps could be studied.  Ramp 

metering can often cause a long queue on a single, heavily congested on-ramp.  

Ramp metering may encourage traffic using this ramp to instead enter via a 

different ramp, with a shorter queue and excess capacity, making the most out of 

existing capacity. 
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• The effect of having an HOV priority lane could be studied.  An HOV priority 

lane would allow buses and carpools to jump the queue, avoiding most of the 

delay caused by ramp meters.  This may encourage drivers who previously drove 

a single occupancy vehicle to start carpooling or riding a bus, in order to reduce 

the number of cars on the road. 

• Enhancements can be made to the field implementation of the Linked algorithm.  

In particular, a more efficient queue control algorithm could be developed.  Since 

this algorithm has not yet been used in the field, only the theoretical algorithm has 

been developed, which has not yet been refined for use in the field.  In particular, 

the algorithm, as designed, has no queue control built into it.  For this particular 

implementation, the queue control algorithm used in the RMPS on M27 was used.  

A more efficient algorithm that takes into account both the mainline volumes and 

the queue lengths, such as the RMPS queue control algorithm, could be used here.  

Also, the queue control algorithm proposed by Gordon (1996) could be used. 
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Appendix A 

Sample Input File for RMPS Algorithm 

07:00:00 # Becomes in effect at 7:00AM 
{ 
  2 #ControllerID - Junction 10 
  9 #ControllerType (9 = RMPS) 
  60    #updateStepSize_ , step size for calculating parameters 
  12 #SignalType (ramp meter) 
  1 # NumEgresses (number of outgoing links) 
  10  # Ramp Number 
   {  
    2  # nApproaches (number of signals) 
      { 
 0 1     # SignalIDs 
      } 
    { 0.250 #Flow smoothing coeficient 
      0.250 #Speed smoothing coeficient 
      1.000 } #Ocupancy smoothing coeficient 
 
 
#Switch on and off parameters 
 60 # On / off review period (sec) 
300 # Minimum flow threshold (vph) 
3 # Number of lanes in mainline 
1 # number of mainline sensors per lane 
# Sensors    Rising Flow   Rising speed  Falling Flow   Falling speed 
{ 
  27 28 29        4800          53            3900           47 
} 
#Note: speed is given in mph, even though the UK data is in km/h 
 
# Cycle Length thresholds 
#  Rising Occupancy   Falling Occupancy   Cycle length 
{ 
   0                  0                   12 
   16.20              14.60               15 
   18.20              16.40               20 
   20.20              18.20               30 
   21.70              19.10               40 
   22.20              20.00               60 
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} 
# Number of Mainline lanes 
3 
 
# Number of Mainline Detectors per lane 
1 
 
#Detector numbers 
{ 
   27 28 29 
} 
 
 
{ 
  9 # release loop number 
  2 # number of vehicles permitted to cross line per cycle 
  0 # lane offset (sec) 
  2 # amber time with no queue (sec) 
  1 # amber time with queue (sec) 
 30 # maximum idle time (sec) 
  4 # green time if no release loop is present (sec – never used) 
  3 # minimum red time (sec) 
 30 # start sequence green time (sec) 
 15 # start sequence red time (sec) 
 60 # maximum starting green time (sec) 
  1 # starting amber time (sec) 
 20 # green time when queue is present (sec) 
 10 # red time when queue is present (sec) 
  3 # amber time when queue is present (sec) 
  2 # extended starting amber time (sec) 
} 
 
# Queue control parameters 
# number of queue loop detectors per lane 
5 
# loop_number weight 
{ 
  10 9 
  12 11 
  14 15 
  16 30 
  18 50 
  11 9 
  13 11 
  15 15 
  17 30 



 93

  19 50 
} 
 
# metering rate adjustment thresholds for queue control 
{ 
   100 200 300 9998 9999 
} 
 
# occupancy level thresholds for queue control 
{ 
   20 40 60 
} 
} # end of controller 

} # end of all controllers 
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Appendix B 

Sample Input File for ALINEA / Q 

Algorithm 

 
7:00:00 # Becomes in effect at 7:00AM 
{ 
  2 #ControllerID  
  15 #ControllerType (15 = ALINEA / Q) 
  30    #updateStepSize_ , step size for calculating parameters (sec) 
  12 #SignalType (ramp meter) 
  1 # NumEgresses (number of outgoing links) 
   {  
    2  # nApproaches (number of signals) 
      { 
 0 1     # SignalIDs 
      } 
     2 
      # 1 = Single Metering, 2 = Platoon Metering  
       {  
 240 #minMeteringRate_       queueing concern 
 2640 #maxMeteringRate_ capacity  
 30 #cycle_  
        2 #yellow 
        2 #lost time 
        0 #minRed_ 
        26 #max_red  
       } 
     { 
 70.0 #regulator   a constant parameter  
 30.0 #desiredMeasurement_  target occupancy (%) 
        3  # num of mainline occupancy detectors 
        { 27 28 29 } #mainline occupancy detector IDs 
     }  
    // Queue Control Parameters 
     { 
        40     # Maximum Allowable queue length (veh) 
        2       # Number of ramp lanes 
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        28  #num of queue detectors for queue override per lane 
 { 
         47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 
         67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 
         87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102    
 } # List of all queue detectors – Must be set to 1 sec sampling rate 
       { 74 102 } # Demand Detectors 
      }  
  }  # End of a controller 
} # End of All controllers 
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Appendix C 

Sample Input File for Linked Algorithm 

07:00:00 # Becomes in effect at 7:00AM 
{ 
  2 #ControllerID  
  14 #ControllerType (14 = Linked) 
  60    #updateStepSize_ , step size for calculating parameters (sec) 
  12 #SignalType (12 = ramp meter) 
  1 # NumEgresses (number of outgoing links) 
   {  
    2  # number of ramps in region 
    2  # nApproaches (number of signals) 
      { 
       #signalID RampID 
        0                0 
        1                0 
        2                1 
        3                1 
      } 
 
3 #number of mainline lanes 
4  #number of detector stations 
{ 
  33 34 35 #DetectorIDs, detector station 1 
  27 28 29 #DetectorIDs, detector station 2 
  36 37 38 #DetectorIDs, detector station 3 
  30 31 32 #DetectorIDs, detector station 4 
}   
 
{ 
  10 #Minimum Cycle (sec) 
  4 # green (sec) 
  1 # start amber (sec) 
  2 # stop amber (sec) 
  30 #startup green (sec) 
  2 #startup stop amber (sec) 
  15 #startup red (sec) 
} 
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5  # number of queue detectors per lane on first ramp 
3  # number of queue detectors per lane on second ramp 
{ #detectorID   Weight 
  10 9 
  12 11 
  14 15 
  16 30 
  18 50 
  11 9 
  13 11 
  15 15 
  17 30 
  19 50 
 
  21 10 
  23 30 
  25 50 
  22 10 
  24 30 
  26 50 
} 
 
{ 
100 200 300 9998 9999 # metering rate adjustment thresholds for queue control Ramp 1 
60 120 180 9998 9999 # metering rate adjustment thresholds for queue control Ramp 2 
} 
 
{ 
20 40 60  # occupancy level thresholds for queue control Ramp 1 
20 40 60 # occupancy level thresholds for queue control Ramp 2 
} 
} #End of a control region 
} #End of all controllers 
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Appendix D 

Connecting MATLAB and MITSIMLab 

In order to implement the linked ramp metering algorithm, code written in MATLAB was 

used.  Use of the MATLAB Engine is necessary to link MITSIMLab and MATLAB so 

that MITSIMLab can call MATLAB, and to pass data between the two programs. 

 

The MATLAB Engine should be installed when MATLAB is installed.  In order to use 

the functions in the MATLAB Engine, its header file must be included, by adding the 

following line to your source code: 

#include <engine.h> 

 

Also, in your class definition, you must define a pointer to a MATLAB Engine object: 

Engine* pMatlab_; 

Obviously, you can substitute any object name you wish for pMatlab_.  The underscore 

(_) character is a general convention used for class members. 

 

In order to run MATLAB code, the following steps must be followed: 

1. Open the MATLAB Engine 

2. Convert any data you want to send into MATLAB into a MATLAB array 

3. Send the data to MATLAB 

4. Execute the MATLAB code 
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5. Send the MATLAB output to MITSIMLab 

6. Convert the output to a C / C++ array (and if you wish, to a vector, or any other 

data structure) 

7. Close the MATLAB Engine 

 

Opening the MATLAB Engine 
 
The first step is to open the MATLAB engine.  When you initialize the class (in its 

constructor, or elsewhere), the engine object pointer should be set to a null pointer: 

pMatlab_ = NULL; 

 

The first time the engine is needed, a test should be run to see if the engine points to null.  

If it does, the engOpen function should be used to open the engine: 

if (pMatlab_ == NULL) { 

      if (!(pMatlab_ = engOpen(NULL))) { 

                 cerr << "Error:: Can not open MATLAB"; 

                 theException->exit(1); 

      } 

      cout << "Launch Matlab Engine." << endl; 

} 

 

Since pMatlab_ was previously set to null, it will remain null until the engine is open.  

The engOpen function opens the engine.  If its argument is null, it will just open the 

engine, otherwise you can pass it a string, and MATLAB will execute the string as a 
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command.  If for some reason the engine fails to load, engOpen will return false; the 

above test will display the error message and throw an exception.  This is important, 

since the rest of the program will depend on the MATLAB engine.  If this code is part of 

a loop, if the engine is already open, pMatlab will point to something other than null, and 

the program will continue without needing to reopen the engine.  When you load the 

engine, there will be a slight delay, and the MATLAB welcome screen will briefly pop 

up.  However, once the engine is loaded, MATLAB will run reasonably quickly. 

 

Converting input into a MATLAB array 
 
The MATLAB engine defines a class mxArray, which contains data in a form 

understandable to MATLAB, in order to pass data to and from MATLAB.  A pointer to 

an mxArray object must be defined: 

mxArray occArray; 

 

Next, the array must be initialized: 

occArray=mxCreateDoubleMatrix(1,nDetectors_,mxREAL); 

 

The mxCreateDoubleMatrix creates a MATLAB array of type double (double precision 

floating point).  The first two parameters specify the size of the matrix.  Since we are 

sending a row vector, the array has 1 row and nDetectors_ columns.  The parameter 

mxREAL tells the engine that this array contains the real (as opposed to imaginary) 

component.  Since most MITSIMLab work involves only real numbers, mxREAL is 

almost always used. 
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In order to convert the data into a MATLAB array, the data must first be stored as a 

standard C / C++ array: 

double tempOcc[nDetectors_]; 

 

If the input data is in another data structure (such as a vector) it must first be converted 

into a standard array. 

 

Finally, use the memcpy function to copy the actual data: 

memcpy(mxGetPr(occArray),tempOcc,sizeof(tempOcc)); 

 

The memcpy function works by copying the data pointed to by tempOcc to the memory 

pointed to by mxGetPr(occArray), copying sizeof(tempOcc) bytes.  tempOcc obviously 

points to the first element of the tempOcc array.  The mxGetPr function returns a pointer 

to the first element of occArray. 

 

Sending the data to MATLAB 
 
Once the data is converted into a MATLAB array, it is easy to use the engPutVariable 

function to send the data to MATLAB: 

engPutVariable(pMatlab_,"occInput",occArray); 
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This sends the data in occArray (created in the previous step) and creates a MATLAB 

matrix called occInput.  The matrix name that MATLAB uses must be sent as a string.  

The MATLAB code that is run in the next step has access to occInput. 

Running the MATLAB code 
 
The function engEvalString is used to run MATLAB code: 

   if (engEvalString(pMatlab_,"linked")) { 

          cerr << "Error:: Calling Matlab." << endl; 

          engClose(pMatlab_); 

          theException->exit (1); 

   }    

 

MATLAB will run either an internal command called linked (if it existed), or run a file 

called linked.m.  The engEvalString function allows you to run anything that can be run 

from the standard MATLAB command line; in this case it is used to execute an m-file.  

The only difference is that when run through the engine, you cannot see any MATLAB 

screen display, since it is run in the background.  engEvalSring returns 0 if the code runs 

without error.  The above test is used to find whether or not it causes an error, anf if It 

does, it will display an error message, close the engine, and throw an exception. 

 

Sending MATLAB output to MITSIMLab 
 
The MATLAB output must be received as an mxArray: 

MxArray* matlabCycle_; 
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The engGetVariable function is used to receive the data: 

matlabCycle_=engGetVariable(pMatlab_,"cycle"); 

 

This function gets a MATLAB matrix called cycle, and sends it to MITSIMLab, in a 

MATLAB array called matlabCycle_. 

 

Converting output to a C / C++ array 
 
The MATLAB data must now be converted into a format understandable by your 

program. 

double* cycles; 

cycles=mxGetPr(matlabCycle_); 

 

The mxGetPr function takes the data pointed to by matlabCycle_, and copies it to the 

standard array pointed to by cycles.  cycles is a standard C / C++ array, it can now be 

converted into a vector or any other data structure, or used directly as an array. 

 

Closing the MATLAB Engine 
 
To close the MATLAB engine, simply use the engClose function, either in the destructor, 

or elsewhere: 

engClose(pMatlab_); 
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Compiling and linking the code 
 
In order to compile and link the code, there are several libraries that must be attached.  

All of these should be installed with MATLAB.  In the makefile, the –L switch is used to 

specify a search path for libraries: 

-L/opt/matlabR13/extern/lib/glnx86 

 

glnx86 should be changed to whatever architecture is being used. 

 

To link the libraries, the –l switch is used in the makefile: 

-lm -leng –lmx 

 

These switches link the libraries libm.so, libeng.so, and libmx.so. 

 

Finally, before you run make, and whenever you execute MITSIMLab, the 

LD_LIBRARY_PATH environment variable must be set: 

setenv LD_LIBRARY_PATH /opt/matlabR13/extern/lib/glnx86:$LD_LIBRARY_PATH 

 

Again, glnx86 should be substituted with whatever architecture is being used. 

 

It is important to set this environment variable before you run make, and also before 

MITSIMLab is run.  Also, it is important to set the variable before pvm is started.  In the 

case that the program will not run no matter what you do, then halt pvm, set the 

environment variable, and then start pvm again, and it should work. 
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