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ABSTRACT 
Driving behavior models for lane-changing and acceleration form an integral component of 

microscopic traffic simulators and determine its value in evaluation of different traffic 

management strategies. The state-of-art model for lane changing adopts a two-level framework: 

the first level involves a latent or unobserved choice of a target lane; the second level models the 

acceptance of adjacent gaps in the direction of the target lane. While this modeling approach has 

several advantages over past works, it assumes drivers to execute lane change within the same 

time step in which gap was found to be acceptable. In other words, under time steps typically 

adopted in model applications, the lane change duration is assumed to be negligibly small. 

However, past works report average lane change durations to the order of 5-6 seconds. Besides 

this practical maneuvering requirement, the assumption fails further in moderate or low density 

traffic conditions with ample gap sizes or low speed conditions, where lane changing maneuver 

can take longer than average. The work outlined in this thesis proposes an extension to the two-

level framework for lane changing models through a third level that explicitly models the lane 

change duration. Traffic conditions in the driver’s neighborhood that are likely to influence lane 

change duration are accounted for in the third level. 

The extended model is applied to data obtained from video observations on traffic on a stretch of 

an arterial corridor in California. Apart from possessing distinctive features including signalized 

intersections and multiple access locations that result in lower average speeds, the arterial dataset 

used in this study represents a relatively low density scenario in terms of gap availability, thereby 

presenting an ideal test-bed for the proposed model extension. Since arterial datasets have not 

received predominant attention in literature, this work uncovers some traffic aspects not 

encountered in past studies. 

The model is estimated using a sample of the overall dataset available in the form of 

disaggregate vehicle trajectories. The estimated model is implemented in a microscopic traffic 

simulator MITSIMLab, and model validation is done using aggregated traffic data. Estimation 

and validation results showcase the improved modeling capabilities achieved through the 

proposed extension. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1 Problem of traffic congestion 

In the last two decades, traffic congestion has become the single most critical concern for road 

transportation planners and operators and researchers in general. Indeed, the rate of growth in 

urban and freeway congestion over different parts of the world has been very alarming. Given 

the influence road transportation exerts on national economy, especially in the developed nations, 

the rise in congestion has propagated several detrimental effects through the economic 

performance and turnover of several countries. Congestion also means greater time spent by 

automobiles on traffic, implying an increasing amount of fuel emissions, thereby raising serious 

environmental concern.  

In United States alone, the total hours of congestion-induced delay in major urban areas 

amounted to 3.7 billion vehicle hours in the year 2003, an estimated increase of 50% from the 

corresponding figure 10 years before (Schrank et al., 2005). The total dollar value of this delay, 

including fuel costs and value of the time lost, was estimated to be about 0.6% of the US GDP at 

the time. Statistics also indicated that congestion was spreading over different urban cities, with 

an alarmingly increasing number of areas starting to suffer in severe proportions.  

 

1.2 Solution strategies for congestion 

It is now widely accepted in different transportation-related stakeholder circles that increasing 

roadway capacity is not a viable solution to the congestion problem, both from a feasibility as 

well as economic perspective. It was estimated that an additional 5000 lane miles of freeways 

and arterials would have been required to contain the contemporary congestion and meet the 

growing travel needs of people (Schrank et al., 2005). Given this projected rate of growth, such 

an endeavor would entail huge capital investments and therefore impose heavy financial burdens. 

Also, such an option forces the acquisition of land space for road construction, and the current 

land-use density numbers in many developed parts of the world make this further intractable. 
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Therefore, the focus of late has shifted to investing in operational infrastructure management that 

allows for a better and balanced utilization of current road space. Such strategies aim to enhance 

the realized roadway capacity and help mitigate current or forecasted congestion, which at most 

times is the result of a skewed demand for existing road resources. 

Operation improvement strategies have grown in prominence over the last decade, and the results 

justify the interest and hope placed in them. The source for the above-mentioned statistics ranks 

operational treatments rank as the second-most effective strategy for containing congestion, 

behind public transportation. They had delivered a relief of almost 10% of the total congestion, 

in terms of vehicle delay hours, by 2003. There is significant promise in their future applications 

towards congestion mitigation. 

 

1.3 Value of traffic simulation 

It is in this domain of transportation operations planning that microscopic traffic simulation has 

been rapidly gaining prominence. The two broad and key services offered by microsimulation 

that adds tremendous value to the efforts along the direction of above described approach are:  

• The study and simulation of local (traffic in immediate vicinity, etc) and global 

(travel times on different routes, etc) interactions governing the travel behavior of 

every individual on the road, including the effects of traffic control measures and 

road configurations, and its ultimate impact on traffic conditions; 

• The consequent forecast of traffic conditions in reaction to proposed 

modifications to traffic control elements and strategies, and accurate estimation of 

key performance metrics used for the evaluation of these strategies. 

As a consequence, several microscopic traffic simulators (AIMSUN, PARAMICS, VISSIM, 

MITSIM, etc.) have been developed in the recent past, each with their own distinct 

representation of the traffic world, and all for the purpose as described above. The ability of 

these simulators to accurately replicate the real traffic world is the single-most important 

determinant of its value to its intended functional purpose: the evaluation of traffic control and 

management strategies. 
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1.3.1 Driver behavior models for simulation 

Driver behavior models are theoretical abstractions of actual driver behavior. They aim to 

explain in detail the motion of road users in traffic as influenced by various external stimulants 

and personal driving goals, through a decision/rule-based framework. Their nature and 

theoretical approach differ across simulators, but they invariably form the core amongst the 

various models that constitute each of these simulators. The quality of these models, assessed in 

terms of their ability to accurately replicate the various complex interactions dictating driver 

behavior in traffic, form the key to the overall ability of the simulator to replicate and forecast 

traffic conditions for their various applications. Development of advanced and behaviorally 

representative models has therefore been the focus of several dedicated research works in the 

past, and continues to be an active research area. It also forms the background for the work 

reported in this thesis. 

 

Most microscopic simulators replicate driving as a discretized motion comprising of longitudinal 

and lateral components in each simulation time step. The longitudinal motion of a driver depends 

upon his/her instantaneous acceleration, while the lateral motion is captured through his/her lane-

changing behavior. Literature is replete with models for both acceleration and lane-changing 

behavior of drivers. The scope of this thesis is the domain of models that characterize driver’s 

acceleration and lane-changing as the output of a conscious decision process. While it is 

understood and acknowledged that both these actions are inherently inter-related and need to be 

modeled jointly, the focus of this work has been devoted to the lane-changing aspect of driving 

behavior only. 

 

1.4 Application scenario: Freeways vs Arterials 

There are two major types of roadways that serve auto traffic: the freeways that serve inter-city 

traffic and the arterials that serve urban intra-city traffic. Freeway traffic has been the focus for 

driving behavior research in the past, for two major reasons: 

• Freeway congestion has repeatedly resulted in severe breakdowns of transportation 

networks in several parts of the world, thereby motivating immediate research efforts 

towards mitigating them; 
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• The availability of detailed observed data for freeway traffic that facilitated development 

and estimation of driving models. 

While, perhaps spurred on by these two factors, there exists vast literature in the field of freeway 

driving models there is a scarcity among works specifically focusing on arterial traffic. Arterial 

traffic differs from that on freeways in more than one respect, and these differences in 

themselves entail the study and development of dedicated models. Also, there has been a 

significant growth in urban traffic in many large cities of late, further motivating the need to 

embark on a detailed study of their characteristics, and evaluate different traffic management and 

operational approaches suited to the arterial environment. 

 

Traffic in arterials in general follow a start-stop mode, characterized by relatively low average 

speeds compared to a freeway owing to signalized intersections and multiple access points. The 

high proportion of turning vehicles, both entering and exiting off the road, result in significant 

merging and diverging movements. Therefore, the set of simple considerations that influence the 

longitudinal and lateral movements of drivers along a freeway stretch that serves only through 

traffic may well be extended in arterial situations. Most importantly, the average time spent by a 

vehicle in arterial traffic is significantly shorter than that in the freeway. Consequently, drivers’ 

focus tend to be on arriving at their respective exit points, rather than following a traffic stream 

desirable from the individual’s perspective on driving comfort. This tendency is also motivated 

by the absence of a significant speed advantage across lanes as typically observed on an arterial. 

Drivers therefore perceive little benefit in switching lanes for the sake of driving comfort. 

 

1.5 Thesis work 

This work deals with the study of arterial traffic and development of lane-changing driver 

behavior models for analyzing the same. It extends a model framework previously adopted for 

freeway traffic and applies it to arterial traffic. Apart from study of lane-changing behavior in 

arterials, the need to explore a previously ignored behavioral aspect motivates this proposed 

extension. Implicit assumptions on driver behavior exist within the model framework adopted in 

several past applications that have tended to focus on congested scenarios and/or freeway traffic. 

Specifically, it has been assumed that drivers execute lane change in a negligibly small time such 
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that the lane change maneuver coincides with the time instance during which they experience 

acceptable adjacent gaps. An argument in favor of this assumption might relate to the prevalent 

congestion in traffic, rendering opportunities for lane changing few and far between and forcing 

the driver to respond quickly. Additionally, in high speed traffic conditions like in freeways, the 

duration of a lane change maneuver may indeed be lower than average. However, this cannot be 

expected in small traffic pockets where gaps for lane change stay continually acceptable over a 

longer duration. Drivers in such conditions, pertaining to their individual characteristics, might 

execute their lane change in a more relaxed manner, since they perceive no compelling urgency 

to complete the lane change. 

The proposed extension to the model framework is therefore an attempt to make it more general 

and overcome a significant assumption adopted during applications to congested and/or freeway 

environments. It is applied and tested under arterial driving conditions 

The availability of detailed and disaggregate vehicle trajectory data from video observations of 

traffic on an arterial road in California, U.S.A, facilitated the estimation of the developed 

model. .The predominance of relatively large gaps in the dataset allows for testing the validity of 

the elements in the extended model framework that distinguish and enhance it in comparison to 

the two-level model framework applied to congested freeway situations. 

Aggregate validation of the estimated model was carried out on MITSIMLab (Yang and 

Koutsopoulos, 1996), a microscopic traffic simulator developed at the Intelligent Transportation 

Systems Laboratory at MIT. 

 

An overview of the overall model development process adopted in this study is presented in 

figure 1.1 below, enlisting the sequence in which different task modules including model 

estimation and validation were executed. This would help serve as a reference guide for the 

reader through the sequence of chapters that detail the application case study. 
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Figure 1.1: Overall Model Development Process 
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Data processed from disaggregate vehicle trajectories are used for estimating the model 

formulated adopting the above-discussed extension. Model estimation is an iterative process and 

involves the selection of best specification after the testing of different specifications. The 

estimated model is then implemented in a simulator and its applicability to a different scenario is 

tested. Data on the test scenario is prepared in aggregate form and segmented into two parts, 

typically based on time interval. The implemented model is calibrated using the first part of the 

aggregate data from the test scenario and validated on the second part. The final validation 

measures are used as performance metrics to assess the predictive quality of the developed model. 

 

The outline of the thesis, following this introduction, is as follows: a set of relevant works on 

lane changing models and their various applications available in literature are discussed next. 

This is followed by a description of the model framework and structure as proposed in this work. 

The application of the proposed model to the aforementioned arterial traffic dataset is 

demonstrated, highlighting results of model estimation and validation and a comparative analysis 
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with respect to the two-level model that serves as a reference base. The final chapter summarizes 

the contributions of this work and highlights some suggested directions for future research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The advent of microsimulation has stimulated intense research in the field of driver behavioral 

models. A great deal of emphasis in this line of research has been devoted towards the analysis 

of lane-changing and acceleration behavior. The application of these models has been 

predominantly limited to freeways, owing to issues concerning data availability and stakeholder 

focus. This chapter is presented in two parts: the first section presents a discussion of driver lane-

changing models most relevant to the current work, including the recent developments. It 

identifies the limitation among current models and thereby develops the motivation for the 

proposed model extension. The second section outlines some past research works that have been 

applied in the domain of arterial driving analysis. 

 

2.1 Lane-changing models: Trends and State-of-art 

 

A comprehensive review on the state-of-art in lane changing models is available in Toledo 

(2007). A brief summary of the lane changing models discussed in that review and relevant to 

the current work is presented here. 

Traditionally, lane changing models assume a two-step decision process, lane selection, and lane 

change execution. The desire to change lanes, in most models, is assumed to arise from either of 

two kinds of motivations: Mandatory (when the need for a lane change is necessitated by a lane 

drop, incident or approaching exit junction) or Discretionary (when a driver seeks better driving 

conditions compared to that experienced in his current lane). The lane selection process is 

influenced by the underlying nature of motivation for lane change. The lane change execution 

process is distinguished from the lane selection process, and modeled using gap acceptance 

models. The next two sections discuss the developments in each of these two model components 

leading to present state-of-art, as derived from literature. 
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2.1.1 Lane selection 

The lane selection component of lane-changing models has undergone profound improvements 

since the first models were proposed. 

Among the earliest lane changing models, the most popular one was that developed by Gipps 

(1986). Similar models were later developed by Hidas et al.(1999), Hidas et al.(2002) and Halati 

et al.(1997) and implemented in the microscopic simulators SITRAS and CORSIM respectively. 

The basic structure of these models treated lane selection as a rule-based process, where the set 

of lanes in the driver’s choice set were repetitively evaluated based on different considerations or 

rules prioritized through a deterministic sequence. This sequence was updated based on the 

driver location with respect to his trajectory and exit point. The rules/considerations governing 

lane changes could be broadly classified as belonging to either a Mandatory (MLC) or 

Discretionary (DLC) category. Due to the predetermined sequence of these considerations, the 

models failed to capture trade-offs between the different factors that could motivate or influence 

a lane change. They also did not consider variability in behavior among different drivers. These 

factors dented the realism of the models. Another critical shortcoming in these works was the 

absence of any proposed framework for model estimation. 

 

Yang and Koutsopoulos (1996) were among the first to overcome the deterministic framework of 

the previous models. In their models, drivers would initiate an MLC action with certain 

probability that depends upon explanatory factors including distance from exit point, traffic 

density, etc. The DLC process, initiated when driver’s current speed is lower than his desired 

speed, involved the selection of the best among current and neighboring lanes, based on 

prevalent driving conditions. The key enhancement offered by these models was the introduction 

of a random utility framework for lane selection. It thereby helped capture trade-offs between 

various factors influencing lane choice at any given instant. These models were implemented in 

MITSIMLab, a microscopic traffic simulator developed at the Intelligent Transportation Systems 

Laboratory at MIT. 
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Ahmed (1999) provided an improved version of lane-changing models that captured both MLC 

and DLC situations. The model framework is presented in figure 2.1. 

Figure 2.1: Structure of the lane-changing model proposed by Ahmed (1999) 
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Lane changing was modeled as a three-level decision process: decision to consider a lane change, 

selection of target lane if considering a lane change, and acceptance of gaps in the target lane to 

execute the lane change. The decisions in the first two levels were modeled using random utility 

models in a discrete choice framework. The first level involved a two-step decision process for 

determining driver’s motivation to change lanes. The driver first considers a mandatory lane 

change situation. Following the rejection of an MLC situation, the driver considers the DLC case. 

Following a decision to pursue either an MLC or DLC, the driver enters the lane selection level, 

wherein he evaluates his current and neighboring lanes on the basis of existing driving conditions. 

On choosing a lane other than his current lane, the driver evaluates the adjacent gaps available in 

the chosen lane. Gap acceptance decisions were modeled using critical gaps, which were random 

variables representing the minimum gap a driver would require to execute a safe lane change 

given certain driving conditions. Estimation for parameters at all levels was conducted separately 
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for MLC and DLC situations, using detailed trajectory data from two different locations, one 

corresponding to a purely MLC situation, and other to purely DLC situations.  

One drawback that persisted among these models was that MLC and DLC situations were still 

handled separately, with the former accorded precedence over the latter. Therefore, trade-offs 

between these two motivations for lane-changing could not be considered, and knowledge of the 

type of situation at hand (MLC or DLC) at every instant of a driver’s trajectory was assumed. 

 

Toledo (2003) introduced an integrated driving behavior model that combined MLC and DLC 

considerations and incorporated them at the same level of driver’s lane selection process. The 

framework for the integrated model is presented in figure 2.2.  

Figure 2.2: Structure of the integrated driving behavior model proposed by Toledo (2003) 
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The utility function for lanes considered in the lane selection process accounts for both MLC and 

DLC related factors. Integration along another behavioral dimension was achieved through this 

model, wherein the interdependencies between the lane changing and acceleration decisions of a 

driver were captured. Lane-changing and acceleration were both considered to be actions 

governed by a latent planning process, executed by the driver with an objective of fulfilling 

latent goals (eg: moving to a desired lane). Joint estimation was carried out for lane selection and 

gap acceptance model parameters, with results showcasing the significant improvement brought 

about by the explicit modeling of trade-offs between MLC and DLC considerations.  
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The integrated driving behavior model however continued to carry over one limitation from 

some of its predecessors, in that it assumed drivers to exhibit myopic behavior when it came to 

lane selection. The choice set only included the driver’s current lane along with his immediate 

left and right lanes. Choudhury (2005) extended the lane selection framework to include all lanes 

in the cross-section of the driver’s road segment in his choice set, and termed it the target lane 

selection model. The model framework is presented in figure 2.4, and analyzed in further detail 

in section 2.1.4. An immediate modeling advantage obtained by this enhancement was the ability 

to model lane changing in the presence of exclusive usage lanes like HOV or HOT. In such 

situations, vehicles in traffic could overlook the relative disutility of immediate neighboring 

lanes and target the exclusive lane, but this phenomenon cannot be replicated using the previous 

myopic lane selection models. Estimation and validation results confirmed the superiority of the 

target lane selection model, especially in scenarios involving exclusive usage lanes or other types 

of significant differentiation among lanes across the cross-section of a road segment. 

 

Ahmed’s, Toledo’s and Choudhury’s models were each tested and validated in MITSIMLab. 

Choudhury’s target lane selection framework represents the state-of-art among all approaches to 

lane selection modeling, and was adopted for the model developed in this work.  

 

2.1.2 Gap acceptance 

Gap acceptance models first evolved in the context of vehicle behavior modeling at unsignalized 

intersections. They were used to explain the merging behavior of vehicles from minor streams 

that do not possess right-of-way into inter-vehicle gaps in the major stream. Subsequently, they 

were integrated with lane selection models resulting in the development of standard lane-

changing models. Gap acceptance is typically modeled as a binary choice process. The driver 

compares a representative measure of the available adjacent gap with a critical threshold, also 

known as critical gaps. This threshold value is determined based on model parameters and/or 

given neighboring situation as per the adopted specification, and is assumed to follow a chosen 

random distribution, both of which vary across studies in literature. 

 



  23 

Herman and Weiss (1961), Drew et al. (1967) and Miller (1972) were among the first to 

investigate the application of gap acceptance models in intersection behavior studies. They 

assumed the critical gaps to follow an exponential, a log-normal and a normal distribution 

respectively. They, similar to other contemporary researchers, used the time headway between 

the lead (or lag) and the subject vehicle as the representative measure for the lead (or lag) 

adjacent gap. Their specification of the critical gap only included the mean and the variance as 

model parameters requiring estimation.  

 

Daganzo (1981) developed a model that allowed for variation of the mean of the critical gap 

across individuals and time instances, thereby facilitating complete usage of a panel dataset of 

merging observations that included consecutive instances of gap rejection before the merge 

execution. A normal distribution for critical gaps was assumed. Model estimation was carried out 

for a dataset comprising of roadside vehicle observations. Mahmassani and Sheffi (1981) 

extended the model specification to help differentiate between the effects of heterogeneity and 

temporal variance in the mean of the critical gap, which were aspects Daganzo had found 

difficult to estimate separately in his work. Driver impatience over the merge was found to have 

a significant impact resulting in the above-mentioned temporal variance. 

 

The next phase of research development involved the application of gap acceptance models to 

non-mandatory lane changing situations (unlike those at intersection crossings or freeway 

merging). An explicit layer of decision regarding lane selection was introduced above that of the 

gap acceptance, resulting in the standard two-level lane changing model framework. Gipps 

(1986) was among the first to adopt this framework. In his model, gaps were represented by the 

deceleration required by the trailing vehicle to acquire its desired “car-following” speed, and 

were compared against a deterministic threshold that reflected vehicle capabilities and urgency 

for lane change. Both lead (comprising of the adjacent lead vehicle and subject vehicle) and lag 

gaps (comprising of the subject and the adjacent lag vehicle) needed to be acceptable for the gap 

to be acceptable. 
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The use of discrete choice framework for modeling gap acceptance provided tremendous 

potential for an enhancement in the specification for the mean of the critical gap, thereby 

capturing the effects of the immediate neighboring situation and individual-specific 

characteristics on gap acceptance behavior. The first instance of such an improvement was Kita’s 

(1993) work, which adopted a logit model formulation for explaining gap acceptance behavior at 

freeway merging locations. Explanatory variables including length of adjacent gap, relative 

speed of subject w.r.t mainline vehicles, and remaining distance to end of merge lane were found 

to have significant impact. Ahmed et al. (1996) provided a two-level probabilistic lane changing 

model framework including lane selection and gap acceptance models. Critical gaps were 

assumed to follow log-normal distributions, in order to obviate the possibility of them attaining 

negative values. An adequate specification characterizing the impacts of immediate traffic 

situation as well as driver heterogeneity was adopted for the mean of critical gaps. A notable 

deviation from past works was that gaps were evaluated in terms of the space headway available 

between the leading and trailing vehicle, as opposed to time headway. Similar gap acceptance 

models were also adopted by Toledo (2003) and Choudhury (2005). 

 

Another line of research has focused on capturing state dependence, or in other words the impact 

of past decisions, in gap acceptance behavior. This is especially relevant in the context of MLC 

situations, where critical gap measures might change and reduce as the drivers spend more time 

awaiting lane change opportunities (first investigated in Mahmassani and Sheffi, 1981). Different 

merging mechanisms like forced and cooperative merging have been conceptualized and studied 

along this area of research, and have been shown to provide significant improvement in terms of 

explaining driver behavior at merge locations (Ahmed, 1999; Hidas, 2005; Choudhury et al., 

2007). However, this topic is beyond the scope of the research outlined in this thesis. 

 

2.1.3 Summary 

The standard state-of-art lane changing model is an integration of two decision models: lane 

selection and gap acceptance, evaluated in succession by drivers while contemplating a lane-

change action. Literature records significant enhancements that have been made in both these 

decision models individually and simultaneously since their inception. Results of their 
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application to different vehicle trajectory datasets in past studies have validated their superior 

performance in terms of modeling and predictive capabilities compared to more preliminary 

approaches. 

The next section analyzes in detail the two-level model framework as proposed by Choudhury 

(2005), and explores the scope for further enhancing the same. 

2.1.4 State-of-art two-level lane changing model (Choudhury, 2005) 

The most recent lane-changing model framework, as adopted in Choudhury (2005), is shown in 

figure 2.4 below. It illustrates the decision process for a driver existing in a hypothetical situation 

involving a 4-lane roadway, as depicted in figure 2.3. 

 

Figure 2.3: Hypothetical scenario for illustrating lane-changing decision process, involving 

subject vehicle in lane 2 of a 4-lane roadway 
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Figure 2.4: Two-level lane changing model framework, for hypothetical scenario in fig 2.3 

(as presented in Choudhury, 2005) 
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In the above framework, the first decision task for a driver involves the selection of a target lane. 

A random utility-based framework is used to model this decision, where the driver considers 

different aggregate lane-specific variables as well as his individual path plan in estimating 

utilities of all available lanes. The selection of the target lane among the available lanes follows a 

multinomial logit choice process. 

Subject to the location of the selected target lane with respect to the driver’s current lane, the 

driver considers changing lane into the right or left adjacent lane (also termed his immediate 

target lane), moving laterally in the direction of the target lane. The next step in this process is 

the evaluation of the available adjacent gap in the lane that the driver considers moving into 

based on his target lane selection. The gap acceptance model is employed for this purpose, and 

the decision outcome results in the driver’s final observable action regarding lane change. If the 

adjacent gap is rejected, the driver does not enact a lane change, while a lane change is exhibited 

on acceptance of the adjacent gap. 

 

2.1.5 Motivation for extension in model framework 

While the above-described two-level model framework integrates several of the latest 

advancements in both lane selection and gap acceptance models, it suffers from a structural 

limitation at the second decision level. The gap acceptance level of this model structure contains 
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an implicit assumption that every driver will complete a lane change execution at the same time 

step in which he finds the adjacent gap acceptable. The time step referred to here is the time 

resolution adopted in the application data that discretizes the continuous vehicle trajectories into 

a discrete set of lane changing observations. In previous applications of driving behavior models, 

this time step has been in the order of a second. 

Now, an approach as described above overlooks the duration over which a lane change may 

occur. This duration might vary across different types of lane changes and would depend upon 

traffic conditions. It in reality will constitute a finite multiple of the time step adopted in the data 

on which the model is applied, especially when the adopted time step is very small. 

 

Toledo and Zohar (2007) present a study on the duration of lane changing maneuver. They cite 

several past studies that report mean lane change duration in the range of 3-7 seconds which is 

significantly larger than typical unit time step values adopted in model applications. They 

estimate a regression model for the lane change duration using a disaggregate vehicle trajectory 

dataset wherefrom the instances of initiation and completion of lane changes for individual 

vehicles can be extracted to a reliable degree of accuracy. The lane-change duration was found to 

be dependent on factors like subject speed relative to neighboring vehicles, and traffic conditions 

on the adjacent lane being targeted. They claim two influences to be primarily responsible for 

prolonging lane change durations. The first influence is of the perceived risk on the physical 

safety of the lane change maneuver (captured through representative variables on neighboring 

conditions). A higher risk associated with a lane change ensures caution on the driver’s part and 

prolonges the maneuver. The other influence relates to the urgency of a lane change (also 

captured through representative variables). A more urgent lane change situation is expected to 

draw a quicker response from the driver and the lane change is expected to be of shorter duration. 

 

The validity of ignoring the lane change duration therefore weakens greatly when applied to 

traffic conditions that don’t entail great urgency in lane changes. When traffic is heavily 

congested and there exists a scarcity of adequately sized adjacent gaps, it might be reasonable to 

expect that a driver would try to complete a lane change execution at the earliest. A similar case 
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of accentuated urgency might hold in case of MLC situations where the driver is less likely to 

exhibit slack when changing lanes. 

However, this assumption is more severely challenged in the case of DLC situations and/or 

uncongested traffic conditions. Under such circumstances, a driver is less compelled to make an 

immediate lane change, and might prolong it, especially when the adjacent gap stays acceptable 

over a longer duration. Also, when driver speed is low, the lane change maneuver is expected to 

take longer. 

Under such situations, depending upon the time step at which data is recorded or used, it is 

possible to experience a series of vehicle observations where the adjacent gap is in reality 

acceptable and yet a lane change is not recorded. These observations correspond to a lane change 

maneuver which has been initiated but not completed. In low to moderate density or low speed 

traffic, the number of such observations may be of significantly higher proportion in comparison 

to the number of lane changes, since durations of most lane changes are expected to be high. 

The current two-level model framework would fail to explain this phenomenon in a behaviorally 

consistent way. A maximum likelihood approach to estimate the current model using a dataset 

having significant observations involving acceptable gaps not accepted prior to a lane change is 

likely to bias some estimates in the model specification. The critical gap parameters are most 

vulnerable to estimation errors under this phenomenon, since their maximum likelihood 

estimates would reflect the fact that gaps relatively larger/similar in comparison to the accepted 

gap were previously rejected. Also, variables in the target lane model that aim to capture the 

inertia of a driver against lane changing might also be erroneously affected, since the model can 

also interpret the rejection of acceptable gaps as a case of the driver not desiring to change lanes. 

The application of the two-level lane changing model framework to low density or low speed 

traffic might therefore yield estimates that are not transferable to other situations. The work 

presented in this thesis aims at preserving the consistency of the parameter estimates in the 

critical gap specification under such applications. It extends the current two-level model 

framework and accounts for the delay in lane change completion through a distinct third level of 

driver decision-making following gap acceptance. This third level would explicitly model, 

through a binary logit formulation, the driver’s decision to execute lane change in the current 

time step given adjacent gap acceptability. The time step when the driver decides to execute the 
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lane change would correspond to the completion of the lane change. The decision to execute lane 

change is hypothesized to depend upon factors influencing the urgency of lane change maneuver 

(the less urgent the lane change, greater the tendency of drivers to prolong it) and the speed at 

which the maneuver can be executed (greater the speed at which the lane change can be 

physically completed, shorter the expected duration of the lane change). 

 

2.2 Lane-changing models for arterial traffic 

 

Arterial traffic offers an interesting contrast to freeway traffic, through greater diversity in traffic 

mix, higher accessibility for entering vehicles and influence of periodic signalized intersections. 

Owing to the impacts of these elements and other characteristic features, drivers in arterial are 

expected to deviate in their behavior in comparison to that exhibited in freeways. However, 

literature is not replete with studies on arterial traffic and driver behavior models characterizing 

them. The following section provides a very brief overview of the broad classes of work in the 

topic of arterial driving behavior analysis. 

 

2.2.1 Macroscopic models 

A major proportion of research in the field of arterial traffic analysis has been based on 

macroscopic models for traffic flow. Traffic flow theory has been applied since 1950’s for the 

analysis of vehicle queuing and signal operations at urban intersections. Stochasticity of vehicle 

movements has also been introduced and studied within these frameworks. Geroliminis et al. 

(2005) develop an analytical methodology for modeling traffic flow between successive 

intersections. The methodology adopts the Markov assumption of memorylessness over the 

temporal domain. Combined with a platoon dispersion model for predicting the dispersion of 

traffic downstream of signals, the overall methodology is used to forecast arrival profiles and 

queue lengths at signalized intersections on arterials. 

While simple to analyze and deploy owing to its amenability to analytical approaches, 

macroscopic models offer an overly simplistic alternative to replicating a complex process. 

Critical assumptions including the homogeneity among drivers’ motivations and other 
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characteristics that are inherent to a macroscopic approach severely weaken the accuracy and 

credibility of traffic predictions and subsequent evaluations. 

 

2.2.2 Microscopic models 

The author was unable to unearth a significant number of past works in literature that have 

focused on developing microscopic driver behavior models exclusively for arterial traffic 

situations. Among those that were found to be relevant to the topic of this work, a couple of 

studies are selectively discussed below. 

Wei et al. (2000) extracted detailed vehicle trajectory data from video observations of traffic in 

eight urban streets in Kansas City, Missouri, and used this data to characterize arterial lane 

changing behavior and propose rules that would form the basis for a more realistic and better-

structured arterial lane changing model. They considered lane-changing to consist of three 

sequential components: a decision model, a condition model and an execution model. The 

decision model outlined three kinds of motivations for a lane change – mandatory, discretionary 

and preemptive. These motivations were however considered in a pre-determined order of 

priority (similar to some of the early freeway lane changing models discussed in the previous 

section), and no explicit trade-offs between them were captured. The condition model was a 

surrogate to the gap acceptance model discussed above in the context of freeway lane changing. 

The execution model was meant to account for the lane change duration given the driver decided 

to make a lane change and accepted the adjacent gap. Whilst no rigorous probabilistic model 

framework was developed to integrate the three components, and no estimation of model 

parameters was done using the available data, the work had two significant contributions. First, it 

acknowledged the dominance of preemptive lane changing behavior, an attempt by a driver to 

pre-position himself to avail his next exit, in arterial traffic conditions. Second, it introduced a 

third component following lane selection and gap acceptance that explicitly accounted for lane 

change duration. This is one of the aspects in the context of lane-changing maneuvers that the 

model extension proposed in this work aims to capture. 

 

Other studies have focused exclusively on microscopic simulation of vehicles at signalized 

intersections, and used it as a tool to analyze intersection capacity. One example is that of Jin et 
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al. (1999), who use a cellular automata approach to simulate vehicles at intersections and 

develop car-following and lane-changing models that capture the effect of signal timings and 

conflicting turning movements of upstream vehicles in the approach to the intersection. However, 

no model estimation was done. 

 

In this study, a lane-changing model that handles some distinctive characteristics of arterial 

traffic is developed. The model explicitly accounts for the duration of lane changing maneuver, a 

factor implicitly ignored in past works and expected to be prominent in arterial traffic conditions. 

A randomly selected sample of disaggregate vehicle trajectory data collected from a stretch of 

arterial corridor, with intermittent signalized intersections, located near US highway 101 in 

California, U.S.A, was used to estimate the model parameters. The model was implemented in a 

microscopic simulation tool (MITSIM) that has the capabilities to simulate signalized 

intersections and arterial corridors. Aggregate calibration was carried out using one portion of 

available trajectory data, while aggregate validation was carried out using the other portion. 

Results illustrate the improved performance of the extended model in terms of providing a better 

explanation of lane-changing mechanisms of the vehicles in the arterial. 

 

The next chapter presents the formulation of the model, including details on framework and the 

structure of each decision-level within it. 
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CHAPTER 3 

 

MODEL FORMULATION 
 

Similar to current state-of-art driver behavior models, the model presented here conceptualizes 

lane changing action as an outcome of a sequence of choices made by the individual. These 

choices are modeled in a probabilistic framework and expressed as a function of certain 

explanatory variables governing driver behavior. The model is a direct extension to the two-level 

target lane model proposed by Choudhury (2005) which comprised of a target lane selection 

level followed by a gap acceptance decision level. The proposed extension introduces one 

additional level of choice-making concerning the execution of lane change following the gap 

acceptance decision. This extension endows the model framework with ability to explicitly 

handle lane change duration, a practical maneuverability-related aspect. Consideration of this 

aspect is critical for a comprehensive and structurally robust abstraction of driver behavior. The 

effect of unobserved driver/vehicle characteristics on the lane-changing process is captured by a 

latent driver-specific random term included at all three decision levels to capture the resulting 

correlations among successive observations of the same individual. 

 

This chapter details the elements of the modeling framework and structure of this extended lane 

changing model. It discusses modeling assumptions and candidate explanatory variables for each 

decision level. 

 

3.1 Modeling framework 

 

The hierarchical structure of the 3-level extended lane changing model, with the two-level 

framework of Choudhury’s target lane model embedded within, is pictorially presented in the 

figure 3.1. The diagram illustrates the lane-changing decision tree that the model assumes a 

driver existing in the hypothetical scenario as described in figure 3.2 to consider. 
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Figure 3.1: 3-level lane-changing model framework 

 

Note: Illustrated for a driver in hypothetical scenario of figure 3.2. 

Figure 3.2: Hypothetical scenario: a four-lane roadway with subject vehicle in lane 3 

 

 

The subject vehicle in the hypothetical scenario described above is driving currently in the 3
rd

 

lane of a 4-lane roadway, with 2 lanes available to the left and one available to the right of his 

direction of travel. The lane numbering follows an incremental order from the left to the right of 

the driver’s travel direction. 
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The first two steps in the above decision framework of a driver are latent, with his/her final 

actions serving as mere indications to these decision outcomes. The first decision concerns the 

choice of a target lane for the driver. This decision is typically unobservable, and has been 

considered so in all models that have included this type of a decision in their framework. 

The next decision concerns the acceptability of the adjacent gap available to a driver in the 

direction he/she targets heading into (right or left lane, depending upon the choice of the target 

lane). At any given instant, the fact that the available adjacent gap that is being targeted is 

acceptable to the driver is also not directly discernible from the observations. This represents the 

primary departure from the modeling assumptions in Choudhury (2005), which had gap 

acceptance as the final step in the decision sequence and therefore considered it to coincide with 

the observed lane-changing action of the driver. While it is still true that only the driver’s lane-

changing actions, constituting a lane-change execution to the left, right or neither, are observed, 

the current model acknowledges it as an outcome to a separate and explicit lane change 

execution decision that follows the gap acceptance decision. 

In the above representation of the decision process, latent choices are shown as ovals, and 

observed ones are shown as rectangles. 

 

 

Description of each decision level: 

 

As mentioned above, the first two decision levels in the 3-level model are similar to the 

corresponding decision levels described in the target lane model (Choudhury 2005).  

 

3.1.1  Target lane selection 

The target lane is the lane the driver perceives as most desirable to drive in, depending upon the 

prevalent driving conditions and his immediate destination. A multinomial logit model is used to 

explain the choice of this target lane at each instant. The choice set for the target-lane selection 

includes all the lanes in the current road section along the direction of travel to which the vehicle 

can legitimately move. Each of the ovals shown at the first level represents a lane available for 

the driver to select as his target lane at the current-time step in the given hypothetical scenario of 
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figure 3.2. The choice of the target lane implicitly fixes the immediate adjacent lane the driver 

targets moving to (also referred to, for sake of brevity, as the immediate target lane), which is 

located on either left or the right of the current lane depending upon relative location of the target 

lane. Given that in the scenario considered the driver is in lane 3 in the current-time step, a 

choice of lane 3 as the target lane means that the driver decides not to pursue a lane-change and 

to continue in his current lane. This would directly take him to the end of his lane-changing 

decision process for the current time instant. If the driver perceives that there exists another 

available lane in the road section that would optimize his condition, he will choose that lane as 

his target lane. In the above example, the immediate target lane for the driver would be to his left 

if he chooses either lane 1 or 2 as his target lane, while it would be to his right if he chooses lane 

4 as his target lane. 

 

3.1.2. Gap acceptance 

Subject to the selection of a target lane other than his current lane, the driver would evaluate the 

gaps in his neighborhood (the appropriate adjacent lane, i.e., left or right) adjacent to his current 

position. The gap acceptance framework involves an evaluation of the lead and lag gaps that 

define the overall adjacent gap considered by the driver. The figure 3.3 below, reproduced from 

Choudhury (2005), defines the adjacent lead and lag gap lengths considered by a driver at the 

gap acceptance decision level according to the model. 

 

Figure 3.3: Description of Lead and Lag gaps 
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The available lead and lag gaps in the immediate target lane are compared with their respective 

latent critical gaps, based on which the driver decides to accept or reject the gap. The model 

assumptions entail that for the adjacent gap to be acceptable as a whole, both the lead and the lag 

gaps have to be individually acceptable, implying that they should be greater than the respective 

critical gap values. The critical gaps are random variables whose means are expressed as a 

function of appropriate neighborhood variables that characterize the risk of executing a lane 

change into the targeted adjacent gap. 

 

3.1.3. Lane change execution 

Given that the driver considers a lane other than his current lane to be most desirable to drive upon, 

and perceives that the adjacent gap in the direction towards the selected target lane is acceptable, he 

is assumed to begin the lane change. He then considers the final lane-change execution step during 

the lane change maneuver. This decision step indirectly accounts for the duration over which the 

driver would complete the lane change maneuver. It is modeled as a binary choice concerning his 

decision to execute the lane change in the given instant. He can either decide to execute the lane 

change (and thereby complete it) in the given instant (final observable decision captured as Change 

Right or Change Left respectively), or not to execute the lane-change (final observable decision 

captured as No Change) in the current instant. He may decide not to execute a lane change, or may 

appear not to be executing a lane change in the current time instant, if he is still happens to be in the 

process of completing the lane change. A decision on behalf of the driver to execute the lane change 

in the current time instant therefore represents the end of his lane change maneuver. In this manner, 

the third decision level helps capture the variations in lane change duration within the model 

framework. 

In instances where the driver chooses his current lane as the target lane or does not find the adjacent 

gap in his immediate target lane acceptable, he does not reach this step in his decision tree, and the 

final observable decision reflects No Change. 

 

The entire three-level decision framework is repeatedly applied over each time step of a driver’s 

trajectory as recorded or processed in the application dataset. While this approach lacks an explicit 

handling of state dependency among successive driver actions (as proposed in Choudhury et al., 
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2007), it is justified to an extent by the fact that the explanatory variables in the model specification 

capture elements of state dependency within their current values. As an example, the immediate 

neighboring conditions for a driver at the current instant, which govern his gap acceptance and lane 

change execution decisions, are in turn influenced by his past actions, and thereby help carry over the 

effect of past actions onto his current decisions. 

 

3.2 Model structure 

 

As explained earlier, the model adopts a probabilistic framework to explain the decisions made at 

each of the three levels of the driver’s decision tree. The probabilistic models chosen and the 

resultant mathematical expressions governing the choice at each of these decision levels are 

presented in this section. The first decision-level concerning the selection of a target lane is modeled 

as a multinomial choice model. The second level of decision concerning gap acceptance is modeled 

as a probabilistic binary choice comparing the deterministic available gap measure with a random 

threshold also known as the critical gap. The third level of decision concerning lane change 

execution is modeled as a binary choice. The dataset used for estimating this lane-changing model 

typically consists of multiple observations per individual describing his trajectory in discretized form, 

resulting in a panel dataset. As observed and studied in all datasets of such nature, the characteristics 

of an individual would have a consistent and time-invariant influence over his/her behavior. In this 

case, it would result in serial correlation among actions of a single driver over successive time steps. 

As mentioned earlier in this chapter, an attempt is made to capture this serial correlation through the 

introduction of latent driver-specific random terms within the probabilistic models for each decision 

level that together explain the driver actions. 

3.2.1. The Target-lane model 

As described in the earlier section, the target lane selection process involves the selection of the 

most desirable lane (denoted as the target lane) among a set of candidate lanes available to a 

driver. This choice scenario is perfectly amenable to modeling using a utility maximization 

approach. Specifically, the multinomial logit choice model is chosen and adopted to explain the 

target lane selection process. For a rigorous description of the conceptual background and 

theoretical development of the multinomial logit and other random utility models, the reader is 
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referred to Ben-Akiva and Lerman (1985). The following description assumes the reader to 

possess a background on the fundamentals of discrete choice theory. 

 

The target-lane (TL) choice set consists of all the lanes in the road cross-section that are available 

for the driver to move in given his current position on the roadway and direction of travel. The 

utilities of these lanes are given by: 

i i i i

nt t n nt nt
U X  lane i Iβ α υ ε= + + ∈        (3.2.1) 

where,  

Int describes the set of all lanes available to the driver n at time step t; 

i

nt
U  is the utility of lane i to driver n at time t; 

i

t
X  is a vector of explanatory variables containing lane-specific attributes for lane i at time t; 

β  is the corresponding vector of parameters; 

i

nt
ε  is the random term associated with the lane utility 

i

nt
U ;  

n
υ  is a driver specific random term that represents unobservable characteristics of the 

driver n (in particular, characterizing driver’s aggressiveness); and 

iα  is the parameter of
n

υ  specific to lane i.  

The logit model entails the assumption that the random terms i

nt
ε  are independently and 

identically extreme value distributed over all the lanes in the target-lane choice set and over all 

observations. The driver specific random term is used to capture the effects of serial correlation 

among observations of the same individual over successive time instances that arise due to time-

invariant influences of individual characteristics. As in past studies (Choudhury, 2005), it is 

assumed to be normally distributed over the driver population. Since it represents characteristics 

that are not observed nor can be extracted from the available dataset, it is considered a latent 

variable and treated accordingly in the model formulation. 

 

The expressions for the choice probabilities of lane i Є Int for driver n at time t, conditional on 

the latent individual-specific error term (
n

υ ), follows from the derivation for a multinomial logit 

choice model, and are given by: 
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( )i

nt n
V υ  are the systematic utilities of the alternatives (given individual specific term 

n
υ ), given 

by: 

i i i

nt t n nt
V X  lane i Iβ α υ= + ∈         (3.2.3) 

 

Candidate explanatory variables that are hypothesized to be influential in the above model 

include: 

1. Lane-specific attributes relevant to driving comfort: They include general aggregate 

lane attributes, such as queue length, average speed and traffic density. This category also 

subsumes other attributes that differentiate one lane from another in regard to driving 

comfort, including the number of lane changes required of the driver to reach the target 

lane from current lane, his/her general preference to continue in the current lane of travel 

at given instant, etc. Each of the above-described variables relate to the quality of driving 

experience for an individual driver. Lesser queues, higher average speeds and lower 

vehicular densities are expected to offer better driving conditions, while a lane closer to 

the current lane is more likely to be chosen as a target lane given all other conditions 

equal. 

 

2. Path plan variables: These include variables linked to the path a driver has in mind as 

he/she travels through the roadway, and the mandatory turns/exits that get defined 

consequentially as the driver tries to follow this path. Some examples include the distance 

to the point in the current roadway where the driver must exit to continue along his path, 

the number of cross-sectional lanes separating the current lane of the driver from the lane 

which he/she needs to be in so as to make the targeted exit, etc. These variables capture 

the mandatory considerations of a driver during his travel through a roadway. Lanes 

closest to the exit would become more preferable as the driver nears his exit. 
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3. Driver-specific characteristics: These include individual characteristics like 

aggressiveness that influence the preference for any particular lane during travel through 

the main-stream traffic. These latent characteristics are captured by the individual-

specific error term
n

υ . A typical implementation of this variable would intend to capture 

the incremental preference a driver possesses towards his current lane of travel as 

depending upon his relative aggressiveness compared to the average driver. This measure 

would be in addition to a general preference exhibited by all drivers irrespective of their 

aggressiveness (captured in the first class of explanatory variables as mentioned above). 

 

Since the application case study discussed in this work involves arterial traffic, it is worth 

mentioning the following note at this point. In urban arterial conditions, owing to the relatively 

short duration a driver spends in the main traffic stream, the mandatory considerations related to 

a driver's path plan are expected to dominate over other comfort-related considerations in lane-

changing decisions. 

 

3.2.2.  Gap acceptance model 

In the target-lane model the driver chooses his/her target lane. The immediate target lane is 

determined as a consequence of this target-lane selection. If the target lane lies to the right/left of 

the current lane, the driver considers the right/left adjacent lane as his immediate target lane. 

Next, the driver decides whether or not a lane change into the immediate target lane can be 

undertaken by evaluating the corresponding adjacent gap. Conditional on the target-lane choice, 

the outcome of the gap acceptance model would indicate whether the driver perceives the 

existing adjacent gap in the current-time step safe enough to consider a lane change execution or 

not. 

The adjacent gap in the immediate target lane is defined by the lead and lag vehicles in that lane, 

that are in turn identified based on their relative position with respect to the subject driver, as 

shown in figure 3.3 and reproduced in figure 3.4. The lead gap is the clear spacing between the 

rear of the lead vehicle in the immediate target lane and the front of the subject vehicle. Similarly, 

the lag gap is the clear spacing between the rear of the subject vehicle and the front of the lag 
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vehicle in the immediate target lane. Note that one or both of these gaps may be negative if the 

vehicles overlap.  

 

 

Figure 3.4: Definitions of the Front, Lead and Lag Vehicles and Their Relationship with 

the Subject Vehicle 

Subject

vehicle

Lead
vehicle

Lag
vehicle

Lead gapLag gap

Traffic direction

Front

vehicle
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The driver compares each of the available lead and lag gaps to a corresponding threshold 

measure termed the critical gap, which is the minimum gap length needed to ensure gap 

acceptance. In other words, an available gap (lead or lag) is acceptable if it is greater than the 

corresponding critical gap measure (lead or lag). Critical gaps are modeled as random variables. 

Inheriting the latest advancements in gap acceptance models as outlined in the previous chapter, 

the means of the critical gaps are expressed as functions of explanatory variables related to the 

current driving situation. This approach helps capture and explain better the variation in critical 

gap measures for a driver over time. The individual-specific term is also included in the mean 

expression in order to capture correlations among the critical gap measures perceived by a driver 

over time. Critical gaps are assumed to follow lognormal distributions to ensure that they are 

always nonnegative. A typical form of the expression adopted for the critical gap measure is 

given below: 

( ) { } { },ln , , ,
Tgd cr g gd g gd

nt nt n nt
G X g lead lag d right leftβ α υ ε= + + ∈ ∈    (3.2.4) 

where, 

,gd cr

nt
G  is the critical gap measure for gap g in the direction of change d perceived by driver n at 

time step t, measured in a typical unit of distance; 
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gd

nt
X  is a vector of explanatory variables used to characterize the mean of the critical gap 

,gd cr

nt
G ; 

gβ  is the corresponding vector of parameters; 

gd

nt
ε  is a random term: ( )20,gd

nt g
Nε σ∼

 
following the log-normal assumption

; and 

gα  is the parameter of the driver-specific random term 
n

υ
.
 

The gap acceptance model assumes that the driver must accept both the lead gap and the lag gap 

to find the total adjacent gap acceptable. The probability of accepting the adjacent gap, 

conditional on the individual specific term 
n

υ  and the choice of direction of change 
nt

d , is 

therefore given by: 

( ) ( )

( ) ( )

( ) ( ), ,

, ,

, ,

, ,nt nt nt nt

nt nt n nt nt nt n

nt n nt n

lead d lead d cr lag d lag d cr

nt nt nt n nt nt nt n

P accepting adjacent gap in direction d d P AG d d

P accept lead gap d P accept lag gap d

P G G d P G G d

υ υ

υ υ

υ υ

= = =

=

> >
  

(3.2.5) 

{ }, ,ntd Right Current Left∈  is the chosen direction of change for driver n at time t, which is 

implied by the target-lane choice. The resulting gap acceptance decision variable AGnt can be 

defined as the following:  

1

1nt

if  the available adjacent gaps to the left of the driver are acceptable, given the 

     left lane is the immediate target lane

AG  if  the available adjacent gaps to the right of the driver are acc= −

0

eptable, given the 

     right lane is the immediate target lane

otherwise







  

ntlead d

nt
G  and ntlag d

nt
G are the available lead and lag gaps, and , and ,ntlead d cr

nt
G  and 

,ntlag d cr

nt
G  are the 

corresponding critical gaps in the chosen direction, respectively. 

 

The assumption regarding the lognormal probability distribution of the critical gaps results in a 

well-defined functional form for the gap acceptance probability. The conditional probabilities 

that gap { },g lead lag∈  is acceptable is given by: 
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     (3.2.6) 

where [ ]Φ ⋅ denotes the cumulative standard normal distribution. 

 

The gap acceptance decision is hypothesized to be primarily affected by variables that 

characterize the nature of the corresponding gaps and the safety of a lane change maneuver into 

such a gap from a driver’s perspective. This set typically consists of neighborhood variables such 

as the subject speed relative to that of the lead and lag vehicles, current available gap lengths etc. 

The chances of accepting a bigger gap length are expected to be higher, but are expected to 

reduce if the gap is shrinking with time (a phenomenon of which the relative speed of the subject 

with respect to lead or lag vehicle would serve as a direct indicator). Also, driver-specific 

characteristics, such as aggressiveness, play a key role in deciding the lead or lag gap lengths that 

gets accepted. Aggressive drivers can be expected to accept smaller gaps by virtue of their risk-

taking nature. The above variables are therefore considered in the specification of the mean of 

the critical gaps, in an attempt to capture their impacts on the gap acceptance decisions. 

 

3.2.3. Lane change execution model 

The lane change execution decision is the third decision considered by a driver in a given time 

instance, conditional on him selecting a target lane other than his current lane and accepting the 

corresponding adjacent gap in the direction towards the selected target lane. The first two decisions 

are latent, while the outcome of the third decision regarding lane change execution is translated to an 

observable driver action, namely a lane change or no lane change. The lane change execution 

decision involves a binary choice, with the alternatives being whether to execute a lane change or not 

to execute it in the current time instant. As in the case of the two earlier decision levels, this choice is 

modeled using a probabilistic framework. Binary logit is chosen as an ideal abstraction of this choice 

situation. It should be noted that the choice set for the given scenario includes a do-nothing 

alternative, whose utility is arbitrarily normalized to zero. The random utility (and corresponding 

systematic utility) for the execution alternative is as given below: 
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Where 
nt

l  is an indicator variable for the choice at this decision level, and defined as  

ntl  {     1  or   -1      if executing lane change to left or right respectively

                   0               if not executing lane change }

=
 

tX  a vector of explanatory variables characterizing the decision to execute a lane change at the 

current time instant t, 

 : β  the corresponding vector of parameters 

:ntlα  the parameter of the driver-specific random error term 
n

υ  that is used across the three 

decision levels and represents his individual characteristics 

:
nt

ε  is the random term associated with this utility function, and following from the logit 

assumption, is independently and identically extreme value distributed over all observations. 

 

The resulting probability of executing the lane change at current time instant, conditional on adjacent 

gap acceptance and driver-specific random error term, follows from the derivation for the binary logit 

model, and is given as: 

( ) 1/(1 exp( ))ntl

nt nt n nt nt

nt

 P l |AG ,  {  V      if  AG  {1,-1}

                                    0                         if  AG  0         }                        

υ = + − =

=
   (3.2.8) 

 

 

Nature of variables constituting lane change execution decision: 

In order to obtain a better understanding of the kind of variables that constitute the vector tX  

mentioned in (3.2.7), it is important to acknowledge the discrepancy between the theoretical 

conceptualization of the lane changing maneuver and its existence in reality. A lane change in 

field traffic is not an instantaneous process. It is executed over a finite time interval. However, 

most lane-changing model frameworks and application trajectory datasets treat them as 



  45 

instantaneous, following the discretization of driver trajectory which is a continuous-time 

process. In the model framework, the final observable action can either belong to a no lane 

change category or a lane change category, implying that it can only conceive a given lane 

change at one, and only one, time instant. As mentioned earlier, the length of this time instant is 

decided by the time resolution in the application data. Detailed disaggregate datasets used in 

applications of the model frameworks discussed in this thesis describe vehicle trajectories as a 

sequence of discrete positions, and typically accommodate a lane change maneuver in only one 

such discrete observation. (It should be noted that Toledo and Zohar (2007) study lane change 

duration using a dataset that provides explicit observations of the beginning and completion of a 

lane change. However, such information could not be extracted from the study dataset.). 

However, practical maneuverability aspects including a finite duration for lane change imply that 

the lane change process in reality begins a few time instances prior to its recorded observation. In 

this respect, the explanatory variables typically incorporated in the first two decision levels may 

not be useful in differentiating between successive no lane change observations that precede a 

lane change observation and the lane change observation itself, thereby failing to explain 

adequately the occurrence of the lane change observation. Towards this objective, a model 

framework designed to capture operational level details including the above-described 

maneuverability aspects would possess better explanatory power in a context where lane change 

is perceived and modeled as instantaneous. Variables indicative of these operational aspects are 

considered as candidate options for the above-mentioned vector tX . 

 

Candidate variables for lane change execution decision: 

In context of the overall model framework, these variables should help explain why a driver may not 

be observed to execute a lane change in the current time instant, although he targets another lane and 

finds the relevant adjacent gap acceptable. The reason for this phenomenon, as briefly discussed in 

the previous chapter, is the time duration of a lane change process, making it encompass several units 

of the discrete time step adopted in the application dataset. Therefore, the appearance of the lane 

changing record in the trajectory dataset might be preceded by a significant number of time instances 

leading back to the instance when the lane change maneuver was initiated. It should be understood 

that each of these time instances would contain a “no lane change” observation recorded against 
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them in the dataset, and would each correspond in reality to acceptable adjacent gaps. The number of 

such observations, depending upon the time resolution adopted, can be represented mathematically 

using the equation given below: 

 (Dur_LC/t_res) - 1
AG

Nnlc =         (3.2.9) 

where 
AG

Nnlc  refers to the number of observations involving acceptable adjacent gaps prior to 

the lane changing observation; Dur_LC  refers to the duration of lane change in appropriate units 

of time, and t_res  represents the unit time step in the dataset, expressed in same units as 

Dur_LC . Other components influencing 
AG

Nnlc  are not considered in this study. 

The third decision level, concerning the execution of the lane change, is intended to capture and 

explain the variability in the term 
AG

Nnlc , measured through Dur_LC . For a driver who considers 

lane change execution, the probability of him executing the lane change in the given time instant and 

thereby completing it would be low if 
AG

Nnlc  is large, i.e, the factors influencing Dur_LC  render 

it long.  

 

As outlined in the previous chapter, Toledo and Zohar (2007) analyze and estimate the influence of a 

list of driving factors on the duration of a lane change maneuver ( Dur_LC  in this context). The 

factors are believed to impact one of two major types of influences that govern lane change duration:  

1) Risk associated with lane change, causing driver to exhibit greater caution and execute lane 

change slowly. 

2) Urgency (or its lack) for lane change; a more urgent need for lane change would stimulate quicker 

driver response and therefore a faster lane change. 

The factors considered in that study include subject speed relative to neighboring vehicles, adjacent 

gap length, traffic conditions in adjacent lane, etc. It is to be noted that some of these variables are 

already considered for the specification of lane utilities and critical gap means in the first two 

decision levels. In particular, the risk factor mentioned above is likely to be captured in the critical 

gap measures. Hence, variables representing the urgency of the lane change are sought. 

Among the neighborhood driving conditions that can be expected to influence the urgency of a 

lane change are those that determine the extra leeway associated with the adjacent gap. When an 

adjacent gap length is significantly higher than the minimum threshold required by the driver 
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given current conditions, the gap is considered to offer significant leeway for him. This might in 

turn encourage some slack on part of the driver in executing the lane change, particularly in the 

case of a discretionary lane change, since he does not expect an imminent loss of the adjacent 

gap given such high leeway. A candidate variable for representing this gap leeway would be the 

difference between the available gap and the mean of the associated critical gap, expressed as 

,

,  , with g {lead,lag}gd gd cr

nt nt meanG G− ∈ , with the terms as defined in eq (3.2.4). Other variables that 

might characterize the leeway for a lane change (and therefore its urgency) include, among 

others, the density and average speed of the lane the driver targets moving into. 

Also, variables such as subject speed, that are reasonably correlated with some considered by Toledo 

and Zohar in their regression model and yet not completely similar to those already considered as 

candidate variables at higher decision-levels, are considered appropriate for inclusion at the lane 

change execution decision level as an indicator for the lane change duration. Given that all other 

factors remain equal, a driver is expected to complete a lane change faster if he is traveling at a 

higher current speed. 

 

In summary, this chapter develops a lane changing model framework and structure as an 

extension to the previously applied two-level framework (Choudhury, 2005). It acknowledges 

the significance of the duration of a lane change and the structural limitation resulting from 

ignoring it. The model extension is developed with an objective of accounting for the lane 

change duration, and for capturing the various factors that are likely to influence it. 

 

The model framework and structure as described in this chapter was applied to a dataset 

representing arterial traffic. The details of this application, and the different tasks executed as a 

part of it are presented in the following chapters. The next chapter describes in detail the dataset 

used in the application and the data processing tasks undertaken for model estimation and 

validation purposes. Also developed in the next chapter is the likelihood function as obtained 

from the proposed model framework and structure, specific to the driver lane changing 

observations recorded in the application dataset. The following chapter discusses the results of 

model estimation done using the processed data, while the subsequent chapter presents the model 

validation process and discusses the associated results. 
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CHAPTER 4 

 

ARTERIAL DATASET DESCRIPTION 

 

As mentioned before, a significant majority of the research in driver behavior models 

characterizing lane changing and acceleration actions have focused on applications to freeway 

traffic, and in particular, congested driving situations. As a consequence, most of the application 

datasets for these models have tended to represent either freeway mainline and/or merging traffic. 

The focus of this work has been on generalizing the state-of-art model and its application scope. 

Traffic in arterial corridors represents a scenario that possesses the characteristics to help test and 

develop the attempted model generalization. This study develops an extension to the state-of-art 

hierarchical two-level lane changing model framework previously applied to freeway traffic in 

Choudhury (2005) and applies the extended version to urban arterial traffic. 

This chapter presents a description of the dataset used in this study. It also details the preparation 

of the data undertaken for subsequent tasks of estimation and validation, including the sampling 

procedure and subsequent processing operations adopted, and discusses some characteristics of 

the sample dataset that distinguish it from the dataset used in past studies. 

Finally, it develops the likelihood function for the lane changing observations recorded in the 

dataset, as obtained from application of the extended 3-level model framework to explain the 

lane changing actions. 

 

The following chapters describe respectively the estimation and validation of the proposed model 

using the study dataset, and discuss the associated results and their interpretations. 

 

4.1 Dataset description 

 

The study dataset represents traffic on an urban arterial corridor named Lankershim Boulevard, 

located in Los Angeles, California, U.S.A. It involves observations on individual vehicle 

trajectories, collected from traffic over a stretch of the arterial in close proximity to the 
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intersection with the US 101 highway, spanning a half-hour period in total. It was collected as a 

part of the Federal Highway Administration’s (FHWA) Next Generation Simulation (NGSIM) 

project on June 16, 2005, between 8:30 and 9:00 AM in the morning. 

 

4.1.1  Data collection procedure 

Five video cameras were used to collect the trajectory data. These cameras were mounted on the 

top of a 36-story building, 10 University Plaza, located adjacent to the U.S. 101 and Lankershim 

Boulevard interchange. These video cameras covered five distinct spatial regions or zones 

encompassing the entire arterial stretch. Videos of the traffic were recorded in conjunction by 

these five cameras, and each vehicle entering the study area was tagged using a unique ID that 

was maintained consistent across all 5 camera zones. These videos were later parsed and 

discretized at the resolution of an observation every 1/10
th

 second and transcribed, using 

software developed exclusively for the NGSIM project, into detailed coordinate values that 

referred to the positions of different vehicles at different points in time. This temporal sequence 

of observations on vehicle positions in traffic constituted the individual trajectories of different 

vehicles. A detailed description of the data collection and processing tasks carried out to convert 

the captured videos to a dataset containing detailed and disaggregate vehicle trajectory 

information is available in the “NGSIM Data Analysis Reports”(2006), prepared by Cambridge 

Systematics, Inc. These reports serve as a basic reference for the description of the study site and 

dataset as presented in the following sections of this chapter.  

 

4.1.2  Study area description 

Figure 4.1 provides an aerial image of the arterial stretch over which data was obtained from the 

camera coverage. The study site is approximately 1,600 feet in length and is interspersed by four 

signalized intersections. In the dataset, each stretch of arterial roadway between two adjacent 

intersections has been referred to as sections. Each section consists of three to four through lanes 

along each direction. Almost every section is provided with exclusive turning bays, in one or 

both turning directions, along its approach to an intersection. The exclusive turning bays are 

meant to facilitate the diverging of turning vehicles from the mainline vehicles. As per the lane 
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use regulations, vehicles going through an intersection are not permitted to enter these exclusive 

bays. 

 

Figure 4.1: Lankershim Boulevard Arterial Section 

 

Source: NGSIM Data Analysis Report (2006)– Cambridge Systematics, Inc. 

 

 

Figure 4.2 gives a schematic illustration of the entire arterial segment constituting the study area. 

It should be noted that this sketch is rotated to an angle of 90 degrees in the clockwise direction 

with respect to the image shown in figure 4.1. The sketch indicates various geographical details 

regarding the location and surroundings of the study area. It illustrates the lane configuration 

within each section, highlighting the presence of the exclusive turning bays in the latter part of 

most sections. It also provides details regarding the reference indices used for demarcating the 

origin and destination points (also termed as nodes) and the lanes within every section, as 

established during the data collection and preparation process. Lane numbering is assigned 

starting from the left-most lane. Reference indices are also adopted for sections and intersections, 

in simple numerical increments from 1 to 4 for intersections and 1 to 5 for sections, as indicated 

in the sketch. These indices are introduced for easing the preparation and interpretation of the 

dataset in the form of rows of time-specific observations of individual vehicles. Use of such 

reference indices makes the representation of successive vehicle positions in terms of different 
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spatial elements more amenable for database storage in numeric form, and also facilitates 

subsequent analysis efforts. 

 

Figure 4.2: Schematic Representation of the Arterial Stretch 

 

Source: NGSIM Data Analysis Report (2006)– Cambridge Systematics, Inc. 

 

 



  52 

As mentioned earlier, the dataset was prepared in order to provide detailed time-specific 

information on the trajectory of every vehicle observed during the specified time interval of data 

collection. It is in the form of rows and fields, with each row providing details on a vehicle’s 

status at a given point in time. This status description contains information on instantaneous 

details including vehicle position (stored and identified in cartesian (x,y) coordinates with 

reference to a local pre-specified origin), IDs of section/intersection and lane where the vehicle is 

currently located, vehicle speed and acceleration at current time instant, etc. A detailed 

description of the trajectory dataset and the different fields provided within, following the data 

preparation tasks, is available in Cambridge Systematics’ data analysis reports (2006). The 

following section presents an overview of the dataset as drawn from these reports. A description 

is then provided of the sampling procedure and other processing steps carried out for the purpose 

of preparing data for model estimation. Characteristics of the estimation dataset obtained from 

the sampling task are then presented. Aspects that distinguish it from the freeway dataset 

considered in Choudhury (2005) and render it ideal for the current work are also discussed. 

 

4.1.3  Dataset overview 

The dataset contains detailed trajectory information of 2,442 vehicles in total, observed within 

the study region over a 32-minute period stretching from 8:28 am to 9:00 am. The processed 

dataset presents this information in two parts, the first part encompassing vehicles observed in 

the first 17-minutes from 8:28 a.m. to 8:45 a.m., and the second part for vehicles observed 

between 8:45 a.m. and 9:00 a.m. A significant proportion of these vehicles (97%) were 

automobiles, as can be seen from the vehicle distribution tables (Tables 4.1 and 4.2) presented 

below. 
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Table 4.1: Vehicle Distribution Table for Period 8:28 a.m. to 8:45 a.m. 

 Motorcycle Automobile Truck and Buses All 

Time Period Vehicles % Vehicles % Vehicles % Vehicles % 

8:28 a.m. to 8:30 a.m. 0 0.0% 126 94.0% 8 6.0% 134 100.0% 

8:30 a.m. to 8:35 a.m. 0 0.0% 328 97.0% 10 3.0% 338 100.0% 

8:35 a.m. to 8:40 a.m. 1 0.3% 348 96.1% 13 3.6% 362 100.0% 

8:40 a.m. to 8:45 a.m. 2 0.5% 364 96.6% 11 2.9% 377 100.0% 

All 3 0.2% 1,166 96.3% 42 3.5% 1,211 100.0% 

Source: NGSIM Data Analysis Report (2006) – Cambridge Systematics, Inc.  

Table 4.2: Vehicle Distribution Table for Period 8:45 a.m. to 9:00 a.m. 

 Motorcycle Automobile Truck and Buses All 

Time Period Vehicles % Vehicles % Vehicles % Vehicles % 

8:45 a.m. to 8:50 a.m. 0 0.0% 396 97.5% 10 2.5% 406 100.0% 

8:50 a.m. to 8:55 a.m. 0 0.0% 433 98.0% 9 2.0% 442 100.0% 

8:55 a.m. to 9:00 a.m. 1 0.3% 375 97.9% 7 1.8% 383 100.0% 

All 1 0.1% 1,204 97.8% 26 2.1% 1,231 100.0% 

Source: NGSIM Data Analysis Report (2006) – Cambridge Systematics, Inc. 

 

This preliminary statistic effectively implies that a heterogenous vehicle mix may not hold a 

significant influence on vehicle behavior within this dataset. 

 

As shown in the schematic presented in the previous section (Figure 4.2), there are a total of 11 

origins and 10 destinations demarcating the various entry and exit points along the perimeter of 

the study area. The configurations of the lanes within the sections restrict the number of origin-

destination pairs that can be physically traversed by a vehicle within the study area to 64. Since 

each vehicle was individually tracked from the point of its entry into the study area to the point 

of its exit, the dataset also possesses information on the origin and destination of each vehicle. 

The distribution of vehicles across different origin-destination pairs over the observation time 

interval is presented in the appendix (Tables C.1 and C.2).  
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Based on the O-D pair defining their travel path and the corresponding turning movement that 

carries implications on their lane-changing behavior in traffic, vehicles can be classified into 

three distinct types:  

1) Through vehicles that enter and exit the study area along the arterial,  

2) Vehicles that enter the arterial from a side street within the study area and exit the study 

area along the arterial, 

3) Vehicles that exit the arterial through one of the side streets within the study area.  

Vehicles belonging to the first category don’t have any mandatory turning movements to 

consider. They are hence expected to be involved only in discretionary lane changing and lane 

pre-positioning activities that place them in a comfortable driving situation when faced with 

traffic merging from and diverging into the side streets. Vehicles in the second category are 

expected to undertake lane changing in an effort to attain a desirable position in the mainline 

traffic. Vehicles in the third category would be expected to make the greatest number of lane 

changes as they move towards the exclusive turning bays to make their desired exit. The number 

of vehicles belonging to each category in the overall dataset is presented in table 4.3 elaborated 

in section no. 4.1.5. 

 

The original videos of the observed traffic were made available, and they were used to draw 

qualitative inferences on the traffic characteristics and its applicability for the current study. As 

described earlier, the key aspect sought in the application dataset for this study is low to 

moderate density in traffic, which would help test the validity of the extension proposed in the 

lane-changing model framework. The degree of congestion in the arterial traffic as observed 

from the videos was found to be moderate. The average speed for each vehicle, as calculated 

from the dataset, was found to range between 6 m/s and 20 m/s. Videos revealed queues that 

built up during red signal phases. However, all queues that evolved in such a manner were 

entirely dissipated during the subsequent green signal phases. The lane changes were through 

normal gap acceptance and no forced merge was apparent from the videos. 

A significant number of lane-changes were observed to occur into open gaps involving no lead 

or lag vehicle. This very basic aspect of the study dataset differentiates it from the freeway 
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dataset used in the past studies, and suggests that this dataset might have very good potential to 

effectively test the model extension proposed. 

 

4.1.4 Sampling and data processing 

The original dataset consisting of 2,442 vehicles and 1607319 time instance observations proved 

computationally burdensome for the model estimation task. It especially hindered its iterative 

nature (since estimation had to be repeated till the best specification was obtained). Hence, it was 

important to sample out a representative part of the entire dataset to make the estimation process 

tractable. Vehicles were randomly selected at the rate of one per every five, with the objective of 

establishing a representative dataset for model estimation. This sampling step yielded a subset of 

the overall dataset consisting of 438 vehicles. It should be noted here that all variables 

representing aggregate traffic conditions (eg: average speed, density, queue length, etc.) and 

neighborhood conditions (eg: lead and lag vehicles statistics) as included in the model 

specifications that were estimated were extracted from the original unsampled dataset and used 

accordingly in the sampled version. 

 

A multi-phase data processing task was then applied on the sampled dataset to prepare it for 

estimation purpose. 

 

At this point, it must be noted that the model developed in this study is applicable only to vehicle 

behavior in mainline traffic. The study region encompassed by the observation cameras include 

the side streets connecting to the mainstream arterial (refer to figure 4.2). The dataset involves a 

continuous observation of vehicle trajectories from the point of entry into the study region up to 

its exit from the same. It therefore contains observations of vehicles at the side streets (prior to its 

entry into the mainline arterial or post its exit from it) and within the intersections. It is 

hypothesized that vehicle behavior in either of these two regions are characterized by 

complexities beyond the scope of the model presented in the current work. Vehicle behavior at 

the entry points of an arterial, including the selection of the lane on the mainstream arterial into 

which they move in directly from the side street, have been studied and modeled using another 

exclusive modeling framework. Details of this model framework, its application to the vehicle 
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behavior at intersections of the study dataset and the associated results can be obtained in 

Choudhury (2007). It needs to be mentioned here that the lane changing model for mainline 

traffic and the lane selection model for intersections are required in conjunction to explain and 

replicate the overall driver lane changing behavior in the arterial stretch. The focus of this study 

is however on the lane changing model for mainline traffic. Its use for driving simulation and 

forecasting, as elaborated in a future section on validation, involves joint implementation and 

operation with the intersection lane-selection model. 

For the purpose of estimating the three-level lane-changing model framework developed in this 

study, it was required to eliminate the observations of vehicles at side-streets and intersections. 

The sampled dataset consisting of 438 vehicles, as inherited from the parent dataset, included 

observations of vehicles along the side streets and intersections, which, as per the model 

estimation requisites described above, had to be removed. This task constituted the first phase of 

data processing. 

 

On further analysis and cross-referrals using the available traffic videos, the first-stage processed 

sample was revealed to possess some observations that were still not amenable for estimation 

purposes. Some of these observations were pure faulty ones that failed to conform with video 

observations for the corresponding time instant. Examples of such observations were those that 

wrongly indicated the lane or section IDs of a vehicle at a given time instant. 

 

Other undesirable observations originated from non-conformant, uncommon behavior of drivers. 

Examples included observations of through vehicles (defined, by virtue of their paths, as those 

continuing along the arterial through an intersection) on exclusive turning bays, which 

contradicted the underlying lane use regulations. Since these regulations were also incorporated 

in defining the target lane choice set (eq 3.2.2) for the through vehicles, the model would find it 

difficult to explain the lane change of a through vehicle into a turning bay. A second stage of 

processing was therefore required to weed out these observations. 
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The final stage of processing was executed in the time dimension, at the rate of 1 per every 10 

time instance observations of every sampled vehicle. As the original dataset was at one-tenth of a 

second time resolution, this processing step yielded data at one-second time resolution. 

 

The final dataset obtained following the above-described sampling and processing operations 

consisted of 400 vehicles over a total of 16696 time instance observations. The characteristics of 

this sample dataset, which was used for estimation, are described in the following section. 

 

4.1.5 Estimation dataset characteristics 

Out of the 400 vehicles in the estimation sample, 160 vehicles were northbound, while 240 

vehicles were southbound. The average vehicle observation duration was 51.3 seconds, with the 

maximum duration of observation being 170 seconds. 

 

Vehicle distribution: 

As described in the previous section, the dataset consists of vehicles across three categories, 

classified based on their mandatory turning movements as defined by the OD pair they travel 

across. The distribution of vehicles across these categories in the estimation sample and overall 

dataset is presented in the table 4.3 below. 

 

Table 4.3: Distribution of vehicles across categories based on their turning movements as 

defined by their O-D 

Dataset Through Vehicles Vehicles turning 

into arterial 

Vehicles turning off 

the arterial 

Overall 

(2442 vehicles) 

864 

(35.4%) 

578 

(23.67%) 

1000 

(40.95%) 

Estimation Sample 

(400 vehicles) 

162 

(40.5%) 

88 

(22%) 

150 

(37.5%) 
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Aggregate lane-specific statistics: 

Disaggregate details on each vehicle’s instantaneous status (eg: lane ID, section ID, speed, 

position, time of observation, etc.) were aggregated and merged to obtain statistics on aggregate 

traffic characteristics. These statistics include lane specific elements like average speed, density, 

queue length, etc. These statistics as observed by vehicles in the estimation sample are 

summarized in table 4.4 below. 

For data analysis and estimation purposes, lanes in the sections have been categorized into 6 

types on the basis of permitted vehicular movements. Lane type 1 signifies a shared through flow, 

right- and left-turn lane; lane type 2 denotes a shared through and right-turn lane; lane type 3 

denotes a shared through and left-turn lane; lane type 4 denotes an exclusive right turn bay; lane 

type 5 denotes an exclusive left-turn bay; and lane type 6 denotes an extra turn bay that is 

adjacent to another and to the interior of the section (as was observed within the study area). 

The presence of turning vehicles, and the conflicts arising due to their movements in conjunction 

with through vehicles provide a reasonable explanation for the low average speeds observed in 

both the through and the turning lanes. The maximum queue length values are observed during 

red intervals at traffic signals. The presence of the exclusive turn bays, their lane use regulations 

and their relevance as an ultimate target lane for turning vehicles are key issues to be considered 

while developing the model specification. 

 

Table 4.4: Aggregate Lane-Specific statistics by lane categories for sampled vehicles 

 Lane Type 

 1 2 4 5 6 

Average Speed (m/s), among all 

vehicles 

10.32 8.67 18.43 13.93 6.5 

Average Queue Length (m), among 

all vehicles 

1.071 1.93 0.182 1.44 2.085 

Max Queue Length (m), among all 

vehicles 

15 12 7 18 11 

Note: No lane belonging to lane type 3 exists within the study area 

 

Lane changing statistics: 

In the estimation sample, there were a total of 249 lane changes observed. Of these, 104 (41.8%) 

were made by turning vehicles, i.e. those belonging to the third category as defined in table 4.3. 
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The table below (Table 4.5) shows the distribution of these lane changes by the distance from 

their exit point, in terms of number of sections, at which they occur.
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Table 4.5: Distribution of locations of lane-change points for turning vehicles by the 

number of sections before the exit point 

Number of Sections 

from Exit Point 

Number of Lane Changes 

(by Turning Vehicles) 

Percentage  

of the Total 

Last Section 84 80.8 

One Section from Exit 20 19.2 

Two Sections from Exit 0 0 

Total 104 100 

 

The statistics reveal a high proportion of lane changes that occur in the section immediately 

prior to the vehicle’s exit, implying the dominance of path plan considerations in the lane-

changing decisions of turning vehicles. 

 

Adjacent gaps: Observations with no lead or lag vehicles: 

The most significant aspect of the arterial dataset was the prominence of observations in 

which adjacent gaps were characterized by the absence of either the lead or lag vehicle. In 

this study, it is assumed that a lead (or lag) vehicle in the adjacent lane influences the 

adjacent lead (or lag) gap only if it exists in the same section as the subject driver. Therefore, 

the observations with no lead (or lag) vehicle reflect instances where the subject vehicle faces 

no lead (or lag) vehicle in the adjacent lane within the section on which it currently moves. 

The estimation sample inherited a significant proportion of such observations from the 

overall dataset. This aspect of the sample is summarized through the numbers presented in 

the table below. 

Table 4.6: Summary statistics on number of vehicle observations without lead/lag 

vehicle  

 All Observations 

Lane-Changing 

Observations 

 Number % (Total = 16696) Number % (Total = 249) 

Lead Vehicle 

Absent 

3749 22.45 155 62.24 

Lag Vehicle Absent 3811 22.83 151 60.64 
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As can be inferred from these statistics, an inordinately large number of observations and 

lane changes don’t involve a lead or lag vehicle. To reiterate, lead and lag vehicles for a 

given subject vehicle contemplating a lane change are as defined in figure 3.3. The existence 

of the above observations (no lead or lag vehicle) is attributed to two factors:  

a. The effect of signal operations at the intersections and the resulting stop-and-

go nature of traffic, 

b. The relatively lower density of traffic in the arterial stretch. 

 

Gap-acceptance for observations with no lead or lag vehicle – Pseudo Gap correction: 

To accommodate such observations as described above for the gap acceptance decision in the 

model framework, a pseudo gap length is assumed for lead or lag gaps whenever a lead or lag 

vehicle is respectively absent. It is hypothesized that the lead and lag gap lengths considered 

by the drivers in such instances are the distances from the nearest intersection boundaries 

lying within either gap. This approach represents a reasonable assumption given that traffic 

regulations do not allow vehicles to make a lane change within an intersection. As an 

illustrative example, consider vehicle A in a traffic situation depicted in figure 4.3 below 

(and magnified in figure 4.4). 

Figure 4.3: Traffic situation in an arterial section, with no lead or lag vehicle in left 

adjacent lane within the same section of the subject vehicle A 

 

 

Travel direction 

Intersection 2 Intersection 1 

 A    

 C B  
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Figure 4.4: Pseudo gap lengths assigned under instances of no lead or lag vehicle in 

current section 

 

 

Vehicle A’s nearest lead and lag vehicles in the left adjacent lane (B and C) don’t lie in the 

same section as A itself. Intersection 1 lies between the vehicle and its left lag (C), while 

intersection 2 lies between it and its left lead (B). Here, the pseudo lag gap is the clear 

spacing between the rear of vehicle A and the front edge of intersection 1, while the pseudo 

lead gap is the clear spacing between the front of vehicle A and rear edge of intersection 2. 

These pseudo gap measures serve as surrogates to the lead and lag gap lengths in the gap 

acceptance model. The use of the pseudo gap measure in driver’s evaluation of the lead gap 

makes behavioral sense, since the lane change has to be executed by vehicle A within its 

pseudo gap before it enters the intersection. From the perspective of gap acceptance model, 

such an approach is equivalent to assuming a pseudo lead vehicle for A that is stopped at the 

rear edge of intersection 2. The explanatory variables for the lead gaps (including relative 

speed of lead vehicle) under such instances are defined and calculated adopting this 

equivalent situation. 

However, the definition of the pseudo gap does not hold any strong behavioral significance 

for lag gap evaluation. Therefore, a lag gap is by default assumed to be acceptable when 

there exists no lag vehicle within the subject’s section. 

 

 

Travel direction 

Intersection 2 Intersection 1 

 A    

 C B  

    

Pseudo Lag gap Pseudo Lead gap 
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Comparison with I-395 freeway dataset (Choudhury, 2005): 

The presence of the unique observations as described above motivates an interesting angle of 

comparison with the freeway dataset used in Choudhury (2005). As described earlier, the key 

aspect sought in the application dataset for this study is low to moderate density in traffic 

with large gap sizes, in contrast to the dataset on freeway traffic used in Toledo (2003) and 

Choudhury(2005). The freeway dataset contained vehicle trajectory observations collected by 

FHWA from southbound traffic on the I-395 in Airlington, VA. Details on traffic 

characteristics in this dataset are presented in Toledo (2003) and Choudhury (2005). The 

adjacent gap statistics of that dataset are referred here for comparison with the arterial dataset 

used for estimation in this study. The gap statistics for the freeway and arterial dataset are 

presented in tables 4.7(a) and 4.7(b) respectively. It should be noted that the statistics for the 

arterial dataset involve the use of pseudo gap lengths as described above for observations 

involving no lead vehicles. Observations with no lag vehicles are excluded from the lag gap 

statistics. 

 

Table 4.7: Gap Statistics for Freeway and Arterial dataset (a) – (b) 

(a): Gap Statistics for Freeway dataset 

Variable Mean Std Median Minimum Maximum 

Relations with Lead Vehicle 

Relative 

Speed (m/s) 

0.2 

(0.0) 

2.6 

(2.9) 

0.5 

(0.1) 

-17.3 

(-17.5) 

8.1 

(15.5) 

Lead 

Spacing (m) 

22.2 

(19.6) 

21.9 

(39.9) 

14.1 

(13.0) 

0.04 

(-18.1) 

117.9 

(268.9) 

Relations with Lag Vehicle 

Relative 

speed (m/s) 

-0.4 

(0.0) 

2.2 

(2.7) 

-0.3 

(0.0) 

-6.7 

(-15.0) 

5.2 

(14.1) 

Lag Spacing 

(m) 

23.1 

(18.6) 

20.6 

(23.0) 

16.6 

(12.0) 

1.7 

(-18.1) 

110.1 

(232.6) 
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(b): Gap Statistics for Arterial Estimation dataset 

Variable Mean Std Median Minimum Maximum 

Relations with Lead Vehicle 

Relative 

Speed (m/s) 

-7.98 

(-4.49) 

6.0 

(6.23) 

-8.98 

(-2.07) 

-16.31 

(-16.39) 

3.50 

(15.92) 

Lead 

Spacing (m) 

33.75 

(34.11) 

40.05 

(41.73) 

19.94 

(13.73) 

0.01 

(-6.15) 

158.24 

(170.1) 

Relations with Lag Vehicle 

Relative 

speed (m/s) 

-0.93 

(0.35) 

3.90 

(3.65) 

-0.9 

(0.3) 

-15.25 

(-15.73) 

7.3 

(15.62) 

Lag Spacing 

(m) 

9.18 

(3.51) 

23.47 

(20.24) 

10.1 

(4.2) 

0.75 

(0.00001) 

128.5 

(152.28) 

* Statistics in parantheses are for the entire dataset, others are for accepted gaps. 

 

Some of the above statistics are along expected lines, adhering to our hypothesis on gap 

acceptance behavior. In case of the freeway dataset, average accepted lead and lag gaps both 

exceed the average over the entire dataset, implying a larger gap length is more likely to be 

accepted for a lane change. The lead relative speed for accepted gaps exceed the overall 

average while the lag relative speed for accepted gaps are lower than the overall average. 

These are also along expected lines, as higher lead relative speeds and lower lag relative 

speeds imply increasing gap lengths for the corresponding cases and therefore safer lane 

change execution. 

For the arterial dataset, the lag gap statistics are along similar lines (especially since they 

don’t contain the instances with no lag vehicles). However, the pseudo gap correction for the 

lead gaps result in some marked changes to the lead gap statistics, which when compared 

with the corresponding freeway statistics provide two significant inferences: 

1) The available lead gaps are of typically higher value in the arterial dataset, indicating 

that density in this dataset is significantly lower, as required of the study intended to be 

done in this work, since this statistic implies higher lane change duration. 
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2) The sample distribution of the accepted lead gaps has similar means and standard 

deviations to that of the available gaps in the arterial dataset, indicating a strong 

possibility for existence of higher lengths of available lead gaps prior to the instance 

when lane change was completed. This is especially likely to be the case when a 

vehicle changes lane into a gap that has no lead vehicle. 

As discussed in an earlier section, the second implication is one phenomenon that cannot be 

explained by the 2-level model structure used in Choudhury (2005). Its presence in the 

arterial dataset hence supplies a strong case for use of the model extension. 

 

Another notable anomaly for the arterial dataset is that the average lead relative speed for 

accepted lead gaps are lower than the average lead relative speed for all available gaps, 

which is contrary to expectation. This contradiction is partially caused by the pseudo-gap 

correction, where lane changes made with no lead vehicle actually record a negative lead 

relative speed due to the abstraction of a pseudo stationery lead vehicle. On recalculation 

without adopting the pseudo gap correction, the average lead relative speed for accepted lead 

gaps is found to be -2.05 m/s, which is still lower than the average lead relative speed for all 

gaps which is calculated as 0.30 m/s. This peculiar phenomenon is attributed to the 

distinctive features of the dataset. It is reasoned that when faced with large lead gaps, drivers 

in this dataset tend to take much longer to execute a lane change, and complete it only when 

they come close to a lead vehicle. The instantaneous lead relative speed recorded at the 

instance of completion of such a prolonged lane change may thus prove misleading, as 

revealed by the measured statistic. This phenomenon offers another case for the proposed 

extension.  

 

Another aspect distinguishing the arterial from the freeway dataset is that of average vehicle 

speeds. The lane-specific average speeds as presented in table 4.4 are reproduced here in 

table 4.8 in comparison to the equivalent figures reported in Choudhury (2005) for the 

dataset on traffic over I-395, which comprised of 4-lanes. 
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Table 4.8: Lane-specific average speeds for Arterial (current study) and Freeway 

(Choudhury, 2005) dataset 

Lane type 1 Lane type 2 Lane type 4 Lane type 5 Lane type 6 Arterial 

dataset 10.32 8.67 18.43 13.93 6.5 

Lane 1 Lane 2 Lane 3 Lane 4 - Freeway 

dataset 14.22 15.79 16.23 17.50 - 

 

As indicated from these statistics, the average speed in the arterial dataset is in general lower 

than that in the freeway dataset. As per the hypothesis, this might also be responsible for 

longer lane change durations in the arterial, causing greater inconsistencies in instantaneous 

gap statistics, and providing further motivation for the current study. 

 

In summary, modeling instantaneous gap acceptance as the final decision step leading to a 

lane change action, as done in the 2-level model, is likely to give erroneous parameter 

estimates under the presence of the above-described situations that result in somewhat 

misleading gap statistics. 

 

 

 

 

4.2 Likelihood function 

 

This section develops the likelihood function associated with observed lane-changing actions 

in the dataset, based on the framework and structure of the extended 3-level model presented 

in the previous chapter. 

 

If 
nt

l  denotes the lane-changing action observed of driver n at time t (
nt

l Є{1,-1,0}, as defined 

in eq (3.2.7)), its probability, conditioned on the latent individual-specific error term 
n

υ , 

integrates that of the choices made at each of the three levels in the driver’s decision tree, and 

is given by the joint probability expression below: 
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( ) ( ), ,j

n nt nt nt n

j TL

P P TL AG lυ υ
∈

= ∑ntl        (4.2.1) 

where j

nt
TL  denotes the event of driver n selecting lane j as the target lane during time instant 

t, with TL denoting the choice set for target lanes, and .the term ntAG  is as defined in eq 

(3.2.5). 

Multiplicative rule is then employed to break down the joint probability term in (4.2.1) into 

individual components representing the conditional probabilities for choices made at each of 

the decision levels of the model framework. 

( , , | ) ( | , ) ( | , ) ( | )j j

nt nt nt n nt nt n nt nt n nt n
P TL l AG P l AG P AG d P TLυ υ υ υ=    (4.2.2) 

where, 

nt
d  is the direction of lane change for driver n at time t as chosen based on the choice of 

target lane j; 

( | )j

nt n
P TL υ  is given by equation (3.2.2), and represents the probability for a driver n 

selecting lane j as the target lane at time t; 

| , )
nt nt n

 P(AG d υ  is given by equation (3.2.5), and represents the probability of the driver n 

accepting the relevant adjacent gap in direction 
nt

d  conditioned on his choice of target 

lane ; and 

( , )
nt nt n

P l |AG υ  is given by equation (3.2.8), and represents the probability of driver n 

executing a lane change in the current time instant, conditioned on the fact that he is looking 

for a lane change and finds the adjacent gap acceptable. 

 

Given a driver n and his actions are observed over a succession of Tn time instances, and 

going by the assumption that these actions, conditioned on the his latent individual 

characteristics and chosen explanatory variables, are independent of each other, the joint 

conditional probability for his entire sequence of observations, termed 
n

l , is given by: 

( ) ( )
1

, ,
nT

j

n nt nt nt n

j TLt

P P TL l AGυ υ
∈=

= ∑∏nl        (4.2.3) 

The assumption of conditional independence of successive observations of an individual’s 

actions, given his/her characteristics, extends from the original motivation behind introducing 
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the latent driver-specific error term 
n

υ , which was to capture the serial correlations among 

the observations of the same individual. This assumption also implies that the current 

approach ignores the effect of any other sources of correlation that may exist between 

successive driver observations. 

 

As stated in an earlier section, the individual-specific characteristic 
n

υ  has typically been 

assumed to follow a normal distribution over the entire population of drivers in past works, 

and the current approach adheres to that assumption. The unconditional likelihood 
n

L  for the 

sequence of observations 
n

l  that characterize the driving trajectory of individual n can 

therefore be obtained by integrating the conditional probability term in eq (4.2.3) over the 

distributional space of 
n

υ . 

n n P(l ) (l | ) ( )nL P f d
υ

υ υ υ= = ∫         (4.2.4) 

 

Another assumption commonly made in past approaches, and also adopted in this work, is 

the independence among actions of different drivers, given the chosen explanatory variables. 

Under such an assumption, the likelihood of observing the complete set of observations (L) 

in a detailed disaggregate vehicle trajectory dataset involving multiple drivers (say N in 

number), can be given as a product of the unconditional likelihoods of every individual 

driver expressed in equation (4.2.4).  

1

N

n

n

L L
=

= ∏           (4.2.5) 

The log-likelihood function for an entire dataset of observations involving N individuals can 

hence be given as: 

1

ln( )
N

n

n

LL L
=

=∑           (4.2.6) 

 

The next chapter details the implementation of this likelihood function for model estimation 

using the sample dataset prepared for the same. Estimation results are presented and their 

interpretations are discussed. 
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CHAPTER 5 

 

MODEL ESTIMATION 

 

 

The proposed 3-level lane changing model as presented in the model formulation chapter was 

estimated using the sampled dataset described in the previous chapter. As the 3-level model 

is an extension to the state-of-art 2-level lane changing model, its estimation results are 

compared with those of the original model as obtained on estimation with the same sample. 

This comparative analysis is expected to justify the superior ability of the extended model in 

explaining lane changing behavior in low density traffic, and in particular, under the presence 

of observations without lead or lag vehicles. 

 

Model estimation is an iterative process, with the specifications being appropriately modified 

based on intermediate estimation results till the best model specification is arrived at. The 

estimation results discussed below for the 3-level and 2-level models are from their best 

specifications. All instantaneous explanatory variables for these specifications were extracted 

from the sample dataset through scripts written in MATLAB. 

Estimation for both models was done using GAUSS software. Details of the estimation 

procedure adopted are presented in the following section. 

 

5.1 Estimation approach 

 

The log-likelihood function, as expressed in eq (4.2.6), is maximized to jointly estimate all 

the parameters specified over the three levels of the proposed model framework.  

In this case-study, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm 

implemented in the statistical estimation software GAUSS, Version 3.6 (Aptech Systems 

2003) has been used for estimating the entire model. It is noted here that BFGS is a quasi-

Newton method, which maintains and updates an approximation of the Hessian matrix based 

on first-order derivative information (see, for example, Bertsekas 1999). GAUSS implements 
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a variant of BFGS attributed to Gill and Murray (1972), which updates the Cholesky 

decomposition of the Hessian (Aptech Systems 2005). For further information on the 

optimization algorithms provided by GAUSS for likelihood maximization purposes, the 

reader is referred to the GAUSS user manual (Version 5.0) and related documents. 

 

The integration of each individual likelihood function ln over the individual-specific 

characteristic 
n

υ  is performed using the numerical integration technique “Legendre 

quadrature method” in GAUSS. 

 

Another important implementation-related note mentioned here is that the likelihood function 

of eq(4.2.6) is not globally concave. It owes this property specifically to the use of the 

random driver-specific error term 
n

υ , which during implementation is assumed to follow a 

normal distribution. As an illustrative example, if the signs of all of the coefficients of the 

individual-specific error term were reversed, the log-likelihood value would remain 

unchanged due to the symmetric nature of the normal distribution about its mean. This 

unique property directly implies that there exist multiple solutions of parameter estimates that 

result in the same optimal likelihood function value, confirming the concavity of the 

likelihood function. To avoid obtaining a local solution under this situation, different starting 

points need to be used in the optimization procedure. 

 

 

The remainder of this chapter is presented in three sections. The first section presents and 

analyzes the estimation results for the 3-level model. The second section presents the 

estimation results for the 2-level model, obtained on the same estimation dataset. The final 

section compares the estimation results of the above two models in order to better understand 

the improvement in modeling capabilities that is achieved by the proposed model extension. 
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5.2 Extended 3-level lane-changing model 

 

Table 5.1 presents the estimates and t-statistics obtained for the parameters used in the best 

specification of the 3-level model. It also provides the final log-likelihood value for these set 

of estimates. The final log-likelihood is the maximum value of the log-likelihood as obtained 

at the convergence of the maximum likelihood algorithm used for estimation. It represents a 

quantitative measure of the fit of the model to the empirical data used for estimation. A 

higher log-likelihood signifies an improved model fit. This measure can therefore be used for 

comparing the ability of different models to explain the sequence of actions observed in the 

estimation dataset. 

A description of the explanatory variables associated with the specified parameters is 

presented next in table 5.2. It is followed by the expressions for the specifications and 

analysis of the estimation results for each decision level of the model framework. 

 

5.2.1 Estimation results 
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Table 5.1: 3-level lane-changing model estimation results 

Final Log-Likelihood -1000.3 

Number of Observations 16,696 

Number of Vehicles 400 

Number of Parameters 21 

 

Variable Name Parameter t-Stat 

Level 1: Target-Lane Selection Model 

Current-Lane Dummy 1.43 1.16 

Path Plan impact:  No. of lane changes to exit lane -0.729 -1.015 

Path plan impact:  No. of lane changes to exit interacted with distance from exit (m-1.33) -2.20 -2.33 

Exponent of dist. to exit in no. of lanes to exit- dist. to exit interaction 0.289 0.685 

No. of lane changes from current lane <= 3  -2.42 -2.047 

No. of lane changes from current lane >= 4 -5.68 -0.006 

Queue length ahead in lane (number of vehicles) -0.352 -4.11 

Front vehicle rel. speed negative, interacted with front veh. Gap (m/s per m) 0.0378 0.742 

αCL -0.449 -2.91 

Level 2: Gap Acceptance Model 

Lead Critical Gap 

Lead gap constant 2.31 71.29 

lead,TL

ntV∆  (m/s) 
-0.0482 -7.81 

σlead 0.00745 0.225 

αlead -1.78 -104.69 

Lag Critical Gap 

Lag gap constant 1.51 82.72 

lag,TL

ntV∆  (m/s) 
0.0314 8.0 

σlag 0.0085 0.242 

αlag -1.74 -47.61 

Level 3: Execution Decision Level 

Intercept -2.52 -2.97 

Gap Leeway (m) -0.308 -1.63 

Lead Vehicle Absent -0.88 -1.1 

ntV
 (m/s)

 
0.60 5.36 
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5.2.2 Variable Definitions 

Table 5.2: 3-level lane-changing model variable definitions 

Variable Name Definition 

Current-Lane Dummy 1 if the lane is the current lane of the driver, 0 otherwise 

Path Plan impact:  No. of lane changes to exit lane Number of lane changes the driver has to make from the target lane 
in order to follow his path (to take the turn/exit) 

Path plan impact:  No. of lane changes to exit interacted 
with distance from exit 

Number of lane changes the driver has to make from the target lane 
in order to follow his path (to take the turn/exit)* (remaining 
longitudinal distance to the turn/exit ) raised to an estimated 
exponent 

Exponent of dist. to exit in no. of lanes to exit- dist. to exit 
interaction 

The exponent of the remaining longitudinal distance in the preceding 
variable  

Number of lane changes from current lane <= 3 Dummy variable. One if Number of lane changes required to reach 
the target lane from the current lane of the driver <=3, zero otherwise 

Number of lane changes from current lane >= 4 Number of lane changes required to reach the target lane from the 
current lane of the driver if the number of lane changes required to 
reach the target lane>=4, 0 otherwise 

Queue length ahead in lane  Number of vehicles ahead in target lane 

Front vehicle rel. speed negative, interacted with front veh. 
Gap (m/s per m) 

Interaction of relative speed of front vehicle in the current lane with 
the available front spacing (Reference Equation 5.2.1) 

αCL Heterogeneity term for inertia 

Lead gap constant Constant in mean of lead critical gap function 

lead,TL

ntV∆  (m/s) 
Relative speed difference with lead vehicle (Lead vehicle speed – 
subject vehicle speed) 

σlead Standard deviation of lead critical gap 

αlead Heterogeneity term for mean of lead critical gap 

Lag gap constant Constant in mean of lag critical gap function 

lag,TL

ntV∆  (m/s) 
Relative speed difference with lag vehicle (Lag vehicle speed – 
subject vehicle speed) 

σlag Standard deviation of lag critical gap 

αlag Heterogeneity term for mean of lag critical gap 

Intercept Intercept of execution level 

Gap Leeway (m) {Difference between available and mean critical lead gap, if lead 
vehicle present, 0 otherwise}  

                                              (+) 

{ Difference between available and mean critical lag gap, if lag 
vehicle present, 0 otherwise}  

Lead Vehicle Absent 1 if no lead vehicle in current section; 0 otherwise 

ntV
(m/s)

 
Current Speed of subject vehicle 

 



  74 

5.2.3 Model specification and results analysis 

Target-Lane Model 

The expression for the systematic utility of lane i at time t as considered by driver n in the 

target lane model can be expressed as follows: 

i ic i i exit -exp(0.289) i i

nt nt nt nt nt nt nt

i i ic i i

nt nt n nt nt nt

i ic

nt nt

V = 1.43 δ  -  0.729 e  - 2.20  e (d ) -2.42 (k <=3)k  

       - 5.68( k >=4)k  - 0.449υ δ - 0.352  (q )(q <=3) 

      - 1.056  (q >=4)  +(δ )*[0.0378 min(0,f
c c

nt nt
r )/(1+exp (fs ))] 

    

   (5.2.1) 

Where, 

i

nt

i

nt nt

 = current lane dummy, 1 if lane i is current lane for vehicle n at time t, 0 o/w

q  = queue ahead in lane i

k  = number of lane changes required from current lane to lane i (|i-j |)

      wher

ic

nt
δ

nt

i

nt

exit

nt

c

nt

e j  = current lane of individual n at time t

e  = number of lane changes reqd. to take desired exit/turn from lane i

d  = remaining dist. to exit/turn  (m)

fr  = front vehicle relative speed  

c

nt

n

(m/s)

fs  = front vehicle speed               (m/s)

 = latent error term specific to individual nυ
 

The target lane utility specification contains variables of two main categories:  

a. Path-plan variables, including ‘number of lane changes to exit lane’, and 

‘number of lane changes to exit lane interacted with the remaining distance to 

mandatory lane-changing point’; and  

b. Current –lane inertia variables, including ‘current lane dummy’ and ‘lane 

changes required from current-lane to the target lane’.  

The interaction variable between number of lanes to exit lane and the remaining distance to 

exit takes a special functional form as shown in the utility expression (5.2.1). This is done to 

ensure that remaining distance to exit has a decisively diminishing effect on utilities of lanes 

away from the exit lane as the driver gets closer to his exit. 

The signs of the coefficients for all path plan variables are along expected lines, implying 

that a driver always feels a greater affinity for the exit lane he/she needs to reach ultimately, 

and that this affinity increases as the distance to the exit reduces. The coefficients of the 

current lane inertia variables indicate, as expected, that a driver always prefers a lane closer 

to the current lane as his/her target lane.  
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Other variables include queue length as an aggregate lane-specific characteristic, whose 

coefficient sign conveys the disutility a driver feels for a lane that has vehicles held up in 

queue. Its functional form ensures that the driver perceives no incremental disutility for lanes 

with queue lengths greater than 3, which was found to be a threshold value for this dataset. 

The relative speed of the front vehicle with respect to the subject vehicle, interacted with the 

spacing between the two, captures the sensitivity of the driver to his immediate surrounding 

conditions. Its positive coefficient indicates that a driver prefers to change lanes if his current 

front vehicle is moving slower than he/she, and his sensitivity to this speed difference 

increases with reduction in front spacing. This variable effectively accounts for the freedom 

for accelerating that a driver possesses in his current lane. 

The latent driver-specific error term is also included to capture correlations among successive 

decisions of same driver, and can be interpreted as representing his/her aggressiveness in 

making lane changing decisions. The negative sign of the associated coefficient implies that 

in the given dataset, aggressive drivers tend to be more active in seeking lane changing 

opportunities compared to the average driver. 

The path plan and current-lane inertia variables clearly have a counteracting influence on the 

target lane selection of drivers, with the current-lane variables emphasizing affinity to the 

current lane, while the path plan variables drawing the vehicle to his/her exit lane. The 

tradeoff between these effects is illustrated in the following figures (figures 5.1 and 5.2), for 

an example situation of four lanes (which represents the typical case in the current dataset), 

with lane 4 representing the exit lane. The lane-specific probabilities perceived by a given 

driver during target lane selection depending upon his current lane, is plotted, and the 

changes to these probabilities as he moves closer to his exit are studied. 

 

 

 

 

 

 

 

 



  76 

Figure 5.1: Tradeoff between Current-Lane Inertia and Path-Plan Effect (Lane 

specific probabilities for target lane selection) 
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Note: Distance to exit = 410m, Turning/exit lane = Lane 4. 

Figure 5.2: Tradeoff between Current-Lane Inertia and Path-Plan Effect (Lane 

specific probabilities for target lane selection) 
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Note: Distance to exit = 75m, Turning/exit lane = Lane 4. 

 

When the driver is far from his exit, current-lane inertia dominates his target-lane selection, 

while as the driver approaches his turn, the path-plan effects take over. Figure 5.1 illustrates 
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the higher affinity of the driver for lanes in the immediate vicinity of his current lane, all 

other things being equal. This is expected since he is still reasonably far from his exit point (a 

distance of 410 m implies over 2 sections’ distance in the study dataset). The order of 

preference shifts to lanes in the vicinity of the exit lane (Lane 4) as the driver comes closer to 

his exit (his remaining distance to exit is 75m) and path plan considerations take over, as 

exhibited in Figure 5.2. In this situation, one can observe that there is a high probability for 

choosing Lane 4 irrespective of the driver’s current lane. 

 

Gap Acceptance Model  

The specifications for the mean of lead and lag critical gaps for driver n at given time t is 

presented in the following set of equations: 

 

lead TL,cr lead,TL lead

nt nt n nt

lead 2

nt

lag TL,cr lag,TL lag

nt nt n nt

lag 2

nt

G = exp(2.31 - 0.0482∆V  - 1.78 υ  + ε ), 

ε ~N(0,0.00745 )

G  = exp(1.51 + 0.0314 ∆V  - 1.74 υ  + ε )

 ε ~ N(0,0.0085 )

P(accepting gap) = P(accepting lead gap) * P(accepting lag gap)

   

(5.2.2) 

,

gi gi

nt nt nt

nt

gi

nt

Where

V V -V

V speed  of subject vehicle n at time t

V speed  of vehicle associated with gap g of subject n at time t in direction of target lane i

∆ =

=

=

 

 

Critical gap lengths can be conceived as the minimum threshold gap length that a driver 

considers safe enough to accept given current conditions. The adopted specification is a 

simple functional form that hypothesizes the critical gap mean to vary only with respect to 

the relative speed of the vehicle defining the gap (lead or lag) and the individual specific 

error term. 

As the relative speed of the lead vehicle with respect to the subject vehicle increases, the lead 

gap is expected to expand with time and is considered safer to move into at the present 

moment, implying a lower threshold or lead critical gap. The negative coefficient for the lead 

vehicle’s relative speed corroborates this understanding. A similar argument justifies the 
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positive coefficient of the lag relative speed in the expression for the mean of the lag critical 

gap. 

An aggressive driver is expected to find a given adjacent gap length more acceptable 

compared to an average driver. This hypothesis is supported by the negative coefficient for 

the latent driver-specific error term in lead and lag critical gap mean expressions, implying 

lower critical gap lengths for aggressive drivers. 

 

The influence of the above-discussed explanatory variables on the critical gap lengths are 

summarized through the figures 5.3 and 5.4 below. 

 

Figure 5.3: Variation of Lead Critical Gap with Relative Lead Speed and Alpha 

(Driver Aggressiveness) 
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Figure 5.4: Variation of Lag Critical Gap with Relative Lag Speed and Alpha (Driver 

Aggressiveness) 
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Note: the term niu represents driver aggressiveness (niu = 0 represents an average driver, 

whereas niu = 1 represents an aggressive driver) 

The term relv represents relative speed of the associated adjacent vehicle. 

 

Execution Model: 

The third decision level on lane change execution is a binary choice model, with the do-

nothing alternative’s utility normalized to zero. The expression for the systematic utility of 

the lane change execution alternative ( ntl

nt
V ) for driver n at time t is as follows: 

) ) )

ntl

nt nt

lead TL lead TL,cr lead TL lag TL lag TL,cr lag TL lead TL

nt nt,mean nt nt nt,mean nt nt

V  = -2.52 + 0.60*V  

- 0.308*( (G - G )*K  + (G  - G *K  - 0.88*(1-K
(5.2.3) 
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Where 

nt

lead TL

nt

lag TL

nt

V  refers to speed of driver n at time t

K  =  {     1   if lead vehicle for driver n present in target lane TL at time t

                      0   otherwise  }

K   =  {    1   if lag vehi

nt

cle for driver n present in target lane TL at time t

                      0   otherwise  }

l          =  {   1    if TL is left lane

                     -1   if TL is right lane

                      0    otherwise  }

 

As mentioned in the model formulation chapter (chapter no. 3), the execution level aims to 

capture the duration of the lane change post its initiation following gap acceptance. The lane 

change duration was hypothesized to be influenced by two aspects: 

a) The urgency of the lane change. 

b) The speed at which it could be completed. 

 

Variables included in the utility specification at the third level aim to represent these two 

aspects. The gap leeway variable (difference between available and mean critical gap) 

accounts for the first aspect, under the hypothesis that a high gap leeway might reduce the 

urgency of a lane change, and encourage a driver to prolong the completion of an initiated 

lane change. It should be noted that the mean critical gap is a latent variable that is not 

physically observed. It is also hypothesized that drivers might treat situation with no lead 

vehicle different from that with a lead vehicle when evaluating the lead gap leeway. Hence a 

dummy variable representing the presence of a lead vehicle in the immediate target lane is 

adopted in the utility specification. It should be noted that the current approach assumes a lag 

adjacent gap to be acceptable by default under absence of a lag vehicle. A corresponding 

dummy variable denoting the absence of a lag vehicle hence does not enter the utility 

specification since the lag’s absence is assumed not to influence the gap leeway a driver 

considers in such situations. 

The current speed of a driver is used to represent the rate at which a driver can complete an 

initiated lane change. Drivers moving at high speeds are expected to complete a lane change 

faster than slow-moving vehicles. The parameter estimate fully corroborates this hypothesis. 

The positive coefficient for the subject speed produces a higher probability of lane change 

execution, and therefore completion, in the current instant for faster drivers. When conceived 
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over a continuous time domain, a higher instantaneous probability for lane change execution 

implies a lower time duration over which the lane change maneuver is completed. 

Following the same line of understanding, the negative coefficient for the gap leeway 

variable implies a lower probability of instantaneous lane change execution for a higher gap 

leeway and therefore greater lane change duration. The inclination to prolong lane change 

execution is increased under the absence of a lead vehicle in the targeted lane, as indicated by 

the estimate of the parameter for the corresponding dummy variable. 

 

The signs and statistical significance of the parameter estimates at this third decision level 

help justify the introduction of this additional decision level. Further tests to confirm the 

improved modeling capabilities rendered by this extension would involve a comparison with 

the estimates obtained for the 2-level model on the same estimation sample. 

 

5.3 Estimation results for 2-level lane changing model 

 

The 2-level lane changing model was estimated using the same sample as that used for the 

estimation of the 3-level model. The specification adopted for the first two levels of the 3-

level model are replicated for the 2-level model in the estimation process so as to facilitate 

comparison with the 3-level model through a simple likelihood ratio test. The estimation 

results are presented in table 5.3 below. 
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Table 5.3: 2-level lane-changing model estimation results 

Final Log-Likelihood -1044.61 

Number of Observations 16,696 

Number of Vehicles 400 

Number of Parameters 17 

 

Variable Name Parameter t-Stat 

Level 1: Target-Lane Selection Model 

Current-Lane Dummy 2.09 1.36 

Path Plan impact:  No. of lane changes to exit lane -0.468 -0.15 

Path plan impact:  No. of lane changes to exit interacted with distance from exit (m-1.186) -2.59 -2.33 

Exponent of dist. to exit in no. of lanes to exit- dist. to exit interaction 0.171 0.15 

No. of lane changes from current lane <= 3  -2.18 -1.47 

No. of lane changes from current lane >= 4 -5.71 -0.003 

Queue length ahead in lane (number of vehicles) -0.182 -2.76 

Front vehicle rel. speed negative, interacted with front veh. Gap (m/s per m) 0.0576 1.19 

αCL -0.662 -5.4 

Level 2: Gap Acceptance Model 

Lead Critical Gap 

Lead gap constant 2.23 167.8 

lead,TL

ntV∆  (m/s) 
0.348 140.38 

σlead 0.00745 0.942 

αlead -1.68 -97.44 

Lag Critical Gap 

Lag gap constant 1.44 165.99 

lag,TL

ntV∆  (m/s) 
0.265 193.47 

σlag 0.0085 1.59 

αlag -1.86 -137.99 

 

The variable definitions are the same as that presented in table 5.2. 
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5.4 Model comparison 

 

The signs of the estimates of all but one parameter in the 2-level model match the 

corresponding estimates in the 3-level model. The one parameter whose signs do not match 

over the two models is the coefficient for lead vehicle relative speed in lead critical gap. It is 

estimated to be -0.0482 for the 3-level model and +0.348 for the 2-level model. The positive 

sign for this coefficient as obtained for the 2-level model refutes the hypothesis presented 

earlier regarding the expected sign for this coefficient and seems behaviorally inconsistent. 

This result is a direct consequence of the anomaly in gap statistics for the sample dataset 

(Table 4.7(b)) discussed in the last chapter. It is observed that in the sample dataset, the 

average lead relative speed for accepted gaps is lower than that for all available gaps, which 

is contrary to expectation. The inability of the 2-level model to account for the mechanisms 

that are believed to cause this anomaly is responsible for the erroneous sign of the above-

discussed coefficient. This result offers another example of the improvement in driver lane 

change modeling brought in through the introduction of the third decision level capturing 

lane-change duration. 

 

5.4.1 Likelihood test 

Since the 2-level model is a fully nested version of the 3-level model, a likelihood ratio test 

can be done to compare the goodness of fit achieved by the models on the estimation dataset. 

LU = -1000.3            (the 3-level model is the unrestricted model, with 21 parameters 

estimated) 

LR = -1044.61           (the 2-level model is the restricted model, with 17 parameters estimated) 

 

Degrees of freedom = 21-17 = 4 

2

0.05,4χ  (Chi-square test statistic at 4 degrees of freedom and 95% level of confidence) = 9.488 

 

Test statistic = -2*(LR - LU) = 88.62 > 9.488, implying that the 3-level model does indeed 

provide a significant improvement in fit over the 2-level model on the sample dataset. 
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The above-discussed estimation results and model comparison strongly support the enhanced 

modeling ability offered by the extended 3-level lane changing model. This improvement is 

emphasized further by its application on an arterial dataset possessing distinctive features that 

resulted in misleading instantaneous statistics (due possibly to prolonged lane change 

durations) which could not be explained by the original 2-level model. 

 

In summary, the 3-level model provided a significant improvement in fit compared to the 2-

level model. It was also seen that the 3-level model was able to correct the signs of the 

critical gap parameter estimates that were obtained erroneously for the 2-level model. The 

estimates of parameters for the third decision level on lane change execution were found to 

corroborate the original hypothesis on lane change execution behavior: large gap leeways 

cause drivers to prolong their lane change completion, while faster drivers complete lane 

change in shorter time. 

 

The next chapter presents the validation process undertaken to study the ability of the 

extended model to forecast driver behavior, and assess its superiority in the same in 

comparison to the 2-level model. 
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CHAPTER 6 

 

MODEL VALIDATION 

 

As explained in the Introduction chapter, the primary purpose of traffic simulators in 

transportation planning and traffic management studies is to help provide an accurate and 

detailed forecast of the impacts of different operational and planning changes being studied. 

The task of model validation aims to test the extensibility of an estimated model to scenarios 

beyond that used for estimation, and assess its value as a reliable tool for forecasting driving 

behavior. 

 

The evaluation criterion is the accuracy with which the forecasted behavior rendered by the 

model for a chosen validation dataset reflects that observed in the field for that dataset. 

Validation is typically a comparative process, and relies on measures that facilitate 

comparisons with the predictive performance of another reference model. A consistent 

improvement in prediction quality is sought from the new model to validate its superiority. 

The new model being validated here is the 3-level model, with parameters estimates as 

presented in table 5.1. The reference model used in this study is the 2-level lane changing 

model presented in Choudhury(2005), with model estimates as presented in table 5.3. Owing 

to the unavailability of a good candidate for validation dataset, the unsampled version of the 

original dataset had to be used for validation purposes. 

Model Validation is typically preceded by a sub-task of Implementation, while it in itself 

comprises of two sub-tasks: Aggregate calibration and validation. The execution of each of 

these sub-tasks for the current study is outlined through the following sections. 

 

6.1 Implementation 

 

The task of validation requires the simulation of driver choices as predicted by the estimated 

models. For this purpose, the developed lane changing model needs to be implemented in a 

traffic simulator that replicates driver behavior at a microscopic level of detail. This task is 
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called Implementation, and the traffic simulator used for this purpose in the current study 

was MITSIMLab. This sub-section presents an overview of MITSIMLab, its features and 

components. 

MITSIMLab is a simulation-based laboratory developed for evaluating the impacts of 

alternative traffic management system designs at the operational level and assisting in 

subsequent refinement. Examples of systems that can be evaluated with MITSIMLab include 

advanced traffic management systems (ATMS) and route guidance systems. MITSMLab is a 

synthesis of a number of different models and represents a wide range of traffic management 

system designs. It has the ability to model the response of drivers to real-time traffic 

information and controls and can incorporate the dynamic interaction between the traffic 

management system and the drivers on the network.  

The various components of MITSIMLab are organized in three modules:  

1. Microscopic Traffic Simulator (MITSIM)  

2. Traffic Management Simulator (TMS)  

3. Graphical User Interface (GUI)  

A microscopic simulation approach, in which movements of individual vehicles are 

represented, is adopted for modeling traffic flow in the traffic flow simulator MITSIM. The 

traffic and network elements are represented in detail in order to capture the sensitivity of 

traffic flows to the control and routing strategies. The road network is represented by nodes, 

links, segments (links are divided into segments with uniform geometric characteristics) and 

lanes. Traffic controls and surveillance devices are represented at the microscopic level. 

 

The traffic simulator accepts time-dependent origin to destination trip tables as inputs. The 

OD tables represent either expected conditions or are defined as part of a scenario for 

evaluation. A probabilistic route choice model is used to capture drivers' route choice 

decisions. The origin/destination flows are translated into individual vehicles wishing to enter 

the network at a specific time. Behavior parameters (e.g., desired speed, aggressiveness) and 

vehicle characteristics are assigned to each vehicle/driver combination. MITSIM moves 
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vehicles according to car-following and lane-changing models. The car-following model 

captures the response of a driver to conditions ahead as a function of relative speed, headway 

and other traffic measures. The lane changing model distinguishes between mandatory and 

discretionary lane changes and simulates driver action as an output of a complex decision-

making framework. Merging, drivers' responses to traffic signals, speed limits, incidents, and 

toll booths are also captured.  

 

The traffic management simulator (TMS) mimics the traffic control system under evaluation. 

A wide range of traffic control and route guidance systems can be evaluated. These include 

regular traffic signals, ramp control, freeway mainline control, lane control signs, variable 

speed limit signs, portal signals at tunnel entrances, intersection control, variable Message 

Signs and in-vehicle route guidance. TMS has a generic structure that can represent different 

designs of such systems with logic at varying levels of sophistication (pre-timed, actuated or 

adaptive). An extensive graphical user interface is used for both debugging purposes and 

demonstration of traffic impacts through vehicle animation. A detailed description of 

MITSIMLab appears in Yang and Koutsopoulos (1996) and Yang et al (2000). 

 

In this study, the 3-level lane changing model framework was implemented as the active lane 

changing model adopted by MITSIM in simulating driver decisions regarding lane change 

action at every simulator time step. Tests were conducted following the model 

implementation to verify whether it was working and simulating lane change action as 

desired. Details of this verification tests are available in the final report on Arterial Lane 

Selection model submitted to NGSIM as a part of this study (Choudhury et al. (2007)).  

The arterial also contained intersections that allowed for vehicles to enter mainstream traffic 

from side streets, which were simulated using the intersection lane-selection model 

developed and presented in Choudhury (2007). Appendix A presents the framework adopted 

for the intersection lane-selection model and explains how it works in conjunction with the 

mainline lane changing model developed in this study. For a comprehensive treatment of this 

model’s development and application, the reader is referred to Choudhury (2007). 
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MITSIMLab’s driving behavioral models also include acceleration models that simulate the 

longitudinal motion of vehicles. The different kinds of scenario-specific acceleration models 

in MITSIMLab that work in conjunction with lane changing models to simulate driver 

motion are presented in Appendix B. 

 

Other notable implementation details on the supply side of the simulator include: 

• The development of a network structure representative of the arterial stretch within 

the study area, with appropriate incorporations of lane and intersection configurations and 

specifications of lane use regulations to be used within the simulator 

• The development of a signal file containing information on signal phase timings 

and control logic behind their operations at each intersection, as best deciphered from the 

data provided on signal interval lengths over the 32 minutes of data collection 

 

6.2 Model Validation 

 

The model validation module typically includes within it the task of aggregate calibration 

and validation. 

There usually exist model parameters whose estimates reflect characteristics specific to the 

estimation dataset and are hence not extensible to another scenario. Hence, prior to applying 

the estimated model for forecasting purposes to another scenario, these situation-specific 

parameters need to be re-estimated. Also, other simulator parameters of demand and supply, 

including O-D flows, parameters of other behavioral models including route choice and 

acceleration, etc., need to be estimated so as to reflect the conditions in the new scenario. 

This task of jointly re-estimating the above parameters in order to tune the simulator to 

reflect the prevailing traffic conditions in the new application scenario is called calibration. If 

the observed traffic conditions on the new scenario are used in aggregate form for this re-

estimation process, the process is called aggregate calibration. For this purpose, a part of the 

validation dataset is used and the above-mentioned parameters are adjusted in order to obtain 

a good fit between the simulated and observed traffic. Traffic characteristics like speeds, 

counts, density etc describing traffic at an aggregate level are chosen as basis for comparison 
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and for evaluating fit. Different goodness-of-fit measures suitable for use as a measure of 

calibration are available in statistical literature. 

 

It must be mentioned here that statistics from traffic in the north bound direction alone were 

considered for generating calibration and validation measures. This step was taken in view of 

the poor quality of operational data available for signals controlling the south-bound traffic. 

This deficiency was expected to introduce significant errors in measurements for the traffic 

simulated in the south-bound direction, and render it unrepresentative of the model 

performance. 

 

As explained above, the arterial dataset whose 20% sample was used for estimation was 

chosen as the validation dataset in the absence of any other suitable dataset. An overview of 

this dataset and the extraction of aggregate traffic characteristics chosen to serve as 

benchmarks for aggregate calibration are described next. Common goodness-of-fit measures 

typically used in the calibration efforts are then enlisted. The calibration problem is then 

outlined, followed by the list of parameters chosen for calibration in this study and their 

calibrated values on implementation of each of the two lane changing models (2- and 3-level 

models). The traffic measures chosen for aggregate validation, and their results and 

associated discussions are presented next. 

 

6.2.1 Dataset description 

The trajectory data from Lankershim Boulevard, Los Angeles, California collected by the 

NGSIM Team was used for aggregate calibration and validation of the model. Lane-specific 

vehicle counts aggregated over 5-minute time intervals were chosen as the traffic 

characteristics to serve as a benchmark for calibrating both estimated models (2- and 3-level 

models). Since the dataset was available in disaggregate trajectory format, the individual 

observations had to be aggregated to calculate the above traffic characteristics at the level of 

aggregation required of the calibration task. Synthetic sensors at different locations of the 

arterial stretch were introduced for this purpose, and counts observed at these locations were 

extracted from the trajectory data at the desired level of aggregation. Three sets of sensors 
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were placed for each arterial section at the beginning, end, and midpoints, respectively. The 

locations of the synthetic sensors are shown schematically in figure 6.1 below. 

 

Figure 6.1: Locations of synthetic sensors in study area stretch 

 

The trajectory dataset provided information on the path taken by each vehicle through the 

study area. Hence, there was no route choice decision that was required of the simulator for 

each driver. Exact vehicle O-D flows were also available from the trajectory dataset.  

Details of the O-D data are provided in Appendix C. The calibration process therefore only 

involved adjustment of the driving behavior parameters to better fit the observed traffic 

characteristics.  

The total dataset was available for a 32-minute period (8:28 a.m. to 9:00 a.m.). The first 22 

minutes of data was used for calibration and the remaining 10 minutes was used for 

validation. 

 

6.2.2 Goodness-of-fit measures 

A number of goodness-of-fit measures can be used to evaluate the overall performance of a 

simulation model. Popular among them are the root mean square error (RMSE) and the root 

mean square percent error (RMSPE). These statistics quantify the overall error of the 

simulator. Percent error measures directly provide information on the magnitude of the errors 

relative to the average measurement. 

 

The two measures are given by: 
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obs

n
Y and sim

n
Y  are the averages of observed and simulated measurements at space-time point n, 

respectively calculated from all available data (observations and/or multiple simulation 

replications). 

RMSE and RMSPE, however, penalize large errors at a higher rate relative to small errors.  

 

Other measures include: Mean error ( ME ); and Mean percent error ( MPE ). 

 

ME and MPE indicate the existence of systematic under- or over-prediction in the simulated 

measurements.  These measures are given by: 
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where obs

n
Y and sim

n
Y  are the averages of observed and simulated measurements at space-time 

point n, respectively calculated from all available data.  

 

6.2.3 Aggregate Calibration process 

Aggregate calibration can be formulated as an optimization problem that seeks to minimize a 

function of the deviation of the simulated measurements of chosen aggregate traffic 

characteristics from the observed measurements of the same. The formulation presented here 

assumes that the driving behavior parameters are stable over the period of observation. 

 

The formulation is shown below. The objective function is in the form of sum of error 

squares, with the error being the deviation of the each simulated measurement from the 

observed measurement. The first constraint shows the dependence of simulated 



  92 

measurements on the driving behavior parameters and the network conditions which govern 

the simulation. 
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where, 

β = Driving behavior parameters; 

N = Number of days for which sensor data is available; 

simM = Simulated measurements; 

obs

i
M = Observed measurements for day i; 

S = The simulation model function, which generates simulated traffic measurements; and 

W = Variance-covariance matrix of the sensor measurements. 

 

The simulated measurements that were used as benchmark for calibration in this study were 

the “synthetic” sensor counts generated using the first 22 minutes of available trajectory data 

(8:28 a.m. to 8:50 a.m.). 

The number of behavioral parameters in the simulation model is very large. It is never 

feasible to calibrate all of them. Also, some of them have typically been proven to be 

transferable across different driving conditions. Therefore, a few parameters that typically 

have the most significant effect on the simulation results, and are also expected to be 

sensitive to driving conditions, are usually selected. These parameters are selected from a 

pool of parameters belonging to all the driving behavior models (lane changing, acceleration, 

etc) that work in conjunction to simulate the traffic. The focus rests on calibrating these 

parameters, while fixing the other parameters to their estimated (default) values. Previous 

experience has shown that the simulation results are most sensitive to the following 

parameters: 

• Sensitivity parameters of the acceleration and deceleration function; 

• Parameters of the desired speed distribution; 

• Intercepts and variances (constants and sigmas) in the critical gap functions; 

• Path plan variables. 
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The optimization in this study was done in MATLAB using Box’s Complex algorithm (Box, 

1965). 

 

6.2.3.1 Calibration parameters 

Based on previous experience and sensitivity test results, the following parameters of the 

behavioral models in MITSIMLab were selected for calibration in this study: 

• Acceleration and deceleration constants; 

• Desired speed mean and standard deviation; 

• Current lane dummy, 

• Lanes away from exit lane 

• Intercepts (constants) and variance (sigmas) of critical gap,  

• Constant in the execution level; and 

• Intercept (constant) of outer lane in intersection lane choice model 

 

The acceleration and deceleration constants, along with mean and standard deviation of 

desired speed are parameters of the car-following model implemented in MITSIMLab. 

Further details of this car-following model and associated parameters are available in Ahmed 

(1999) and Toledo(2003). They are summarized in Appendix B. 

The current lane dummy and the lanes away from the exit lane are two parameters used in the 

target lane selection model of the 2- and 3-level lane changing model structure. The 

intercepts and standard deviations of the lead and lag critical gaps are parameters in the 

second decision level (gap acceptance) of the 2- and 3-level lane changing model structure, 

while the execution level constant is a parameter present only in the 3-level lane changing 

model, at the third level (lane change execution). 

The intercept of outer lane is a parameter used in the Intersection lane-selection model 

presented in Choudhury (2007). 

The current lane dummy and the constant in the execution level were expected to be sensitive 

to the new dataset, because of the discrepancy between the estimation sample and the overall 

dataset in terms of the number of lane changes per north-bound vehicle. Out of the 400 

vehicles in the estimation sample, 160 were north-bound. The total number of lane changes 
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aggregated over all north-bound vehicles in the sample was 132, implying a figure of 0.825 

lane change per vehicle. In the overall dataset, 945 vehicles were observed in the north-

bound direction, and a total of 1169 lane changes were observed to be executed by these 

vehicles within the study area. This amounted to 1.237 lane change per vehicle, which was 

significantly higher that that observed in the estimation sample. This fact implied that drivers 

in the overall dataset were less averse to lane change on average. Therefore, the current lane 

dummy, which captures the affinity of a driver for his current lane, and execution level 

constant, which represents his proclivity for a lane change, were both expected to 

significantly vary when extending the estimated model to the overall dataset.  

 

6.2.3.2 Calibration results 

 

A. 3-Level lane changing model: 

The calibrated values of the parameters, when using the 3-level model for lane changing in 

MITSIMLab, are listed in table 6.1. 
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Table 6.1: Calibrated parameter values for the selected parameters (3-Level lane 

changing model implementation) 
Parameter Value Behavior 

Model/Variable 

Calibrated 

Parameter Explanation of Calibrated Parameter Initial Calibrated 

Acceleration 

constant 

Constant term for acceleration in 

MITSIMLab car-following model 

(Ahmed 1999) 

0.040 0.06 Car-Following
a 

Deceleration 

constant 

Constant term for deceleration in 

MITSIMLab car-following model 

(Ahmed 1999) 

-0.042 -0.04 

Mean Mean of the normally distributed desired 

speed of the driver 

0.100 0.056 Desired Speed
a 

Variance Variance of the normally distributed 

desired speed of the driver 

0.150 0.540 

Lead gap 

constant 

Constant term for critical normal lead gap 2.31 2.16 

Lead gap 

sigma 

Variance for critical normal lead gap (log 

normally distributed) 

.00751 0.0406 

Lag gap 

constant 

Constant term for critical normal lag gap 1.51 1.06 

Mainline Lane 

Change: 

Gap Acceptance 

Lag gap sigma Variance for critical normal lag gap (log 

normally distributed) 

.0085 0.0517 

Lane 3 

constant 

Constant term for lane 3 1.31 1.10 Intersection-Lane 

Choice 

Target-lane 

dummy 

One, if immediate lane and target lane are 

the same 

3.16 2.13 

Away from 

exit lane 

Number of lane changes needed for 

getting to the exit lane of the driver 

-0.73 -0.43 Mainline Lane 

Change – 

Target Lane 

Selection 

Current-lane 

dummy 

One, if the current lane is the target lane 1.43 0.5 

Mainline Lane 

Change – 

Execution Level 

Execution 

constant 

Constant for execution decision -2.52 -1.37 

a
 General parameters of MITSIMLab.  These variables are described in Ahmed (1999). 

 

Among these parameters, the desired speed parameter, the current-lane dummy, and the 

execution constant made the most significant contribution in improving the performance of 
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the model. When these parameters were unconstrained, the model performed better 

(objective function for calibration improved significantly) compared to the case when these 

parameters were fixed to the originally estimated values. As had been expected, the current 

lane dummy was reduced, and the execution level constant increased by the calibration 

process, to reflect the greater propensity for drivers to make a lane change in the overall 

dataset as compared to the estimation sample. 

 

The improvements after the calibration are presented in table 6.2 below. 

 

Table 6.2: Improvement resulting from calibration of 3-level model 

Calibration 

 Before After 

Percent 

Improvement 

Lane-Specific Counts 

RMSE (over 20 minutes) 18.80 15.10 19.68% 

RMSPE (over 20 minutes) 0.83 0.81 2.4% 

 

B. 2-Level lane changing model 

Since the 2-level lane changing model was used as a reference model for assessing the 

predictive value of the 3-level lane changing model, it was also calibrated using the same 

procedure as described above. The calibrated parameters of the 2-level model included the 

following: 

• Acceleration and deceleration constants; 

• Desired speed mean and sigma; 

• Current-lane dummy; 

• Lanes away from exit lane; and 

• Intercepts (constants) and variance (sigmas) of lead/lag critical gaps 

 

The calibration results when using the 2-level model for lane changing in MITSIMLab is 

presented in table 6.3 below. 

 

 



  97 

Table 6.3: Calibrated parameter values for the selected parameters (2-level lane 

changing model implementation) 
Parameter Value Behavior 

Model/Variable 

Calibrated 

Parameter Explanation of Calibrated Parameter Initial Calibrated 

Acceleration 

constant 

Constant term for acceleration in 

MITSIMLab car-following model 

(Ahmed 1999) 

0.040 0.042 Car-Following
a 

Deceleration 

constant 

Constant term for deceleration in 

MITSIMLab car-following model 

(Ahmed 1999) 

-0.042 -0.029 

Mean Mean of the normally distributed desired 

speed of the driver 

0.100 0.056 Desired Speed
a 

Variance Variance of the normally distributed 

desired speed of the driver 

0.150 0.540 

Lead gap 

constant 

Constant term for critical normal lead gap 2.23 2.2 

Lead gap 

sigma 

Variance for critical normal lead gap (log 

normally distributed) 

.00751 0.009 

Lag gap 

constant 

Constant term for critical normal lag gap 1.44 1.40 

Mainline Lane 

Change: 

Gap Acceptance 

Lag gap sigma Variance for critical normal lag gap (log 

normally distributed) 

.0085 0.009 

Lane 3 

constant 

Constant term for lane 3 1.31 1.10 Intersection-Lane 

Choice 

Target-lane 

dummy 

One, if immediate lane and target lane are 

the same 

3.16 2.13 

Away from 

exit lane 

Number of lane changes needed for 

getting to the exit lane of the driver 

-0.468 -0.104 Mainline Lane 

Change – 

Target Lane 

Selection 

Current-lane 

dummy 

One, if the current lane is the target lane 2.09 0.99 

a
 General parameters of MITSIMLab.  These variables are described in Ahmed (1999). 

 

The improvements after the calibration are presented in table 6.4. 
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Table 6.4: Improvement resulting from calibration of 2-level model 

Calibration 

 Before After 

Percent 

Improvement 

Lane-Specific Counts 

RMSE (vehicles per 20 

minutes) 

18.80 14.80 21.3% 

RMSPE 0.83 0.77 7.2% 

 

It can be observed that the final fit as obtained from the calibration process for the first 22 

minute time-interval is better for the 2-level model in comparison to the 3-level model. This 

could be attributed to possible over-fit. The measures of deviation over the validation interval 

should also be considered before making a conclusive assessment of model performance. 

 

 

6.2.4 Aggregate Validation 

This final sub-task involves the application of the calibrated model to the dataset specifically 

earmarked for the purpose of assessing the quality of forecasts rendered by the developed 

model. In context of this study, aggregate validation involved a comparison of the traffic 

simulated by use of the new model for the chosen time period with that observed for the same. 

The basis for this comparison comprised of different traffic elements/features most relevant 

to the current study, adopted in some aggregated form. 

As mentioned in the calibration section, the time period between 8:50 a.m to 9:00 a.m of the 

arterial traffic had been sidelined for validation purposes. The model as estimated and then 

re-calibrated over the previously described efforts was applied to simulate traffic over this 10 

minute interval. The vehicle origin-destination matrix and details of signal operations served 

as the only external information provided to the simulator. 

 

The following features/elements of traffic are selected to serve as validation measures, i.e, 

measures of model performance: 

1. Aggregate lane-specific counts 
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2. Lane distribution of vehicles in mainline arterial 

3. Number of lane changes per vehicle across different turning movement categories 

 

As the validation process is comparative, the degree of fit with the observed traffic measured 

for the traffic simulated by the 3-level model is analyzed relative to that measured for the 2-

level model. An analysis of the relative performance of these two models in replicating the 

observed traffic behavior, evaluated in terms of the above selected traffic characteristics, is 

presented next. 

 

1. Aggregate lane-specific counts: 

The fit between the simulated and observed traffic in terms of the aggregate lane-specific 

counts, as obtained for the 3- and 2-level models over the validation time interval, are 

summarized in table 6.5 below. 

 

Table 6.5: Goodness-of-fit in aggregate lane-specific counts 

Validation time interval (8:50 

– 9:00 am) 

 2-Level 3-Level 

Percent 

Improvement 

Lane-Specific Counts 

RMSE (vehicles per 20 

minutes) 

19.40 18.0 7.2% 

RMSPE 0.783 0.733 6.3% 

 

As can be seen, the 3-level model provides a consistently better fit with regards to lane-

specific counts over the validation time interval in comparison to the 2-level model. The 

observed improvement in degree of fit in counts over the validation interval for the 3-level 

model occurs in spite of the lower fit relative to the 2-level model over the calibration 

interval. This result provides support for the extensibility of the 3-level model. 
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2. Lane distribution of vehicles in mainline arterial: 

The distribution of vehicles over different lanes in the cross-section of a roadway is an ideal 

measure to verify the quality of performance of a lane changing model. Since the model 

extension aims to capture the physical duration of the lane change, the chief contribution is 

expected to occur with regard to the actual location of the lane changes. While the 2-level 

model treats lane changes as an instantaneous action following gap acceptance, the 3-level 

model is expected to simulate lane changing actions closer to practical reality and replicate 

the lane change locations better. By considering lane-specific synthetic sensors at different 

reaches along a single arterial section (refer figure 6.1), it is possible to investigate the actual 

locations of simulated lane changes within the section by comparing the lane distributions of 

vehicles across the different reaches of the section. The lane distributions across the left 

extreme lane, middle/through lanes and the right extreme lane for the section between 

intersection nos. 2 and 3 (refer demarcation in figure 4.2), as simulated by both models, are 

presented in the following figures. The equivalent measures observed from the dataset are 

also presented in the figures to serve as a benchmark.  

Lane-specific vehicle counts used to deliver these statistics are aggregated over 5 minute 

intervals. The percentage distribution of vehicles across the lanes over different cross-

sectional reaches of the selected section have been presented in the following figures (6.2 (a)-

(f)). Two 5-minute intervals have been selected for presentation, one chosen from the 

calibration period (8:45 – 8:50 am) and another chosen from the validation period (8:55 – 

9:00 am).  

 

These figures offer a sample of comparison between the performances of the 2- and 3-level 

models with regards to lane distributions of vehicles, and thereby lane change locations. 
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Figure 6.2: Lane distribution of vehicles over different reaches of section 3 (between 

Intersections 2 and 3) (a) – (f) 

(a) 
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(b) 

Lane Distribution - Section middle(8:45 - 8:50 am)
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(c) 

Lane Distribution - Section end (8:45 - 8:50 am)
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(d) 

Lane Distribution - Section beginning (8:55- 9:00)
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(e) 

Lane Distribution - Section middle (8:55 - 9:00)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L-extreme Middle R-extreme

Lane Type

%
 V

e
h
ic

le
s

Observed

3-level

2-level

 

(f) 

Lane Distribution - Section end (8:55 - 9:00)
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As can be observed from the list of the figures above, the 3-level model provides a consistent 

albeit small improvement in quality of predicted lane distributions as compared to the 2-level 

model. This in turn can be inferred as an indication of an improvement in the predicted 

location of lane changes. 

The above results contribute to validating the improvement in behavioral realism of lane 

change modeling brought about by the model extension and explicit handling of lane change 

duration. 
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3. Number of lane changes per vehicle across different turning movement categories 

Vehicle categorization based on their turning movements, and its relevance to lane-changing 

behavior, was discussed in the data description section (4.1.3). Statistics on number of 

vehicles across the three defined turning categories (through, turning into arterial and turning 

off arterial) observed in estimation sample and overall dataset were presented in table 4.3. 

The number of simulated lane changes by each vehicle turning category offers another 

pertinent validation measure for assessing the performance of the lane changing models 

being studied. The following figures (6.3 – 6.5) present the distribution of vehicles based on 

the number of lane changes per vehicle as simulated by either models for each vehicle 

turning category. The presented statistics are aggregated over the entire validation period. 

The equivalent statistics as observed from the validation dataset for the same time interval 

are used as benchmark. 
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Figure 6.3: Distribution of vehicles by lane change per vehicle – Through Vehicles 
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Figure 6.4: Distribution of vehicles by lane change per vehicle – Vehicles turning into 

Arterial 
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Figure 6.5: Distribution of vehicles by lane change per vehicle – Vehicles Turning off 

Arterial 
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The figures reveal a consistently better fit achieved by the 3-level model with regards to the 

number of lane changes per vehicle for each turning movement category. In particular, it is 

observed that the 2-level model generally tends to under-predict the total number of lane 

changes for vehicles across all turning categories (since the number of vehicles with more 

than 2 lane changes simulated by the 2-level model is lower than the corresponding number 

simulated by the 3-level model for every vehicle turning category). The source of this 

discrepancy is tracked back to the model estimation stage. The series of vehicle observations 

in the study dataset that recorded huge adjacent gaps (some with no lead/lag vehicle) but no 

lane changes were expected to have caused error in critical gap estimates for the 2-level 

model owing to its modeling deficiency. These errors in critical gap measures are likely to 

have been responsible for the observed under-prediction of lane changes by the 2-level model. 

 

In summary, the presented validation measures indicate a modest but consistent improvement 

in traffic prediction exhibited by the 3-level model in comparison to the 2-level model. 

Validation measures were chosen so as to reflect aspects of simulated driving behavior that 

were expected to show improvement based on the motivation surrounding the model 
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extension. The corresponding results substantiate this hypothesis, and indeed justify the 

introduction of the model extension. 
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CHAPTER 7 

 

SUMMARY AND CONCLUSIONS 

 

7.1 Thesis summary 

 

This thesis work dealt with a study of driver behavior modeling, and focused on introducing 

an enhancement to the state-of-art lane changing model. The current lane changing model 

treated driver’s lane changing action to be the output of a two-level decision framework: 

target lane selection and gap acceptance decision. The conceptualization of lane change as an 

instantaneous driver action following gap acceptance was considered to be inadequate from a 

practical perspective since it ignored away the magnitude of lane change duration. This 

aspect governing a practical lane change maneuver would result in a time lag between the 

actual completion of a lane change and its initiation following the discovery of an acceptable 

adjacent gap. 

An extension in model framework was proposed for overcoming this deficiency. The current 

study introduced a third decision level regarding the execution of a lane change that drivers 

are hypothesized to consider following acceptance of the adjacent gap. A decision to execute 

a lane change at a given instant would correspond to the completion of an initiated lane 

change at that instant in reality. This decision level on lane change execution into an 

acceptable gap would therefore help account for the duration of the lane change maneuver. 

 

The lane change duration is expected to be influenced by two predominant factors, one 

characterizing the urgency of the lane change, and other characterizing the speed at which it 

can be completed. List of traffic and individual-specific variables that would best capture 

these two factors were discussed. 

 

The extended lane changing model framework was then applied to study lane changing 

behavior in arterial corridors. Detailed vehicle trajectory collected over 32 minutes of 

observation of traffic at Lankershim Boulevard, California, U.S, was used as the application 
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dataset. The study area was an arterial corridor having signalized intersections that allowed 

controlled mainline access to side streets.  

The application scenario was in itself unique, since driving behavior in arterials have not 

received significant attention in literature. In addition, the arterial dataset was found to 

possess some distinctive characteristics that strongly distinguished it from previous study 

datasets. Apart from representing traffic of lower density and speeds compared to those 

encountered in previous datasets (mostly freeways), it contained a significant proportion of 

observations that recorded no adjacent lead or lag vehicles for the subject vehicle, and 

therefore no measurement of adjacent gap length. A pseudo gap correction was applied to 

generate adjacent gap lengths for such observations. Instantaneous gap statistics indicated 

that vehicles were not moving into such gaps immediately, implying a prolonged lane change 

process. This phenomenon could not be explained in the original 2-level model framework, 

and hence offered an ideal case to showcase the applicability of the model extension. 

 

A sample of the overall study dataset was used for model estimation purposes. The 

parameters for the original and extended models were jointly estimated in GAUSS. The best 

model specification for the extended 3-level model was arrived upon following an iterative 

process, and was also adopted for the 2-level model baring the execution level. A comparison 

of the parameter estimates and the likelihood function indicated that the extended 3-level 

model explained the lane changing behavior in the sample dataset significantly better. It was 

discovered in particular that the extended model was able to correct the errors in signs of 

some of the critical gap parameter estimates that infested the original 2-level model. Also, the 

estimates of parameters in the third level of the extended model suggested that:  

a) Drivers tend to prolong lane change completion when they experience adjacent gaps 

significantly greater than the minimum threshold they deem as required for a safe 

lane change. 

b) Drivers moving at a faster speed are likely to complete their lane changes quicker 

than others. 

 

Owing to the unavailability of another suitable dataset, the unsampled version of the study 

dataset was chosen for model validation purposes. The newly developed lane changing 
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model was implemented in a microscopic traffic simulator MITSIMLab, which replicates 

individual driver behavior through a sequence of discrete decisions on lane changing and 

acceleration, and has the capability of handling signalized corridors. The model was 

calibrated using the first 22 minutes of the observation interval, and validated using the 

remaining 10 minutes.  

 

Both the original 2-level and the extended 3-level models were calibrated and validated using 

MITSIMLab to help assess the value offered by the proposed model extension with regards 

to driver behavior prediction. Aggregate measures that were expected to reflect the specific 

improvements in traffic prediction attributable to the model extension were chosen as 

validation measures. It was seen that the 3-level model delivered a consistent improvement 

over the 2-level model in each of these measures. Although not stark, these improvements 

lead to a reliable inference regarding the superiority in performance of the extended model. 

 

 

7.2 Research contributions 

 

The research work outlined in this thesis is believed to make the following two contributions 

in the field of driver behavior modeling. 

 

7.2.1 Enhanced behavioral realism in lane changing models 

The work identifies a limitation in the state-of-art two-level lane changing model framework 

that would in particular weaken its applicability to low density, low speed traffic situations. 

The treatment of lane change as an instantaneous action following gap acceptance ignores a 

critical maneuverability-related aspect: lane change duration. The actual time duration of a 

lane change execution that extends over some finite number of time instances (as per the time 

resolution adopted in the dataset), and the tendency of drivers to prolong it under situations 

where large adjacent gaps are available, are both overlooked in the current state-of-art model. 

These elements are captured and incorporated within the extended model framework through 

the additional level of decision following gap acceptance that models driver’s decision to 

execute lane change at the current instant. While the model still treats lane change as an 
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instantaneous process, the additional level gives it flexibility in capturing the time delay in 

lane change completion post its initiation. This extension helps bridge the gap between model 

conceptualization and behavioral execution of lane changing actions. 

 

7.2.2 Application to lane changing behavior in arterial corridors 

As mentioned throughout this thesis, past studies on driver lane changing models have tended 

to exclusively focus on traffic in congested situations. Owing to data availability and interest, 

most of the models that were developed in the past were applied to freeway scenarios. 

Studies on arterial lane changing behavior are indeed very limited. This study dealt with 

traffic from an arterial corridor that also included within it signalized intersections. It was 

discovered that the arterial dataset indeed differed from freeways in certain crucial respects, 

further weakening the applicability of models previously tested on freeway datasets. The 

arterial dataset was therefore found to offer an interesting and strong case for implementation 

of the proposed model extension. This study represents one of the few works involving the 

development and successful application of lane changing models for arterial traffic. 

 

 

7.3 Directions for future research 

 

This section outlines some of the unexplored research topics that are believed to be of worth 

pursuing in future in order to propel modeling improvements for driver lane changing 

behavior. 

 

7.3.1 State dependency 

Lane changing behavior is modeled as the output of a sequence of decisions taken by drivers 

over successive time intervals. The state-of-art lane changing models, along with the 

extended model developed in this study, assume independence among latent driver decisions 

across different time instances. This ignorance of state dependency in driver lane changing 

actions is a major flaw among the current established models. It constitutes a most interesting 

line of research that is being strongly pursued by current researchers. A robust yet 
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computationally tractable implementation of features that help incorporate state dependency 

in lane changing model framework has not yet been accomplished, and would represent a 

fundamental improvement in lane change modeling when achieved. 

 

7.3.2 Integration with acceleration model 

This study incorporated an extended model framework that focused primarily on the lane 

changing decisions of the driver. However, driver behavior comprises of, in the simplest 

scenario, two components: acceleration and lane-changing. As already discussed in the 

literature review chapter and established in driving behavior literature, these actions tend to 

be the joint output of the same decision-making framework. Toledo (2003) had developed an 

integrated driver behavior model that jointly modeled lane-changing and acceleration 

decisions. However, applications of subsequent enhancements to the lane changing 

component of that integrated model, as done by Choudhury (2005) and further attempted in 

this work, do not integrate lane changing with acceleration decisions. Appending appropriate 

decision levels to the discussed lane changing model framework that help capture the 

influence of lane changing decisions on acceleration decisions, and applying them on the 

study dataset would represent a significant improvement over the current work. 

 

7.3.3 Effect of time resolution 

Every one of the models discussed in this thesis, and most of those developed in literature, 

are applied to explain the driver actions occuring across discrete time instances as adopted in 

the application trajectory dataset. The conceptualization of the process they describe involves 

a discretization of a continuous-time process. In such cases, the time resolution adopted in 

the discretization step would have a significant impact on the model parameters. In general, 

the alternative specific intercepts tend to absorb the effect of time resolution of the estimation 

dataset. For example, the original dataset as provided through video coverage was at a time 

resolution of 1/10
th

 of a second, and was later aggregated to one-second resolution. The 

parameter estimates, especially of the intercepts at the three decision levels, would differ 

when using either of the two time resolutions for estimation purposes.  



  113 

The unit time step at which driver decisions are simulated is expected to vary across 

microscopic traffic simulators. It would be hence be inappropriate to apply a model estimated 

using a trajectory dataset adopting a given time resolution onto a simulator that works at a 

different unit time step. In order for this estimated model to work within the simulator’s time 

step, one would need to recalibrate the model parameters, in particular the alternative specific 

intercepts. This requirement for re-calibration before use within every new simulator can be 

obviated if one could explicitly estimate the effect of the time resolution within the lane 

changing model framework. The presence of this parameter estimate would allow an 

estimated model to be transferable across different simulators irrespective of the simulation 

time step adopted in the simulator. 

 

7.3.4 Transferability 

As mentioned in the study, another suitable dataset could not be found to serve for the 

validation task. Hence, an unsampled version of the arterial dataset had to be used instead. 

One of the key concerns about microscopic behavior models is the applicability of their 

parameters to different traffic scenarios. It would be interesting to conduct systematic and 

rigorous transferability tests that would help identify the parameters whose estimates within 

the model framework stay consistent across different traffic situations. Availability of 

different datasets representing arterial traffic would permit the execution of this task. This 

would provide an empirical basis for identifying model parameters that require calibration as 

the application scenario changes. 

Another interesting aspect that was not tested during the course of this study was the 

extensibility of the model to freeway dataset. The extended 3-level model is expected to be a 

generalized version of the original model. This claim can be tested by assessing its 

performance on freeway datasets on whom the original 2-level model was previously applied 

and tested. 
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APPENDIX A 

 

INTERSECTION LANE-SELECTION MODEL 

 

The intersection lane-choice model involves the lane selection of drivers entering the arterial 

from a side street (Figure A.1). The model also is applicable for lane selection of drivers 

entering the side street from arterials. It should be noted that since vehicles traveling from an 

arterial link to another arterial link are not allowed to make lane changes within the 

intersection, the intersection model is not applicable there. 

Figure A.1: Intersection Lane Selection 

 

A.1 Modeling Framework 

 

The intersection lane-selection model consists of two steps: choice of target lane and choice 

of immediate lane.  The structure of the model is shown in Figure A.2.  

The first step in the decision process is latent since the target-lane choice is unobservable and 

only the driver’s actual chosen lanes are observed. Latent choices are shown as ovals; 

observed ones are shown as rectangles. 
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Figure A.2: Structure of the Intersection Lane-Selection Model 

( | , )
n

P l v τ
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The target lane is the lane the driver perceives as best to be in considering the attributes of 

the lane and the path plan considerations. However, the driver may not be able to maneuver 

to his target lane immediately after crossing the intersection and the observed lane of the 

driver may be different from his target lane. 

The choice of target lane is a tactical decision of the driver whereas the choice of immediate 

lane is governed by maneuverability considerations. 

It should be noted that once the driver enters the arterial, the mainline lane-changing model 

will take over and be used for predicting his decisions. 

A.2 Model Structure 

Target-Lane Choice 

The target-lane choice of the driver can be modeled as a multinomial logit (MNL) model.  

The target-lane choice is significantly affected by the planning capability of the driver and 

his familiarity with the network. The choice set of the driver can thus depend on driver 

characteristics. The drivers can belong to either of the two classes: 
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• Class 1– Myopic Drivers– Those who consider the immediate section only (Figure 

A.3); and 

• Class 2– Drivers Who Plan Ahead– Those who consider more than one section 

ahead (Figure A.4). 

Variables associated with the target lane of the driver also may vary depending on the driver 

class. 

Figure A.3: Perspective of Myopic Drivers 

 

The probability that driver n selects lane l as the target lane, conditional on individual-

specific characteristics, can be expressed as follows: 
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Figure A.4 Perspective of Drivers who Plan Ahead 
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Variables likely to influence the target-lane choice of the driver include: 

• Path Plan Variables – Distance to the point when the driver needs to be in a specific 

lane to follow his path, and the number of lane changes required to be in the correct lane;  

• Lane Attributes – Queue lengths, average speeds, and queue discharge rates; and 

• Driving Style and Capabilities – Individual driver/vehicle characteristics, such as 

the look-ahead distance of the driver and aggressiveness of the driver.  

These influencing variables can differ among drivers in the same intersection with the same 

path-plan, depending on their network knowledge and experience. 

Immediate-Lane Choice 

The immediate-lane choice of the driver also can be modeled as an MNL model. The 

immediate-lane choice is affected by the driving effort needed to reach a particular lane and 

maneuverability considerations, and is conditional on the choice of target lane. 

The probability that driver n selects lane i as the immediate lane, conditional on target lane l 

and individual-specific characteristics, can be described as follows: 

exp( )
( | , )

exp( )

T

T

n

i i

nt n

n k k

nt n

k C

X
P i l

X

β α υ
υ

β α υ
∈

+
=

+∑
 (A.2) 

Variables likely to influence the immediate-lane choice of the driver include: 

• Current position of the driver: Proximity of a given lane to the receiving lane closest 

to the driver; 

,
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• Neighborhood variables: Presence of other vehicles and their actions, relative position 

and speed of the subject vehicle with respect to vehicles surrounding it, geometric elements 

of the roadway, signals and signs, and available capacity of the lane; and 

• Driving style and capabilities: Individual driver/vehicle characteristics, such as the 

aggressiveness of the driver and performance capabilities of the vehicle (e.g., required 

turning radius). 
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APPENDIX B 

Acceleration Models in MITSIM 

 

The acceleration models implemented in MITSIM (Ahmed, 1999) are described in this 

section. 

MITSIM considers two acceleration regimes: free-flow and car following. The free flow 

acceleration regime, in which the vehicle travels at his/her desired maximum speed, prevails 

when there is no lead vehicle or the lead vehicle in front is far enough ahead that it has no 

impact on the subject vehicle. The free-flow acceleration model has the following form: 

( )ff ff DS DS ff

n n n n n n
a (t)= × X (t - ) -V t - + (t)λ τ β τ ε                                                          (B.1) 

Where, ff

n
a is the free flow acceleration of driver n at time t, ffλ is the constant sensitivity, 

( )DS

n n
X t τ−  is the vector of explanatory variables affecting the desired speed, 

n
τ  is the 

reaction time of the driver, DSβ  is the corresponding coefficient,  ( )n n
V t τ−    is the current 

speed of the driver at time ( )
n

t τ− , ( )ff

n
tε  is the random term associated with free flow 

acceleration. 

The model was estimated to contain the following behavioral parameters: 

[ ]ff

na ( ) ( ) ( ) ( ) ( )front heavy ff

sens fvs n n hv n d n n n n nt V t k t V t tβ α β τ β δ β δ τ τ ε = ⋅ + ⋅ − − ⋅ + ⋅ − − − +     (B.2) 

Where, 

[ ]
n is the sensitivity constant, is a constant, ( ) is the front vehicle speed at time (t- ),

 is the heavy vehicle dummy, ( )  is the indicator for density.

front

sens n n

heavy

n n n

V t

k t

β α τ τ

δ δ τ

−

−
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If the headway is less than the threshold, the car-following model dictates acceleration 

decisions when a lead vehicle is near enough to the subject vehicle that the subject must 

accelerate or decelerate to maintain a safe following distance. The car-following acceleration 

(when the relative speed is positive, deceleration when the relative speed is negative) is 

shown in Equation B.3. 

( )[ ] [ ] )()()( ,,,
ttVftXsta

gcf

nnnn

gcf

n

gcf

n ετξτ +−∆−=       (B.3) 

Where, 

( ),  cf g

n n
s X t ξτ −  is sensitivity, a function of a vector of explanatory variables affecting 

the car following acceleration sensitivity at time [ ]( ), ( )  n n nt f V tξτ τ− ∆ − is the stimulus, a 

function of relative speed between front vehicle and subject vehicle at time n(t- ) and ( )cf

n
tτ ε  

is the random term associated with car following acceleration of driver n at time t. 

The model was estimated to contain the following behavioral parameters: 
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where, 

 α is a constant, ( ) 
n

V t  is the subject speed at time , ( ) 
n

t X t∆  is the space headway at time 

, ( ) 
n

t k t  is an indicator for density ahead of subject and ( ) 
n n

V t τ∆ − is the difference between 

the front vehicle speed and the subject speed. 
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The estimation results of the model structure using the trajectory data from Arlington, VA 

(Toledo 2003) are presented in Table B.1. 
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Table B.1: Estimation results for the acceleration model 
Variable Parameter value t-statistic 

Car following acceleration 

Constant  0.027  0.45 

Speed, m/sec.  0.364  0.83 

Space headway, m. -0.167 -2.72 

Density, veh/km/lane   0.571  2.00 

Relative speed, m/sec.  0.525  8.18 

( ),ln
cf  acc

σ   0.131 12.92 

Car following deceleration 

Constant -0.830 -1.65 

Space headway, m. -0.561 -9.49 

Density, veh/km/lane   0.152  0.92 

Relative speed, m/sec.  0.825  12.78 

( ),ln
cf  dec

σ   0.155  15.14 

Free-flow acceleration 

Sensitivity constant  0.079  10.64 

( )ln
ff

σ   0.183  11.86 

Desired speed 

Constant  17.546  55.81 

Heavy vehicle dummy -1.345 -1.07 

Reaction time distribution 

Constant -0.124 -1.90 

( )ln τσ  -0.121 -1.05 

Headway threshold distribution 

Constant  2.574 45.78 

( )ln hσ  -0.807 -8.41 

  

These parameters were used in the current study. Some of them (acceleration and 

deceleration constants) were recalibrated for the new dataset. 
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APPENDIX C 

LANKERSHIM ORIGIN-DESTINATION DATA 

 

For validation, exact vehicle O-D flows were calculated using the Lankershim trajectory data. 

The O-D files can be downloaded from:  http://mit.edu/its/papers/OD_Lankershim.zip 

The node locations and numbering associated with the O-D files are presented in Figure C.1, 

which is a reproduction of Figure 4.2. Summary of OD is given in Tables C.1 and C.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  124

Figure C.1: Node Locations and Numbering for Lankershim Boulevard 
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Table C.1: Vehicle Distribution by O-D Pair 

Period 8:28 A.M. to 8:45 A.M. 

Destination 

Origin 201 203 204 205 206 207 208 209 210 211 Sum 

101 0 54 5 5 1 3 70 2 5 14 159 

102 19 41 4 5 0 24 157 2 1 1 254 

103 7 0 2 0 0 0 41 0 1 13 64 

104 0 1 0 1 0 1 1 0 1 13 64 

105 4 2 1 0 1 0 5 0 0 1 14 

106 0 1 0 0 0 0 2 0 0 1 4 

107 2 1 1 0 0 0 6 1 0 0 11 

108 365 150 12 11 3 21 0 1 21 25 609 

109 4 0 0 0 0 0 2 0 0 4 10 

110 2 1 0 0 0 0 5 0 0 0 8 

111 4 35 4 3 0 10 16 0 0 0 72 

Sum 407 286 29 25 5 59 305 6 29 60 1,211 

Source: NGSIM Data Analysis Report – Cambridge Systematics Inc. 
Table C.2: Vehicle Distribution by O-D Pair 

Period 8:45 A.M. to 9:00 A.M. 

Destination 

Origin 201 203 204 205 206 207 208 209 210 211 Sum 

101 0 52 4 6 3 8 79 1 2 8 163 

102 14 30 8 9 3 16 185 0 0 3 268 

103 13 0 0 0 0 1 29 0 0 16 59 

104 0 2 0 0 0 0 0 0 0 1 3 

105 3 4 0 0 0 0 8 0 0 1 16 

106 1 0 0 0 0 0 2 1 0 0 4 

107 0 7 1 0 0 0 4 0 0 1 13 

108 347 169 18 15 2 24 2 7 8 27 619 

109 4 3 0 0 0 0 7 0 0 1 15 

110 0 1 0 0 0 0 1 0 0 0 2 

111 3 22 3 8 0 6 27 0 0 0 69 

Sum 385 290 34 38 8 55 344 9 10 58 1,231 

Source: NGSIM Data Analysis Report – Cambridge Systematics Inc. 
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